1
|
Das A, Suar M, Reddy K. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Biosci Rep 2024; 44:BSR20240482. [PMID: 39492784 PMCID: PMC11581842 DOI: 10.1042/bsr20240482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human malaria, caused by Plasmodium parasites, is a fatal disease that disrupts the host's physiological balance and affects the neuroendocrine system. This review explores how malaria influences and is influenced by hormones. Malaria activates the Hypothalamus-Pituitary-Adrenal axis, leading to increased cortisol, aldosterone, and epinephrine. Cortisol, while reducing inflammation, aids parasite survival, whereas epinephrine helps manage hypoglycemia. The Hypothalamus-Pituitary-Gonad and Hypothalamus-Pituitary-Thyroid axes are also impacted, resulting in lower sex and thyroid hormone levels. Malaria disrupts the renin-angiotensin-aldosterone system (RAAS), causing higher angiotensin-II and aldosterone levels, contributing to edema, hyponatremia and hypertension. Malaria-induced anemia is exacerbated by increased hepcidin, which impairs iron absorption, reducing both iron availability for the parasite and red blood cell formation, despite elevated erythropoietin. Hypoglycemia is common due to decreased glucose production and hyperinsulinemia, although some cases show hyperglycemia due to stress hormones and inflammation. Hypocalcemia, and hypophosphatemia are associated with low Vitamin D3 and parathyroid hormone but high calcitonin. Hormones such as DHEA, melatonin, PTH, Vitamin D3, hepcidin, progesterone, and erythropoietin protects against malaria. Furthermore, synthetic analogs, receptor agonists and antagonists or mimics of hormones like DHEA, melatonin, serotonin, PTH, vitamin D3, estrogen, progesterone, angiotensin, and somatostatin are being explored as potential antimalarial treatments or adjunct therapies. Additionally, hormones like leptin and PCT are being studied as probable markers of malaria infection.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
- Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| |
Collapse
|
2
|
Gutierrez-Chavez C, Aperrigue-Lira S, Ortiz-Saavedra B, Paz I. Chemokine receptors in COVID-19 infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:53-94. [PMID: 39260938 DOI: 10.1016/bs.ircmb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors play diverse roles in the immune response against pathogens by recruiting innate and adaptive immune cells to sites of infection. However, their involvement could also be detrimental, causing tissue damage and exacerbating respiratory diseases by triggering histological alterations such as fibrosis and remodeling. This chapter reviews the role of chemokine receptors in the immune defense against SARS-CoV-2 infection. In COVID-19, CXCR3 is expressed mainly in T cells, and its upregulation is related to an increase in SARS-CoV-2-specific antibodies but also to COVID-19 severity. CCR5 is a key player in T-cell recruitment, and its suppression leads to reduced inflammation and viremia levels. Conversely, CXCR6 is implicated in the aberrant migration of memory T cells within airways. On the other hand, increased CCR4+ cells in the blood and decreased CCR4+ cells in lung cells are associated with severe COVID-19. Additionally, CCR2 is associated with an increase in macrophage recruitment to lung tissues. Elevated levels of CXCR1 and CXCR2, which are predominantly expressed in neutrophils, are associated with the severity of the disease, and finally, the expression of CX3CR1 in cytotoxic T lymphocytes affects the retention of these cells in lung tissues, thereby impacting the severity of COVID-19. Despite the efforts of many clinical trials to find effective therapies for COVID-19 using chemokine receptor inhibitors, no conclusive results have been found due to the small number of patients, redundancy, and co-expression of chemokine receptors by immune cells, which explains the difficulty in finding a single therapeutic target or effective treatment.
Collapse
Affiliation(s)
| | - Shalom Aperrigue-Lira
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Brando Ortiz-Saavedra
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Irmia Paz
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| |
Collapse
|
3
|
Sharma M, Pandey V, Poli G, Tuccinardi T, Lolli ML, Vyas VK. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 1: triazolopyrimidine, isoxazolopyrimidine and pyrrole-based (DSM) compounds. Bioorg Chem 2024; 146:107249. [PMID: 38493638 DOI: 10.1016/j.bioorg.2024.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
One of the deadliest infectious diseases, malaria, still has a significant impact on global morbidity and mortality. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in de novo pyrimidine nucleotide biosynthesis and has been clinically validated as an innovative and promising target for the development of novel targeted antimalarial drugs. PfDHODH inhibitors have the potential to significantly slow down parasite growth at the blood and liver stages. Several PfDHODH inhibitors based on various scaffolds have been explored over the past two decades. Among them, triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based derivatives known as DSM compounds showed tremendous potential as novel antimalarial agents, and one of the triazolopyrimidine-based compounds (DSM265) was able to reach phase IIa clinical trials. DSM compounds were synthesized as PfDHODH inhibitors with various substitutions based on structure-guided medicinal chemistry approaches and further optimised as well. For the first time, this review provides an overview of all the synthetic approaches used for the synthesis, alternative synthetic routes, and novel strategies involving various catalysts and chemical reagents that have been used to synthesize DSM compounds. We have also summarized SAR study of all these PfDHODH inhibitors. In an attempt to assist readers, scientists, and researchers involved in the development of new PfDHODH inhibitors as antimalarials, this review provides accessibility of all synthetic techniques and SAR studies of the most promising triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based PfDHODH inhibitors.
Collapse
Affiliation(s)
- Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Vinita Pandey
- MIT College of Pharmacy, Ramganga Vihar, Phase-II, Moradabad, UP-244001, India
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 - Turin, Italy
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
4
|
Mohamed AH, Eltyeb E, Said B, Eltayeb R, Algaissi A, Hober D, Alhazmi AH. COVID-19 and malaria co-infection: a systematic review of clinical outcomes in endemic areas. PeerJ 2024; 12:e17160. [PMID: 38646476 PMCID: PMC11032658 DOI: 10.7717/peerj.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
Background COVID-19 and malaria cause significant morbidity and mortality globally. Co-infection of these diseases can worsen their impact on public health. This review aims to synthesize literature on the clinical outcomes of COVID-19 and malaria co-infection to develop effective prevention and treatment strategies. Methods A comprehensive literature search was conducted using MeSH terms and keywords from the start of the COVID-19 pandemic to January 2023. The review included original articles on COVID-19 and malaria co-infection, evaluating their methodological quality and certainty of evidence. It was registered in PROSPERO (CRD42023393562). Results Out of 1,596 screened articles, 19 met the inclusion criteria. These studies involved 2,810 patients, 618 of whom had COVID-19 and malaria co-infection. Plasmodium falciparum and vivax were identified as causative organisms in six studies. Hospital admission ranged from three to 18 days. Nine studies associated co-infection with severe disease, ICU admission, assisted ventilation, and related complications. One study reported 6% ICU admission, and mortality rates of 3%, 9.4%, and 40.4% were observed in four studies. Estimated crude mortality rates were 10.71 and 5.87 per 1,000 person-days for patients with and without concurrent malaria, respectively. Common co-morbidities included Diabetes mellitus, hypertension, cardiovascular diseases, and respiratory disorders. Conclusion Most patients with COVID-19 and malaria co-infection experienced short-term hospitalization and mild to moderate disease severity. However, at presentation, co-morbidities and severe malaria were significantly associated with higher mortality or worse clinical outcomes. These findings emphasize the importance of early detection, prompt treatment, and close monitoring of patients with COVID-19 and malaria co-infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Didier Hober
- Univ Lille, CHU Lille Laboratoire de Virologie ULR3610, Lille, France
| | | |
Collapse
|
5
|
Duah-Quashie NO, Opoku-Agyeman P, Lanza M, Rubio JM. Polymorphisms in the human angiotensin converting enzyme gene (ACE) linked to susceptibility of COVID-19 and malaria infections in the Ghanaian population. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 119:105568. [PMID: 38367677 DOI: 10.1016/j.meegid.2024.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Genetic variations in the human angiotensin converting enzyme gene (ACE) influence ACE enzyme expression levels in humans and subsequently influence both communicable and non-communicable disease outcomes. More recently, polymorphisms in this gene have been linked to susceptibility and outcomes of infectious diseases such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and malaria infections. This study is the first to investigate the genetic diversity of ACE and ACE2 polymorphisms in the Ghanaian population. Archived filter blood blot samples from malaria patients aged ≤9 years were used. Molecular analysis for the detection of ACE rs4646994 (I/D), ACE2 rs2106809 (C/T) and rs2285666 (G/A) alleles as well as ACE2 exons 1-4 polymorphisms was conducted on 300 samples. The D allele (54%,162/300) was the most dominant polymorphism observed in the ACE rs4646994 gene whilst the G (68%, 204/300) and T alleles (59.3%,178/300) were the most frequent ACE2 rs2285666 and rs2106809 polymorphisms observed. For the 300 samples sequenced for ACE2 exons 1-4, analyses were done on 268, 282 and 137 quality sequences for exons 1, 2 and 3-4 respectively. For exon 1, the mutation D38N (2.2%; 6/268) was the most prevalent. The S19P and E37K mutations previously reported to influence COVID-19 infections were observed at low frequencies (0.4%, 1/268 each). No mutations were observed in exon 2. The N121K/T variants were the most seen in exons 3-4 at frequencies of 5.1% (K121, 7/137) and 2.9% (T121, 4/137) respectively. Most of the variants observed in the exons were novel compared to those reported in other populations in the world. This is the first study to investigate the genetic diversity of ACE and ACE2 genes in Ghanaians. The observation of novel mutations in the ACE2 gene is suggesting selection pressure. The importance of the mutations for communicable and non-communicable diseases (malaria and COVID-19) are further discussed.
Collapse
Affiliation(s)
- Nancy O Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Philip Opoku-Agyeman
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Marta Lanza
- Malaria & Parasitic Emerging Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jose Miguel Rubio
- Malaria & Parasitic Emerging Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Networking Center of Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Velev V, Atanassova M, Aksentieva Y, Ahmet FM, Yordanova R, Harizanov R. Co-infection with plasmodium falciparum and COVID-19 with lethal outcome. First clinical case from Bulgaria. Oxf Med Case Reports 2024; 2024:omae048. [PMID: 38680770 PMCID: PMC11049575 DOI: 10.1093/omcr/omae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
The symptoms of COVID-19 include febrility and mainly catarrhal symptoms. In severe cases, patients present with progression to lower respiratory tract and acute respiratory distress (ARDS) and multi-organ dysfunction. Malaria caused by P. falciparum is a severe, endemic parasitosis, mainly in Africa. In some cases, it can be complicated with ARDS. We present a case of a patient who returned from Nigeria with respiratory symptoms, in which both COVID-19 infection and tropical malaria were proven; with a fatal outcome.
Collapse
Affiliation(s)
- Valeri Velev
- University Hospital “Prof. Iv. Kirov”, Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Maria Atanassova
- Intensive Care Unit, University Hospital “St. Anna”, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Yana Aksentieva
- Infectious Disease Unit, University Hospital “St. Anna”, Sofia, 1000 Sofia, Bulgaria
| | - Fatme Melbahtin Ahmet
- Intensive Care Unit, University Hospital “St. Anna”, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ralica Yordanova
- University Hospital “Prof. Iv. Kirov”, Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Rumen Harizanov
- Depatment of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
7
|
Abdulla SA, Elawamy HA, Mohamed NAE, Abduallah EH, Amshahar HAA, Abuzaeid NK, Eisa MAM, Osman MEM, Konozy EHE. Association of ABO blood types and clinical variables with COVID-19 infection severity in Libya. SAGE Open Med 2023; 11:20503121231187736. [PMID: 37489137 PMCID: PMC10363681 DOI: 10.1177/20503121231187736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/25/2023] [Indexed: 07/26/2023] Open
Abstract
Objective The continuing COVID-19 pandemic is a coronavirus-related health emergency (severe acute respiratory syndrome coronavirus 2). Inadequate efforts are still being made to address the illness situation in Libya, and this must change. To address these issues, we looked into the demography and trend of the disease as well as the potential risk factors for infection. Methods This study is a retrospective case-control study conducted online among 616 COVID-19 patients. The p0.05 value, odds ratios, and 95% confidence intervals were calculated and analyzed from the drawn data. Results Males were at high risk of COVID-19 than females (odds ratio = 1.3, 95% confidence interval: 1.042-1.622; p = 0.02). Anosmia and ageusia were more prominent in females. Patients with an "AB" blood group are significantly susceptible to infection. Adults (31 and above) are highly liable to infection. The univariate logistic regression analysis revealed that smoking is a risk factor for those above 60 years (odds ratio = 2.228, 95% confidence interval: 1.145-4.336; p = 0.018). Individuals with chronic diseases such as diabetes and/or hypertension are more prone to COVID-19 (odds ratio = 10.045, 95% confidence interval: 3.078-32.794; p = 0.000 and odds ratio = 11.508, 95% confidence interval: 3.930-33.695; p = 0.000, respectively). Conclusion This study provided for the first time the demographic data and the trend of COVID-19 infection in Libya, which will assist the stakeholders and governmental bodies in planning protection strategies against the pandemic.
Collapse
Affiliation(s)
- Sara A Abdulla
- Department of Biochemistry, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | | | - Negia AE Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Enas H Abduallah
- Department of Mathematics, Faculty of Science, University of Tobruk, Tobruk, Libya
| | - Habsa AA Amshahar
- Department of Pathology, Faculty of Medicine, Sirte University, Sirte, Libya
| | - Nadir K Abuzaeid
- Department of Medical Microbiology, Faculty of Medical Laboratory of Sciences, Omdurman Islamic University, Khartoum, Sudan
| | - Mohamed AM Eisa
- Department of Physiology, Al Qunfudah Medical College, Umm Al Qura University, Al Qunfudah, Saudi Arabia
| | - Makarim Elfadil M Osman
- Laboratory of Proteomics and Glycoproteins, Biotechnology Park, Africa City of Technology, Khartoum, Sudan
| | - Emadeldin Hassan E Konozy
- Laboratory of Proteomics and Glycoproteins, Biotechnology Park, Africa City of Technology, Khartoum, Sudan
- Pharmaceutical Research and Development Centre, Faculty of Pharmacy, Karary University, Omdurman, Khartoum State, Sudan
| |
Collapse
|
8
|
Alsolami A, Dirar AI, Konozy EHE, Osman MEFM, Ibrahim MA, Alshammari KF, Alshammari F, Alazmi M, Said KB. Genome-Wide Mining of Selaginella moellendorffii for Hevein-like Lectins and Their Potential Molecular Mimicry with SARS-CoV-2 Spike Glycoprotein. Curr Issues Mol Biol 2023; 45:5879-5901. [PMID: 37504288 PMCID: PMC10378081 DOI: 10.3390/cimb45070372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 07/29/2023] Open
Abstract
Multidisciplinary research efforts on potential COVID-19 vaccine and therapeutic candidates have increased since the pandemic outbreak of SARS-CoV-2 in 2019. This search has become imperative due to the increasing emergences and limited widely available medicines. The presence of bioactive anti-SARS-CoV-2 molecules was examined from various plant sources. Among them is a group of proteins called lectins that can bind carbohydrate moieties. In this article, we present ten novel, chitin-specific Hevein-like lectins that were derived from Selaginella moellendorffii v1.0's genome. The capacity of these lectin homologs to bind with the spike protein of SARS-CoV-2 was examined. Using the HDOCK server, 3D-modeled Hevein-domains were docked to the spike protein's receptor binding domain (RBD). The Smo446851, Smo125663, and Smo99732 interacted with Asn343-located complex N-glycan and RBD residues, respectively, with binding free energies of -17.5, -13.0, and -26.5 Kcal/mol. The molecular dynamics simulation using Desmond and the normal-state analyses via torsional coordinate association for the Smo99732-RBD complex using iMODS is characterized by overall higher stability and minimum deformity than the other lectin complexes. The three lectins interacting with carbohydrates were docked against five individual mutations that frequently occur in major SARS-CoV-2 variants. These were in the spike protein's receptor-binding motif (RBM), while Smo125663 and Smo99732 only interacted with the spike glycoprotein in a protein-protein manner. The precursors for the Hevein-like homologs underwent additional characterization, and their expressional profile in different tissues was studied. These in silico findings offered potential lectin candidates targeting key N-glycan sites crucial to the virus's virulence and infection.
Collapse
Affiliation(s)
- Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Amina I Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum 11111, Sudan
| | - Emadeldin Hassan E Konozy
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum 11111, Sudan
- Pharmaceutical Research and Development Centre, Faculty of Pharmacy, Karary University, Omdurman, Khartoum 11111, Sudan
| | | | - Mohanad A Ibrahim
- Department of Data Science, King Abdullah International Medical Research Center (KAIMRC), Riyadh 12211, Saudi Arabia
| | - Khalid Farhan Alshammari
- Department of Internal Medicine, College of Medicine, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Fawwaz Alshammari
- Department of Dermatology, College of Medicine, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Meshari Alazmi
- College of Computer Science and Engineering, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Kamaleldin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Ha'il, Ha'il 55476, Saudi Arabia
- Genomics, Bioinformatics and Systems Biology, Carleton University, 1125 Colonel-By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
9
|
Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines-A Review. Pathogens 2023; 12:pathogens12020166. [PMID: 36839438 PMCID: PMC9962459 DOI: 10.3390/pathogens12020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly caused by the pathogen. The parasite's developmental stages only have a marginal role in contributing to a decreased red blood cell (RBC) count. The main cause of anemia in affected dogs is the immune response to the infection. This response includes antibody production, erythrophagocytosis, oxidative damage of RBCs, complement activation, and antibody-dependent cellular cytotoxicity. Moreover, both infected and uninfected erythrocytes are retained in the spleen and sequestered in micro-vessels. All these actions are driven by pro-inflammatory cytokines and chemokines, especially IFN-γ, TNF-α, IL-6, and IL-8. Additionally, imbalance between the actions of pro- and anti-inflammatory cytokines plays a role in patho-mechanisms leading to anemia in canine babesiosis. This article is a review of the studies on the pathogenesis of anemia in canine babesiosis and related diseases, such as bovine or murine babesiosis and human or murine malaria, and the role of pro-inflammatory cytokines and chemokines in the mechanisms leading to anemia in infected dogs.
Collapse
|