1
|
Bachari A, Nassar N, Schanknecht E, Telukutla S, Piva TJ, Mantri N. Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment. WIREs Mech Dis 2024; 16:e1633. [PMID: 37920964 DOI: 10.1002/wsbm.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Terrence Jerald Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Yoshihara T, Morimoto T, Hirata H, Murayama M, Nonaka T, Tsukamoto M, Toda Y, Kobayashi T, Izuhara K, Mawatari M. Mechanisms of tissue degeneration mediated by periostin in spinal degenerative diseases and their implications for pathology and diagnosis: a review. Front Med (Lausanne) 2023; 10:1276900. [PMID: 38020106 PMCID: PMC10645150 DOI: 10.3389/fmed.2023.1276900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
Periostin (POSTN) serves a dual role as both a matricellular protein and an extracellular matrix (ECM) protein and is widely expressed in various tissues and cells. As an ECM protein, POSTN binds to integrin receptors, transduces signals to cells, enabling cell activation. POSTN has been linked with various diseases, including atopic dermatitis, asthma, and the progression of multiple cancers. Recently, its association with orthopedic diseases, such as osteoporosis, osteoarthritis resulting from cartilage destruction, degenerative diseases of the intervertebral disks, and ligament degenerative diseases, has also become apparent. Furthermore, POSTN has been shown to be a valuable biomarker for understanding the pathophysiology of orthopedic diseases. In addition to serum POSTN, synovial fluid POSTN in joints has been reported to be useful as a biomarker. Risk factors for spinal degenerative diseases include aging, mechanical stress, trauma, genetic predisposition, obesity, and metabolic syndrome, but the cause of spinal degenerative diseases (SDDs) remains unclear. Studies on the pathophysiological effects of POSTN may significantly contribute toward the diagnosis and treatment of spinal degenerative diseases. Therefore, in this review, we aim to examine the mechanisms of tissue degeneration caused by mechanical and inflammatory stresses in the bones, cartilage, intervertebral disks, and ligaments, which are crucial components of the spine, with a focus on POSTN.
Collapse
Affiliation(s)
- Tomohito Yoshihara
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiro Nonaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Toda
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
3
|
Pană N, Căpușă C. Periostin as a Biomarker in the Setting of Glomerular Diseases-A Review of the Current Literature. Biomedicines 2022; 10:biomedicines10123211. [PMID: 36551967 PMCID: PMC9775428 DOI: 10.3390/biomedicines10123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is a highly prevalent and potential progressive condition with life-threatening consequences. Glomerular diseases (glomerulopathies) are causes of CKD that are potentially amenable by specific therapies. Significant resources have been invested in the identification of novel biomarkers of CKD progression and new targets for treatment. By using experimental models of kidney diseases, periostin has been identified amongst the most represented matricellular proteins that are commonly involved in the inflammation and fibrosis that characterize progressive kidney diseases. Periostin is highly expressed during organogenesis, with scarce expression in mature healthy tissues, but it is upregulated in multiple disease settings characterized by tissue injury and remodeling. Periostin was the most highly expressed matriceal protein in both animal models and in patients with glomerulopathies. Given that periostin is readily secreted from injury sites, and the variations in its humoral levels compared to the normal state were easily detectable, its potential role as a biomarker is suggested. Moreover, periostin expression was correlated with the degree of histological damage and with kidney function decline in patients with CKD secondary to both inflammatory (IgA nephropathy) and non-inflammatory (membranous nephropathy) glomerulopathies, while also displaying variability secondary to treatment response. The scope of this review is to summarize the existing evidence that supports the role of periostin as a novel biomarker in glomerulopathies.
Collapse
Affiliation(s)
- Nicolae Pană
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Diaverum Morarilor Clinic of Nephrology and Dialysis, 022452 Bucharest, Romania
| | - Cristina Căpușă
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- "Dr Carol Davila" Teaching Hospital of Nephrology, 010731 Bucharest, Romania
| |
Collapse
|
4
|
Li X, Chen H, Zhang D. Discoidin domain receptor 1 may be involved in biological barrier homeostasis. J Clin Pharm Ther 2022; 47:2397-2407. [PMID: 35665520 DOI: 10.1111/jcpt.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase involved in the pathological processes of several diseases, such as keloid formation, renal fibrosis, atherosclerosis, tumours, and inflammatory processes. The biological barrier is the first line of defence against pathogens, and its disruption is closely related to diseases. In this review, we attempt to elucidate the relationship between DDR1 and the biological barrier, explore the potential biological value of DDR1, and review the current research status and clinical potential of DDR1-selective inhibitors. METHODS We conducted an extensive literature search on PubMed to collect studies on the relevance of DDR1 to biological barriers and DDR1-selective inhibitors. With these studies, we explored the relationship between DDR1 and biological barriers and briefly reviewed representative DDR1-selective inhibitors that have been reported in recent years. RESULTS AND DISCUSSION First, the review of the potential mechanisms by which DDR1 regulates biological barriers, including the epithelial, vascular, glomerular filtration, blood-labyrinth, and blood-brain barriers. In the body, DDR1 dysfunction and aberrant expression may be involved in the homeostasis of the biological barrier. Secondly, the review of DDR1 inhibitors reported in recent years shows that DDR1-targeted inhibition is an attractive and promising pharmacological intervention. WHAT IS NEW AND CONCLUSIONS This review shows that DDR1 is involved in various physiological and pathological processes and in the regulation of biological barrier homeostasis. However, studies on DDR1 and biological barriers are still scarce, and further studies are needed to elucidate their specific mechanisms. The development of targeted inhibitors provides a new direction and idea to study the mechanism of DDR1.
Collapse
Affiliation(s)
- Xiaoli Li
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Huiling Chen
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, LanZhou University, Lanzhou, China
| |
Collapse
|
5
|
Follistatin-Like-1 (FSTL1) Is a Fibroblast-Derived Growth Factor That Contributes to Progression of Chronic Kidney Disease. Int J Mol Sci 2021; 22:ijms22179513. [PMID: 34502419 PMCID: PMC8431028 DOI: 10.3390/ijms22179513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the mechanisms responsible for the progression of chronic kidney disease (CKD) is incomplete. Microarray analysis of kidneys at 4 and 7 weeks of age in Col4a3-/- mice, a model of progressive nephropathy characterized by proteinuria, interstitial fibrosis, and inflammation, revealed that Follistatin-like-1 (Fstl1) was one of only four genes significantly overexpressed at 4 weeks of age. mRNA levels for the Fstl1 receptors, Tlr4 and Dip2a, increased in both Col4a-/- mice and mice subjected to unilateral ureteral obstruction (UUO). RNAscope® (Advanced Cell Diagnostics, Newark CA, USA) localized Fstl1 to interstitial cells, and in silico analysis of single cell transcriptomic data from human kidneys showed Fstl1 confined to interstitial fibroblasts/myofibroblasts. In vitro, FSTL1 activated AP1 and NFκB, increased collagen I (COL1A1) and interleukin-6 (IL6) expression, and induced apoptosis in cultured kidney cells. FSTL1 expression in the NEPTUNE cohort of humans with focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN), and IgA nephropathy (IgAN) was positively associated with age, eGFR, and proteinuria by multiple linear regression, as well as with interstitial fibrosis and tubular atrophy. Clinical disease progression, defined as dialysis or a 40 percent reduction in eGFR, was greater in patients with high baseline FSTL1 mRNA levels. FSTL1 is a fibroblast-derived cytokine linked to the progression of experimental and clinical CKD.
Collapse
|
6
|
Liu P, Tian W. Identification of DNA methylation patterns and biomarkers for clear-cell renal cell carcinoma by multi-omics data analysis. PeerJ 2020; 8:e9654. [PMID: 32832275 PMCID: PMC7409785 DOI: 10.7717/peerj.9654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022] Open
Abstract
Background Tumorigenesis is highly heterogeneous, and using clinicopathological signatures only is not enough to effectively distinguish clear cell renal cell carcinoma (ccRCC) and improve risk stratification of patients. DNA methylation (DNAm) with the stability and reversibility often occurs in the early stage of tumorigenesis. Disorders of transcription and metabolism are also an important molecular mechanisms of tumorigenesis. Therefore, it is necessary to identify effective biomarkers involved in tumorigenesis through multi-omics analysis, and these biomarkers also provide new potential therapeutic targets. Method The discovery stage involved 160 pairs of ccRCC and matched normal tissues for investigation of DNAm and biomarkers as well as 318 cases of ccRCC including clinical signatures. Correlation analysis of epigenetic, transcriptomic and metabolomic data revealed the connection and discordance among multi-omics and the deregulated functional modules. Diagnostic or prognostic biomarkers were obtained by the correlation analysis, the Least Absolute Shrinkage and Selection Operator (LASSO) and the LASSO-Cox methods. Two classifiers were established based on random forest (RF) and LASSO-Cox algorithms in training datasets. Seven independent datasets were used to evaluate robustness and universality. The molecular biological function of biomarkers were investigated using DAVID and GeneMANIA. Results Based on multi-omics analysis, the epigenetic measurements uniquely identified DNAm dysregulation of cellular mechanisms resulting in transcriptomic alterations, including cell proliferation, immune response and inflammation. Combination of the gene co-expression network and metabolic network identified 134 CpG sites (CpGs) as potential biomarkers. Based on the LASSO and RF algorithms, five CpGs were obtained to build a diagnostic classifierwith better classification performance (AUC > 99%). A eight-CpG-based prognostic classifier was obtained to improve risk stratification (hazard ratio (HR) > 4; log-rank test, p-value < 0.01). Based on independent datasets and seven additional cancers, the diagnostic and prognostic classifiers also had better robustness and stability. The molecular biological function of genes with abnormal methylation were significantly associated with glycolysis/gluconeogenesis and signal transduction. Conclusion The present study provides a comprehensive analysis of ccRCC using multi-omics data. These findings indicated that multi-omics analysis could identify some novel epigenetic factors, which were the most important causes of advanced cancer and poor clinical prognosis. Diagnostic and prognostic biomarkers were identified, which provided a promising avenue to develop effective therapies for ccRCC.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Roh SY, Kim JY, Cha HK, Lim HY, Park Y, Lee KN, Shim J, Choi JI, Kim YH, Son GH. Molecular Signatures of Sinus Node Dysfunction Induce Structural Remodeling in the Right Atrial Tissue. Mol Cells 2020; 43:408-418. [PMID: 32235021 PMCID: PMC7191046 DOI: 10.14348/molcells.2020.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 12/03/2022] Open
Abstract
The sinus node (SN) is located at the apex of the cardiac conduction system, and SN dysfunction (SND)-characterized by electrical remodeling-is generally attributed to idiopathic fibrosis or ischemic injuries in the SN. SND is associated with increased risk of cardiovascular disorders, including syncope, heart failure, and atrial arrhythmias, particularly atrial fibrillation. One of the histological SND hallmarks is degenerative atrial remodeling that is associated with conduction abnormalities and increased right atrial refractoriness. Although SND is frequently accompanied by increased fibrosis in the right atrium (RA), its molecular basis still remains elusive. Therefore, we investigated whether SND can induce significant molecular changes that account for the structural remodeling of RA. Towards this, we employed a rabbit model of experimental SND, and then compared the genome-wide RNA expression profiles in RA between SND-induced rabbits and sham-operated controls to identify the differentially expressed transcripts. The accompanying gene enrichment analysis revealed extensive pro-fibrotic changes within 7 days after the SN ablation, including activation of transforming growth factor-β (TGF-β) signaling and alterations in the levels of extracellular matrix components and their regulators. Importantly, our findings suggest that periostin, a matricellular factor that regulates the development of cardiac tissue, might play a key role in mediating TGF-β-signaling-induced aberrant atrial remodeling. In conclusion, the present study provides valuable information regarding the molecular signatures underlying SND-induced atrial remodeling, and indicates that periostin can be potentially used in the diagnosis of fibroproliferative cardiac dysfunctions.
Collapse
Affiliation(s)
- Seung-Young Roh
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Guro Hospital, Seoul 08308, Korea
- These authors contributed equally to this work.
| | - Ji Yeon Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 0841, Korea
- These authors contributed equally to this work.
| | - Hyo Kyeong Cha
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 0841, Korea
| | - Hye Young Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 0841, Korea
| | - Youngran Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 0841, Korea
| | - Kwang-No Lee
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul 02841, Korea
| | - Jaemin Shim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul 02841, Korea
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul 02841, Korea
| | - Young-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul 02841, Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 0841, Korea
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 0281, Korea
| |
Collapse
|
8
|
Kormann R, Kavvadas P, Placier S, Vandermeersch S, Dorison A, Dussaule JC, Chadjichristos CE, Prakoura N, Chatziantoniou C. Periostin Promotes Cell Proliferation and Macrophage Polarization to Drive Repair after AKI. J Am Soc Nephrol 2019; 31:85-100. [PMID: 31690575 DOI: 10.1681/asn.2019020113] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/28/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The matricellular protein periostin has been associated with CKD progression in animal models and human biopsy specimens. Periostin functions by interacting with extracellular matrix components to drive collagen fibrillogenesis and remodeling or by signaling through cell-surface integrin receptors to promote cell adhesion, migration, and proliferation. However, its role in AKI is unknown. METHODS We used mice with conditional tubule-specific overexpression of periostin or knockout mice lacking periostin expression in the renal ischemia-reperfusion injury model, and primary cultures of isolated tubular cells in a hypoxia-reoxygenation model. RESULTS Tubular epithelial cells showed strong production of periostin during the repair phase of ischemia reperfusion. Periostin overexpression protected mice from renal injury compared with controls, whereas knockout mice showed increased tubular injury and deteriorated renal function. Periostin interacted with its receptor, integrin-β1, to inhibit tubular cell cycle arrest and apoptosis in in vivo and in vitro models. After ischemia-reperfusion injury, periostin-overexpressing mice exhibited diminished expression of proinflammatory molecules and had more F4/80+ macrophages compared with knockout mice. Macrophages from periostin-overexpressing mice showed increased proliferation and expression of proregenerative factors after ischemia-reperfusion injury, whereas knockout mice exhibited the opposite. Coculturing a macrophage cell line with hypoxia-treated primary tubules overexpressing periostin, or treating such macrophages with recombinant periostin, directly induced macrophage proliferation and expression of proregenerative molecules. CONCLUSIONS In contrast to the detrimental role of periostin in CKD, we discovered a protective role of periostin in AKI. Our findings suggest periostin may be a novel and important mediator of mechanisms controlling renal repair after AKI.
Collapse
Affiliation(s)
- Raphaёl Kormann
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Panagiotis Kavvadas
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Sandrine Placier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Sophie Vandermeersch
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Aude Dorison
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Jean-Claude Dussaule
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Christos E Chadjichristos
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Niki Prakoura
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Christos Chatziantoniou
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and .,Faculty of Medicine, Sorbonne University, Paris, France
| |
Collapse
|
9
|
Richter H, Satz AL, Bedoucha M, Buettelmann B, Petersen AC, Harmeier A, Hermosilla R, Hochstrasser R, Burger D, Gsell B, Gasser R, Huber S, Hug MN, Kocer B, Kuhn B, Ritter M, Rudolph MG, Weibel F, Molina-David J, Kim JJ, Santos JV, Stihle M, Georges GJ, Bonfil RD, Fridman R, Uhles S, Moll S, Faul C, Fornoni A, Prunotto M. DNA-Encoded Library-Derived DDR1 Inhibitor Prevents Fibrosis and Renal Function Loss in a Genetic Mouse Model of Alport Syndrome. ACS Chem Biol 2019; 14:37-49. [PMID: 30452219 PMCID: PMC6343110 DOI: 10.1021/acschembio.8b00866] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The
importance of Discoidin Domain Receptor 1 (DDR1) in renal fibrosis
has been shown via gene knockout and use of antisense oligonucleotides;
however, these techniques act via a reduction of DDR1 protein, while
we prove the therapeutic potential of inhibiting DDR1 phosphorylation
with a small molecule. To date, efforts to generate a selective small-molecule
to specifically modulate the activity of DDR1 in an in vivo model have been unsuccessful. We performed parallel DNA encoded
library screens against DDR1 and DDR2, and discovered a chemical series
that is highly selective for DDR1 over DDR2. Structure-guided optimization
efforts yielded the potent DDR1 inhibitor 2.45, which
possesses excellent kinome selectivity (including 64-fold selectivity
over DDR2 in a biochemical assay), a clean in vitro safety profile, and favorable pharmacokinetic and physicochemical
properties. As desired, compound 2.45 modulates DDR1
phosphorylation in vitro as well as prevents collagen-induced
activation of renal epithelial cells expressing DDR1. Compound 2.45 preserves renal function and reduces tissue damage in Col4a3–/– mice (the preclinical
mouse model of Alport syndrome) when employing a therapeutic dosing
regime, indicating the real therapeutic value of selectively inhibiting
DDR1 phosphorylation in vivo. Our results may have
wider significance as Col4a3–/– mice also represent a model for chronic kidney disease, a disease
which affects 10% of the global population.
Collapse
Affiliation(s)
- Hans Richter
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Alexander L. Satz
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Marc Bedoucha
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Bernd Buettelmann
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Ann C. Petersen
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Anja Harmeier
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Ricardo Hermosilla
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Remo Hochstrasser
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Dominique Burger
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Bernard Gsell
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Rodolfo Gasser
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Melanie N. Hug
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Buelent Kocer
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Martin Ritter
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Markus G. Rudolph
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Franziska Weibel
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
- Ridgeline Therapeutics GmbH, Basel 4070, Switzerland
| | - Judith Molina-David
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Javier Varona Santos
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Martine Stihle
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Guy J. Georges
- Roche Pharma Research and Early Development, Roche Innovation Center, Munich 82377, Germany
| | - R. Daniel Bonfil
- Department of Pathology, College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, Florida 33328, United States
| | - Rafael Fridman
- Department of Pathology, Wayne State University, Detroit, Michigan 48202, United States
| | - Sabine Uhles
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
| | - Solange Moll
- University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Christian Faul
- University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Marco Prunotto
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel 4070, Switzerland
- Office of Innovation, Immunology, Infectious Diseases & Ophthalmology (I2O), Roche and Genentech Late Stage Development, Basel 4070, Switzerland
| |
Collapse
|
10
|
The Structure of the Periostin Gene, Its Transcriptional Control and Alternative Splicing, and Protein Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:7-20. [PMID: 31037620 DOI: 10.1007/978-981-13-6657-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although many studies have described the role of periostin in various diseases, the functions of periostin derived from alternative splicing and proteinase cleavage at its C-terminus remain unknown. Further experiments investigating the periostin structures that are relevant to diseases are essential for an in-depth understanding of their functions, which would accelerate their clinical applications by establishing new approaches for curing intractable diseases. Furthermore, this understanding would enhance our knowledge of novel functions of periostin related to stemness and response to mechanical stress .
Collapse
|
11
|
New Therapies for the Treatment of Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:625-659. [PMID: 31399988 DOI: 10.1007/978-981-13-8871-2_31] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Renal fibrosis is the common pathway for progression of chronic kidney disease (CKD) to end stage of renal disease. It is now widely accepted that the degree of renal fibrosis correlates with kidney function and CKD stages. The key cellular basis of renal fibrosis includes activation of myofibroblasts, excessive production of extracellular matrix components, and infiltration of inflammatory cells. Many cellular mechanisms responsible for renal fibrosis have been identified, and some antifibrotic agents show a greater promise in slowing down and even reversing fibrosis in animal models; however, translating basic findings into effective antifibrotic therapies in human has been limited. In this chapter, we will discuss the effects and mechanisms of some novel antifibrotic agents in both preclinical studies and clinical trials.
Collapse
|
12
|
Kumar P, Smith T, Raeman R, Chopyk DM, Brink H, Liu Y, Sulchek T, Anania FA. Periostin promotes liver fibrogenesis by activating lysyl oxidase in hepatic stellate cells. J Biol Chem 2018; 293:12781-12792. [PMID: 29941453 DOI: 10.1074/jbc.ra117.001601] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
Liver fibrosis arises from dysregulated wound healing due to persistent inflammatory hepatic injury. Periostin is a nonstructural extracellular matrix protein that promotes organ fibrosis in adults. Here, we sought to identify the molecular mechanisms in periostin-mediated hepatic fibrosis. Hepatic fibrosis in periostin-/- mice was attenuated as evidenced by significantly reduced collagen fibril density and liver stiffness compared with those in WT controls. A single dose of carbon tetrachloride caused similar acute liver injury in periostin-/- and WT littermates, and we did not detect significant differences in transaminases and major fibrosis-related hepatic gene expression between these two genotypes. Activated hepatic stellate cells (HSCs) are the major periostin-producing liver cell type. We found that in primary rat HSCs in vitro, periostin significantly increases the expression levels and activities of lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) isoforms 1-3. Periostin also induced expression of intra- and extracellular collagen type 1 and fibronectin in HSCs. Interestingly, periostin stimulated phosphorylation of SMAD2/3, which was sustained despite short hairpin RNA-mediated knockdown of transforming growth factor β (TGFβ) receptor I and II, indicating that periostin-mediated SMAD2/3 phosphorylation is independent of TGFβ receptors. Moreover, periostin induced the phosphorylation of focal adhesion kinase (FAK) and AKT in HSCs. Notably, siRNA-mediated FAK knockdown failed to block periostin-induced SMAD2/3 phosphorylation. These results suggest that periostin promotes enhanced matrix stiffness in chronic liver disease by activating LOX and LOXL, independently of TGFβ receptors. Hence, targeting periostin may be of therapeutic benefit in combating hepatic fibrosis.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322.
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hannah Brink
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Todd Sulchek
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
13
|
Renal fibrosis: Recent translational aspects. Matrix Biol 2017; 68-69:318-332. [PMID: 29292218 DOI: 10.1016/j.matbio.2017.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 01/14/2023]
Abstract
Renal fibrogenesis is the common final pathway to all renal injuries that consequently leads to Chronic Kidney Disease (CKD). Renal fibrogenesis corresponds to the replacement of renal functional tissue by extra-cellular matrix proteins, mainly collagens, that ultimately impairs kidney function. Blockade of the renin angiotensin system by Angiotensin Converting Enzyme inhibitors (ACEi) or Angiotensin Receptor Blockers (ARBs) was the first strategy that proved efficient to blunt the development of renal fibrogenesis independently of its systemic action on blood pressure. Although this strategy has been published 20years ago, there is to date no novel therapeutic targets that are both safe and efficient in hindering renal fibrogenesis and CKD in humans, nor there is any new biomarker to precisely quantify this process. In our review, we will focus on the most recent pathways leading to fibrogenesis which have a high therapeutic potential in humans and on the most promising biomarkers of renal fibrosis.
Collapse
|
14
|
Prakoura N, Chatziantoniou C. Periostin in kidney diseases. Cell Mol Life Sci 2017; 74:4315-4320. [PMID: 28884334 PMCID: PMC11107687 DOI: 10.1007/s00018-017-2650-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022]
Abstract
Chronic kidney disease is an incurable to date pathology, with renal replacement therapy through dialysis or transplantation being the only available option for end-stage patients. A deeper understanding of the molecular mechanisms governing the progression of kidney diseases will permit the identification of unknown mediators and potential novel markers or targets of therapy which promise more efficient diagnostic and therapeutic applications. Over the last years, periostin was established by several studies as a novel key player in the progression of renal disease. Periostin is de novo expressed focally by the injured kidney cells during the development of renal disease. In diverse cohorts of renal disease patients, the expression levels of periostin in the kidney and urine were highly correlated with the stage of the pathology and the decline of renal function. Subsequent studies in animal models demonstrated that periostin is centrally involved in mediating renal inflammation and fibrosis, contributing to the deterioration of renal structure and function. Genetic or pharmaco-genetic inhibition of periostin in animal models of renal disease was efficient in arresting the progression of the pathology. This review will summarize the recent advances on periostin in the field of kidney diseases and will discuss its utility of as a novel target of therapy for chronic kidney disease.
Collapse
Affiliation(s)
- Niki Prakoura
- Institut National de la Santé Et de la Recherche Médicale UMRS 1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France.
| | - Christos Chatziantoniou
- Institut National de la Santé Et de la Recherche Médicale UMRS 1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Sorbonne Universités, UPMC Paris 6, Paris, France
| |
Collapse
|
15
|
Kudo A, Kii I. Periostin function in communication with extracellular matrices. J Cell Commun Signal 2017; 12:301-308. [PMID: 29086200 DOI: 10.1007/s12079-017-0422-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Periostin is a secretory protein with a multi-domain structure, comprising an amino-terminal cysteine-rich EMI domain, four internal FAS 1 domains, and a carboxyl-terminal hydrophilic domain. These adjacent domains bind to extracellular matrix proteins (type I collagen, fibronectin, tenascin-C, and laminin γ2), and BMP-1 that catalyzes crosslinking of type I collagen, and proteoglycans, which play a role in cell adhesion. The binding sites on periostin have been demonstrated to contribute to the mechanical strength of connective tissues, enhancing intermolecular interactions in close proximity and their assembly into extracellular matrix architectures, where periostin plays further essential roles in physiological maintenance and pathological progression. Furthermore, periostin also binds to Notch 1 and CCN3, which have functions in maintenance of stemness, thus opening up a new field of periostin action.
Collapse
Affiliation(s)
- Akira Kudo
- International Frontier, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,Showa University, Tokyo, 142-8555, Japan.
| | - Isao Kii
- Common Facilities Unit, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chūō-ku, Kobe, Hyogo, 650-0047, Japan.,Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| |
Collapse
|