1
|
Jaing TH, Hsiao YW, Wang YL. Chimeric Antigen Receptor Cell Therapy: Empowering Treatment Strategies for Solid Tumors. Curr Issues Mol Biol 2025; 47:90. [PMID: 39996811 PMCID: PMC11854309 DOI: 10.3390/cimb47020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has demonstrated impressive efficacy in the treatment of blood cancers; however, its effectiveness against solid tumors has been significantly limited. The differences arise from a range of difficulties linked to solid tumors, including an unfriendly tumor microenvironment, variability within the tumors, and barriers to CAR-T cell infiltration and longevity at the tumor location. Research shows that the reasons for the decreased effectiveness of CAR-T cells in treating solid tumors are not well understood, highlighting the ongoing need for strategies to address these challenges. Current strategies frequently incorporate combinatorial therapies designed to boost CAR-T cell functionality and enhance their capacity to effectively target solid tumors. However, these strategies remain in the testing phase and necessitate additional validation to assess their potential benefits. CAR-NK (natural killer), CAR-iNKT (invariant natural killer T), and CAR-M (macrophage) cell therapies are emerging as promising strategies for the treatment of solid tumors. Recent studies highlight the construction and optimization of CAR-NK cells, emphasizing their potential to overcome the unique challenges posed by the solid tumor microenvironment, such as hypoxia and metabolic barriers. This review focuses on CAR cell therapy in the treatment of solid tumors.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| | - Yi-Wen Hsiao
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| |
Collapse
|
2
|
Klabukov I, Kabakov AE, Yakimova A, Baranovskii D, Sosin D, Atiakshin D, Ignatyuk M, Yatsenko E, Rybachuk V, Evstratova E, Eygel D, Kudlay D, Stepanenko V, Shegay P, Kaprin AD. Tumor-Associated Extracellular Matrix Obstacles for CAR-T Cell Therapy: Approaches to Overcoming. Curr Oncol 2025; 32:79. [PMID: 39996879 PMCID: PMC11854105 DOI: 10.3390/curroncol32020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy yields good results in the treatment of various hematologic malignancies. However, the efficacy of CAR-T cell therapy against solid tumors has proven to be limited, primarily because the tumor-associated extracellular matrix (ECM) creates an intractable barrier for the cytotoxic CAR-T cells that are supposed to kill cancer cells. This review unravels the multifaceted role of the tumor-associated ECM in impeding CAR-T cell infiltration, survival, and functions within solid tumors. We analyze the situations when intratumoral ECM limits the efficacy of CAR-T cell therapy by being a purely physical barrier that complicates lymphocyte penetration/migration and also acts as an immunosuppressive factor that impairs the antitumor activities of CAR-T cells. In addition, we highlight promising approaches such as engineering CAR-T cells with improved capabilities to penetrate and migrate into/through the intratumoral ECM, combination therapies aimed at attenuating the high density and immunosuppressive potential of the intratumoral ECM, and others that enable overcoming ECM-related obstacles. A detailed overview of the data of relevant studies not only helps to better understand the interactions between CAR-T cells and the intratumoral ECM but also outlines potential ways to more effectively use CAR-T cell therapy against solid tumors.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
- GMP-Laboratory for Advanced Therapy Medicinal Products, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI, Studgorodok 1, 249039 Obninsk, Russia
| | - Alexander E. Kabakov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Anna Yakimova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
- GMP-Laboratory for Advanced Therapy Medicinal Products, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- University Hospital Basel, Basel University, 4001 Basel, Switzerland
| | - Dmitry Sosin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Dmitry Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena Yatsenko
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Victoria Rybachuk
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
| | - Ekaterina Evstratova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Daria Eygel
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Dmitry Kudlay
- Immunology Department, Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasiliy Stepanenko
- Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
3
|
Wen J, Li X. [Preparation of Trop2-Targeted CAR-T Cells Based on Nanobodies and Their Antitumor Effects Against Non-Small Cell Lung Cancer]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2025; 56:198-205. [PMID: 40109477 PMCID: PMC11914024 DOI: 10.12182/20250160107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Indexed: 03/22/2025]
Abstract
Objective To investigate whether chimeric antigen receptor (CAR) T cells constructed with nanobodies based on trophoblast cell-surface antigen 2 (Trop2) can be used to treat Trop2-positive non-small cell lung cancer. Methods A Trop2-specific phage display nanobody library was constructed to screen for Trop2-specific nanobodies. The antigen-binding capacities of three Trop2 nanobodies (8#, 14#, and 48#) were assessed using indirect enzyme-linked immunosorbent assay (ELISA), and their binding affinities were analyzed through surface plasmon resonance (SPR) analysis. CAR-T cells were constructed with Trop2-specific nanobodies and were then co-cultured with the Trop2-positive NCI-H292 cell line expressing luciferase and the Trop2-negative A549 cell line. Luciferase values at effector-to-target ratios of 4∶1, 2∶1, 1∶1, and 1∶2 were measured using a multifunctional microplate reader to assess the killing efficiency. The levels of interleukin (IL)-2, interferon γ (IFN-γ), and tumor necrosis factor α (TNF-α) cytokines in the supernatant at an effector-to-target ratio of 4∶1 were measured using the ELISA method. We also established in this study an NCI-H292 xenograft model in NCG immunodeficient mice, which were divided into three groups, a phosphate-buffered saline (PBS) control group, a Mock-T group, and a Trop2 CAR-T group (n = 5). A total of 1×107 Trop2 CAR-T cells were administered via tail vein injection. Throughout the experimental period, the growth and survival status of the mice were observed daily, and tumor sizes were measured once every three days to analyze the survival time. Results A Trop2-specific nanobody was successfully screened from the nanobody library, and indirect ELISA initially indicated that nanobody 48# had the strongest affinity. Subsequently, surface plasmon resonance analysis revealed that nanobody 48# exhibited an affinity in the range of 2.49×10-8 M, indicating that it was a high-affinity antibody. Based on this nanobody, Trop2 CAR-T cells were successfully constructed. Furthermore, in vitro experiments demonstrated that Trop2 CAR-T cells killed Trop2-positive NCI-H292 non-small cell lung cancer cells in a dose-dependent manner. ELISA showed a significant increase in the secretion of cytokines (IL-2, IFN-γ, and TNF-α) in the co-culture system, further validating their antitumor activity. In the NCI-H292 xenograft mouse model, the Trop2 CAR-T group exhibited reduced tumor size (P < 0.001) and prolonged survival time of tumor-bearing mice (P < 0.05) compared to the PBS and Mock-T groups. Conclusion These findings demonstrate that CAR T cells constructed with Trop2 nanobodies can effectively treat Trop2-positive non-small cell lung cancer.
Collapse
Affiliation(s)
- Jing Wen
- ( 637000) Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xin Li
- ( 637000) Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
- ( 637100) School Hospital, North Sichuan Medical College, Nanchong 637100, China
| |
Collapse
|
4
|
Lin P, Lin Y, Mai Z, Zheng Y, Zheng J, Zhou Z, Zhao X, Cui L. Targeting cancer with precision: strategical insights into TCR-engineered T cell therapies. Theranostics 2025; 15:300-323. [PMID: 39744228 PMCID: PMC11667231 DOI: 10.7150/thno.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
T cell receptor-engineered T (TCR-T) cell therapies are at the forefront of cancer immunotherapy, offering a transformative approach that significantly enhances the ability of T cells to recognize and eliminate cancer cells. This innovative method involves genetically modifying TCRs to increase their affinity for tumor-specific antigens. While these enhancements improve the ability of T cells to recognize and bind to antigens on cancer cells, rigorous assessment of specificity remains crucial to ensure safety and targeted responses. This dual focus on affinity and specificity holds significant promise for the treatment of solid tumors, enabling precise and efficient cancer cell recognition. Despite rapid advancements in TCR engineering and notable progress in TCR screening technologies, as evidenced by the growing number of specific TCRs entering clinical trials, several technical and clinical challenges remain. These challenges primarily pertain to the specificity, affinity, and safety of engineered TCRs. Moreover, the accurate identification and selection of TCRs that are both effective and safe are essential for the success of TCR-T cell therapies in cancer treatment. This review provides a comprehensive examination of the theoretical foundations of TCR therapy, explores strategies for screening specific TCRs and antigens, and highlights the ongoing challenges in this evolving therapeutic landscape.
Collapse
Affiliation(s)
- Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| |
Collapse
|
5
|
Miao L, Zhang J, Xu W, Qian Q, Zhang G, Yuan Q, Lv Y, Zhang H, Shen C, Wang W. Global research trends in CAR-T cell therapy for solid tumors: A comprehensive visualization and bibliometric study (2012-2023). Hum Vaccin Immunother 2024; 20:2338984. [PMID: 38698555 PMCID: PMC11073418 DOI: 10.1080/21645515.2024.2338984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
CAR-T cell therapy has emerged as a significant approach for the management of hematological malignancies. Over the past few years, the utilization of CAR-T cells in the investigation and treatment of solid tumors has gained momentum, thereby establishing itself as a prominent area of research. This descriptive study involved the retrieval of articles about CAR-T cell therapy for solid tumors from the Web of Science Core Collection (WoSCC) database. Subsequently, bibliometric analysis and knowledge map analysis were conducted on these articles. The field under consideration is currently experiencing a period of swift advancement, as evidenced by the escalating number of publications in this domain each year. The United States holds an indisputable position as the foremost leader in this particular field, with the University of Pennsylvania emerging as the most active institution. The authors with the highest citation frequency and co-citation frequency are Carl H. June and Shannon L. Maude, respectively. The research hotspots in this field mainly focus on five aspects. Additionally, 10 emerging themes were identified. This study undertakes a comprehensive, systematic, and objective analysis and exploration of the field of CAR-T cell treatment for solid tumors, utilizing bibliometric methods. The findings of this study are expected to serve as a valuable reference and enlightenment for future research endeavors in this particular domain.
Collapse
Affiliation(s)
- Lele Miao
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Juan Zhang
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, China
| | - Wei Xu
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Qian Qian
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Guochao Zhang
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Quan Yuan
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Yuetao Lv
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Haiguo Zhang
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, China
| | - Chaoyan Shen
- Department of Ultrasound, Jining NO.1 People’s Hospital, Jining, China
| | - Wei Wang
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| |
Collapse
|
6
|
Liu Z, Xiao Y, Lyu J, Jing D, Liu L, Fu Y, Niu W, Jin L, Zhang C. The expanded application of CAR-T cell therapy for the treatment of multiple non-tumoral diseases. Protein Cell 2024; 15:633-641. [PMID: 38146589 PMCID: PMC11365555 DOI: 10.1093/procel/pwad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Affiliation(s)
- Zhuoqun Liu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Yuchen Xiao
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Jianjun Lyu
- Hubei Topgene Research Institute of Hubei Topgene Biotechnology Co., Ltd., East Lake High-Tech Development Zone, Wuhan 430205, China
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liu Liu
- Shanghai Yuhui Pharmaceutical Technology (Group) Co., Ltd., and Shanghai Ruishen Technology Development Co., Ltd., Shanghai 201203, China
| | - Yanbin Fu
- Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wenxin Niu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Lingjing Jin
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Chao Zhang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| |
Collapse
|
7
|
Erler P, Kurcon T, Cho H, Skinner J, Dixon C, Grudman S, Rozlan S, Dessez E, Mumford B, Jo S, Boyne A, Juillerat A, Duchateau P, Poirot L, Aranda-Orgilles B. Multi-armored allogeneic MUC1 CAR T cells enhance efficacy and safety in triple-negative breast cancer. SCIENCE ADVANCES 2024; 10:eadn9857. [PMID: 39213364 PMCID: PMC11364110 DOI: 10.1126/sciadv.adn9857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Solid tumors, such as triple-negative breast cancer (TNBC), are biologically complex due to cellular heterogeneity, lack of tumor-specific antigens, and an immunosuppressive tumor microenvironment (TME). These challenges restrain chimeric antigen receptor (CAR) T cell efficacy, underlining the importance of armoring. In solid cancers, a localized tumor mass allows alternative administration routes, such as intratumoral delivery with the potential to improve efficacy and safety but may compromise metastatic-site treatment. Using a multi-layered CAR T cell engineering strategy that allowed a synergy between attributes, we show enhanced cytotoxic activity of MUC1 CAR T cells armored with PD1KO, tumor-specific interleukin-12 release, and TGFBR2KO attributes catered towards the TNBC TME. Intratumoral treatment effectively reduced distant tumors, suggesting retention of antigen-recognition benefits at metastatic sites. Overall, we provide preclinical evidence of armored non-alloreactive MUC1 CAR T cells greatly reducing high TNBC tumor burden in a TGFB1- and PD-L1-rich TME both at local and distant sites while preserving safety.
Collapse
Affiliation(s)
| | | | - Hana Cho
- Cellectis Inc., New York, NY, USA
| | | | | | | | | | | | | | - Sumin Jo
- Cellectis Inc., New York, NY, USA
| | | | | | | | | | | |
Collapse
|
8
|
Srivastava S, Tyagi A, Pawar VA, Khan NH, Arora K, Verma C, Kumar V. Revolutionizing Immunotherapy: Unveiling New Horizons, Confronting Challenges, and Navigating Therapeutic Frontiers in CAR-T Cell-Based Gene Therapies. Immunotargets Ther 2024; 13:413-433. [PMID: 39219644 PMCID: PMC11365499 DOI: 10.2147/itt.s474659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The CAR-T cell therapy has marked the dawn of new era in the cancer therapeutics and cell engineering techniques. The review emphasizes on the challenges that obstruct the therapeutic efficiency caused by cell toxicities, immunosuppressive tumor environment, and decreased T cell infiltration. In the interest of achieving the overall survival (OS) and event-free survival (EFS) of patients, the conceptual background of potential target selection and various CAR-T cell design techniques are described which can minimize the off-target effects, reduce toxicity, and thus increase the resilience of CAR-T cell treatment in the haematological malignancies as well as in solid tumors. Furthermore, it delves into cutting-edge technologies like gene editing and synthetic biology, providing new opportunities to enhance the functionality of CAR-T cells and overcome mechanisms of immune evasion. This review provides a comprehensive understanding of the complex and diverse aspects of CAR-T cell-based gene treatments, including both scientific and clinical aspects. By effectively addressing the obstacles and utilizing the capabilities of cutting-edge technology, CAR-T cell therapy shows potential in fundamentally changing immunotherapy and reshaping the approach to cancer treatment.
Collapse
Affiliation(s)
- Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi, India
| | | | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Kavita Arora
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, USA
- Department of Biotechnology, SSET, Sharda University, Greater Noida, 201306, India
| | - Vinay Kumar
- Pennsylvania State University Hershey Medical Center, 500 University Dr, Heshey, PA, USA
| |
Collapse
|
9
|
Deng T, Deng Y, Tsao ST, Xiong Q, Yao Y, Liu C, Gu MY, Huang F, Wang H. Rapidly-manufactured CD276 CAR-T cells exhibit enhanced persistence and efficacy in pancreatic cancer. J Transl Med 2024; 22:633. [PMID: 38978106 PMCID: PMC11229349 DOI: 10.1186/s12967-024-05462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal malignancies and the lack of treatment options makes it more deadly. Chimeric Antigen Receptor T-cell (CAR-T) immunotherapy has revolutionized cancer treatment and made great breakthroughs in treating hematological malignancies, however its success in treating solid cancers remains limited mainly due to the lack of tumor-specific antigens. On the other hand, the prolonged traditional manufacturing process poses challenges, taking 2 to 6 weeks and impacting patient outcomes. CD276 has recently emerged as a potential therapeutic target for anti-solid cancer therapy. Here, we investigated the efficacy of CD276 CAR-T and rapidly-manufactured CAR-T against pancreatic cancer. METHODS In the present study, CD276 CAR-T was prepared by CAR structure carrying 376.96 scFv sequence, CD8 hinge and transmembrane domain, 4-1BB and CD3ζ intracellular domains. Additionally, CD276 rapidly-manufactured CAR-T (named CD276 Dash CAR-T) was innovatively developed by shortening the duration of ex vitro culture to reduce CAR-T manufacturing time. We evaluated the anti-tumor efficacy of CD276 CAR-T and further compared the functional assessment of Dash CAR-T and conventional CAR-T in vitro and in vivo by detecting the immunophenotypes, killing ability, expansion capacity and tumor-eradicating effect of CAR-T. RESULTS We found that CD276 was strongly expressed in multiple solid cancer cell lines and that CD276 CAR-T could efficiently kill these solid cancer cells. Moreover, Dash CAR-T was successfully manufactured within 48-72 h and the functional validation was carried out subsequently. In vitro, CD276 Dash CAR-T possessed a less-differentiated phenotype and robust proliferative ability compared to conventional CAR-T. In vivo xenograft mouse model, CD276 Dash CAR-T showed enhanced anti-pancreatic cancer efficacy and T cell expansion. Besides, except for the high-dose group, the body weight of mice was maintained stable, and the state of mice was normal. CONCLUSIONS In this study, we proved CD276 CAR-T exhibited powerful activity against pancreatic cancer cells in vitro and in vivo. More importantly, we demonstrated the manufacturing feasibility, acceptable safety and superior anti-tumor efficacy of CD276 Dash CAR-T generated with reduced time. The results of the above studies indicated that CD276 Dash CAR-T immunotherapy might be a novel and promising strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Tian Deng
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Yingzhi Deng
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Shih-Ting Tsao
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Qinghui Xiong
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Yue Yao
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Cuicui Liu
- Regulatory Affairs Department, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Ming Yuan Gu
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Fei Huang
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China.
| | - Haiying Wang
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China.
| |
Collapse
|
10
|
Nie F, Chen Y, Hu Y, Huang P, Shi X, Cai J, Qiu M, Wang E, Lu K, Sun M. TREM1/DAP12 based novel multiple chain CAR-T cells targeting DLL3 show robust anti-tumour efficacy for small cell lung cancer. Immunology 2024; 172:362-374. [PMID: 38469682 DOI: 10.1111/imm.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Small cell lung cancer (SCLC), recognized as the most aggressive subtype of lung cancer, presents an extremely poor prognosis. Currently, patients with small cell lung cancer face a significant dearth of effective alternative treatment options once they experience recurrence and progression after first-line therapy. Despite the promising efficacy of immunotherapy, particularly immune checkpoint inhibitors in non-small cell lung cancer (NSCLC) and various other tumours, its impact on significantly enhancing the prognosis of SCLC patients remains elusive. DLL3 has emerged as a compelling target for targeted therapy in SCLC due to its high expression on the membranes of SCLC and other neuroendocrine carcinoma cells, with minimal to no expression in normal cells. Our previous work led to the development of a novel multiple chain chimeric antigen receptor (CAR) leveraging the TREM1 receptor and DAP12, which efficiently activated T cells and conferred potent cell cytotoxicity. In this study, we have developed a DLL3-TREM1/DAP12 CAR-T (DLL3-DT CAR-T) therapy, demonstrating comparable anti-tumour efficacy against SCLC cells in vitro. In murine xenograft and patient-derived xenograft models, DLL3-DT CAR-T cells exhibited a more robust tumour eradication efficiency than second-generation DLL3-BBZ CAR-T cells. Furthermore, we observed elevated memory phenotypes, induced durable responses, and activation under antigen-presenting cells in DLL3-DT CAR-T cells. Collectively, these findings suggest that DLL3-DT CAR-T cells may offer a novel and potentially effective therapeutic strategy for treating DLL3-expressing SCLC and other solid tumours.
Collapse
Affiliation(s)
- Fengqi Nie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuli Chen
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yanming Hu
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Peng Huang
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Jingsheng Cai
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd., Nanjing, China
| | - Kaihua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
11
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
12
|
Li Y, Zheng Y, Liu T, Liao C, Shen G, He Z. The potential and promise for clinical application of adoptive T cell therapy in cancer. J Transl Med 2024; 22:413. [PMID: 38693513 PMCID: PMC11064426 DOI: 10.1186/s12967-024-05206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.
Collapse
Affiliation(s)
- Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yeteng Zheng
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Chuanyun Liao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Ma HY, Das J, Prendergast C, De Jong D, Braumuller B, Paily J, Huang S, Liou C, Giarratana A, Hosseini M, Yeh R, Capaccione KM. Advances in CAR T Cell Therapy for Non-Small Cell Lung Cancer. Curr Issues Mol Biol 2023; 45:9019-9038. [PMID: 37998743 PMCID: PMC10670348 DOI: 10.3390/cimb45110566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Since its first approval by the FDA in 2017, tremendous progress has been made in chimeric antigen receptor (CAR) T cell therapy, the adoptive transfer of engineered, CAR-expressing T lymphocyte. CAR T cells are all composed of three main elements: an extracellular antigen-binding domain, an intracellular signaling domain responsible for T cell activation, and a hinge that joins these two domains. Continuous improvement has been made in CARs, now in their fifth generation, particularly in the intracellular signaling domain responsible for T cell activation. CAR T cell therapy has revolutionized the treatment of hematologic malignancies. Nonetheless, the use of CAR T cell therapy for solid tumors has not attained comparable levels of success. Here we review the challenges in achieving effective CAR T cell therapy in solid tumors, and emerging CAR T cells that have shown great promise for non-small cell lung cancer (NSCLC). A growing number of clinical trials have been conducted to study the effect of CAR T cell therapy on NSCLC, targeting different types of surface antigens. They include epidermal growth factor receptor (EGFR), mesothelin (MSLN), prostate stem cell antigen (PSCA), and mucin 1 (MUC1). Potential new targets such as erythropoietin-producing hepatocellular carcinoma A2 (EphA2), tissue factor (TF), and protein tyrosine kinase 7 (PTK7) are currently under investigation in clinical trials. The challenges in developing CAR T for NSCLC therapy and other approaches for enhancing CAR T efficacy are discussed. Finally, we provide our perspective on imaging CAR T cell action by reviewing the two main radionuclide-based CAR T cell imaging techniques, the direct labeling of CAR T cells or indirect labeling via a reporter gene.
Collapse
Affiliation(s)
- Hong Yun Ma
- Department of Radiology, Columbia University Irving Medica Center, 622 W 168th St., New York, NY 10032, USA; (H.Y.M.); (J.P.); (M.H.)
| | - Jeeban Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Conor Prendergast
- Department of Radiology, Columbia University Irving Medica Center, 622 W 168th St., New York, NY 10032, USA; (H.Y.M.); (J.P.); (M.H.)
| | | | - Brian Braumuller
- Department of Radiology, Columbia University Irving Medica Center, 622 W 168th St., New York, NY 10032, USA; (H.Y.M.); (J.P.); (M.H.)
| | - Jacienta Paily
- Department of Radiology, Columbia University Irving Medica Center, 622 W 168th St., New York, NY 10032, USA; (H.Y.M.); (J.P.); (M.H.)
| | - Sophia Huang
- Department of Radiology, Columbia University Irving Medica Center, 622 W 168th St., New York, NY 10032, USA; (H.Y.M.); (J.P.); (M.H.)
| | - Connie Liou
- Department of Radiology, Columbia University Irving Medica Center, 622 W 168th St., New York, NY 10032, USA; (H.Y.M.); (J.P.); (M.H.)
| | - Anna Giarratana
- Department of Radiology, Columbia University Irving Medica Center, 622 W 168th St., New York, NY 10032, USA; (H.Y.M.); (J.P.); (M.H.)
| | - Mahdie Hosseini
- Department of Radiology, Columbia University Irving Medica Center, 622 W 168th St., New York, NY 10032, USA; (H.Y.M.); (J.P.); (M.H.)
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kathleen M. Capaccione
- Department of Radiology, Columbia University Irving Medica Center, 622 W 168th St., New York, NY 10032, USA; (H.Y.M.); (J.P.); (M.H.)
| |
Collapse
|
14
|
Alsajjan R, Mason WP. Bispecific T-Cell Engagers and Chimeric Antigen Receptor T-Cell Therapies in Glioblastoma: An Update. Curr Oncol 2023; 30:8501-8549. [PMID: 37754534 PMCID: PMC10529026 DOI: 10.3390/curroncol30090619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. The prognosis is extremely poor even with standard treatment of maximal safe resection, radiotherapy, and chemotherapy. Recurrence is inevitable within months, and treatment options are very limited. Chimeric antigen receptor T-cell therapy (CART) and bispecific T-cell engagers (TCEs) are two emerging immunotherapies that can redirect T-cells for tumor-specific killing and have shown remarkable success in hematological malignancies and been under extensive study for application in glioblastoma. While there have been multiple clinical trials showing preliminary evidence of safety and efficacy for CART, bispecific TCEs are still in the early stages of clinical testing, with preclinical studies showing very promising results. However, there are multiple shared challenges that need to be addressed in the future, including the route of delivery, antigen escape, the immunosuppressive tumor microenvironment, and toxicity resulting from the limited choice of tumor-specific antigens. Efforts are underway to optimize the design of both these treatments and find the ideal combination therapy to overcome these challenges. In this review, we describe the work that has been performed as well as novel approaches in glioblastoma and in other solid tumors that may be applicable in the future.
Collapse
Affiliation(s)
- Roa Alsajjan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
- Division of Neurology, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Warren P. Mason
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
15
|
Williams MD, Chen AT, Stone MR, Guo L, Belmont BJ, Turk R, Bogard N, Kearns N, Young M, Daines B, Darnell M. TRAFfic signals: High-throughput CAR discovery in NK cells reveals novel TRAF-binding endodomains that drive enhanced persistence and cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551530. [PMID: 37577560 PMCID: PMC10418287 DOI: 10.1101/2023.08.02.551530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Natural killer (NK) cells are a promising alternative therapeutic platform to CAR T cells given their favorable safety profile and potent killing ability. However, CAR NK cells suffer from limited persistence in vivo , which is, in part, thought to be the consequence of limited cytokine signaling. To address this challenge, we developed an innovative high-throughput screening strategy to identify CAR endodomains that could drive enhanced persistence while maintaining potent cytotoxicity. We uncovered a family of TRAF-binding endodomains that outperform benchmarks in primary NK cells along dimensions of persistence and cytotoxicity, even in low IL-2 conditions. This work highlights the importance of cell-type-specific cell therapy engineering and unlocks a wide range of high-throughput molecular engineering avenues in NK cells.
Collapse
|
16
|
Yin L, Wan Z, Sun P, Shuai P, Liu Y. Time to abandon CAR-T monotherapy for solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188930. [PMID: 37286147 DOI: 10.1016/j.bbcan.2023.188930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
In recent decades, chimeric antigen receptor T (CAR-T) cell therapy has achieved dramatic success in patients with hematological malignancies. However, CAR-T cell therapy failed to effectively treat solid tumors as a monotherapy. By summarizing the challenges of CAR-T cell monotherapy for solid tumors and analyzing the underlying mechanisms of combinatorial strategies to counteract these hurdles, we found that complementary therapeutics are needed to improve the scant and transient responses of CAR-T cell monotherapy in solid tumors. Further data, especially data from multicenter clinical trials regarding efficacy, toxicity, and predictive biomarkers are required before the CAR-T combination therapy can be translated into clinical settings.
Collapse
Affiliation(s)
- Limei Yin
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhengwei Wan
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ping Sun
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ping Shuai
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Yuping Liu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| |
Collapse
|
17
|
Shin MH, Oh E, Kim Y, Nam DH, Jeon SY, Yu JH, Minn D. Recent Advances in CAR-Based Solid Tumor Immunotherapy. Cells 2023; 12:1606. [PMID: 37371075 DOI: 10.3390/cells12121606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Adoptive cell therapy using chimeric antigen receptor (CAR) technology is one of the most advanced engineering platforms for cancer immunotherapy. CAR-T cells have shown remarkable efficacy in the treatment of hematological malignancies. However, their limitations in solid tumors include an immunosuppressive tumor microenvironment (TME), insufficient tumor infiltration, toxicity, and the absence of tumor-specific antigens. Although recent advances in CAR-T cell design-such as the incorporation of co-stimulatory domains and the development of armored CAR-T cells-have shown promising results in treating solid tumors, there are still challenges that need to be addressed. To overcome these limitations, other immune cells, such as natural killer (NK) cells and macrophages (M), have been developed as attractive options for efficient cancer immunotherapy of solid tumors. CAR-NK cells exhibit substantial clinical improvements with "off-the-shelf" availability and low toxicity. CAR-M cells have promising therapeutic potential because macrophages can infiltrate the TME of solid tumors. Here, we review the recent advances and future perspectives associated with engineered immune cell-based cancer immunotherapies for solid tumors. We also summarize ongoing clinical trials investigating the safety and efficacy of engineered immune cells, such as CAR-T, CAR-NK, and CAR-M, for targeting solid tumors.
Collapse
Affiliation(s)
- Min Hwa Shin
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Eunha Oh
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Yunjeong Kim
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Dae-Hwan Nam
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - So Young Jeon
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Jin Hyuk Yu
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Dohsik Minn
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Republic of Korea
- Department of Diagnostic Immunology, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| |
Collapse
|
18
|
Celichowski P, Turi M, Charvátová S, Radhakrishnan D, Feizi N, Chyra Z, Šimíček M, Jelínek T, Bago JR, Hájek R, Hrdinka M. Tuning CARs: recent advances in modulating chimeric antigen receptor (CAR) T cell activity for improved safety, efficacy, and flexibility. J Transl Med 2023; 21:197. [PMID: 36922828 PMCID: PMC10015723 DOI: 10.1186/s12967-023-04041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer immunotherapies utilizing genetically engineered T cells have emerged as powerful personalized therapeutic agents showing dramatic preclinical and clinical results, particularly in hematological malignancies. Ectopically expressed chimeric antigen receptors (CARs) reprogram immune cells to target and eliminate cancer. However, CAR T cell therapy's success depends on the balance between effective anti-tumor activity and minimizing harmful side effects. To improve CAR T cell therapy outcomes and mitigate associated toxicities, scientists from different fields are cooperating in developing next-generation products using the latest molecular cell biology and synthetic biology tools and technologies. The immunotherapy field is rapidly evolving, with new approaches and strategies being reported at a fast pace. This comprehensive literature review aims to provide an up-to-date overview of the latest developments in controlling CAR T cell activity for improved safety, efficacy, and flexibility.
Collapse
Affiliation(s)
- Piotr Celichowski
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Marcello Turi
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Sandra Charvátová
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Dhwani Radhakrishnan
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Neda Feizi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Zuzana Chyra
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Michal Šimíček
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Juli Rodriguez Bago
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Roman Hájek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Matouš Hrdinka
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|