1
|
Gusev E, Solomatina L, Bochkarev P, Zudova A, Chereshnev V. The Role of Systemic Inflammation in the Pathogenesis of Spontaneous Intracranial Hemorrhage in the Presence or Absence of Effective Cerebral Blood Flow. J Clin Med 2024; 13:4454. [PMID: 39124721 PMCID: PMC11313124 DOI: 10.3390/jcm13154454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Spontaneous intracerebral hemorrhage (ICH) is one of the leading causes of mortality in intensive care units. The role of systemic hyperintense inflammation (SHI) in the pathogenesis of critical complications of ICH remains a poorly understood problem. There is a specific variant of severe ICH associated with increased intracranial pressure and occlusion of intracranial vessels, defined as ineffective cerebral blood flow (IECBF). Methods: To evaluate the role of SHI in the pathogenesis of severe (comatose) ICH in a dynamic comparison of patients with IECBF (n-26) and without IECBF (n-52). The SHI integral score criterion (SI scale) was used, including certain values of plasma concentrations of IL-6, IL-8, IL-10; TNF-α, PCT, cortisol, myoglobin, troponin I, D-dimer, and, additionally, SOFA scale values. Blood levels of ACTH and neuron-specific enolase (NSE) were also assessed. Results: Twenty-eight-day mortality in severe ICH reached 84.6% (without IECBF) and 96.2% (with IECBF). Clear signs of SHI were detected in 61.5%/87.8% (without IECBF) and 0.0%/8.7% (with IECBF) within 1-3/5-8 days from the onset of ICH manifestation. The lower probability of developing SHI in the IECBF group was associated with low blood NSE concentrations. Conclusions: The development of SHI in ICH is pathogenetically related to the permeability of the blood-brain barrier for tissue breakdown products and other neuroinflammatory factors.
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology Ural Branch of The Russian Academy of Sciences, 620078 Yekaterinburg, Russia; (E.G.); (A.Z.); (V.C.)
| | - Liliya Solomatina
- Institute of Immunology and Physiology Ural Branch of The Russian Academy of Sciences, 620078 Yekaterinburg, Russia; (E.G.); (A.Z.); (V.C.)
| | - Peter Bochkarev
- Sverdlovsk Regional Clinical Hospital No. 1 (GAUZ SO “SOKB No. 1”), 620102 Yekaterinburg, Russia;
| | - Alevtina Zudova
- Institute of Immunology and Physiology Ural Branch of The Russian Academy of Sciences, 620078 Yekaterinburg, Russia; (E.G.); (A.Z.); (V.C.)
| | - Valeriy Chereshnev
- Institute of Immunology and Physiology Ural Branch of The Russian Academy of Sciences, 620078 Yekaterinburg, Russia; (E.G.); (A.Z.); (V.C.)
| |
Collapse
|
2
|
Liu K, Tronstad O, Flaws D, Churchill L, Jones AYM, Nakamura K, Fraser JF. From bedside to recovery: exercise therapy for prevention of post-intensive care syndrome. J Intensive Care 2024; 12:11. [PMID: 38424645 PMCID: PMC10902959 DOI: 10.1186/s40560-024-00724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND As advancements in critical care medicine continue to improve Intensive Care Unit (ICU) survival rates, clinical and research attention is urgently shifting toward improving the quality of survival. Post-Intensive Care Syndrome (PICS) is a complex constellation of physical, cognitive, and mental dysfunctions that severely impact patients' lives after hospital discharge. This review provides a comprehensive and multi-dimensional summary of the current evidence and practice of exercise therapy (ET) during and after an ICU admission to prevent and manage the various domains of PICS. The review aims to elucidate the evidence of the mechanisms and effects of ET in ICU rehabilitation and highlight that suboptimal clinical and functional outcomes of ICU patients is a growing public health concern that needs to be urgently addressed. MAIN BODY This review commences with a brief overview of the current relationship between PICS and ET, describing the latest research on this topic. It subsequently summarises the use of ET in ICU, hospital wards, and post-hospital discharge, illuminating the problematic transition between these settings. The following chapters focus on the effects of ET on physical, cognitive, and mental function, detailing the multi-faceted biological and pathophysiological mechanisms of dysfunctions and the benefits of ET in all three domains. This is followed by a chapter focusing on co-interventions and how to maximise and enhance the effect of ET, outlining practical strategies for how to optimise the effectiveness of ET. The review next describes several emerging technologies that have been introduced/suggested to augment and support the provision of ET during and after ICU admission. Lastly, the review discusses future research directions. CONCLUSION PICS is a growing global healthcare concern. This review aims to guide clinicians, researchers, policymakers, and healthcare providers in utilising ET as a therapeutic and preventive measure for patients during and after an ICU admission to address this problem. An improved understanding of the effectiveness of ET and the clinical and research gaps that needs to be urgently addressed will greatly assist clinicians in their efforts to rehabilitate ICU survivors, improving patients' quality of survival and helping them return to their normal lives after hospital discharge.
Collapse
Affiliation(s)
- Keibun Liu
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Chermside, QLD, 4032, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
- Non-Profit Organization ICU Collaboration Network (ICON), Tokyo, Japan.
| | - Oystein Tronstad
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Chermside, QLD, 4032, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Physiotherapy Department, The Prince Charles Hospital, Brisbane, Australia
| | - Dylan Flaws
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Chermside, QLD, 4032, Australia
- Metro North Mental Health, Caboolture Hospital, Caboolture, Australia
- School of Clinical Science, Queensland University of Technology, Brisbane, Australia
| | - Luke Churchill
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Chermside, QLD, 4032, Australia
- Physiotherapy Department, The Prince Charles Hospital, Brisbane, Australia
- School of Health & Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Alice Y M Jones
- School of Health & Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Kensuke Nakamura
- Department of Critical Care Medicine, Yokohama City University Hospital, Kanagawa, Japan
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Chermside, QLD, 4032, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland University of Technology, Brisbane, Australia
- St. Andrews War Memorial Hospital, Brisbane, Australia
| |
Collapse
|
3
|
Zorko Garbajs N, Valencia Morales DJ, Singh TD, Herasevich V, Hanson AC, Schroeder DR, Weingarten TN, Gajic O, Sprung J, Rabinstein AA. Association of Blood Pressure Variability with Delirium in Patients with Critical Illness. Neurocrit Care 2023; 39:646-654. [PMID: 36526945 PMCID: PMC9757627 DOI: 10.1007/s12028-022-01661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The objective was to examine the association of blood pressure variability (BPV) during the first 24 h after intensive care unit admission with the likelihood of delirium and depressed alertness without delirium ("depressed alertness"). METHODS This retrospective, observational, cohort study included all consecutive adult patients admitted to an intensive care unit at Mayo Clinic, Rochester, Minnesota, from July 1, 2004, through October 31, 2015. The primary outcomes were delirium and delirium-free days, and the secondary outcomes included depressed alertness and depressed alertness-free days. Logistic regression was performed to determine the association of BPV with delirium and depressed alertness. Proportional odds regression was used to assess the association of BPV with delirium-free days and depressed alertness-free days. RESULTS Among 66,549 intensive care unit admissions, delirium was documented in 20.2% and depressed alertness was documented in 24.4%. Preserved cognition was documented in 55.4% of intensive care unit admissions. Increased systolic and diastolic BPV was associated with an increased odds of delirium and depressed alertness. The magnitude of the association per 5-mm Hg increase in systolic average real variability (the average of absolute value of changes between consecutive systolic blood pressure readings) was greater for delirium (odds ratio 1.34; 95% confidence interval 1.29-1.40; P < 0.001) than for depressed alertness (odds ratio 1.06; 95% confidence interval 1.02-1.10; P = 0.004). Increased systolic and diastolic BPV was associated with fewer delirium-free days but not with depressed alertness-free days. CONCLUSIONS BPV in the first 24 h after intensive care unit admission is associated with an increased likelihood of delirium and fewer delirium-free days.
Collapse
Affiliation(s)
- Nika Zorko Garbajs
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.
- Division of Neurology, Department of Vascular Neurology and Intensive Therapy, University Medical Centre, Ljubljana, Slovenia.
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | | | - Tarun D Singh
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Neurology and Neurological Surgery, University of Michigan Hospital, Ann Arbor, MI, USA
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew C Hanson
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Darrell R Schroeder
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Toby N Weingarten
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ognjen Gajic
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Critical Care Independent Multidisciplinary Program, Mayo Clinic, Rochester, MN, USA
| | - Juraj Sprung
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alejandro A Rabinstein
- Critical Care Independent Multidisciplinary Program, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Richerson WT, Schmit BD, Wolfgram DF. The Relationship between Cerebrovascular Reactivity and Cerebral Oxygenation During Hemodialysis. J Am Soc Nephrol 2022; 33:1602-1612. [PMID: 35777782 PMCID: PMC9342630 DOI: 10.1681/asn.2021101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/18/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Patients with kidney failure treated with hemodialysis (HD) may be at risk for cerebral hypoperfusion due to HD-induced BP decline in the setting of impaired cerebral autoregulation. Cerebrovascular reactivity (CVR), the cerebrovascular response to vasoactive stimuli, may be a useful indicator of cerebral autoregulation in the HD population and identify those at risk for cerebral hypoperfusion. We hypothesize that CVR combined with intradialytic BP changes will be associated with declines in cerebral oxygenation saturation (ScO2) during HD. METHODS Participants completed the MRI scans on a non-HD day and cerebral oximetry during HD. We measured CVR with resting-state fMRI (rs-fMRI) without a gas challenge and ScO2 saturation with near-infrared spectroscopy. Regression analysis was used to examine the relationship between intradialytic cerebral oxygen desaturation, intradialytic BP, and CVR in different gray matter regions. RESULTS Twenty-six patients on HD had complete data for analysis. Sixteen patients were men, 18 had diabetes, and 20 had hypertension. Mean±SD age was 65.3±7.2 years, and mean±SD duration on HD was 11.5±9.4 months. CVR in the anterior cingulate gyrus (ACG; P=0.03, r2 =0.19) and insular cortex (IC; P=0.03, r2 =0.19) regions negatively correlated with decline in intradialytic ScO2. Model prediction of intradialytic ScO2 improved when including intradialytic BP change and ultrafiltration rate to the ACG rsCVR (P<0.01, r2 =0.48) and IC rsCVR (P=0.02, r2 =0.35) models, respectively. CONCLUSIONS We found significant relationships between regional rsCVR measured in the brain and decline in intradialytic ScO2. Our results warrant further exploration of using CVR in determining a patient's risk of cerebral ischemic injury during HD.
Collapse
Affiliation(s)
- Wesley T Richerson
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dawn F Wolfgram
- Department of Medicine, Medical College of Wisconsin and Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
5
|
Spectroscopy detects skeletal muscle microvascular dysfunction during onset of sepsis in a rat fecal peritonitis model. Sci Rep 2022; 12:6339. [PMID: 35428849 PMCID: PMC9012880 DOI: 10.1038/s41598-022-10208-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/15/2022] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a dysregulated host inflammatory response to infection potentially leading to life-threatening organ dysfunction. The objectives of this study were to determine whether early microvascular dysfunction (MVD) in skeletal muscle can be detected as dynamic changes in microvascular hemoglobin (MVHb) levels using spectroscopy and whether MVD precedes organ histopathology in septic peritonitis. Skeletal muscle of male Sprague-Dawley rats was prepared for intravital microscopy. After intraperitoneal injection of fecal slurry or saline, microscopy and spectroscopy recordings were taken for 6 h. Capillary red blood cell (RBC) dynamics and SO2 were quantified from digitized microscopy frames and MVHb levels were derived from spectroscopy data. Capillary RBC dynamics were significantly decreased by 4 h after peritoneal infection and preceded macrohemodynamic changes. At the same time, low-frequency oscillations in MVHb levels exhibited a significant increase in Power in parts of the muscle and resembled oscillations in RBC dynamics and SO2. After completion of microscopy, tissues were collected. Histopathological alterations were not observed in livers, kidneys, brains, or muscles 6 h after induction of peritonitis. The findings of this study show that, in our rat model of sepsis, MVD occurs before detectable organ histopathology and includes ~ 30-s oscillations in MVHb. Our work highlights MVHb oscillations as one of the indicators of MVD onset and provides a foundation for the use of non-invasive spectroscopy to continuously monitor MVD in septic patients.
Collapse
|
6
|
Stanculescu D, Bergquist J. Perspective: Drawing on Findings From Critical Illness to Explain Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne) 2022; 9:818728. [PMID: 35345768 PMCID: PMC8957276 DOI: 10.3389/fmed.2022.818728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
We propose an initial explanation for how myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) could originate and perpetuate by drawing on findings from critical illness research. Specifically, we combine emerging findings regarding (a) hypoperfusion and endotheliopathy, and (b) intestinal injury in these illnesses with our previously published hypothesis about the role of (c) pituitary suppression, and (d) low thyroid hormone function associated with redox imbalance in ME/CFS. Moreover, we describe interlinkages between these pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation that may contribute to explain the chronic nature of these illnesses. This paper summarizes and expands on our previous publications about the relevance of findings from critical illness for ME/CFS. New knowledge on diagnostics, prognostics and treatment strategies could be gained through active collaboration between critical illness and ME/CFS researchers, which could lead to improved outcomes for both conditions.
Collapse
Affiliation(s)
| | - Jonas Bergquist
- Division of Analytical Chemistry and Neurochemistry, Department of Chemistry - Biomedical Center, Uppsala University, Uppsala, Sweden.,The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Laurikkala J, Aneman A, Peng A, Reinikainen M, Pham P, Jakkula P, Hästbacka J, Wilkman E, Loisa P, Toppila J, Birkelund T, Blennow K, Zetterberg H, Skrifvars MB. Association of deranged cerebrovascular reactivity with brain injury following cardiac arrest: a post-hoc analysis of the COMACARE trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:350. [PMID: 34583763 PMCID: PMC8477475 DOI: 10.1186/s13054-021-03764-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/09/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Impaired cerebrovascular reactivity (CVR) is one feature of post cardiac arrest encephalopathy. We studied the incidence and features of CVR by near infrared spectroscopy (NIRS) and associations with outcome and biomarkers of brain injury. METHODS A post-hoc analysis of 120 comatose OHCA patients continuously monitored with NIRS and randomised to low- or high-normal oxygen, carbon dioxide and mean arterial blood pressure (MAP) targets for 48 h. The tissue oximetry index (TOx) generated by the moving correlation coefficient between cerebral tissue oxygenation measured by NIRS and MAP was used as a dynamic index of CVR with TOx > 0 indicating impaired reactivity and TOx > 0.3 used to delineate the lower and upper MAP bounds for disrupted CVR. TOx was analysed in the 0-12, 12-24, 24-48 h time-periods and integrated over 0-48 h. The primary outcome was the association between TOx and six-month functional outcome dichotomised by the cerebral performance category (CPC1-2 good vs. 3-5 poor). Secondary outcomes included associations with MAP bounds for CVR and biomarkers of brain injury. RESULTS In 108 patients with sufficient data to calculate TOx, 76 patients (70%) had impaired CVR and among these, chronic hypertension was more common (58% vs. 31%, p = 0.002). Integrated TOx for 0-48 h was higher in patients with poor outcome than in patients with good outcome (0.89 95% CI [- 1.17 to 2.94] vs. - 2.71 95% CI [- 4.16 to - 1.26], p = 0.05). Patients with poor outcomes had a decreased upper MAP bound of CVR over time (p = 0.001), including the high-normal oxygen (p = 0.002), carbon dioxide (p = 0.012) and MAP (p = 0.001) groups. The MAP range of maintained CVR was narrower in all time intervals and intervention groups (p < 0.05). NfL concentrations were higher in patients with impaired CVR compared to those with intact CVR (43 IQR [15-650] vs 20 IQR [13-199] pg/ml, p = 0.042). CONCLUSION Impaired CVR over 48 h was more common in patients with chronic hypertension and associated with poor outcome. Decreased upper MAP bound and a narrower MAP range for maintained CVR were associated with poor outcome and more severe brain injury assessed with NfL. Trial registration ClinicalTrials.gov, NCT02698917 .
Collapse
Affiliation(s)
- Johanna Laurikkala
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Meilahden SairaalaHaartmaninkatu 4, 000290, Helsinki, Finland.
| | - Anders Aneman
- Intensive Care Unit, Liverpool Hospital, South Western Sydney Local Health District, Sydney, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Alexander Peng
- Intensive Care Unit, Liverpool Hospital, South Western Sydney Local Health District, Sydney, Australia
| | - Matti Reinikainen
- Department of Anaesthesiology and Intensive Care, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Paul Pham
- Dept of Anaesthesia, John Hunter Hospital, Newcastle, NSW, Australia
| | - Pekka Jakkula
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Meilahden SairaalaHaartmaninkatu 4, 000290, Helsinki, Finland
| | - Johanna Hästbacka
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Meilahden SairaalaHaartmaninkatu 4, 000290, Helsinki, Finland
| | - Erika Wilkman
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Meilahden SairaalaHaartmaninkatu 4, 000290, Helsinki, Finland
| | - Pekka Loisa
- Department of Intensive Care, Päijät-Häme Central Hospital, Lahti, Finland
| | - Jussi Toppila
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,DUK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Markus B Skrifvars
- Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|