1
|
Cecchetti S, Federici C, Canese R, Iorio E, Huber V, Pisanu ME, Chirico M, Iessi E, Camerini S, Casella M, Matteucci A, Macchia D, Spada M, Lugini L. NK cells-derived extracellular vesicles potency in the B cell lymphoma biotherapy. Front Immunol 2024; 15:1503857. [PMID: 39712029 PMCID: PMC11659271 DOI: 10.3389/fimmu.2024.1503857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Extracellular vesicles of Natural Killer cells (NKEV) exert an antitumor effect towards hematopoietic and solid tumors and have an immune modulating effect, suggesting a promising role in immune and biotherapy. In this study, a continuation of our former works, we demonstrated a network by mass spectrometry analysis between NKEV protein cargo and antitumor effects. Human healthy NKEV, both exosomes and microvesicles, have a significant and direct cytotoxic effect against human B cell lymphoma in in vitro and in vivo conditions. Methods We isolated extracellular vesicles from in vitro amplified healthy human NK cells and their treatment efficacy was monitored by cytometry analyses, in vivo MRI/MRS measurements, ex vivo MRS analyses and immunohistochemistry. Results We observed a remarkable NKEV cytotoxic effect, mainly by apoptosis, on B cell lymphoma in vitro when exosomes and microvesicles were administered simultaneously. In vivo results showed metabolic alterations in SCID mice xenografts after NKEV treatment, associated with a significant reduction of tumor growth (64%). In the in vivo 1H MR spectra we found a significant increase in the tumor lipid/lactate and in taurine signals, both considered as apotosis markers. Ex vivo lymphoma metabolomics revealed a significant increase in fatty acid (FA) pool and decrease in unsaturated and mono-unsaturated FA in treated groups, as compared to control one, thus suggesting an alteration of tumor homeostasis. Immunohistochemistry analyses confirmed the reduction of B-cell lymphoma proliferation rate, as well as the induction of apoptosis following the NKEV treatment. Conclusions This study underscore the importance of NKEV as a novel biological acellular tool for B-cell lymphoma treatment, probably having a greater effect on combined treatment regimens. These nanovesicles have an extraordinary potential in innovative cancer immunotherapy, representing a safe and efficient tool naturally circulating in healthy individuals and ready to maintain the immune homeostasis, and therefore a good organism healthy state.
Collapse
Affiliation(s)
- Serena Cecchetti
- Core Facilities, Confocal Microscopy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Federici
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Canese
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Egidio Iorio
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Veronica Huber
- Unit of Immunotherapy of human tumors, Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Elena Pisanu
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Mattea Chirico
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Iessi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Camerini
- Core Facilities, Mass Spectrometry Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Marialuisa Casella
- Core Facilities, Mass Spectrometry Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Matteucci
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- Centre for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Centre for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Luana Lugini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
2
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Pascal M, Bax HJ, Bergmann C, Bianchini R, Castells M, Chauhan J, De Las Vecillas L, Hartmann K, Álvarez EI, Jappe U, Jimenez-Rodriguez TW, Knol E, Levi-Schaffer F, Mayorga C, Poli A, Redegeld F, Santos AF, Jensen-Jarolim E, Karagiannis SN. Granulocytes and mast cells in AllergoOncology-Bridging allergy to cancer: An EAACI position paper. Allergy 2024; 79:2319-2345. [PMID: 39036854 DOI: 10.1111/all.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Derived from the myeloid lineage, granulocytes, including basophils, eosinophils, and neutrophils, along with mast cells, play important, often disparate, roles across the allergic disease spectrum. While these cells and their mediators are commonly associated with allergic inflammation, they also exhibit several functions either promoting or restricting tumor growth. In this Position Paper we discuss common granulocyte and mast cell features relating to immunomodulatory functions in allergy and in cancer. We highlight key mechanisms which may inform cancer treatment and propose pertinent areas for future research. We suggest areas where understanding the communication between granulocytes, mast cells, and the tumor microenvironment, will be crucial for identifying immune mechanisms that may be harnessed to counteract tumor development. For example, a comprehensive understanding of allergic and immune factors driving distinct neutrophil states and those mechanisms that link mast cells with immunotherapy resistance, might enable targeted manipulation of specific subpopulations, leading to precision immunotherapy in cancer. We recommend specific areas of investigation in AllergoOncology and knowledge exchange across disease contexts to uncover pertinent reciprocal functions in allergy and cancer and allow therapeutic manipulation of these powerful cell populations. These will help address the unmet needs in stratifying and managing patients with allergic diseases and cancer.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Drug Hypersensitivity and Desensitization Center, Mastocytosis Center, Brigham and Women's Hospital; Harvard Medical School, Boston, USA
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Elena Izquierdo Álvarez
- Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Madrid, Spain
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | | | - Edward Knol
- Departments Center of Translational Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine. The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Cristobalina Mayorga
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Allergy Unit and Research Laboratory, Hospital Regional Universitario de Málaga-HRUM, Instituto de investigación Biomédica de Málaga -IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, UK
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
4
|
Lee HT, Lin CS, Liu CY, Chen P, Tsai CY, Wei YH. Mitochondrial Plasticity and Glucose Metabolic Alterations in Human Cancer under Oxidative Stress-From Viewpoints of Chronic Inflammation and Neutrophil Extracellular Traps (NETs). Int J Mol Sci 2024; 25:9458. [PMID: 39273403 PMCID: PMC11395599 DOI: 10.3390/ijms25179458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress elicited by reactive oxygen species (ROS) and chronic inflammation are involved both in deterring and the generation/progression of human cancers. Exogenous ROS can injure mitochondria and induce them to generate more endogenous mitochondrial ROS to further perpetuate the deteriorating condition in the affected cells. Dysfunction of these cancer mitochondria may possibly be offset by the Warburg effect, which is characterized by amplified glycolysis and metabolic reprogramming. ROS from neutrophil extracellular traps (NETs) are an essential element for neutrophils to defend against invading pathogens or to kill cancer cells. A chronic inflammation typically includes consecutive NET activation and tissue damage, as well as tissue repair, and together with NETs, ROS would participate in both the destruction and progression of cancers. This review discusses human mitochondrial plasticity and the glucose metabolic reprogramming of cancer cells confronting oxidative stress by the means of chronic inflammation and neutrophil extracellular traps (NETs).
Collapse
Affiliation(s)
- Hui-Ting Lee
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Chen-Sung Lin
- Division of Thoracic Surgery, Department of Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for General Education, Kainan University, Taoyuan City 338, Taiwan
| | - Chao-Yu Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Po Chen
- Cancer Free Biotech, Taipei 114, Taiwan
| | - Chang-Youh Tsai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Clinical Trial Center, Division of Immunology & Rheumatology, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
- Faculty of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
5
|
Favale G, Donnarumma F, Capone V, Della Torre L, Beato A, Carannante D, Verrilli G, Nawaz A, Grimaldi F, De Simone MC, Del Gaudio N, Megchelenbrink WL, Caraglia M, Benedetti R, Altucci L, Carafa V. Deregulation of New Cell Death Mechanisms in Leukemia. Cancers (Basel) 2024; 16:1657. [PMID: 38730609 PMCID: PMC11083363 DOI: 10.3390/cancers16091657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Hematological malignancies are among the top five most frequent forms of cancer in developed countries worldwide. Although the new therapeutic approaches have improved the quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate molecular processes for biological survival, preventing the activation of regulated cell death pathways, leading to cancer progression. In the past decade, leukemia research has predominantly centered around modulating the well-established processes of apoptosis (type I cell death) and autophagy (type II cell death). However, the development of therapy resistance and the adaptive nature of leukemic clones have rendered targeting these cell death pathways ineffective. The identification of novel cell death mechanisms, as categorized by the Nomenclature Committee on Cell Death (NCCD), has provided researchers with new tools to overcome survival mechanisms and activate alternative molecular pathways. This review aims to synthesize information on these recently discovered RCD mechanisms in the major types of leukemia, providing researchers with a comprehensive overview of cell death and its modulation.
Collapse
Affiliation(s)
- Gregorio Favale
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Federica Donnarumma
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Vincenza Capone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Laura Della Torre
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Antonio Beato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Daniela Carannante
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Giulia Verrilli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Asmat Nawaz
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| | - Francesco Grimaldi
- Dipartimento di Medicina Clinica e Chirurgia, Divisione di Ematologia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | | | - Nunzio Del Gaudio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Wouter Leonard Megchelenbrink
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Michele Caraglia
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), 80131 Napoli, Italy
- Programma di Epigenetica Medica, A.O.U. “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| |
Collapse
|
6
|
Alexa AL, Sargarovschi S, Ionescu D. Neutrophils and Anesthetic Drugs: Implications in Onco-Anesthesia. Int J Mol Sci 2024; 25:4033. [PMID: 38612841 PMCID: PMC11012681 DOI: 10.3390/ijms25074033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Apart from being a significant line of defense in the host defense system, neutrophils have many immunological functions. Although there are not many publications that accurately present the functions of neutrophils in relation to oncological pathology, their activity and implications have been studied a lot recently. This review aims to extensively describe neutrophils functions'; their clinical implications, especially in tumor pathology; the value of clinical markers related to neutrophils; and the implications of neutrophils in onco-anesthesia. This review also aims to describe current evidence on the influence of anesthetic drugs on neutrophils' functions and their potential influence on perioperative outcomes.
Collapse
Affiliation(s)
- Alexandru Leonard Alexa
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
- Onco-Anaesthesia Research Group, ESAIC, 1000 Brussels, Belgium
| | - Sergiu Sargarovschi
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
| | - Daniela Ionescu
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
- Onco-Anaesthesia Research Group, ESAIC, 1000 Brussels, Belgium
- Outcome Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Zhao Z, Huo Y, Du Y, Huang Y, Liu H, Zhang C, Yan J. A neutrophil extracellular trap-related risk score predicts prognosis and characterizes the tumor microenvironment in multiple myeloma. Sci Rep 2024; 14:2264. [PMID: 38278930 PMCID: PMC10817968 DOI: 10.1038/s41598-024-52922-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/25/2024] [Indexed: 01/28/2024] Open
Abstract
Multiple myeloma (MM) is a distinguished hematologic malignancy, with existing studies elucidating its interaction with neutrophil extracellular traps (NETs), which may potentially facilitate tumor growth. However, systematic investigations into the role of NETs in MM remain limited. Utilizing the single-cell dataset GSE223060, we discerned active NET cell subgroups, namely neutrophils, monocytes, and macrophages. A transcriptional trajectory was subsequently constructed to comprehend the progression of MM. Following this, an analysis of cellular communication in MM was conducted with a particular emphasis on neutrophils, revealing an augmentation in interactions albeit with diminished strength, alongside abnormal communication links between neutrophils and NK cells within MM samples. Through the intersection of differentially expressed genes (DEGs) between NET active/inactive cells and MM versus healthy samples, a total of 316 genes were identified. This led to the development of a 13-gene risk model for prognostic prediction based on overall survival, utilizing transcriptomics dataset GSE136337. The high-risk group manifested altered immune infiltration and heightened sensitivity to chemotherapy. A constructed nomogram for predicting survival probabilities demonstrated encouraging AUCs for 1, 3, and 5-year survival predictions. Collectively, our findings unveil a novel NET-related prognostic signature for MM, thereby providing a potential avenue for therapeutic exploration.
Collapse
Affiliation(s)
- Zhijia Zhao
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yuan Huo
- Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, 116031, China
| | - Yufeng Du
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Blood Stem Cell Transplantation Institute of Dalian Medical University, Dalian, 116023, China
| | - Yanan Huang
- Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, 116031, China
| | - Hongchen Liu
- Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, 116031, China
| | - Chengtao Zhang
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Blood Stem Cell Transplantation Institute of Dalian Medical University, Dalian, 116023, China.
| | - Jinsong Yan
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, 116031, China.
- Blood Stem Cell Transplantation Institute of Dalian Medical University, Dalian, 116023, China.
- Pediatric Oncology and Hematology Center, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
8
|
Luz IS, Takaya R, Ribeiro DG, Castro MS, Fontes W. Proteomics: Unraveling the Cross Talk Between Innate Immunity and Disease Pathophysiology, Diagnostics, and Treatment Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:221-242. [PMID: 38409424 DOI: 10.1007/978-3-031-50624-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Inflammation is crucial in diseases, and proteins play a key role in the interplay between innate immunity and pathology. This review explores how proteomics helps understanding this relationship, focusing on diagnosis and treatment. We explore the dynamic innate response and the significance of proteomic techniques in deciphering the complex network of proteins involved in prevalent diseases, including infections, cancer, autoimmune and neurodegenerative disorders. Proteomics identifies key proteins in host-pathogen interactions, shedding light on infection mechanisms and inflammation. These discoveries hold promise for diagnostic tools, therapies, and vaccines. In cancer research, proteomics reveals innate signatures associated with tumor development, immune evasion, and therapeutic response. Additionally, proteomic analysis has unveiled autoantigens and dysregulation of the innate immune system in autoimmunity, offering opportunities for early diagnosis, disease monitoring, and new therapeutic targets. Moreover, proteomic analysis has identified altered protein expression patterns in neurodegenerative diseases like Alzheimer's and Parkinson's, providing insights into potential therapeutic strategies. Proteomics of the innate immune system provides a comprehensive understanding of disease mechanisms, identifies biomarkers, and enables effective interventions in various diseases. Despite still in its early stages, this approach holds great promise to revolutionize innate immunity research and significantly improve patient outcomes across a wide range of diseases.
Collapse
Affiliation(s)
- Isabelle Souza Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Raquel Takaya
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Daiane Gonzaga Ribeiro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil.
| |
Collapse
|
9
|
Mo G, Long X, Cao L, Tang Y, Yan Y, Guo T. A Six-gene Prognostic Model Based on Neutrophil Extracellular Traps (NETs)-related Gene Signature for Lung Adenocarcinoma. Comb Chem High Throughput Screen 2024; 27:1969-1983. [PMID: 38357943 DOI: 10.2174/0113862073282003240119064337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common malignant cancers. Neutrophil extracellular traps (NETs) have been discovered to play a crucial role in the pathogenesis of LUAD. We aimed to establish an innovative prognostic model for LUAD based on the distinct expression patterns of NETs-related genes. METHODS The TCGA LUAD dataset was utilized as the training set, while GSE31210, GSE37745, and GSE50081 were undertaken as the verification sets. The patients were grouped into clusters based on the expression signature of NETs-related genes. Differentially expressed genes between clusters were identified through the utilization of the random forest and LASSO algorithms. The NETs score model for LUAD prognosis was developed by multiplying the expression levels of specific genes with their corresponding LASSO coefficients and then summing them. The validity of the model was confirmed by analysis of the survival curves and ROC curves. Additionally, immune infiltration, GSEA, mutation analysis, and drug analysis were conducted. Silencing ABCC2 in A549 cells was achieved to investigate its effect. RESULTS We identified six novel NETs-related genes, namely UPK1B, SFTA3, GGTLC1, SCGB3A1, ABCC2, and NTS, and developed a NETs score signature, which exhibited a significant correlation with the clinicopathological and immune traits of the LUAD patients. High-risk patients showed inhibition of immune-related processes. Mutation patterns exhibited variability among the different groups. AZD3759, lapatinib, and dasatinib have been identified as potential candidates for LUAD treatment. Moreover, the downregulation of ABCC2 resulted in the induction of apoptosis and suppression of migration and invasion in A549 cells. CONCLUSION Altogether, this study has identified a novel NET-score signature based on six novel NET-related genes to predict the prognosis of LUAD and ABCC2 and has also explored a new method for personalized chemo-/immuno-therapy of LUAD.
Collapse
Affiliation(s)
- Guiyan Mo
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| | - Xuan Long
- Department of Respiratory and Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Limin Cao
- Department of Respiratory and Critical Care Medicine, Lianyungang Second People's Hospital, Lianyungang, 222000, Jiangsu, China
| | - Yuling Tang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| | - Yusheng Yan
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| | - Ting Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| |
Collapse
|
10
|
Guo C, Li P, Guo X, Wang X, Liu B, Cui L. Identification of bladder cancer subtypes and predictive model for prognosis, immune features, and immunotherapy based on neutrophil extracellular trap-related genes. Sci Rep 2023; 13:20791. [PMID: 38012244 PMCID: PMC10682410 DOI: 10.1038/s41598-023-47824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
Bladder cancer is the most common malignant tumor of urinary system, and its morbidity and mortality are increasing rapidly. Although great advances have been made in medical technology in recent years, there is still a lack of effective prognostic and therapeutic methods for bladder cancer. NETs are reticulated DNA structures decorated with various protein substances released extracellularly by neutrophils stimulated by strong signals. Recently, it has been found that NETs are closely related to the growth, metastasis and drug resistance of many types of cancers. However, up to now, the research on the relationship between NETs and bladder cancer is still not enough. In this study, we aimed to conduct a comprehensive analysis of NRGs in bladder cancer tissues to evaluate the relationship between NRGs and prognosis prediction and sensitivity to therapy in patients with bladder cancer. We scored NRGs in each tissue by using ssGSEA, and selected gene sets that were significantly associated with NRGs scores by using the WCGNA algorithm. Based on the expression profiles of NRGs-related genes, NMF clustering analysis was performed to identify different BLCA molecular subtypes. For the differentially expressed genes between subtypes, we used univariate COX regression, LASSO regression and multivariate COX regression to further construct a hierarchical model of BLCA patients containing 10 genes. This model and the nomogram based on this model can accurately predict the prognosis of BLCA patients in multiple datasets. Besides, BLCA patients classified based on this model differ greatly in their sensitivity to immunotherapy and targeted therapies, which providing a reference for individualized treatment of patients with bladder cancer.
Collapse
Affiliation(s)
- Changhong Guo
- Department of Urology, Civil Aviation General Hospital, Beijing, China
| | - Peiying Li
- Department of Urology, The Fifth Medical Center of the General Hospital of the People's Liberation Army of China, Beijing, China
| | - Xingkui Guo
- Department of Urology, The Second People's Hospital of Juancheng County, Shandong, China
| | - Xinfen Wang
- Department of Urology, The Second People's Hospital of Juancheng County, Shandong, China
| | - Bo Liu
- Department of Urology, The First People's Hospital of Juancheng County, Shandong, China
| | - Liang Cui
- Department of Urology, Civil Aviation General Hospital, Beijing, China.
| |
Collapse
|
11
|
Islam MM, Takeyama N. Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. Int J Mol Sci 2023; 24:15805. [PMID: 37958788 PMCID: PMC10649138 DOI: 10.3390/ijms242115805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neutrophils are the principal trouper of the innate immune system. Activated neutrophils undergo a noble cell death termed NETosis and release a mesh-like structure called neutrophil extracellular traps (NETs) as a part of their defensive strategy against microbial pathogen attack. This web-like architecture includes a DNA backbone embedded with antimicrobial proteins like myeloperoxidase (MPO), neutrophil elastase (NE), histones and deploys in the entrapment and clearance of encountered pathogens. Thus NETs play an inevitable beneficial role in the host's protection. However, recent accumulated evidence shows that dysregulated and enhanced NET formation has various pathological aspects including the promotion of sepsis, pulmonary, cardiovascular, hepatic, nephrological, thrombotic, autoimmune, pregnancy, and cancer diseases, and the list is increasing gradually. In this review, we summarize the NET-mediated pathophysiology of different diseases and focus on some updated potential therapeutic approaches against NETs.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chattogram 4202, Bangladesh
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
| |
Collapse
|
12
|
Inozemtsev V, Sergunova V, Vorobjeva N, Kozlova E, Sherstyukova E, Lyapunova S, Chernysh A. Stages of NETosis Development upon Stimulation of Neutrophils with Activators of Different Types. Int J Mol Sci 2023; 24:12355. [PMID: 37569729 PMCID: PMC10418979 DOI: 10.3390/ijms241512355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Before NETs are released, the neutrophil undergoes structural changes. First, it flattens, accompanied by a change in cell shape and rearrangement of the cytoskeleton. Then, nuclear swelling begins, which ends with the ejection of NETs into the extracellular space. We used widefield and confocal fluorescence microscopy to register morphological and structural changes in neutrophils during activation and NETosis. Different types of activators were used, such as NOX-dependent PMA and calcium ionophore A23187. The measurements were performed in a series of sequential stages. In the first stage (30 s after addition of activators and immediately after stimulation of neutrophils), the response of neutrophils to A23187 and PMA exposure was studied. Subsequently, the characteristics of neutrophils in different phases of activation were examined over a longer period of time (30, 60, 120, 180, and 240 min). The specific features of NETosis development were analyzed separately. During the first 30 s, neutrophils appeared to be heterogeneous in shape and structure of the actin cytoskeleton. Characteristic cell shapes included 30″ type 1 cells, similar in shape to the control, with F-actin concentrated in the center of the cytoplasm, and 30″ type 2 cells, which had flattened (spread) shapes with increased frontal dimensions and F-actin distributed throughout the cell. Later, the development of nuclear swelling, the corresponding changes in neutrophil membranes, and NET release into the extracellular space were evaluated. The conditions determining the initiation of chromatin ejection and two characteristic types of decondensed chromatin ejection were revealed. The results obtained contribute to a better understanding of the biophysical mechanisms of neutrophil activation and NETosis development.
Collapse
Affiliation(s)
- Vladimir Inozemtsev
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Viktoria Sergunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Nina Vorobjeva
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Lenin Hills 1/12, 119234 Moscow, Russia;
| | - Elena Kozlova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina Sherstyukova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Snezhanna Lyapunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Aleksandr Chernysh
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
- General Pathology Department, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia
| |
Collapse
|
13
|
Zhang Z, Wang B, Tan B. Advances in the Mechanism of Action of Neutrophil Extracellular Traps in Gastrointestinal Tumors: A Review. Int J Gen Med 2023; 16:2783-2789. [PMID: 37408845 PMCID: PMC10319275 DOI: 10.2147/ijgm.s419542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Neutrophils are important immune cells in the body, extremely abundant, phagocytic and bactericidal, and usually involved in the defense against infectious diseases as immune become. However, a new reticulum structure has been discovered: neutrophil extracellular traps (NETs), which consists of various components such as DNA and proteins, etc. Current studies have found that NETs are closely associated with various diseases such as immune diseases, inflammation and tumors, and the study of the development and metastasis of gastrointestinal tumors has become a recent research hotspot. The clinical significance of NETs has been gradually highlighted, especially in the area of immunosuppression. Methods We reviewed a large amount of relevant literature, summarized the latest detection methods of NETs, explored the mechanism of NETs in gastrointestinal tumors and summarized the latest hotspot directions. Results NETs are involved in the development of gastrointestinal tumors, and are closely related to the proliferation and metastasis of gastrointestinal tumors. Higher levels of NETs are associated with poor prognosis of gastrointestinal tumors, promote local growth of tumors through various pathways, participate in tumor-related systemic injury, and promote tumor growth and metastasis by enhancing the mitochondrial function of tumor cells and awakening dormant tumor cells. Discussion NETs are highly expressed in tumors, and tumors and their microenvironment can promote the production of NETs, providing new ideas for the clinical diagnosis and treatment of gastrointestinal tumors. In this paper, we describe the basic information about NETs, explore the research mechanisms related to NETs in gastrointestinal tumors, and prospectively explore the clinical potential of hotspots and inhibitors related to NETs for gastrointestinal tumors, in order to provide new ideas and targets for the diagnosis and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Zaibo Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
14
|
Gibellini L, Borella R, Santacroce E, Serattini E, Boraldi F, Quaglino D, Aramini B, De Biasi S, Cossarizza A. Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions. Cancers (Basel) 2023; 15:3327. [PMID: 37444436 DOI: 10.3390/cancers15133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Eugenia Serattini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC), University Hospital GB Morgagni-L Pierantoni, 47121 Forlì, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
15
|
Herranz R, Oto J, Hueso M, Plana E, Cana F, Castaño M, Cordón L, Ramos-Soler D, Bonanad S, Vera-Donoso CD, Martínez-Sarmiento M, Medina P. Bladder cancer patients have increased NETosis and impaired DNaseI-mediated NET degradation that can be therapeutically restored in vitro. Front Immunol 2023; 14:1171065. [PMID: 37275882 PMCID: PMC10237292 DOI: 10.3389/fimmu.2023.1171065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Background Neutrophils, key players of the immune system, also promote tumor development through the formation of neutrophil extracellular traps (NETs) in a process called NETosis. NETs are extracellular networks of DNA, histones and cytoplasmic and granular proteins (calprotectin, myeloperoxidase, elastase, etc.) released by neutrophils upon activation. NETs regulate tumor growth while promoting angiogenesis and invasiveness, and tumor cells also stimulate NETosis. Although NETosis seems to be increased in cancer patients, an increase of NETs in plasma may also be mediated by an impaired degradation by plasma DNaseI, as evidenced in several immunological disorders like lupus nephritis. However, this has never been evidenced in bladder cancer (BC) patients. Herein, we aimed to evaluate the occurrence of increased NETosis in plasma and tumor tissue of BC patients, to ascertain whether it is mediated by a reduced DNaseI activity and degradation, and to in vitro explore novel therapeutic interventions. Methods We recruited 71 BC patients from whom we obtained a plasma sample before surgery and a formalin-fixed paraffin embedded tumor tissue sample, and 64 age- and sex-matched healthy controls from whom we obtained a plasma sample. We measured NETs markers (cell-free fDNA, calprotectin, nucleosomes and neutrophil elastase) and the DNaseI activity in plasma with specific assays. We also measured NETs markers in BC tissue by immunofluorescence. Finally, we evaluated the ability of BC and control plasma to degrade in vitro-generated NETs, and evaluated the performance of the approved recombinant human DNaseI (rhDNaseI, Dornase alfa, Pulmozyme®, Roche) to restore the NET-degradation ability of plasma. In vitro experiments were performed in triplicate. Statistical analysis was conducted with Graphpad (v.8.0.1). Results NETosis occurs in BC tissue, more profusely in the muscle-invasive subtype (P<0.01), that with the worst prognosis. Compared to controls, BC patients had increased NETosis and a reduced DNaseI activity in plasma (P<0.0001), which leads to an impairment to degrade NETs (P<0.0001). Remarkably, this can be therapeutically restored with rhDNaseI to the level of healthy controls. Conclusion To the best of our knowledge, this is the first report demonstrating that BC patients have an increased NETosis systemically and in the tumor microenvironment, in part caused by an impaired DNaseI-mediated NET degradation. Remarkably, this defect can be therapeutically restored in vitro with the approved Dornase alfa, thus Pulmozyme® could become a potential therapeutic tool to locally reduce BC progression.
Collapse
Affiliation(s)
- Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Marta Hueso
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Emma Plana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - María Castaño
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Lourdes Cordón
- Hematology Research Group, Medical Research Institute Hospital La Fe, CIBERONC (CB16/12/00284), Valencia, Spain
| | - David Ramos-Soler
- Department of Pathology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Santiago Bonanad
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
- Thrombosis and Haemostasis Unit, Haematology Service, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | | | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
16
|
Shafqat A, Noor Eddin A, Adi G, Al-Rimawi M, Abdul Rab S, Abu-Shaar M, Adi K, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps in central nervous system pathologies: A mini review. Front Med (Lausanne) 2023; 10:1083242. [PMID: 36873885 PMCID: PMC9981681 DOI: 10.3389/fmed.2023.1083242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Neutrophils are the first cells to be recruited to sites of acute inflammation and contribute to host defense through phagocytosis, degranulation and neutrophil extracellular traps (NETs). Neutrophils are rarely found in the brain because of the highly selective blood-brain barrier (BBB). However, several diseases disrupt the BBB and cause neuroinflammation. In this regard, neutrophils and NETs have been visualized in the brain after various insults, including traumatic (traumatic brain injury and spinal cord injury), infectious (bacterial meningitis), vascular (ischemic stroke), autoimmune (systemic lupus erythematosus), neurodegenerative (multiple sclerosis and Alzheimer's disease), and neoplastic (glioma) causes. Significantly, preventing neutrophil trafficking into the central nervous system or NET production in these diseases alleviates brain pathology and improves neurocognitive outcomes. This review summarizes the major studies on the contribution of NETs to central nervous system (CNS) disorders.
Collapse
|
17
|
Tomás-Pérez S, Oto J, Aghababyan C, Herranz R, Cuadros-Lozano A, González-Cantó E, Mc Cormack B, Arrés J, Castaño M, Cana F, Martínez-Fernández L, Santonja N, Ramírez R, Herreros-Pomares A, Cañete-Mota S, Llueca A, Marí-Alexandre J, Medina P, Gilabert-Estellés J. Increased levels of NETosis biomarkers in high-grade serous ovarian cancer patients' biofluids: Potential role in disease diagnosis and management. Front Immunol 2023; 14:1111344. [PMID: 36817483 PMCID: PMC9936152 DOI: 10.3389/fimmu.2023.1111344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction High-grade serous ovarian cancer (HGSOC) is the second most frequent gynecological malignancy but the most lethal, partially due to the spread of the disease through the peritoneal cavity. Recent evidence has shown that, apart from their role in immune defense through phagocytosis and degranulation, neutrophils are able to participate in cancer progression through the release of neutrophil extracellular traps (NETs) in a process called NETosis. NETs are composed of DNA, histones, calprotectin, myeloperoxidase (MPO) and elastase and the NETosis process has been proposed as a pre-requisite for the establishment of omental metastases in early stages of HGSOC. Nevertheless, its role in advanced stages remains to be elucidated. Therefore, our principal aim is to characterize a NETosis biomarker profile in biofluids from patients with advanced HGSOC and control women. Methods Specifically, five biomarkers of NETosis (cell-free DNA (cfDNA), nucleosomes, citrullinated histone 3 (citH3), calprotectin and MPO) were quantified in plasma and peritoneal fluid (PF) samples from patients (n=45) and control women (n=40). Results Our results showed that HGSOC patients presented a higher concentration of cfDNA, citH3 and calprotectin in plasma and of all five NETosis biomarkers in PF than control women. Moreover, these biomarkers showed a strong ability to differentiate the two clinical groups. Interestingly, neoadjuvant treatment (NT) seemed to reduce NETosis biomarkers mainly systemically (plasma) compared to the tumor environment (PF). Discussion In conclusion, NETosis biomarkers are present in the tumor environment of patients with advanced HGSOC, which might contribute to the progression of the disease. Besides, plasma cfDNA and calprotectin could represent minimally invasive surrogate biomarkers for HGSOC. Finally, NT modifies NETosis biomarkers levels mainly at the systemic level.
Collapse
Affiliation(s)
- Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain
| | - Julia Oto
- Hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Cristina Aghababyan
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain,Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, Valencia, Spain
| | - Raquel Herranz
- Hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Aitor Cuadros-Lozano
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain,Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, Valencia, Spain
| | - Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain
| | - Bárbara Mc Cormack
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain
| | - Judith Arrés
- Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - María Castaño
- Hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Fernando Cana
- Hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Laura Martínez-Fernández
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain,Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, Valencia, Spain
| | - Núria Santonja
- Department of Pathology, General University Hospital of Valencia Consortium, Valencia, Spain
| | - Rocío Ramírez
- Department of Medical Oncology, General University Hospital of Valencia Consortium, Valencia, Spain
| | - Alejandro Herreros-Pomares
- Department of Biotechnology, Polytechnic University of Valencia, Valencia, Spain,Cancer Biomedical Research Network Center, CIBERONC, Madrid, Spain
| | - Sarai Cañete-Mota
- Department of Obstetrics and Gynecology, General University Hospital of Castellon, Castellón, Spain
| | - Antoni Llueca
- Department of Obstetrics and Gynecology, General University Hospital of Castellon, Castellón, Spain,Multidisciplinary Unit of Abdominal Pelvic Oncology Surgery (MUAPOS), General University Hospital of Castellon, Castellón, Spain,Department of Medicine, University Jaume I, Castellón, Spain
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain,Department of Pathology, General University Hospital of Valencia Consortium, Valencia, Spain,*Correspondence: Josep Marí-Alexandre, ; Pilar Medina,
| | - Pilar Medina
- Hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain,*Correspondence: Josep Marí-Alexandre, ; Pilar Medina,
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain,Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, Valencia, Spain,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| |
Collapse
|
18
|
Aubé FA, Bidias A, Pépin G. Who and how, DNA sensors in NETs-driven inflammation. Front Immunol 2023; 14:1190177. [PMID: 37187738 PMCID: PMC10179500 DOI: 10.3389/fimmu.2023.1190177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
During infections, neutrophil extracellular traps act like a meshwork of molecules that captures microbes. In contrast, during sterile inflammation the presence of NETs is usually associated with tissue damage and uncontrolled inflammation. In this context, DNA acts both as activator of NETs formation and immunogenic molecule fueling inflammation within the injured tissue microenvironment. Pattern recognition receptors that specifically bind to and get activated by DNA such as Toll-like receptor-9 (TLR9), cyclic GMP-AMP synthase (cGAS), Nod-like receptor protein 3 (NLRP3) and Absence in Melanoma-2 (AIM2) have been reported to play a role in NETs formation and detection. However, how these DNA sensors contribute to NETs-driven inflammation is not well understood. Whether these DNA sensors have unique roles or on the contrary they are mostly redundant is still elusive. In this review, we summarize the known contribution of the above DNA sensors to the formation and detection of NETs in the context of sterile inflammation. We also highlight scientific gaps needed to be addressed and propose future direction for therapeutic targets.
Collapse
Affiliation(s)
- Félix-Antoine Aubé
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Amel Bidias
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Geneviève Pépin
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- *Correspondence: Geneviève Pépin,
| |
Collapse
|
19
|
Hu J, Pan M, Wang Y, Zhu Y, Wang M. Functional plasticity of neutrophils after low- or high-dose irradiation in cancer treatment - A mini review. Front Immunol 2023; 14:1169670. [PMID: 37063873 PMCID: PMC10098001 DOI: 10.3389/fimmu.2023.1169670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Over the last several decades, radiotherapy has been considered the primary treatment option for a broad range of cancer types, aimed at prolonging patients' survival and slowing down tumor regression. However, therapeutic outcomes of radiotherapy remain limited, and patients suffer from relapse shortly after radiation. Neutrophils can initiate an immune response to infection by releasing cytokines and chemokines to actively combat pathogens. In tumor immune microenvironment, tumor-derived signals reprogram neutrophils and induce their heterogeneity and functional versatility to promote or inhibit tumor growth. In this review, we present an overview of the typical phenotypes of neutrophils that emerge after exposure to low- and high-dose radiation. These phenotypes hold potential for developing synergistic therapeutic strategies to inhibit immunosuppressive activity and improve the antitumor effects of neutrophils to render radiation therapy as a more effective strategy for cancer patients, through tumor microenvironment modulation.
Collapse
Affiliation(s)
- Jing Hu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Mingyue Pan
- Faculty of Law, University of Freiburg, Freiburg, Germany
| | - Yixi Wang
- Department of Rehabilitation Medicine, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Yujie Zhu
- Department of Obstetrics and Gynecology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Meidan Wang
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Meidan Wang,
| |
Collapse
|