1
|
Skalny AV, Aschner M, Zhang F, Guo X, Buha Djordevic A, Sotnikova TI, Korobeinikova TV, Domingo JL, Farsky SHP, Tinkov AA. Molecular mechanisms of environmental pollutant-induced cartilage damage: from developmental disorders to osteoarthritis. Arch Toxicol 2024; 98:2763-2796. [PMID: 38758407 DOI: 10.1007/s00204-024-03772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The objective of the present study was to review the molecular mechanisms of the adverse effects of environmental pollutants on chondrocytes and extracellular matrix (ECM). Existing data demonstrate that both heavy metals, including cadmium (Cd), lead (Pb), and arsenic (As), as well as organic pollutants, including polychlorinated dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCB), bisphenol A, phthalates, polycyclic aromatic hydrocarbons (PAH), pesticides, and certain other organic pollutants that target cartilage ontogeny and functioning. Overall, environmental pollutants reduce chondrocyte viability through the induction apoptosis, senescence, and inflammatory response, resulting in cell death and impaired ECM production. The effects of organic pollutants on chondrocyte development and viability were shown to be mediated by binding to the aryl hydrocarbon receptor (AhR) signaling and modulation of non-coding RNA expression. Adverse effects of pollutant exposures were observed in articular and growth plate chondrocytes. These mechanisms also damage chondrocyte precursors and subsequently hinder cartilage development. In addition, pollutant exposure was shown to impair chondrogenesis by inhibiting the expression of Sox9 and other regulators. Along with altered Runx2 signaling, these effects also contribute to impaired chondrocyte hypertrophy and chondrocyte-to-osteoblast trans-differentiation, resulting in altered endochondral ossification. Several organic pollutants including PCDD/Fs, PCBs and PAHs, were shown to induce transgenerational adverse effects on cartilage development and the resulting skeletal deformities. Despite of epidemiological evidence linking human environmental pollutant exposure to osteoarthritis or other cartilage pathologies, the data on the molecular mechanisms of adverse effects of environmental pollutant exposure on cartilage tissue were obtained from studies in laboratory rodents, fish, or cell cultures and should be carefully extrapolated to humans, although they clearly demonstrate that cartilage should be considered a putative target for environmental pollutant toxicity.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, 11000, Belgrade, Serbia
| | - Tatiana I Sotnikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
- City Clinical Hospital N. a. S.P. Botkin of the Moscow City Health Department, 125284, Moscow, Russia
| | - Tatiana V Korobeinikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, 4320, Reus, Catalonia, Spain
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 005508-000, Brazil
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
2
|
Fan W, Pi Z, Kong K, Qiao H, Jin M, Chang Y, Zhang J, Li H. Analyzing the impact of heavy metal exposure on osteoarthritis and rheumatoid arthritis: an approach based on interpretable machine learning. Front Nutr 2024; 11:1422617. [PMID: 39101010 PMCID: PMC11294220 DOI: 10.3389/fnut.2024.1422617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction This investigation leverages advanced machine learning (ML) techniques to dissect the complex relationship between heavy metal exposure and its impacts on osteoarthritis (OA) and rheumatoid arthritis (RA). Utilizing a comprehensive dataset from the National Health and Nutrition Examination Survey (NHANES) spanning from 2003 to 2020, this study aims to elucidate the roles specific heavy metals play in the incidence and differentiation of OA and RA. Methods Employing a phased ML strategy that encompasses a range of methodologies, including LASSO regression and SHapley Additive exPlanations (SHAP), our analytical framework integrates demographic, laboratory, and questionnaire data. Thirteen distinct ML models were applied across seven methodologies to enhance the predictability and interpretability of clinical outcomes. Each phase of model development was meticulously designed to progressively refine the algorithm's performance. Results The results reveal significant associations between certain heavy metals and an increased risk of arthritis. The phased ML approach enabled the precise identification of key predictors and their contributions to disease outcomes. Discussion These findings offer new insights into potential pathways for early detection, prevention, and management strategies for arthritis associated with environmental exposures. By improving the interpretability of ML models, this research provides a potent tool for clinicians and researchers, facilitating a deeper understanding of the environmental determinants of arthritis.
Collapse
Affiliation(s)
- Wenxuan Fan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhipeng Pi
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Keyu Kong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongyun Chang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingwei Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiwu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Pamphlett R, Bishop DP. Elemental biomapping of human tissues suggests toxic metals such as mercury play a role in the pathogenesis of cancer. Front Oncol 2024; 14:1420451. [PMID: 38974240 PMCID: PMC11224479 DOI: 10.3389/fonc.2024.1420451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Toxic metals such as mercury, lead, and cadmium have multiple carcinogenic capacities, including the ability to damage DNA and incite inflammation. Environmental toxic metals have long been suspected to play a role in the pathogenesis of cancer, but convincing evidence from epidemiological studies that toxic metals are risk factors for common neoplasms has been difficult to gain. Another approach is to map the location of potentially toxic elements in normal human cells where common cancers originate, as well as in the cancers themselves. In this Perspective, studies are summarized that have used elemental biomapping to detect toxic metals such as mercury in human cells. Two elemental biomapping techniques, autometallography and laser ablation-inductively coupled-mass spectrometry imaging, have shown that multiple toxic metals exist in normal human cells that are particularly prone to developing cancer, and are also seen in neoplastic cells of breast and pancreatic tumors. Biomapping studies of animals exposed to toxic metals show that these animals take up toxic metals in the same cells as humans. The finding of toxic metals such as mercury in human cells prone to cancer could explain the increasing global incidence of many cancers since toxic metals continue to accumulate in the environment. The role of toxic metals in cancer remains to be confirmed experimentally, but to decrease cancer risk a precautionary approach would be to reduce emissions of mercury and other toxic metals into the environment from industrial and mining activities and from the burning of fossil fuels.
Collapse
Affiliation(s)
- Roger Pamphlett
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Pamphlett R, Bishop DP. The toxic metal hypothesis for neurological disorders. Front Neurol 2023; 14:1173779. [PMID: 37426441 PMCID: PMC10328356 DOI: 10.3389/fneur.2023.1173779] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Multiple sclerosis and the major sporadic neurogenerative disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer disease are considered to have both genetic and environmental components. Advances have been made in finding genetic predispositions to these disorders, but it has been difficult to pin down environmental agents that trigger them. Environmental toxic metals have been implicated in neurological disorders, since human exposure to toxic metals is common from anthropogenic and natural sources, and toxic metals have damaging properties that are suspected to underlie many of these disorders. Questions remain, however, as to how toxic metals enter the nervous system, if one or combinations of metals are sufficient to precipitate disease, and how toxic metal exposure results in different patterns of neuronal and white matter loss. The hypothesis presented here is that damage to selective locus ceruleus neurons from toxic metals causes dysfunction of the blood-brain barrier. This allows circulating toxicants to enter astrocytes, from where they are transferred to, and damage, oligodendrocytes, and neurons. The type of neurological disorder that arises depends on (i) which locus ceruleus neurons are damaged, (ii) genetic variants that give rise to susceptibility to toxic metal uptake, cytotoxicity, or clearance, (iii) the age, frequency, and duration of toxicant exposure, and (iv) the uptake of various mixtures of toxic metals. Evidence supporting this hypothesis is presented, concentrating on studies that have examined the distribution of toxic metals in the human nervous system. Clinicopathological features shared between neurological disorders are listed that can be linked to toxic metals. Details are provided on how the hypothesis applies to multiple sclerosis and the major neurodegenerative disorders. Further avenues to explore the toxic metal hypothesis for neurological disorders are suggested. In conclusion, environmental toxic metals may play a part in several common neurological disorders. While further evidence to support this hypothesis is needed, to protect the nervous system it would be prudent to take steps to reduce environmental toxic metal pollution from industrial, mining, and manufacturing sources, and from the burning of fossil fuels.
Collapse
Affiliation(s)
- Roger Pamphlett
- Department of Pathology, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Łuczkowski M, Padjasek M, Ba Tran J, Hemmingsen L, Kerber O, Habjanič J, Freisinger E, Krężel A. An Extremely Stable Interprotein Tetrahedral Hg(Cys) 4 Core Forms in the Zinc Hook Domain of Rad50 Protein at Physiological pH. Chemistry 2022; 28:e202202738. [PMID: 36222310 PMCID: PMC9828754 DOI: 10.1002/chem.202202738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/09/2022]
Abstract
In nature, thiolate-based systems are the primary targets of divalent mercury (HgII ) toxicity. The formation of Hg(Cys)x cores in catalytic and structural protein centers mediates mercury's toxic effects and ultimately leads to cellular damage. Multiple studies have revealed distinct HgII -thiolate coordination preferences, among which linear HgII complexes are the most commonly observed in solution at physiological pH. Trigonal or tetrahedral geometries are formed at basic pH or in tight intraprotein Cys-rich metal sites. So far, no interprotein tetrahedral HgII complex formed at neutral pH has been reported. Rad50 protein is a part of the multiprotein MRN complex, a major player in DNA damage-repair processes. Its central region consists of a conserved CXXC motif that enables dimerization of two Rad50 molecules by coordinating ZnII . Dimerized motifs form a unique interprotein zinc hook domain (Hk) that is critical for the biological activity of the MRN. Using a series of length-differentiated peptide models of the Pyrococcus furiosus zinc hook domain, we investigated its interaction with HgII . Using UV-Vis, CD, PAC, and 199 Hg NMR spectroscopies as well as anisotropy decay, we discovered that all Rad50 fragments preferentially form homodimeric Hg(Hk)2 species with a distorted tetrahedral HgS4 coordination environment at physiological pH; this is the first example of an interprotein mercury site displaying tetrahedral geometry in solution. At higher HgII content, monomeric HgHk complexes with linear geometry are formed. The Hg(Cys)4 core of Rad50 is extremely stable and does not compete with cyanides, NAC, or DTT. Applying ITC, we found that the stability constant of the Rad50 Hg(Hk)2 complex is approximately three orders of magnitude higher than those of the strongest HgII complexes known to date.
Collapse
Affiliation(s)
- Marek Łuczkowski
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Michał Padjasek
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Józef Ba Tran
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Lars Hemmingsen
- Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100København ØDenmark
| | - Olga Kerber
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Jelena Habjanič
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZürichSwitzerland
| | - Eva Freisinger
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZürichSwitzerland
| | - Artur Krężel
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| |
Collapse
|
7
|
Jakoniuk M, Kochanowicz J, Lankau A, Wilkiel M, Socha K. Concentration of Selected Macronutrients and Toxic Elements in the Blood in Relation to Pain Severity and Hydrogen Magnetic Resonance Spectroscopy in People with Osteoarthritis of the Spine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11377. [PMID: 36141646 PMCID: PMC9517490 DOI: 10.3390/ijerph191811377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Macronutrients and toxic elements may play an important role in the pathogenesis of osteoarthritis of the spine. The objective of this study was to evaluate the relationship between the concentrations of Ca, Mg, Pb, Cd and Hg in blood with the results of hydrogen magnetic resonance spectroscopy and the severity of pain. Patients with osteoarthritis of the spine (n = 90) and control subjects (n = 40) were studied. The concentrations of mineral components in blood were determined by atomic absorption spectrometry (ASA). Spinal pain severity was assessed using the Visual Analog Scale (VAS). Hydrogen magnetic resonance spectroscopy (1H-MRS) was used to determine the fat/water ratio in the bodies of L1, L5 and the L4/5 intervertebral disc. The median concentration of Mg in the serum of subjects with spinal degenerative disease was significantly lower (p < 0.001) than that in healthy subjects. The median concentration of Cd in the blood of subjects with osteoarthritis of the spine was significantly higher (p < 0.05) than that in the control group. Significantly lower (p < 0.05) median molar ratios of Ca to Cd and Pb as well as Mg to Pb and Cd were observed among patients with osteoarthritis of the spine. Significant differences (p < 0.05) were observed in the value of the fat/water ratio in selected spinal structures, depending on normal or abnormal serum Ca and Mg concentrations. The study showed some abnormal macronutrient concentrations, as well as disturbed ratios of beneficial elements to toxic elements in the blood of people with osteoarthritis of the spine.
Collapse
Affiliation(s)
- Marta Jakoniuk
- Department of Invasive Neurology, Medical University of Białystok, M. Skłodowskiej-Curie 24a Street, 15-276 Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, M. Skłodowskiej-Curie 24a Street, 15-276 Białystok, Poland
| | - Agnieszka Lankau
- Department of Integrated Medical Care, Medical University of Białystok, M. Skłodowskiej-Curie 7A Street, 15-096 Białystok, Poland
| | - Marianna Wilkiel
- Department of Neurology, Medical University of Białystok, M. Skłodowskiej-Curie 24a Street, 15-276 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland
| |
Collapse
|
8
|
Tang Y, Yi Q, Wang S, Xia Y, Geng B. Normal concentration range of blood mercury and bone mineral density: a cross-sectional study of National Health and Nutrition Examination Survey (NHANES) 2005-2010. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7743-7757. [PMID: 34480303 DOI: 10.1007/s11356-021-16162-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
High blood mercury levels could lead to mercury poisoning, undoubtedly causing great harm to human health. However, the impact of the normal concentration of blood mercury on bone mineral density (BMD) is unclear. Therefore, this study explored the relationship between blood mercury levels and BMD and determined whether the relationship between blood mercury and BMD differs by populations. Two researchers extracted data from the 2005-2010 National Health and Nutrition Examination Survey database. Multivariate linear regression models were performed to evaluate the relationship between mercury level and BMD of the femoral regions and spine. Subgroup analysis was used to estimate differences according to population subgroups. Moreover, the nonlinear relationship of blood mercury levels and BMD was assessed using smooth curve fitting and generalized additive models. The results showed increased BMD with increasing mercury levels by multivariable-adjusted linear regression models, especially in the femoral regions. Subgroup analysis showed that the relationship was more likely to be present in non-Hispanic Whites, while a negative correlation between blood mercury levels and spinal BMD was observed in non-Hispanic Blacks. Furthermore, males (aged 20 to 29 years) and females (aged 30 to 39 years) with low blood mercury levels (< 3 ug/L) had increased risks of osteopenia or osteoporosis. This study showed that blood mercury level within the normal reference value of 10 μg/dL may be associated with BMD, especially with a lower blood mercury level, which may suggest an elevated risk of osteopenia or osteoporosis. However, causation could not be established due to the study design.
Collapse
Affiliation(s)
- Yuchen Tang
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Qiong Yi
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Shenghong Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China.
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
The prevalence of inorganic mercury in human cells increases during aging but decreases in the very old. Sci Rep 2021; 11:16714. [PMID: 34408264 PMCID: PMC8373952 DOI: 10.1038/s41598-021-96359-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
Successful aging is likely to involve both genetic and environmental factors, but environmental toxicants that accelerate aging are not known. Human exposure to mercury is common, and mercury has genotoxic, autoimmune, and free radical effects which could contribute to age-related disorders. The presence of inorganic mercury was therefore assessed in the organs of 170 people aged 1-104 years to determine the prevalence of mercury in human tissues at different ages. Mercury was found commonly in cells of the brain, kidney, thyroid, anterior pituitary, adrenal medulla and pancreas. The prevalence of mercury in these organs increased during aging but decreased in people aged over 80 years. People with mercury in one organ usually also had mercury in several others. In conclusion, the prevalence of inorganic mercury in human organs increases with age. The relative lack of tissue mercury in the very old could account for the flattened mortality rate and reduced incidence of cancer in this advanced age group. Since mercury may accelerate aging, efforts to reduce atmospheric mercury pollution could improve the chances of future successful aging.
Collapse
|
10
|
Geier DA, Geier MR. Dental Amalgams and the Incidence Rate of Arthritis among American Adults. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2021; 14:11795441211016261. [PMID: 34045912 PMCID: PMC8138300 DOI: 10.1177/11795441211016261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
This hypothesis-testing study evaluated the relationship between mercury
(Hg)-based dental amalgams and arthritis diagnoses among adults in the United
States (US). A total of 86 305 425 weighted-persons with ⩾1 dental amalgam
filling surface (DAFS) (exposed group) and 32 201 088 weighted-persons with ⩾1
other dental filling surface (ODFS) (no DAFS, unexposed group) were examined in
the 2015 to 2016 National Health and Nutritional Examination Survey (NHANES).
All persons were 20 to 80 years-old with known demographic characteristics and
arthritis status. Survey logistic regression and survey frequency modeling in
SAS were employed with and without adjustment of covariates. The arthritis rate
was significantly increased in the exposed group compared to the unexposed group
in the unadjusted (7.68-fold) and adjusted (4.89-fold) models. Arthritis (per
10 000 weighted-person-years) was 6.0-fold significantly increased in the
exposed group (6.2) compared to the unexposed group (1.06). A significant
bimodal dose-dependent relationship between DAFS and arthritis rate was
observed. The arthritis rate increased with increasing DAFS (peak among persons
with 4-7 DAFS) and, subsequently, decreased among those with >6 DAFS. A
significant decrease in arthritis rate among persons with >13 DAFS as
compared to those persons with 4 to 7 DAFS was observed. A significant
association between DAFS and arthritis risk and a dose-dependent DAFS associated
immune-stimulation/immune-suppression with arthritis risk were observed. An
estimated additional $96 835 814 US dollars (USD) are spent on annual medical
costs and $184 797 680 USD are lost in annual wages from reported new onset
arthritis attributably associated with DAFS (annual total cost = $281 633 494
USD).
Collapse
Affiliation(s)
- David A Geier
- Institute of Chronic Illnesses, Inc, Silver Spring, MD, USA.,CoMeD, Inc, Silver Spring, MD, USA
| | - Mark R Geier
- Institute of Chronic Illnesses, Inc, Silver Spring, MD, USA.,CoMeD, Inc, Silver Spring, MD, USA
| |
Collapse
|
11
|
Pamphlett R, Doble PA, Bishop DP. The Prevalence of Inorganic Mercury in Human Kidneys Suggests a Role for Toxic Metals in Essential Hypertension. TOXICS 2021; 9:67. [PMID: 33801008 PMCID: PMC8004013 DOI: 10.3390/toxics9030067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The kidney plays a dominant role in the pathogenesis of essential hypertension, but the initial pathogenic events in the kidney leading to hypertension are not known. Exposure to mercury has been linked to many diseases including hypertension in epidemiological and experimental studies, so we studied the distribution and prevalence of mercury in the human kidney. Paraffin sections of kidneys were available from 129 people ranging in age from 1 to 104 years who had forensic/coronial autopsies. One individual had injected himself with metallic mercury, the other 128 were from varied clinicopathological backgrounds without known exposure to mercury. Sections were stained for inorganic mercury using autometallography. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used on six samples to confirm the presence of autometallography-detected mercury and to look for other toxic metals. In the 128 people without known mercury exposure, mercury was found in: (1) proximal tubules of the cortex and Henle thin loops of the medulla, in 25% of kidneys (and also in the man who injected himself with mercury), (2) proximal tubules only in 16% of kidneys, and (3) Henle thin loops only in 23% of kidneys. The age-related proportion of people who had any mercury in their kidney was 0% at 1-20 years, 66% at 21-40 years, 77% at 41-60 years, 84% at 61-80 years, and 64% at 81-104 years. LA-ICP-MS confirmed the presence of mercury in samples staining with autometallography and showed cadmium, lead, iron, nickel, and silver in some kidneys. In conclusion, mercury is found commonly in the adult human kidney, where it appears to accumulate in proximal tubules and Henle thin loops until an advanced age. Dysfunctions of both these cortical and medullary regions have been implicated in the pathogenesis of essential hypertension, so these findings suggest that further studies of the effects of mercury on blood pressure are warranted.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney 2050, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney 2050, Australia
| | - Philip A. Doble
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney 2007, Australia; (P.A.D.); (D.P.B.)
| | - David P. Bishop
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney 2007, Australia; (P.A.D.); (D.P.B.)
| |
Collapse
|
12
|
Ballová ZK, Korec F, Pinterová K. Relationship between heavy metal accumulation and histological alterations in voles from alpine and forest habitats of the West Carpathians. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36411-36426. [PMID: 32562226 DOI: 10.1007/s11356-020-09654-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The interaction between toxic heavy metals and bio-elements in internal organs and femoral bones and their potential impacts on bone structural properties and renal histopathological changes in bank voles and snow voles were investigated. Our results reveal that heavy metals Hg and Pb accumulate more in femoral bones of alpine habitats than forests. In snow voles, the parameters of the primary osteons' vascular canals (length, average perimeter and area) simultaneously decreased with an increase of Pb and Sr. Wider primary osteons' vascular canals of snow voles contained decreased levels of K, but increased Ba. In bank voles, the number of primary osteons increased in alpine habitats along with K, Hg, and Pb accumulation. In the kidneys of bank voles, rising levels of Rb, Hg, and Zn were detected in alpine habitats. Hg increases the most in kidney tissue from alpine habitats in both vole species, and Hg levels (mean value 0.25 μg/g, max. value 0.55 μg/g) in the renal tissues of bank voles from alpine localities are similar to Hg levels from Hg-polluted industrial areas in other studies. This reflects that alpine areas of the Tatra Mountains are highly contaminated with Hg. The intensity of renal hemosiderosis relates significantly to Zn, Fe, and Cu levels in snow voles, with Fe and Zn levels in bank voles from forest habitats, and with Rb in bank voles from alpine habitats. The intensity of tubule necrosis in renal tissues of bank voles from alpine habitats was negatively related to Se content. In bank voles from forest habitats, significant positive correlations were found between the intensity of glomerular hyperplasia and amounts of Zn. The interactions of the detected element's association with bone tissue and internal organs are discussed.
Collapse
Affiliation(s)
- Zuzana Kompišová Ballová
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, SK-05956, Tatranská Javorina, Slovakia.
| | - Filip Korec
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, SK-05956, Tatranská Javorina, Slovakia
| | - Katarína Pinterová
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, SK-05956, Tatranská Javorina, Slovakia
| |
Collapse
|