1
|
Fine N, Glogauer M, Chandran V, Oikonomopoulou K. Characterisation of myeloid cells in circulation and synovial fluid of patients with psoriatic arthritis. RMD Open 2024; 10:e004457. [PMID: 39438084 PMCID: PMC11499796 DOI: 10.1136/rmdopen-2024-004457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Psoriatic arthritis (PsA) is an inflammatory arthritis associated with psoriasis. Adding to studies focused on the role of T cells and macrophages, we sought to investigate the systemic activation of leukocytes in PsA. METHODS We assessed the activation state of leukocyte populations, including polymorphonuclear neutrophils (PMNs) and monocyte/macrophages, in blood and synovial fluid (SF) by multicolour flow cytometry. We also evaluated the correlation between leukocyte numbers and expression of activation markers with disease activity parameters. RESULTS SF PMNs showed an elevated activation state compared with blood PMNs, but a reduced activation state compared with oral PMNs of non-arthritic controls. In vitro stimulation caused SF PMNs to become further activated, demonstrating that they retain a reserve capacity for activation in response to specific triggers. We found significant variability between patients in the expression of SF PMN CD activation markers, indicating a range of possible activation states across patients. However, PMN CD marker expression remained consistent over two sequential visits in a subset of patients, indicating patient-specific distinct inflammatory states during flares. We further found that markers of disease activity increased with elevated SF macrophage numbers. Expression of several CD markers on blood or SF cells, for example, PMN expression of the high-affinity Fc-receptor CD64, correlated with disease activity markers, including pain score and Disease Activity in Psoriatic Arthritis score. CONCLUSION These preliminary findings support a potential role for surface antigens on PMNs and monocytes/macrophages as prognostic or disease activity monitoring tools.
Collapse
Affiliation(s)
- Noah Fine
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Princess Margaret Cancer Centre, Department of Dental Oncology and Maxillofacial Prosthetics, Toronto, Ontario, Canada
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Katerina Oikonomopoulou
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Javaid N, Ahmad B, Patra MC, Choi S. Decoy peptides that inhibit TNF signaling by disrupting the TNF homotrimeric oligomer. FEBS J 2024; 291:4372-4391. [PMID: 39003565 DOI: 10.1111/febs.17220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor necrosis factor (TNF) is a pro-inflammatory cytokine and its functional homotrimeric form interacts with the TNF receptor (TNFR) to activate downstream apoptotic, necroptotic, and inflammatory signaling pathways. Excessive activation of these pathways leads to various inflammatory diseases, which makes TNF a promising therapeutic target. Here, 12-mer peptides were selected from the interface of TNF-TNFR based upon their relative binding energies and were named 'TNF-inhibiting decoys' (TIDs). These decoy peptides inhibited TNF-mediated secretion of cytokines and cell death, as well as activation of downstream signaling effectors. Effective TIDs inhibited TNF signaling by disrupting the formation of TNF's functional homotrimeric form. Among derivatives of TIDs, TID3c showed slightly better efficacy in cell-based assays by disrupting TNF trimer formation. Moreover, TID3c oligomerized TNF to a high molecular weight configuration. In silico modeling and simulations revealed that TID3c and its parent peptide, TID3, form a stable complex with TNF through hydrogen bonds and electrostatic interactions, which makes them the promising lead to develop peptide-based anti-TNF therapeutics.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| |
Collapse
|
3
|
Caso F, Costa L, Megna M, Cascone M, Maione F, Giacomelli R, Scarpa R, Ruscitti P. Early psoriatic arthritis: clinical and therapeutic challenges. Expert Opin Investig Drugs 2024; 33:945-965. [PMID: 39041193 DOI: 10.1080/13543784.2024.2383421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a chronic immunoinflammatory disease of the enthesis and adjacent synovium, skin, and nail, which early diagnosis may be crucial for starting a prompt therapeutic intervention. Theoretically, early treatment offers the advantage of acting on the reduction of the articular damage progression since initial phases of the disease. AREAS COVERED This review explores the challenges of clinical-diagnostic aspects and the underlying pathophysiology of early PsA phases, as well as the evidence evaluating the impact of early intervention on disease outcomes. EXPERT OPINION Main instruments for early PsA diagnosis include recognizing synovial-entheseal inflammatory signs at onset, improving screening PsA high-risk subjects, and increasing disease knowledge of physicians and patients with psoriasis or familial history. PsA continues to significantly impact on the Quality of Life of patients affected by the disease, making necessary to deeply study clinical manifestations, risk factors, and underlying immunoinflammatory mechanisms, as well as to identify biomarkers for early identification. Additionally, it remains a need to increase more evidence on understanding how early treatment of PsA and of psoriasis might influence the course of the disease.
Collapse
Affiliation(s)
- Francesco Caso
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Luisa Costa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Matteo Megna
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Mario Cascone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Roberto Giacomelli
- Research and Clinical Unit of immunorheumatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Raffaele Scarpa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
4
|
Jose AM, Rasool M. A glimpse on the role of IL-21 in psoriatic arthritis pathogenesis. Life Sci 2024; 350:122766. [PMID: 38834097 DOI: 10.1016/j.lfs.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory arthropathy affecting the skin, entheses, and joints. Over the past decade, experimental evidence has revealed the activation of several immune cells and signaling cascades in modulating the pathophysiology of PsA. Recently, targeted therapies have been developed to combat the severity of disease. However, with diverse etiologies, flareups, and relapses, there has been an increased prevalence and mortality associated with PsA in recent years. Therefore, it is imperative to investigate new potential mediators and combination therapies to manage PsA pathogenesis. IL-21, an immunomodulatory cytokine, has pleiotropic effects on immune cells and the protein cascades involved in PsA pathogenesis. Recently, emerging evidence of increased IL-21 levels in patients with PsA has engendered much enthusiasm for its potential as a therapeutic target. Here, we unmasked IL-21 as a significant modulator of PsA pathogenesis and reviewed the comorbidities associated with the disease, further cataloging future therapeutic modalities to ameliorate PsA progression.
Collapse
Affiliation(s)
- Ann Miriam Jose
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
5
|
Lopalco G, Cito A, Venerito V, Iannone F, Proft F. The management of axial spondyloarthritis with cutting-edge therapies: advancements and innovations. Expert Opin Biol Ther 2024; 24:835-853. [PMID: 39109494 DOI: 10.1080/14712598.2024.2389987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Axial involvement in spondyloarthritis has significantly evolved from the original 1984 New York criteria for ankylosing spondylitis, leading to an improved understanding of axial spondyloarthritis (axSpA) as a disease continuum encompassing non- radiographic axSpA (nr-axSpA) and radiographic axSpA (r-axSpA). A clear definition for early axSpA has been established, underscoring the need for early intervention with biological and targeted synthetic drugs to mitigate pain, reduce functional impairment, and prevent radiographic progression. AREAS COVERED This review explores therapeutic strategies in axSpA management, focusing on biological and targeted synthetic therapies and recent advancements. Biologics targeting TNFα or IL-17 and targeted synthetic disease-modifying antirheumatic drugs (DMARDs) are primary treatment options. These therapies significantly impact clinical outcomes, radiographic progression, and patient-reported functional improvement. EXPERT OPINION AxSpA treatment has evolved significantly, offering various therapeutic options. Biological DMARDs, particularly TNFα inhibitors, have transformed treatment, significantly enhancing patient outcomes. However, challenges persist for patients unresponsive or intolerant to existing therapies. Emerging therapeutic targets promise to address these challenges. Comprehensive management strategies and personalized approaches, considering extra-articular manifestations and individual patient factors, are crucial for achieving optimal outcomes in axSpA management.
Collapse
Affiliation(s)
- Giuseppe Lopalco
- Department of Precision Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Andrea Cito
- Department of Precision Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Venerito
- Department of Precision Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Florenzo Iannone
- Department of Precision Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Fabian Proft
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Akasaka K, Amano M, Nakamura T, Nishizawa T, Yamakawa H, Sato S, Aoki A, Shima K, Matsushima H, Takada T. Cytokine profiles associated with disease severity and prognosis of autoimmune pulmonary alveolar proteinosis. Respir Investig 2024; 62:610-616. [PMID: 38705133 DOI: 10.1016/j.resinv.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is characterized by an abnormal accumulation of surfactants in the alveoli. Most cases are classified as autoimmune PAP (APAP) because they are associated with autoantibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF). However, GM-CSF autoantibody levels are unlikely to correlate with the disease severity or prognosis of APAP. METHODS We collected clinical records and measured 38 serum cytokine concentrations for consecutive patients with APAP. After exclusion of 21 cytokines because of undetectable levels, 17 cytokine levels were compared between low and high disease severity scores (DSSs). We also compared whole lung lavage (WLL)-free survival with cut-off values defined by receiver operating characteristic (ROC) curves of cytokine levels and WLL administration at 11 months. RESULTS Nineteen patients with APAP were enrolled in the study. Five were classified as DSS 1 or 2, while the others were classified as DSS 4 or 5. Comparison between DSS 1-2 and 4-5 revealed that the concentrations of IP-10 and GRO increased in the latter groups (p < 0.05). Fifteen patients underwent WLL. Comparison between those who underwent WLL within 11 months and the others showed that IP-10 and TNF-α were tended to be elevated in the former group (p = 0.082 and 0.057, respectively). The cut-off values of IP-10, 308.8 pg/mL and TNF-α, 19.1 pg/mL, defined by the ROC curves, significantly separated WLL-free survivals with log-rank analyses (p = 0.005). CONCLUSIONS The concentrations of IP-10 and GRO may reflect the DSSs of APAP. A combination of IP-10 and TNF-α levels could be a biomarker to predict WLL-free survival.
Collapse
Affiliation(s)
- Keiichi Akasaka
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5 Shintoshin, Chuo-ku, Saitama, 330-8553, Japan; Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, 4132 Urasa, Minami Uonuma-shi, Niigata, 949-7302, Japan
| | - Masako Amano
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5 Shintoshin, Chuo-ku, Saitama, 330-8553, Japan
| | - Tomohiko Nakamura
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5 Shintoshin, Chuo-ku, Saitama, 330-8553, Japan
| | - Tomotaka Nishizawa
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5 Shintoshin, Chuo-ku, Saitama, 330-8553, Japan
| | - Hideaki Yamakawa
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5 Shintoshin, Chuo-ku, Saitama, 330-8553, Japan
| | - Shintaro Sato
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5 Shintoshin, Chuo-ku, Saitama, 330-8553, Japan
| | - Ami Aoki
- Division of Respiratory Medicine, Niigata University Medical and Dental Hospital, 1-754, Asahimachi-dori, Chuo-ku, Niigata, 951-8520, Japan
| | - Kenjiro Shima
- Division of Respiratory Medicine, Niigata University Medical and Dental Hospital, 1-754, Asahimachi-dori, Chuo-ku, Niigata, 951-8520, Japan
| | - Hidekazu Matsushima
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5 Shintoshin, Chuo-ku, Saitama, 330-8553, Japan
| | - Toshinori Takada
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, 4132 Urasa, Minami Uonuma-shi, Niigata, 949-7302, Japan; Division of Respiratory Medicine, Niigata University Medical and Dental Hospital, 1-754, Asahimachi-dori, Chuo-ku, Niigata, 951-8520, Japan.
| |
Collapse
|
7
|
Mrowietz U, Sümbül M, Gerdes S. Depression, a major comorbidity of psoriatic disease, is caused by metabolic inflammation. J Eur Acad Dermatol Venereol 2023; 37:1731-1738. [PMID: 37184282 DOI: 10.1111/jdv.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Psoriatic disease is a chronic, systemic immune-mediated inflammatory disorder comprising three major domains, skin, vascular and bone/joint inflammation. It is known for a long time that psoriatic disease is associated with a number of conditions such as hypertension, dyslipidemia, diabetes (metabolic syndrome) and depression. Up to one out of five people with psoriasis show concomitant depression. In the past, this was attributed to psychological stress of suffering from a chronic condition that is often visible and itchy, leading to stigmatization and adding to a significant burden of disease. Recent data provide evidence that depression associated with psoriatic disease is linked to the specific inflammatory pattern with IL-23, IL-17 family cytokines, TNF, IL-6 and IL-8 causing neuroinflammation and subsequently depression or depressive behaviour and/or anxiety. Psoriatic disease shows a distinct pattern of immune cells (e.g. dendritic cells, Th17 cells, neutrophils), mediators (e.g. IL-17A/F, IL-23, TNF) and tissue-related factors in all major domains that is different from other inflammatory dermatoses. There is a striking similarity between the inflammatory pattern in psoriatic disease and neuroinflammation that leads to depression. A number of risk factors have been identified in psoriatic disease, the most important of which are obesity and tobacco smoking. Obesity is known as a major risk factor for depression and anxiety due to its inflammatory signature. Apart from psychotherapy and anti-depressive medication, targeted treatments for psoriasis, including TNF, IL-17 and IL-23 inhibitors, can improve depression/depressive symptoms. The review summarizes the current knowledge about depression as a comorbidity in psoriatic disease.
Collapse
Affiliation(s)
- U Mrowietz
- Psoriasis Center at the Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - M Sümbül
- Psoriasis Center at the Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - S Gerdes
- Psoriasis Center at the Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
8
|
Iaquinta FS, Rivellese F, Pitzalis C. Synovial biopsies for molecular definition of rheumatoid arthritis and treatment response phenotyping: where can we improve? Expert Rev Mol Diagn 2023; 23:1071-1076. [PMID: 37979075 DOI: 10.1080/14737159.2023.2284774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION The extensive knowledge gained in the cellular and molecular mechanisms underlying Rheumatoid Arthritis (RA) pathogenesis has led to therapeutic advances. However, up to 10-20% of patients fail to respond to multiple therapeutic agents being classified as multi-drugresistant. A key challenge moving forward will be the implementation of synovial biopsies in clinical practice to facilitate the shift from the current trial-and-error strategy toward new forms of clinical trials. Biomarker-driven trials have the potential to improve drug selection and patient stratification, reduce economic costs and unnecessary drug-related toxicity. AREAS COVERED This special report explores the clinical and research applications of synovial biopsy, the advancement in the molecular pathobiology of RA to better understand disease pathogenesis and treatment response, and the way forward for the paradigm shift needed. EXPERT OPINION In the current era of highly targeted biologic drugs which have dramatically transformed the outlook of RA patients, the use of synovial biopsy represents a valuable practical tool to dissect disease pathogenesis and, consequently, treatment response. In the near future, it is hoped that technological advances will allow for speeding up synovial molecular analysis and that the design of new biomarker-driven trials will enable the allocation of patients to more effective treatment.
Collapse
Affiliation(s)
- Francesco Salvatore Iaquinta
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust & National Institute for Health and Care Research (NIHR) Barts Biomedical Research Centre (BRC), London, UK
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust & National Institute for Health and Care Research (NIHR) Barts Biomedical Research Centre (BRC), London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust & National Institute for Health and Care Research (NIHR) Barts Biomedical Research Centre (BRC), London, UK
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
9
|
King ME, Lin M, Spradlin M, Eberlin LS. Advances and Emerging Medical Applications of Direct Mass Spectrometry Technologies for Tissue Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:1-25. [PMID: 36944233 DOI: 10.1146/annurev-anchem-061020-015544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Offering superb speed, chemical specificity, and analytical sensitivity, direct mass spectrometry (MS) technologies are highly amenable for the molecular analysis of complex tissues to aid in disease characterization and help identify new diagnostic, prognostic, and predictive markers. By enabling detection of clinically actionable molecular profiles from tissues and cells, direct MS technologies have the potential to guide treatment decisions and transform sample analysis within clinical workflows. In this review, we highlight recent health-related developments and applications of direct MS technologies that exhibit tangible potential to accelerate clinical research and disease diagnosis, including oncological and neurodegenerative diseases and microbial infections. We focus primarily on applications that employ direct MS technologies for tissue analysis, including MS imaging technologies to map spatial distributions of molecules in situ as well as handheld devices for rapid in vivo and ex vivo tissue analysis.
Collapse
Affiliation(s)
- Mary E King
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA;
| | - Monica Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Meredith Spradlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
10
|
Leone GM, Mangano K, Petralia MC, Nicoletti F, Fagone P. Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy. J Clin Med 2023; 12:jcm12041630. [PMID: 36836166 PMCID: PMC9963154 DOI: 10.3390/jcm12041630] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Due to the key role of tumor necrosis factor-alpha (TNF-α) in the pathogenesis of immunoinflammatory diseases, TNF-α inhibitors have been successfully developed and used in the clinical treatment of autoimmune disorders. Currently, five anti-TNF-α drugs have been approved: infliximab, adalimumab, golimumab, certolizumab pegol and etanercept. Anti-TNF-α biosimilars are also available for clinical use. Here, we will review the historical development as well as the present and potential future applications of anti-TNF-α therapies, which have led to major improvements for patients with several autoimmune diseases, such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), Crohn's disease (CD), ulcerative colitis (UC), psoriasis (PS) and chronic endogenous uveitis. Other therapeutic areas are under evaluation, including viral infections, e.g., COVID-19, as well as chronic neuropsychiatric disorders and certain forms of cancer. The search for biomarkers able to predict responsiveness to anti-TNF-α drugs is also discussed.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- Correspondence:
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
11
|
Poryadin GV, Zakhvatov AN, Parshina AY. Pathogenetic aspects of the development of psoriatic arthritis in people with generalized chronic periodontitis. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-183-192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pathogenetic mechanisms of progression of chronic periodontitis and psoriatic arthritis have common components in immune and inflammatory responses.The pathogenesis of chronic periodontitis involves interaction of microbial and immunological components. As a chronic immune-mediated inflammatory disease and a consequence of an infectious trigger that originally affects gingival soft tissue, periodontitis is typically characterized by periodontal destruction and damage to adjacent connective tissues. Neutrophils contribute to the development of periodontitis and participate in its progression by recruiting T helper 17 cells and stimulating synthesis of the receptor activator of the nuclear factor kappa-β ligand (RANKL), contributing to bone resorption.Macrophages as producers of proinflammatory cytokines (interleukin (IL)-1β, IL-6, IL-22, IL-23, tumor necrosis factor (TNF)), free radicals, and matrix metalloproteinases contribute to the chronic course of the disease. Tissue destruction results in generation of reactive oxygen species by neutrophils, which, against the background of a decrease in the antioxidant potential, leads to development of oxidative stress. These processes together lead to tooth mobility, formation of periodontal pockets, and bone resorption.The key factors in the formation of psoriatic arthritis against the background of periodontitis are overproduction of proinflammatory cytokines in target tissues (skin, joints, gingival microflora) and development of an excessive systemic immune response to the microbiota inhabiting the epithelial and periodontal tissues. A statistically confirmed correlation of the progression of periodontal destruction with the presence of psoriatic arthritis proves the significance of the effects of inflammation as a background for the progression of a comorbidity. Increased IL-17 synthesis plays a crucial role in the development of immune responses of pathological bone remodeling and bone resorption in periodontitis and psoriatic arthritis.
Collapse
Affiliation(s)
| | - A. N. Zakhvatov
- Medical institute, National Research Ogarev Mordovia State University
| | - A. Yu. Parshina
- Medical institute, National Research Ogarev Mordovia State University
| |
Collapse
|
12
|
Coras R, Murillo-Saich JD, Singh AG, Kavanaugh A, Guma M. Lipidomic Profiling in Synovial Tissue. Front Med (Lausanne) 2022; 9:857135. [PMID: 35492314 PMCID: PMC9051397 DOI: 10.3389/fmed.2022.857135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The analysis of synovial tissue offers the potential for the comprehensive characterization of cell types involved in arthritis pathogenesis. The studies performed to date in synovial tissue have made it possible to define synovial pathotypes, which relate to disease severity and response to treatment. Lipidomics is the branch of metabolomics that allows the quantification and identification of lipids in different biological samples. Studies in animal models of arthritis and in serum/plasma from patients with arthritis suggest the involvement of different types of lipids (glycerophospholipids, glycerolipids, sphingolipids, oxylipins, fatty acids) in the pathogenesis of arthritis. We reviewed studies that quantified lipids in different types of tissues and their relationship with inflammation. We propose that combining lipidomics with currently used “omics” techniques can improve the information obtained from the analysis of synovial tissue, for a better understanding of pathogenesis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jessica D. Murillo-Saich
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Abha G. Singh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Arthur Kavanaugh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- San Diego VA Healthcare Service, San Diego, CA, United States
- *Correspondence: Monica Guma
| |
Collapse
|
13
|
Kriegsmann M, Kriegsmann J. Synoviale Veränderungen bei Erkrankungen des rheumatologischen Formenkreises und Differenzialdiagnosen. ARTHROSKOPIE 2022. [PMCID: PMC8902900 DOI: 10.1007/s00142-022-00528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Die Untersuchung synovialer Veränderungen kann zur Diagnose von Gelenkerkrankungen und von systemischen Erkrankungen beitragen. Die Domäne der histopathologischen Diagnostik stellt die Abgrenzung tumoröser von entzündlichen Läsionen dar. Daneben können Kristallarthropathien und bestimmte Stoffwechselerkrankungen sicher diagnostiziert werden. Unter dem histologischen Bild einer granulomatösen Synovialitis können neben einer mykobakteriellen Infektion Sarkoidosen und Fremdkörperreaktionen sowie selten genetische Erkrankungen beobachtet werden. Amyloidosen können auch in der Tunica synovialis subtypisiert werden. Molekulare Methoden erlauben die schnelle und sichere Diagnostik septischer Arthritiden und eine Keimtypisierung. Mittels dieser Methoden können auch reaktive Arthritiden klassifiziert werden, da auch hier häufig DNA oder RNA bestimmter Keime in Gewebe oder Gelenkflüssigkeit nachgewiesen werden kann. Die Diagnose der rheumatoiden Arthritis basiert auf den American College of Rheumatology(ACR)-Kriterien. Molekulare Methoden, wie die Mikro-RNA-Technologie oder proteomische Methoden können die Diagnose unterstützen.
Collapse
|
14
|
Ghorbaninezhad F, Leone P, Alemohammad H, Najafzadeh B, Nourbakhsh NS, Prete M, Malerba E, Saeedi H, Tabrizi NJ, Racanelli V, Baradaran B. Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). Int J Mol Med 2022; 49:43. [PMID: 35137914 DOI: 10.3892/ijmm.2022.5098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑α (TNF‑α) is a pleiotropic pro‑inflammatory cytokine that contributes to the pathophysiology of several autoimmune diseases, such as multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, psoriatic arthritis and systemic lupus erythematosus (SLE). The specific role of TNF‑α in autoimmunity is not yet fully understood however, partially, in a complex disease such as SLE. Through the engagement of the TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), both the two variants, soluble and transmembrane TNF‑α, can exert multiple biological effects according to different settings. They can either function as immune regulators, impacting B‑, T‑ and dendritic cell activity, modulating the autoimmune response, or as pro‑inflammatory mediators, regulating the induction and maintenance of inflammatory processes in SLE. The present study reviews the dual role of TNF‑α, focusing on the different effects that TNF‑α may have on the pathogenesis of SLE. In addition, the efficacy and safety of anti‑TNF‑α therapies in preclinical and clinical trials SLE are discussed.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Niloufar Sadat Nourbakhsh
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Fars 7319846451, Iran
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| |
Collapse
|
15
|
Modern insights into ophthalmic manifestations of rheumatic diseases. OPHTHALMOLOGY JOURNAL 2021. [DOI: 10.17816/ov58730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This literature review is devoted to the analysis of modern insights into ophthalmological manifestations (according to the data of foreign scientific literature in the PubMed system for 20172020) of the most common rheumatic diseases (rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, systemic scleroderma, systemic vasculitis), which are characterized by damage to all structures of the eye and its adnexa: eyelids, orbital tissues, eyeball tunics, vessels, optic nerve and vitreous. Ocular lesion may be an onset, one of the diagnostic signs, or a biomarker of underlying medical condition.
Collapse
|
16
|
Ike RW, Kalunian KC. Will rheumatologists ever pick up the arthroscope again? Int J Rheum Dis 2021; 24:1235-1246. [PMID: 34323382 DOI: 10.1111/1756-185x.14184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023]
Abstract
Conditions prompting physicians and surgeons first adapting endoscopes to peer into joints were mainly the sort of synovial conditions that would concern today's rheumatologists. Rheumatologists were among the pre-World War II pioneers developing and documenting arthroscopy. The post-War father of modern arthroscopy, Watanabe, found rheumatologists among his early students, who took back the technique to their home countries, teaching orthopedists and rheumatologists alike. Rheumatologists described and analyzed the intra-articular features of their common diseases in the '60s and '70s. A groundswell of interest from academic rheumatologists in adapting arthroscopy grew considerably in the '90s with development of "needle scopes" that could be used in an office setting. Rheumatologists helped conduct the very trials the findings of which reduced demand for their arthroscopic services by questioning the efficacy of arthroscopic debridement in osteoarthritis (OA) and also developing biological compounds that greatly reduced the call for any resective intervention in inflammatory arthropathies. The arthroscope has proven an excellent tool for viewing and sampling synovium and continues to serve this purpose at several international research centers. While cartilage is now imaged mainly by magnetic resonance imaging, some OA features - such as a high prevalence of visible calcinosis - beg further arthroscopy-directed investigation. A new generation of "needle scopes" with far superior optics awaits future investigators, should they develop interest.
Collapse
Affiliation(s)
- Robert W Ike
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Kenneth C Kalunian
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California at San Diego, San Diego, CA, USA
| |
Collapse
|
17
|
Saraiva F. Ultrasound-Guided Synovial Biopsy: A Review. Front Med (Lausanne) 2021; 8:632224. [PMID: 33968950 PMCID: PMC8100029 DOI: 10.3389/fmed.2021.632224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Ultrasound-guided synovial biopsy is a safe, well-tolerated, and effective method to collect good-quality synovial tissue from all types of joints for clinical and research purposes. Although synovial biopsy cannot be used to distinguish between types of inflammatory rheumatic disease, analysis of synovial tissue has led to remarkable advances in the understanding of the pathobiology of rheumatoid arthritis and other inflammatory rheumatic diseases. Synovitis is the hallmark of these diseases; hence, accessing the core of the pathological process, synovial tissue, provides an opportunity to gather information with potential diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Fernando Saraiva
- Serviço de Reumatologia, Hospital de Santa Maria, Centro Hospitalar e Universitário de Lisboa Norte, Lisbon, Portugal.,Unidade de Investigação em Reumatologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int J Mol Sci 2021; 22:ijms22052719. [PMID: 33800290 PMCID: PMC7962638 DOI: 10.3390/ijms22052719] [Citation(s) in RCA: 611] [Impact Index Per Article: 203.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) was initially recognized as a factor that causes the necrosis of tumors, but it has been recently identified to have additional important functions as a pathological component of autoimmune diseases. TNF-α binds to two different receptors, which initiate signal transduction pathways. These pathways lead to various cellular responses, including cell survival, differentiation, and proliferation. However, the inappropriate or excessive activation of TNF-α signaling is associated with chronic inflammation and can eventually lead to the development of pathological complications such as autoimmune diseases. Understanding of the TNF-α signaling mechanism has been expanded and applied for the treatment of immune diseases, which has resulted in the development of effective therapeutic tools, including TNF-α inhibitors. Currently, clinically approved TNF-α inhibitors have shown noticeable potency in a variety of autoimmune diseases, and novel TNF-α signaling inhibitors are being clinically evaluated. In this review, we briefly introduce the impact of TNF-α signaling on autoimmune diseases and its inhibitors, which are used as therapeutic agents against autoimmune diseases.
Collapse
|
19
|
Fuentelsaz-Romero S, Cuervo A, Estrada-Capetillo L, Celis R, García-Campos R, Ramírez J, Sastre S, Samaniego R, Puig-Kröger A, Cañete JD. GM-CSF Expression and Macrophage Polarization in Joints of Undifferentiated Arthritis Patients Evolving to Rheumatoid Arthritis or Psoriatic Arthritis. Front Immunol 2021; 11:613975. [PMID: 33679701 PMCID: PMC7925849 DOI: 10.3389/fimmu.2020.613975] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Aims GM-CSF-dependent macrophage polarization has been demonstrated in rheumatoid arthritis (RA). Our aim was to seek diagnostic/prognostic biomarkers for undifferentiated arthritis (UA) by analyzing GM-CSF expression and source, macrophage polarization and density in joints of patients with UA evolving to RA or PsA compared with established RA or PsA, respectively. Methods Synovial tissue (ST) from patients with UA evolving to RA (UA>RA, n=8), PsA (UA>PsA, n=9), persistent UA (UA, n=16), established RA (n=12) and PsA (n=10), and healthy controls (n=6), were analyzed. Cell source and quantitative expression of GM-CSF and proteins associated with pro-inflammatory (GM-CSF-driven) and anti-inflammatory (M-CSF-driven) macrophage polarization (activin A, TNFα, MMP12, and CD209, respectively) were assessed in ST CD163+ macrophages by multicolor immunofluorescence. GM-CSF and activin A levels were also quantified in paired synovial fluid samples. CD163+ macrophage density was determined in all groups by immunofluorescence. Results Synovial stromal cells (FAP+ CD90+ fibroblast, CD90+ endothelial cells) and CD163+ sublining macrophages were the sources of GM-CSF. ST CD163+ macrophages from all groups expressed pro-inflammatory polarization markers (activin A, TNFα, and MMP12). Expression of the M-CSF-dependent anti-inflammatory marker CD209 identified two macrophage subsets (CD163+ CD209high and CD163+ CD209low/-). CD209+ macrophages were more abundant in ST from healthy controls and PsA patients, although both macrophage subtypes showed similar levels of pro-inflammatory markers in all groups. In paired synovial fluid samples, activin A was detected in all patients, with higher levels in UA>RA and RA, while GM-CSF was infrequently detected. ST CD163+ macrophage density was comparable between UA>RA and UA>PsA patients, but significantly higher than in persistent UA. Conclusions GM-CSF is highly expressed by sublining CD90+ FAP+ synovial fibroblasts, CD90+ activated endothelium and CD163+ macrophages in different types of arthritis. The polarization state of ST macrophages was similar in all UA and established arthritis groups, with a predominance of pro-inflammatory GM-CSF-associated markers. CD163+ macrophage density was significantly higher in the UA phases of RA and PsA compared with persistent UA. Taken together, our findings support the idea that GM-CSF is a strong driver of macrophage polarization and a potential therapeutic target not only in RA but also in PsA and all types of UA.
Collapse
Affiliation(s)
- Sara Fuentelsaz-Romero
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrea Cuervo
- Unidad de Artritis, Servicio de Reumatología, Hospital Clínic and IDIBAPS, Barcelona, Spain
| | - Lizbeth Estrada-Capetillo
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Raquel Celis
- Unidad de Artritis, Servicio de Reumatología, Hospital Clínic and IDIBAPS, Barcelona, Spain
| | - Raquel García-Campos
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Julio Ramírez
- Unidad de Artritis, Servicio de Reumatología, Hospital Clínic and IDIBAPS, Barcelona, Spain
| | - Sergi Sastre
- Sección de Artroscopia, Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínic, Barcelona, Spain
| | - Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Amaya Puig-Kröger
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Juan D Cañete
- Unidad de Artritis, Servicio de Reumatología, Hospital Clínic and IDIBAPS, Barcelona, Spain
| |
Collapse
|
20
|
Pathogenesis of psoriasis in the "omic" era. Part IV. Epidemiology, genetics, immunopathogenesis, clinical manifestation and treatment of psoriatic arthritis. Postepy Dermatol Alergol 2020; 37:625-634. [PMID: 33239999 PMCID: PMC7675087 DOI: 10.5114/ada.2020.100478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Psoriatic arthritis (PsA) is a chronic, progressive, inflammatory arthropathy associated with psoriasis as well as a complex pathogenesis. Genetic and environmental factors trigger the development of the immune-mediated auto-inflammatory response in different sites: skin, bone marrow, entheses and synovial tissues. Studies of the last two decades have changed the view of PsA from a mild, non-progressive arthritis to an inflammatory systemic disease with serious health consequences, not only associated with joint dysfunction, but also with an increased risk of cardiovascular disease and socioeconomic consequences with significantly reduced quality of life. The joint damage starts early in the course of the disease, thus early recognition and treatment with modern biological treatments, which may modify the natural history and slow down progression of this debilitating disease, is essential for the patient long-term outcome.
Collapse
|
21
|
Jin Q, Zhou H, Lu H. Infiltration of synovitis into the flexor tendon: a case report. J Int Med Res 2020; 48:300060520936180. [PMID: 32779512 PMCID: PMC7425283 DOI: 10.1177/0300060520936180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Synovitis is a type of aseptic inflammation that occurs within joints or surrounding tendons. No previous reports have described a hypertrophic synovium eroding the tendon sheath and manifesting as synovitis within the flexor tendon. We herein report a case involving a 10-year-old girl who presented to our hospital with a 1-month history of a swollen mass and progressive inability to completely flex her left index finger. The active flexion angle of the proximal interphalangeal joint was limited to 85°. A longitudinal incision of the flexor digitorum profundus tendon was surgically performed. The synovium inside and outside the flexor digitorum profundus tendon was completely removed. After the surgical excision, normal tendon gliding returned without recurrence by the 1-year follow-up. The active flexion angle of the proximal interphalangeal joint improved to 100°. To the best of our knowledge, this is the first case of synovitis affecting the flexor tendon and leading to limited flexion of a finger. The manifestation of a double ring sign on magnetic resonance imaging is quite characteristic. Early diagnosis and monitoring of the hyperproliferation and invasiveness of the synovial tissue are required. Surgical excision can be a simple and effective tool when necessary.
Collapse
Affiliation(s)
- Qianjun Jin
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Haiying Zhou
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
22
|
Caso F, Chimenti MS, Navarini L, Ruscitti P, Peluso R, Girolimetto N, Del Puente A, Giacomelli R, Scarpa R, Costa L. Metabolic Syndrome and psoriatic arthritis: considerations for the clinician. Expert Rev Clin Immunol 2020; 16:409-420. [PMID: 32149545 DOI: 10.1080/1744666x.2020.1740593] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Metabolic Syndrome (MetS) is strictly interconnected with systemic inflammation, and increased evidence has described a close link between this condition and Psoriatic Arthritis (PsA).Areas covered: This review summarizes main studies exploring clinical aspects and prevalence of MetS in PsA cohorts. Further, there is accumulating evidence showing shared inflammatory pathways between MetS, its components, and PsA.Expert opinion: The high prevalence of MetS in PsA highlights the need for screening, evaluation, and close monitoring of MetS and its components (namely, diabetes mellitus, obesity, hypertension, and dyslipidemia) in psoriatic patients.Further studies should focus on the pathogenetic link between MetS and PsA. More studies are required to identify appropriate algorithms for the assessment and management of MetS in PsA patients.
Collapse
Affiliation(s)
- Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca Navarini
- Unit of Allergology, Clinical Immunology and Rheumatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosario Peluso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Nicolò Girolimetto
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy.,Department of Rheumatology, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonio Del Puente
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Roberto Giacomelli
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Raffaele Scarpa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Luisa Costa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| |
Collapse
|
23
|
Kabala PA, Malvar-Fernández B, Lopes AP, Carvalheiro T, Hartgring SAY, Tang MW, Conde C, Baeten DL, Sleeman M, Tak PP, Connor J, Radstake TR, Reedquist KA, García S. Promotion of macrophage activation by Tie2 in the context of the inflamed synovia of rheumatoid arthritis and psoriatic arthritis patients. Rheumatology (Oxford) 2020; 59:426-438. [PMID: 31377797 PMCID: PMC7571483 DOI: 10.1093/rheumatology/kez315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To examine the role of Tie2 signalling in macrophage activation within the context of the inflammatory synovial microenvironment present in patients with RA and PsA. METHODS Clinical responses and macrophage function were examined in wild-type and Tie2-overexpressing (Tie2-TG) mice in the K/BxN serum transfer model of arthritis. Macrophages derived from peripheral blood monocytes from healthy donors, RA and PsA patients, and RA and PsA synovial tissue explants were stimulated with TNF (10 ng/ml), angiopoietin (Ang)-1 or Ang-2 (200 ng/ml), or incubated with an anti-Ang2 neutralizing antibody. mRNA and protein expression of inflammatory mediators was analysed by quantitative PCR, ELISA and Luminex. RESULTS Tie2-TG mice displayed more clinically severe arthritis than wild-type mice, accompanied by enhanced joint expression of IL6, IL12B, NOS2, CCL2 and CXCL10, and activation of bone marrow-derived macrophages in response to Ang-2 stimulation. Ang-1 and Ang-2 significantly enhanced TNF-induced expression of pro-inflammatory cytokines and chemokines in macrophages from healthy donors differentiated with RA and PsA SF and peripheral blood-derived macrophages from RA and PsA patients. Both Ang-1 and Ang-2 induced the production of IL-6, IL-12p40, IL-8 and CCL-3 in synovial tissue explants of RA and PsA patients, and Ang-2 neutralization suppressed the production of IL-6 and IL-8 in the synovial tissue of RA patients. CONCLUSION Tie2 signalling enhances TNF-dependent activation of macrophages within the context of ongoing synovial inflammation in RA and PsA, and neutralization of Tie2 ligands might be a promising therapeutic target in the treatment of these diseases.
Collapse
Affiliation(s)
- Pawel A Kabala
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Beatriz Malvar-Fernández
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Ana P Lopes
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Tiago Carvalheiro
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Sarita A Y Hartgring
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Man Wai Tang
- Department of Experimental Immunology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
| | - Carmen Conde
- Laboratorio de Investigación 8 y Servicio de Reumatología, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - Dominique L Baeten
- Department of Experimental Immunology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Paul P Tak
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
- GlaxoSmithKline, Stevenage
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Timothy R Radstake
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Kris A Reedquist
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Samuel García
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| |
Collapse
|