1
|
Jayaraman A, Walachowski S, Bosmann M. The complement system: A key player in the host response to infections. Eur J Immunol 2024; 54:e2350814. [PMID: 39188171 PMCID: PMC11623386 DOI: 10.1002/eji.202350814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Infections are one of the most significant healthcare and economic burdens across the world as underscored by the recent coronavirus pandemic. Moreover, with the increasing incidence of antimicrobial resistance, there is an urgent need to better understand host-pathogen interactions to design effective treatment strategies. The complement system is a key arsenal of the host defense response to pathogens and bridges both innate and adaptive immunity. However, in the contest between pathogens and host defense mechanisms, the host is not always victorious. Pathogens have evolved several approaches, including co-opting the host complement regulators to evade complement-mediated killing. Furthermore, deficiencies in the complement proteins, both genetic and therapeutic, can lead to an inefficient complement-mediated pathogen eradication, rendering the host more susceptible to certain infections. On the other hand, overwhelming infection can provoke fulminant complement activation with uncontrolled inflammation and potentially fatal tissue and organ damage. This review presents an overview of critical aspects of the complement-pathogen interactions during infection and discusses perspectives on designing therapies to mitigate complement dysfunction and limit tissue injury.
Collapse
Affiliation(s)
- Archana Jayaraman
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sarah Walachowski
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Bosmann
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Hao Y, Liu R, Wang H, Rui T, Guo J. Research Progress on Mechanisms and Treatment of Sepsis-Induced Myocardial Dysfunction. Int J Gen Med 2024; 17:3387-3393. [PMID: 39130486 PMCID: PMC11313578 DOI: 10.2147/ijgm.s472846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Sepsis is a syndrome of organ dysfunction caused by a dysregulated immune response to infection, with high morbidity and mortality. At present, there have been many advances in the study of its pathogenesis, especially the cardiac dysfunction caused by sepsis, namely sepsis-induced myocardial dysfunction, SIMD, which has received widespread attention. The mechanisms of SIMD mainly include excessive release of inflammatory mediators, impaired mitochondrial function, autophagy, apoptosis and myocardial dysfunction. This article reviews the pathogenesis of SIMD and elaborates on the progress in its treatment, aiming to improve the prognosis of patients with SIMD and sepsis.
Collapse
Affiliation(s)
- Yujie Hao
- Division of Cardiology, Department of Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Runmin Liu
- Division of Cardiology, Department of Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Hao Wang
- Division of Cardiology, Department of Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Tao Rui
- Division of Cardiology, Department of Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Junfang Guo
- Division of Cardiology, Department of Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Shen B, Shen Q, Zeng Q, Zhang L, Li X. Silenced-C5ar1 improved multiple organ injury in sepsis rats via inhibiting neutrophil extracellular trap. J Mol Histol 2024; 55:69-81. [PMID: 38165570 PMCID: PMC10830609 DOI: 10.1007/s10735-023-10172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/21/2023] [Indexed: 01/04/2024]
Abstract
Sepsis has a systemic inflammatory response syndrome caused by infection. While neutrophils play contradictory roles in different stages of sepsis. Neutrophils have been proven to play an antibacterial role by producing neutrophil extracellular traps (NETs). Although the NET is beneficial to bacteria resistance, abnormal NET increases tissue damage. The complement C5a receptor 1 (C5ar1) is a gene related to strong inflammatory reactions and is found to be associated with inflammatory factors. This study found that there were 45 down-regulated genes and 704 up-regulated genes in sepsis rats by transcriptome sequencing. And those genes were significantly related to inflammation and immunity by GO and KEGG enrichment analysis involving the chemokine signaling pathway, the Toll-like receptor (TLR) signaling pathway, and the Fc gamma R-mediated phagocytosis. Additionally, the C5ar1 gene was significantly upregulated with interesting potential in sepsis and used for further study. This study used cecum ligation and puncture (CLP) rats that were respectively injected intravenously with PBS or the lentivirus vector to explore the effect of C5ar1 on CLP rats. It demonstrated that silenced- C5ar1 inhibited the ALT, AST, BUN, and CREA levels, improved the lung and spleen injury, and reduced the TNF-α, IL-6, IL-1β, IL-10, cf-DNA, and cfDNA/MPO levels. Additionally, silenced C5ar1 inhibited the TLR2, TLR4, and peptidylarginine deiminase 4 expression levels, which suggested the improvement of silenced C5ar1 on sepsis via inhibiting NETs and the TLR signaling pathway. This study provides a basis and new direction for the study of treatment on sepsis.
Collapse
Affiliation(s)
- Bin Shen
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, 313000, China
| | - Qikai Shen
- Department of Intensive Care Units, Huzhou Central Hospital, Huzhou, 313000, China
| | - Qingqiu Zeng
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, 313000, China
| | - Lingyan Zhang
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, 313000, China
| | - Xiaofeng Li
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, 313000, China.
| |
Collapse
|
4
|
Costa SO, Chaves WF, Lopes PKF, Silva IM, Burguer B, Ignácio-Souza LM, Torsoni AS, Milanski M, Rodrigues HG, Desai M, Ross MG, Torsoni MA. Maternal consumption of a high-fat diet modulates the inflammatory response in their offspring, mediated by the M1 muscarinic receptor. Front Immunol 2023; 14:1273556. [PMID: 38193079 PMCID: PMC10773672 DOI: 10.3389/fimmu.2023.1273556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction High-fat diet (HFD) consumption is associated with various metabolic disorders and diseases. Both pre-pregnancy and maternal obesity can have long-term consequences on offspring health. Furthermore, consuming an HFD in adulthood significantly increases the risk of obesity and metabolic disorders. However, an intriguing phenomenon known as the obesity paradox suggests that obesity may confer a protective effect on mortality outcomes in sepsis. In sepsis, activation of the cholinergic anti-inflammatory pathway (CAP) can help mitigate systemic inflammation. We employed a metabolic programming model to explore the relationship between maternal HFD consumption and offspring response to sepsis. Methods We fed female mice either a standard diet (SC) or an HFD during the pre-pregnancy, pregnancy, and lactation periods. Subsequently, we evaluated 28-day-old male offspring. Results Notably, we discovered that offspring from HFD-fed dams (HFD-O) exhibited a higher survival rate compared with offspring from SC-fed dams (SC-O). Importantly, inhibition of the m1 muscarinic acetylcholine receptor (m1mAChR), involved in the CAP, in the hypothalamus abolished this protection. The expression of m1mAChR in the hypothalamus was higher in HFD-O at different ages, peaking on day 28. Treatment with an m1mAChR agonist could modulate the inflammatory response in peripheral tissues. Specifically, CAP activation was greater in the liver of HFD-O following agonist treatment. Interestingly, lipopolysaccharide (LPS) challenge failed to induce a more inflammatory state in HFD-O, in contrast to SC-O, and agonist treatment had no additional effect. Analysis of spleen immune cells revealed a distinct phenotype in HFD-O, characterized by elevated levels of CD4+ lymphocytes rather than CD8+ lymphocytes. Moreover, basal Il17 messenger RNA (mRNA) levels were lower while Il22 mRNA levels were higher in HFD-O, and we observed the same pattern after LPS challenge. Discussion Further examination of myeloid cells isolated from bone marrow and allowed to differentiate showed that HFD-O macrophages displayed an anti-inflammatory phenotype. Additionally, treatment with the m1mAChR agonist contributed to reducing inflammatory marker levels in both groups. In summary, our findings demonstrate that HFD-O are protected against LPS-induced sepsis, and this protection is mediated by the central m1mAChR. Moreover, the inflammatory response in the liver, spleen, and bone marrow-differentiated macrophages is diminished. However, more extensive analysis is necessary to elucidate the specific mechanisms by which m1mAChR modulates the immune response during sepsis.
Collapse
Affiliation(s)
- Suleyma Oliveira Costa
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Wenicios Ferreira Chaves
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Iracema M. Silva
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Beatriz Burguer
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Leticia M. Ignácio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mina Desai
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA, United States
| | - Michael Glenn Ross
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA, United States
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
5
|
Osman M, Cohen Tervaert JW, Pagnoux C. Avacopan for the treatment of ANCA-associated vasculitis: an update. Expert Rev Clin Immunol 2023; 19:461-471. [PMID: 36545762 DOI: 10.1080/1744666x.2023.2162041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Glucocorticoids (GC) have been part of the standard treatment of anti-neutrophil cytoplasm autoantibodies (ANCA)-associated vasculitides (AAV) for more than 60 years. Various therapeutic advances have occurred over the past 2 decades and led to a significant reduction of GC exposure, but most patients still have to suffer from complications of GC, including infections, metabolic abnormalities, and cardiovascular morbidity. In 2007, activation of the complement pathway was demonstrated to play a role in the pathogenesis of AAV. Avacopan, an oral competitive inhibitor of the C5a receptor (C5aR1, CD88), was then developed, with an additional aim to decrease the use of GC. AREAS COVERED In this article, we briefly summarize the rationale for targeting the complement pathway in AAV, and review relevant findings from pre-clinical, phase I, II, and III studies, subsequent and more recent case reports and series on the efficacy and safety of avacopan. EXPERT OPINION Based on the results of these studies, avacopan was approved in most countries since late 2021, as an adjunctive induction treatment for patients with AAV. Several newer questions now are pending answers, including as to how avacopan should be used in real-world practice, beyond how it was given in the original clinical trials.
Collapse
Affiliation(s)
- Mohammed Osman
- Division of Rheumatology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christian Pagnoux
- Vasculitis clinic, Division of Rheumatology, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
de Vries F, Huckriede J, Wichapong K, Reutelingsperger C, Nicolaes GAF. The role of extracellular histones in COVID-19. J Intern Med 2023; 293:275-292. [PMID: 36382685 PMCID: PMC10108027 DOI: 10.1111/joim.13585] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had spread from China and, within 2 months, became a global pandemic. The infection from this disease can cause a diversity of symptoms ranging from asymptomatic to severe acute respiratory distress syndrome with an increased risk of vascular hyperpermeability, pulmonary inflammation, extensive lung damage, and thrombosis. One of the host defense systems against coronavirus disease 2019 (COVID-19) is the formation of neutrophil extracellular traps (NETs). Numerous studies on this disease have revealed the presence of elevated levels of NET components, such as cell-free DNA, extracellular histones, neutrophil elastase, and myeloperoxidase, in plasma, serum, and tracheal aspirates of severe COVID-19 patients. Extracellular histones, a major component of NETs, are clinically very relevant as they represent promising biomarkers and drug targets, given that several studies have identified histones as key mediators in the onset and progression of various diseases, including COVID-19. However, the role of extracellular histones in COVID-19 per se remains relatively underexplored. Histones are nuclear proteins that can be released into the extracellular space via apoptosis, necrosis, or NET formation and are then regarded as cytotoxic damage-associated molecular patterns that have the potential to damage tissues and impair organ function. This review will highlight the mechanisms of extracellular histone-mediated cytotoxicity and focus on the role that histones play in COVID-19. Thereby, this paper facilitates a bench-to-bedside view of extracellular histone-mediated cytotoxicity, its role in COVID-19, and histones as potential drug targets and biomarkers for future theranostics in the clinical treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Li Y, Chen Y, Yang T, Chang K, Deng N, Zhao W, Su B. Targeting circulating high mobility group box-1 and histones by extracorporeal blood purification as an immunomodulation strategy against critical illnesses. Crit Care 2023; 27:77. [PMID: 36855150 PMCID: PMC9972334 DOI: 10.1186/s13054-023-04382-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Both high mobility group box-1 (HMGB1) and histones are major damage-associated molecular patterns (DAPMs) that mediate lethal systemic inflammation, activation of the complement and coagulation system, endothelial injury and multiple organ dysfunction syndrome in critical illnesses. Although accumulating evidence collectively shows that targeting HMGB1 or histones by their specific antibodies or inhibitors could significantly mitigate aberrant immune responses in multiple critically ill animal models, routine clinical use of such agents is still not recommended by any guideline. In contrast, extracorporeal blood purification, which has been widely used to replace dysfunctional organs and remove exogenous or endogenous toxins in intensive care units, may also exert an immunomodulatory effect by eliminating inflammatory mediators such as cytokines, endotoxin, HMGB1 and histones in patients with critical illnesses. In this review, we summarize the multiple immunopathological roles of HMGB1 and histones in mediating inflammation, immune thrombosis and organ dysfunction and discuss the rationale for the removal of these DAMPs using various hemofilters. The latest preclinical and clinical evidence for the use of extracorporeal blood purification to improve the clinical outcome of critically ill patients by targeting circulating HMGB1 and histones is also gathered.
Collapse
Affiliation(s)
- Yupei Li
- grid.13291.380000 0001 0807 1581Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Chen
- grid.13291.380000 0001 0807 1581State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Tinghang Yang
- grid.13291.380000 0001 0807 1581Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixi Chang
- grid.13291.380000 0001 0807 1581Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Ningyue Deng
- grid.13291.380000 0001 0807 1581Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Weifeng Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China. .,Med-X Center for Materials, Sichuan University, Chengdu, China.
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China. .,Med-X Center for Materials, Sichuan University, Chengdu, China. .,Med+ Biomaterial Institute of West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Lu Y, Shi Y, Wu Q, Sun X, Zhang WZ, Xu XL, Chen W. An Overview of Drug Delivery Nanosystems for Sepsis-Related Liver Injury Treatment. Int J Nanomedicine 2023; 18:765-779. [PMID: 36820059 PMCID: PMC9938667 DOI: 10.2147/ijn.s394802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Sepsis, which is a systemic inflammatory response syndrome caused by infection, has high morbidity and mortality. Sepsis-related liver injury is one of the manifestations of sepsis-induced multiple organ syndrome. To date, an increasing number of studies have shown that the hepatic inflammatory response, oxidative stress, microcirculation coagulation dysfunction, and bacterial translocation play extremely vital roles in the occurrence and development of sepsis-related liver injury. In the clinic, sepsis-related liver injury is mainly treated by routine empirical methods on the basis of the primary disease. However, these therapies have some shortcomings, such as serious side effects, short duration of drug effects and lack of specificity. The emergence of drug delivery nanosystems can significantly improve drug bioavailability and reduce toxic side effects. In this paper, we reviewed drug delivery nanosystems designed for the treatment of sepsis-related liver injury according to their mechanisms (hepatic inflammation response, oxidative stress, coagulation dysfunction in the microcirculation, and bacterial translocation). Although much promising progress has been achieved, translation into clinical practice is still difficult. To this end, we also discussed the key issues currently facing this field, including immune system rejection and single treatment modalities. Finally, with the rigorous optimization of nanotechnology and the deepening of research, drug delivery nanosystems have great potential for the treatment of sepsis-related liver injury.
Collapse
Affiliation(s)
- Yi Lu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yi Shi
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qian Wu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xin Sun
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Wei-Zhen Zhang
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China,Xiao-Ling Xu, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, People’s Republic of China, Email
| | - Wei Chen
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Correspondence: Wei Chen, ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, People’s Republic of China, Tel +86-21-64385700-3522, Email
| |
Collapse
|
9
|
Zhang QY, Guo J, Xu L, Wei Y, Zhou ST, Lu QY, Guo L, Sun QY. Salvianolic acid A alleviates lipopolysaccharide-induced disseminated intravascular coagulation by inhibiting complement activation. BMC Complement Med Ther 2022; 22:245. [PMID: 36127691 PMCID: PMC9487091 DOI: 10.1186/s12906-022-03720-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Disseminated intravascular coagulation (DIC) is a syndrome characterized by coagulopathy, microthrombus, and multiple organ failure. The complement system in DIC is overactivated, and the functions of complement and coagulation pathways are closely related. Our previous screening revealed that salvianolic acid A (SAA) has anti-complement activity. The hyper-activated complement system was involved in the lipopolysaccharide (LPS) induced DIC in rats. The effects of SAA anti-complement action on LPS-induced DIC in rats were investigated. Methods The complement activity of the classical pathway and alternative pathway was detected through an in vitro hemolysis assay. The binding sites of SAA and complement C3b were predicted by molecular docking. LPS-induced disseminated coagulation experiments were performed on male Wistar rats to assess coagulation function, complement activity, inflammation, biochemistry, blood routine, fibrinolysis, and survival. Results SAA had an anti-complement activity in vivo and in vitro and inhibited the complement activation in the classical and alternative pathway of complement. The infusion of LPS into the rats impaired the coagulation function, increased the plasma inflammatory cytokine level, complemented activation, reduced the clotting factor levels, fibrinogen, and platelets, damaged renal, liver, and lung functions, and led to a high mortality rate (85%). SAA treatment of rats inhibited complement activation and attenuated the significant increase in D-dimer, interleukin-6, alanine aminotransferase, and creatinine. It ameliorated the decrease in plasma levels of fibrinogen and platelets and reversed the decline in activity of protein C and antithrombin III. The treatment reduced kidney, liver, and lung damage, and significantly improved the survival rate of rats (46.2 and 78.6% for the low- and high-dose groups, respectively). Conclusion SAA reduced LPS-induced DIC by inhibiting complement activation. It has considerable potential in DIC treatment.
Collapse
|
10
|
Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1328729. [PMID: 36062193 PMCID: PMC9433216 DOI: 10.1155/2022/1328729] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Dysregulated host response to infection, which cause life-threatening organ dysfunction, was defined as sepsis. Sepsis can cause acute and long-term brain dysfunction, namely, sepsis-associated encephalopathy (SAE) and cognitive impairment. SAE refers to changes in consciousness without direct evidence of central nervous system infection. It is highly prevalent and may cause poor outcomes in sepsis patients. Cognitive impairment seriously affects the life quality of sepsis patients and increases the medical burden. The pathogenesis of sepsis-induced brain dysfunction is mainly characterized by the interaction of systemic inflammation, blood-brain barrier (BBB) dysfunction, neuroinflammation, microcirculation dysfunction, and brain dysfunction. Currently, the diagnosis of sepsis-induced brain dysfunction is based on clinical manifestation of altered consciousness along with neuropathological examination, and the treatment is mainly involves controlling sepsis. Although treatments for sepsis-induced brain dysfunction have been tested in animals, clinical treat sepsis-induced brain dysfunction is still difficult. Therefore, we review the underlying mechanisms of sepsis-induced brain injury, which mainly focus on the influence of systemic inflammation on BBB, neuroinflammation, brain microcirculation, and the brain function, which want to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating brain dysfunction.
Collapse
|
11
|
Yang H, Luo YY, Zhang LT, He KR, Lin XJ. Extracellular histones induce inflammation and senescence of vascular smooth muscle cells by activating the AMPK/FOXO4 signaling pathway. Inflamm Res 2022; 71:1055-1066. [PMID: 35913584 DOI: 10.1007/s00011-022-01618-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/25/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Sepsis is an abnormal immune-inflammatory response that is mainly caused by infection. It can lead to life-threatening organ dysfunction and death. Severely damaged tissue cells will release intracellular histones into the circulation as damage-related molecular patterns (DAMPs) to accelerate the systemic immune response. Although various histone-related cytotoxicity mechanisms have been explored, those that affect extracellular histones involved in vascular smooth muscle cell (VSMC) dysfunction are yet to be determined. METHODS Mouse aortic vascular smooth muscle cells (VSMCs) were stimulated with different concentrations of histones, and cell viability was detected by CCK-8 assay. Cellular senescence was assessed by SA β-gal staining. C57BL/6 mice were treated with histones with or without BML-275 treatment. RT-qPCR was performed to determine the expression of inflammatory cytokines. Western blotting was used to analyze the expression of NLRP3, ASC and caspase-1 inflammasome proteins. The interaction of NLRP3 and ASC was detected by CoIP and immunofluorescence staining. RESULTS In this study, we found that extracellular histones induced senescence and inflammatory response in a dose-dependent manner in cultured VSMCs. Histone treatment significantly promoted apoptosis-associated speck-like protein containing CARD (ASC) as well as NACHT, LRR and PYD domains-containing protein 3 (NLRP3) interaction of inflammasomes in VSMCs. Forkhead box protein O4 (FOXO4), which is a downstream effector molecule of extracellular histones, was found to be involved in histone-regulated VSMC inflammatory response and senescence. Furthermore, the 5'-AMP-activated protein kinase (AMPK) signaling pathway was confirmed to mediate extracellular histone-induced FOXO4 expression, and blocking this signaling pathway with an inhibitor can suppress vascular inflammation induced by extracellular histones in vivo and in vitro. CONCLUSION Extracellular histones induce inflammation and senescence in VSMCs, and blocking the AMPK/FOXO4 pathway is a potential target for the treatment of histonemediated organ injury.
Collapse
Affiliation(s)
- Hang Yang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China.
| | - Yong-Yan Luo
- Department of Emergency and Critical Care Medicine, Zhuhai Hospital of Guangdong Provincial People's Hospital, 2 Hongyang Road, Sanzao Town, Jinwan District, Zhuhai, China
| | - Lue-Tao Zhang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Kai-Ran He
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Xiao-Jun Lin
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
12
|
Li ZF, Wang YC, Feng QR, Zhang YS, Zhuang YF, Xie ZX, Bai XJ. Inhibition of the C3a receptor attenuates sepsis-induced acute lung injury by suppressing pyroptosis of the pulmonary vascular endothelial cells. Free Radic Biol Med 2022; 184:208-217. [PMID: 35367342 DOI: 10.1016/j.freeradbiomed.2022.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) is the leading cause of bacterial sepsis-related death because of disrupted pulmonary endothelial barrier, resulting in protein-rich pulmonary oedema, an influx of pro-inflammatory cells and refractory hypoxaemia. Several studies have reported that C3a levels are significantly higher in organs with sepsis and their peripheral organs and are closely associated with organ dysfunction and poor prognosis in sepsis. However, the role of the C3a complement in sepsis ALI remains unclear. Therefore, this study aimed to investigate the important role and mechanism of C3a in preventing the occurrence of pyroptosis (a pro-inflammatory form of cell death) to protect the lung endothelial cells (ECs) in sepsis-induced ALI. A septic mouse model was established with cecal ligation and puncture (CLP), which demonstrated that C3a mediated EC pyroptosis through its C3aR receptor. Furthermore, inhibition of the C3a-C3aR axis could block both NLRP3/caspase-1 and caspase-11 pathways, thus preventing pulmonary EC from pyroptosis. These results indicate that inhibition of the C3A-C3AR complement axis can inhibit pulmonary vascular EC pyroptosis, a potential target for the treatment of ALI.
Collapse
Affiliation(s)
- Zhan-Fei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Yu-Chang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Quan-Rui Feng
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, People's Republic of China
| | - Yong-Sheng Zhang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, People's Republic of China
| | - Yang-Fan Zhuang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, People's Republic of China
| | - Zhen-Xing Xie
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, People's Republic of China
| | - Xiang-Jun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, People's Republic of China
| |
Collapse
|
13
|
Yu N, Liu X, Shi D, Bai L, Niu T, Liu Y. CD63 and C3AR1: The Potential Molecular Targets in the Progression of Septic Shock. Int J Gen Med 2022; 15:711-728. [PMID: 35082520 PMCID: PMC8784317 DOI: 10.2147/ijgm.s338486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background The molecular mechanism of septic shock is unknown. We studied the pathogenesis of septic shock and provide a novel strategy for treating and improving the prognosis of septic shock. Methods Gluten-Sensitive Enteropathy (GSE) 131761, GSE119217, GSE26378 datasets were downloaded from the Gene Expression Omnibus (GEO) database. The three datasets included 204 septic shock samples and 48 normal samples. The R packages “affy” and “limma” were employed to identify the differently expressed genes (DEGs) between septic shock and normal samples. Weighted gene co-expression network analysis (WGCNA) was performed to search for modules that play an important role in septic shock. Functional annotation of DEGs and construction and analysis of hub genes were used to explore the pathomechanism of septic shock. The receiver operating characteristic (ROC) curves were obtained using MedCalc software. The drug molecules that could regulate hub genes associated with septic shock were searched for in the CMap database. An animal model of septic shock was constructed to analyze the role of these hub genes. Results The merged series contained 321 up-regulated and 255 down-regulated genes. WGCNA showed the brown module had the highest correlation with the status of septic shock. GO and KEGG enrichment analysis results of the brown module genes showed they were mainly enriched in “leukocyte differentiation”, “Ras-proximate-1 (Rap1) signaling pathway”, and “cytokine–cytokine receptor interaction”. Through construction and analysis of a protein–protein interaction (PPI) network, cluster of differentiation 63 (CD63) and complement component 3a receptor 1 (C3AR1) were identified as hub genes of septic shock. The area under curve (AUC) of C3AR1 for the septic shock is 0.772 (P<0.001), and the AUC of CD63 for the septic shock is 0.871 (P<0.001). Small molecule drugs were filtered by the number of instances (n>3) and P-values <0.05, including “monensin”, “verteporfin”, “ikarugamycin”, “tetrahydroalstonine”, “cefamandole”, “etoposide”. In the animal model, the relative expression levels of interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α), and lactic acid were significantly higher in the septic shock group compared with the control group. Results of Real Time Quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) analysis for CD63 and C3AR1 showed that their relative expression levels were significantly lower in the septic shock group compared with the control group (P<0.05). Conclusion CD63 and C3AR1 are significant hub genes of septic shock and may represent potential molecular targets for future studies of septic shock.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Xuefang Liu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Dandan Shi
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Long Bai
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Tianfu Niu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Ya Liu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
- Correspondence: Ya Liu, Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China, Email ;
| |
Collapse
|
14
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:jcm10245815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Correspondence: ; Tel.: +381-11-2665-125
| |
Collapse
|
15
|
Chen K, Lin Y, Liu Y, Liao S, Yang R, Huang J, Xu M, He J. Investigation of Association of Complement 5 Genetic Polymorphisms with Sepsis and Sepsis-Induced Inflammatory Responses. J Inflamm Res 2021; 14:6461-6475. [PMID: 34880647 PMCID: PMC8648101 DOI: 10.2147/jir.s340446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Complement 5 (C5) and C5a production play a pivotal role in the pathophysiology of sepsis. Strong evidence demonstrates an association of C5 gene polymorphisms with various inflammatory diseases. However, no current studies have explored the clinical relevance of C5 polymorphisms in sepsis. Methods Two C5 gene polymorphisms, rs17611 and rs2269067, were identified by genotyping in 636 sepsis patients and 753 controls in a Han Chinese population. C5 gene expression was detected via quantitative real-time PCR. C5a and proinflammatory cytokine production was measured by enzyme-linked immunosorbent assay. An Annexin V apoptosis assay was performed to assess cell apoptosis. Results Our results showed significantly lower frequencies of rs2269067 GC/CC genotypes or C allele in sepsis patients than healthy controls. The frequencies of rs17611 CC/CT genotypes or C allele were significantly overrepresented in both the septic shock and non-survivor subgroups. Patients with this sepsis-associated high-risk rs17611 C allele exhibited a significant increase in C5a, TNF-α and IL-6 production. However, no significant difference in C5a and downstream proinflammatory cytokine production was observed among patients with different rs2269067 genotypes. In addition, in vitro experiments showed an effect of recombinant C5a on enhancing LPS-stimulated IL-1β, IL-6 and TNF-α production and cell apoptosis in THP-1 monocytes. Conclusion The rs2269067 polymorphism conferred protection against sepsis susceptibility. The rs17611 polymorphism was associated with increased C5a production, which ultimately potentiated the secretion of downstream proinflammatory cytokines and conferred susceptibility to sepsis progression and poor prognosis.
Collapse
Affiliation(s)
- Kaidian Chen
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Yao Lin
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Yuchun Liu
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Shuanglin Liao
- The Intensive Care Unit, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Ruoxuan Yang
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Jiefeng Huang
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Mingwei Xu
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Junbing He
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| |
Collapse
|
16
|
Osman M, Cohen Tervaert JW, Pagnoux C. Avacopan for the treatment of ANCA-associated vasculitis. Expert Rev Clin Immunol 2021; 17:717-726. [PMID: 34006155 DOI: 10.1080/1744666x.2021.1932466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Anti-neutrophil cytoplasm autoantibodies (ANCA)-associated vasculitides (AAVs) are a group of rare heterogeneous diseases characterized by blood vessel inflammation resulting in organ destruction and death. Although various treatment strategies have resulted in marked improvement in vasculitis-specific outcomes, many patients with AAV continue to suffer from complications related to the prolonged use of glucocorticoids (GC) such as infections, metabolic abnormalities, and increased cardiovascular morbidity. Recently, activation of the alternative complement pathway has been implicated in the augmentation of the damage caused by AAV via the complement C5a receptor (C5aR1, CD88). Specifically targeting this pathway may lead to improved outcomes in patients with AAV.Areas covered: In this article, we have summarized the rationale for targeting the complement pathway in AAV. The relevant pre-clinical, phase I, II and III findings with emphasis on the efficacy, and safety of avacopan, a new oral competitive inhibitor that interferes with the binding of C5a to C5aR1 (CD88), are reviewed.Expert opinion: These results are encouraging, may led to major changes in the treatment approach for AAV, and give rise to future studies utilizing complement inhibitors in AAV patients, and potentially in other immune mediated diseases.
Collapse
Affiliation(s)
- Mohammed Osman
- Division of Rheumatology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christian Pagnoux
- Vasculitis Clinic, Division of Rheumatology, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Li Y, Wan D, Luo X, Song T, Wang Y, Yu Q, Jiang L, Liao R, Zhao W, Su B. Circulating Histones in Sepsis: Potential Outcome Predictors and Therapeutic Targets. Front Immunol 2021; 12:650184. [PMID: 33868288 PMCID: PMC8044749 DOI: 10.3389/fimmu.2021.650184] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection and is associated with high morbidity and mortality. Circulating histones (CHs), a group of damage-associated molecular pattern molecules mainly derived from neutrophil extracellular traps, play a crucial role in sepsis by mediating inflammation response, organ injury and death through Toll-like receptors or inflammasome pathways. Herein, we first elucidate the molecular mechanisms of histone-induced inflammation amplification, endothelium injury and cascade coagulation activation, and discuss the close correlation between elevated level of CHs and disease severity as well as mortality in patients with sepsis. Furthermore, current state-of-the-art on anti-histone therapy with antibodies, histone-binding proteins (namely recombinant thrombomodulin and activated protein C), and heparin is summarized to propose promising approaches for sepsis treatment.
Collapse
Affiliation(s)
- Yupei Li
- Department of Nephrology of West China Hospital, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China.,Department of Emergency Medicine of West China Hospital, Disaster Medical Center, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Dingyuan Wan
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xinyao Luo
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yiran Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Qiao Yu
- Department of Nephrology of West China Hospital, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China.,Department of Emergency Medicine of West China Hospital, Disaster Medical Center, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Luojia Jiang
- Department of Nephrology of West China Hospital, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of Nephrology of West China Hospital, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Baihai Su
- Department of Nephrology of West China Hospital, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China.,Department of Emergency Medicine of West China Hospital, Disaster Medical Center, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Li H, Chen J, Hu Y, Cai X, Zhang P. Elevated Serum C1q Levels in Children With Sepsis. Front Pediatr 2021; 9:619899. [PMID: 33981650 PMCID: PMC8109246 DOI: 10.3389/fped.2021.619899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
Objective: To analyze the serum complement C1q levels in children with sepsis, and explore the suggestive effect of serum C1q levels on the condition of children with sepsis. Methods: The clinical and laboratory data of children with sepsis (n = 95) and healthy children (n = 71) in Renmin Hospital of Wuhan University from January 2019 to October 2019 were collected, and each index of the two groups was compared. Then we divided children with sepsis into three subgroups based on the Pediatric Critical Illness Score (PCIS): non-critical group, critical group, and extremely critical group. The serum C1q and PCT levels of the three subgroups were analyzed, and the correlation analysis was carried out between the levels of serum C1q and PCT levels as well as PCIS among children with sepsis. Finally, we analyzed the serum C1q levels of septic children infected by different pathogens. Results: The serum C1q levels of children with sepsis were significantly higher than those of healthy children (median 198.4 vs. 186.2 mg/L, P < 0.001). In the analysis of subgroups, the serum C1q levels of non-critical group, critical group, and extremely critical group septic children were 182.80 (166.75, 195.85) mg/L, 219.90 (209.10, 246.40) mg/L and 249.95 (239.10, 272.25) mg/L, respectively, which were correlated with the severity of the disease. At the same time, we also found that serum C1q in children with sepsis was positively correlated with PCT levels (r = 0.5982, P < 0.001), and negatively correlated with PCIS score (r = -0.6607, P < 0.001). The serum C1q levels of septic children with bacterial infections, mycoplasma infections, viral infections, and co-infection were higher than those of the control group (P < 0.05). Conclusion: The serum levels of C1q in children with sepsis were increased and related to the severity of sepsis, suggesting that C1q may be involved in the occurrence and development of sepsis, which had reference value for the preliminary diagnosis and severity classification of sepsis.
Collapse
Affiliation(s)
- Huan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juanjuan Chen
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanhui Hu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pingan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|