1
|
Callery EL, Morais CLM, Taylor JV, Challen K, Rowbottom AW. Investigation of Long-Term CD4+ T Cell Receptor Repertoire Changes Following SARS-CoV-2 Infection in Patients with Different Severities of Disease. Diagnostics (Basel) 2024; 14:2330. [PMID: 39451653 PMCID: PMC11507081 DOI: 10.3390/diagnostics14202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The difference in the immune response to severe acute respiratory syndrome coro-navirus 2 (SARS-CoV-2) in patients with mild versus severe disease remains poorly understood. Recent scientific advances have recognised the vital role of both B cells and T cells; however, many questions remain unanswered, particularly for T cell responses. T cells are essential for helping the generation of SARS-CoV-2 antibody responses but have also been recognised in their own right as a major factor influencing COVID-19 disease outcomes. The examination of T cell receptor (TCR) family differences over a 12-month period in patients with varying COVID-19 disease severity is crucial for understanding T cell responses to SARS-CoV-2. METHODS We applied a machine learning approach to analyse TCR vb family responses in COVID-19 patients (n = 151) across multiple timepoints and disease severities alongside SARS-CoV-2 infection-naïve (healthy control) individ-uals (n = 62). RESULTS Blood samples from hospital in-patients with moderate, severe, or critical disease could be classified with an accuracy of 94%. Furthermore, we identified significant variances in TCR vb family specificities between disease and control subgroups. CONCLUSIONS Our findings suggest advantageous and disadvantageous TCR repertoire patterns in relation to disease severity. Following validation in larger cohorts, our methodology may be useful in detecting protective immunity and the assessment of long-term outcomes, particularly as we begin to unravel the immunological mechanisms leading to post-COVID complications.
Collapse
Affiliation(s)
- Emma L. Callery
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Camilo L. M. Morais
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Jemma V. Taylor
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Kirsty Challen
- Department of Emergency Medicine, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Anthony W. Rowbottom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
2
|
Sheetikov SA, Khmelevskaya AA, Zornikova KV, Zvyagin IV, Shomuradova AS, Serdyuk YV, Shakirova NT, Peshkova IO, Titov A, Romaniuk DS, Shagina IA, Chudakov DM, Kiryukhin DO, Shcherbakova OV, Khamaganova EG, Dzutseva V, Afanasiev A, Bogolyubova AV, Efimov GA. Clonal structure and the specificity of vaccine-induced T cell response to SARS-CoV-2 Spike protein. Front Immunol 2024; 15:1369436. [PMID: 38629062 PMCID: PMC11018901 DOI: 10.3389/fimmu.2024.1369436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Adenovirus vaccines, particularly the COVID-19 Ad5-nCoV adenovirus vaccine, have emerged as promising tools in the fight against infectious diseases. In this study, we investigated the structure of the T cell response to the Spike protein of the SARS-CoV-2 virus used in the COVID-19 Ad5-nCoV adenoviral vaccine in a phase 3 clinical trial (NCT04540419). In 69 participants, we collected peripheral blood samples at four time points after vaccination or placebo injection. Sequencing of T cell receptor repertoires from Spike-stimulated T cell cultures at day 14 from 17 vaccinated revealed a more diverse CD4+ T cell repertoire compared to CD8+. Nevertheless, CD8+ clonotypes accounted for more than half of the Spike-specific repertoire. Our longitudinal analysis showed a peak T cell response at day 14, followed by a decline until month 6. Remarkably, multiple T cell clonotypes persisted for at least 6 months after vaccination, as demonstrated by ex vivo stimulation. Examination of CDR3 regions revealed homologous sequences in both CD4+ and CD8+ clonotypes, with major CD8+ clonotypes sharing high similarity with annotated sequences specific for the NYNYLYRLF peptide, suggesting potential immunodominance. In conclusion, our study demonstrates the immunogenicity of the Ad5-nCoV adenoviral vaccine and highlights its ability to induce robust and durable T cell responses. These findings provide valuable insight into the efficacy of the vaccine against COVID-19 and provide critical information for ongoing efforts to control infectious diseases.
Collapse
Affiliation(s)
- Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra A. Khmelevskaya
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan V. Zvyagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alina S. Shomuradova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana V. Serdyuk
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Naina T. Shakirova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Iuliia O. Peshkova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Aleksei Titov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Dmitrii S. Romaniuk
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Irina A. Shagina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M. Chudakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Dmitry O. Kiryukhin
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Olga V. Shcherbakova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Ekaterina G. Khamaganova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Vitalina Dzutseva
- Novosibirsk State University, Medical School, Novosibirsk, Russia
- NPO Petrovax Pharm LLC, Moscow, Russia
| | | | | | - Grigory A. Efimov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
3
|
Malani A, Aiyar J, Sant A, Kamran N, Mohanan M, Taneja S, Woda B, Zhao W, Acharya A. Comparing population-level humoral and cellular immunity to SARS-Cov-2 in Bangalore, India. Sci Rep 2024; 14:5758. [PMID: 38459035 PMCID: PMC10923858 DOI: 10.1038/s41598-024-54922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
Two types of immunity, humoral and cellular, offer protection against COVID. Humoral protection, contributed by circulating neutralizing antibodies, can provide immediate protection but decays more quickly than cellular immunity and can lose effectiveness in the face of mutation and drift in the SARS-CoV-2 spike protein. Therefore, population-level seroprevalence surveys used to estimate population-level immunity may underestimate the degree to which a population is protected against COVID. In early 2021, before India began its vaccination campaign, we tested for humoral and cellular immunity to SARS-Cov-2 in representative samples of slum and non-slum populations in Bangalore, India. We found that 29.7% of samples (unweighted) had IgG antibodies to the spike protein and 15.5% had neutralizing antibodies, but at up to 46% showed evidence of cellular immunity. We also find that prevalence of cellular immunity is significantly higher in slums than in non-slums. These findings suggest (1) that a significantly larger proportion of the population in Bangalore, India, had cellular immunity to SARS-CoV-2 than had humoral immunity, as measured by serological surveys, and (2) that low socio-economic status communities display higher frequency of cellular immunity, likely because of greater exposure to infection due to population density.
Collapse
Affiliation(s)
| | | | - Andrea Sant
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Manoj Mohanan
- Sanford School of Public Policy, Duke University, Durham, NC, USA
| | - Saloni Taneja
- University of Southern California, Los Angeles, CA, USA
| | - Bartek Woda
- University of Chicago, Chicago, IL, USA
- Amazon, Chicago, IL, USA
| | | | | |
Collapse
|
4
|
White CL, Glover MA, Gandhapudi SK, Richards KA, Sant AJ. Flublok Quadrivalent Vaccine Adjuvanted with R-DOTAP Elicits a Robust and Multifunctional CD4 T Cell Response That Is of Greater Magnitude and Functional Diversity Than Conventional Adjuvant Systems. Vaccines (Basel) 2024; 12:281. [PMID: 38543915 PMCID: PMC10975948 DOI: 10.3390/vaccines12030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
It is clear that new approaches are needed to promote broadly protective immunity to viral pathogens, particularly those that are prone to mutation and escape from antibody-mediated immunity. CD4+ T cells, known to target many viral proteins and highly conserved peptide epitopes, can contribute greatly to protective immunity through multiple mechanisms. Despite this potential, CD4+ T cells are often poorly recruited by current vaccine strategies. Here, we have analyzed a promising new adjuvant (R-DOTAP), as well as conventional adjuvant systems AddaVax with or without an added TLR9 agonist CpG, to promote CD4+ T cell responses to the licensed vaccine Flublok containing H1, H3, and HA-B proteins. Our studies, using a preclinical mouse model of vaccination, revealed that the addition of R-DOTAP to Flublok dramatically enhances the magnitude and functionality of CD4+ T cells specific for HA-derived CD4+ T cell epitopes, far outperforming conventional adjuvant systems based on cytokine EliSpot assays and multiparameter flow cytometry. The elicited CD4+ T cells specific for HA-derived epitopes produce IL-2, IFN-γ, IL-4/5, and granzyme B and have multifunctional potential. Hence, R-DOTAP, which has been verified safe by human studies, can offer exciting opportunities as an immune stimulant for next-generation prophylactic recombinant protein-based vaccines.
Collapse
Affiliation(s)
- Chantelle L. White
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| | - Maryah A. Glover
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| | - Siva K. Gandhapudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40508, USA;
| | - Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| |
Collapse
|
5
|
Selvavinayagam TS, Somasundaram A, Selvam JM, Sampath P, Vijayalakshmi V, Kumar CAB, Subramaniam S, Kumarasamy P, Raju S, Avudaiselvi R, Prakash V, Yogananth N, Subramanian G, Roshini A, Dhiliban DN, Imad S, Tandel V, Parasa R, Sachdeva S, Ramachandran S, Malani A. Contribution of infection and vaccination to population-level seroprevalence through two COVID waves in Tamil Nadu, India. Sci Rep 2024; 14:2091. [PMID: 38267448 PMCID: PMC10808562 DOI: 10.1038/s41598-023-50338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
This study employs repeated, large panels of serological surveys to document rapid and substantial waning of SARS-CoV-2 antibodies at the population level and to calculate the extent to which infection and vaccination separately contribute to seroprevalence estimates. Four rounds of serological surveys were conducted, spanning two COVID waves (October 2020 and April-May 2021), in Tamil Nadu (population 72 million) state in India. Each round included representative populations in each district of the state, totaling ≥ 20,000 persons per round. State-level seroprevalence was 31.5% in round 1 (October-November 2020), after India's first COVID wave. Seroprevalence fell to 22.9% in round 2 (April 2021), a roughly one-third decline in 6 months, consistent with dramatic waning of SARS-Cov-2 antibodies from natural infection. Seroprevalence rose to 67.1% by round 3 (June-July 2021), with infections from the Delta-variant induced second COVID wave accounting for 74% of the increase. Seroprevalence rose to 93.1% by round 4 (December 2021-January 2022), with vaccinations accounting for 63% of the increase. Antibodies also appear to wane after vaccination. Seroprevalence in urban areas was higher than in rural areas, but the gap shrunk over time (35.7 v. 25.7% in round 1, 89.8% v. 91.4% in round 4) as the epidemic spread even in low-density rural areas.
Collapse
Affiliation(s)
- T S Selvavinayagam
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | | | - Jerard Maria Selvam
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - P Sampath
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - V Vijayalakshmi
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - C Ajith Brabhu Kumar
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | | | - Parthipan Kumarasamy
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - S Raju
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - R Avudaiselvi
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - V Prakash
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - N Yogananth
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - Gurunathan Subramanian
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - A Roshini
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - D N Dhiliban
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - Sofia Imad
- Artha Global, Mumbai, Maharashtra, India
| | | | | | | | | | | |
Collapse
|
6
|
Verheul MK, Vos M, de Rond L, De Zeeuw-Brouwer ML, Nijhof KH, Smit D, Oomen D, Molenaar P, Bogaard M, van Bergen R, Middelhof I, Beckers L, Wijmenga-Monsuur AJ, Buisman AM, Boer MC, van Binnendijk R, de Wit J, Guichelaar T. Contribution of SARS-CoV-2 infection preceding COVID-19 mRNA vaccination to generation of cellular and humoral immune responses in children. Front Immunol 2023; 14:1327875. [PMID: 38193077 PMCID: PMC10773747 DOI: 10.3389/fimmu.2023.1327875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Primary COVID-19 vaccination for children, 5-17 years of age, was offered in the Netherlands at a time when a substantial part of this population had already experienced a SARS-CoV-2 infection. While vaccination has been shown effective, underlying immune responses have not been extensively studied. We studied immune responsiveness to one and/or two doses of primary BNT162b2 mRNA vaccination and compared the humoral and cellular immune response in children with and without a preceding infection. Antibodies targeting the original SARS-CoV-2 Spike or Omicron Spike were measured by multiplex immunoassay. B-cell and T-cell responses were investigated using enzyme-linked immunosorbent spot (ELISpot) assays. The activation of CD4+ and CD8+ T cells was studied by flowcytometry. Primary vaccination induced both a humoral and cellular adaptive response in naive children. These responses were stronger in those with a history of infection prior to vaccination. A second vaccine dose did not further boost antibody levels in those who previously experienced an infection. Infection-induced responsiveness prior to vaccination was mainly detected in CD8+ T cells, while vaccine-induced T-cell responses were mostly by CD4+ T cells. Thus, SARS-CoV-2 infection prior to vaccination enhances adaptive cellular and humoral immune responses to primary COVID-19 vaccination in children. As most children are now expected to contract infection before the age of five, the impact of infection-induced immunity in children is of high relevance. Therefore, considering natural infection as a priming immunogen that enhances subsequent vaccine-responsiveness may help decision-making on the number and timing of vaccine doses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Teun Guichelaar
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
7
|
Nolan TM, Deliyannis G, Griffith M, Braat S, Allen LF, Audsley J, Chung AW, Ciula M, Gherardin NA, Giles ML, Gordon TP, Grimley SL, Horng L, Jackson DC, Juno JA, Kedzierska K, Kent SJ, Lewin SR, Littlejohn M, McQuilten HA, Mordant FL, Nguyen THO, Soo VP, Price B, Purcell DFJ, Ramanathan P, Redmond SJ, Rockman S, Ruan Z, Sasadeusz J, Simpson JA, Subbarao K, Fabb SA, Payne TJ, Takanashi A, Tan CW, Torresi J, Wang JJ, Wang LF, Al-Wassiti H, Wong CY, Zaloumis S, Pouton CW, Godfrey DI. Interim results from a phase I randomized, placebo-controlled trial of novel SARS-CoV-2 beta variant receptor-binding domain recombinant protein and mRNA vaccines as a 4th dose booster. EBioMedicine 2023; 98:104878. [PMID: 38016322 PMCID: PMC10696466 DOI: 10.1016/j.ebiom.2023.104878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 μg, N = 32), mRNA vaccine (10, 20, or 50 μg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS govNCT05272605. FINDINGS No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.
Collapse
Affiliation(s)
- Terry M Nolan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia.
| | - Georgia Deliyannis
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Maryanne Griffith
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Sabine Braat
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Lilith F Allen
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jennifer Audsley
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Amy W Chung
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marcin Ciula
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Michelle L Giles
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Tom P Gordon
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Samantha L Grimley
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lana Horng
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - David C Jackson
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jennifer A Juno
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Stephen J Kent
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Mason Littlejohn
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Hayley A McQuilten
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Francesca L Mordant
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thi H O Nguyen
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Vanessa Pac Soo
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Briony Price
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Rockman
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; CSL Seqirus, Vaccine Innovation Unit, Parkville, Melbourne, Australia
| | - Zheng Ruan
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Joseph Sasadeusz
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Thomas J Payne
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Asuka Takanashi
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Chee Wah Tan
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | - Joseph Torresi
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jing Jing Wang
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Lin-Fa Wang
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | | | - Chinn Yi Wong
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sophie Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
8
|
Pathakumari B, Marty PK, Shah M, Van Keulen VP, Erskine CL, Block MS, Arias-Sanchez P, Escalante P, Peikert T. Convalescent Adaptive Immunity Is Highly Heterogenous after SARS-CoV-2 Infection. J Clin Med 2023; 12:7136. [PMID: 38002748 PMCID: PMC10672050 DOI: 10.3390/jcm12227136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The optimal detection strategies for effective convalescent immunity after SARS-CoV-2 infection and vaccination remain unclear. The objective of this study was to characterize convalescent immunity targeting the SARS-CoV-2 spike protein using a multiparametric approach. At the beginning of the pandemic, we recruited 30 unvaccinated convalescent donors who had previously been infected with COVID-19 and 7 unexposed asymptomatic controls. Peripheral blood mononuclear cells (PBMCs) were obtained from leukapheresis cones. The humoral immune response was assessed by measuring serum anti-SARS-CoV-2 spike S1 subunit IgG via semiquantitative ELISA, and T-cell immunity against S1 and S2 subunits were studied via IFN-γ enzyme-linked immunosorbent spot (ELISpot) and flow cytometric (FC) activation-induced marker (AIM) assays and the assessment of cytotoxic CD8+ T-cell function (in the subset of HLA-A2-positive patients). No single immunoassay was sufficient in identifying anti-spike convalescent immunity among all patients. There was no consistent correlation between adaptive humoral and cellular anti-spike responses. Our data indicate that the magnitude of anti-spike convalescent humoral and cellular immunity is highly heterogeneous and highlights the need for using multiple assays to comprehensively measure SARS-CoV-2 convalescent immunity. These observations might have implications for COVID-19 surveillance, and the determination of optimal vaccination strategies for emerging variants. Further studies are needed to determine the optimal assessment of adaptive humoral and cellular immunity following SARS-CoV-2 infection, especially in the context of emerging variants and unclear vaccination schedules.
Collapse
Affiliation(s)
- Balaji Pathakumari
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Paige K. Marty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Maleeha Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Virginia P. Van Keulen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
| | - Courtney L. Erskine
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
| | - Matthew S. Block
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Pedro Arias-Sanchez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Patricio Escalante
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
| |
Collapse
|
9
|
Marty PK, Pathakumari B, Shah M, Keulen VP, Erskine CL, Block MS, Arias-Sanchez P, Escalante P, Peikert T. Convalescent Adaptive Immunity is Highly Heterogenous after SARS-CoV-2 Infection. RESEARCH SQUARE 2023:rs.3.rs-3222112. [PMID: 37674707 PMCID: PMC10479471 DOI: 10.21203/rs.3.rs-3222112/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Optimal detection strategies for effective convalescent immunity after SARS-CoV-2 infection and vaccination remain unclear. The objective of this study was to characterize convalescent immunity targeting the SARS-CoV-2 spike protein using a multiparametric approach. At the beginning of the pandemic, between April 23, 2020, to May 11, 2020, we recruited 30 COVID-19 unvaccinated convalescent donors and 7 unexposed asymptomatic donors. Peripheral blood mononuclear cells (PBMCs) were obtained from leukapheresis cones. The humoral immune response was assessed by measuring serum anti-SARS-CoV-2 spike S1 subunit IgG semiquantitative ELISA and T cell immunity against S1 and S2 subunits were studied by IFN-γ Enzyme-Linked Immune absorbent Spot (ELISpot), flow cytometric (FC) activation-induced marker (AIM) assays and the assessment of cytotoxic CD8+ T-cell function (in the subset of HLA-A2 positive patients). No single immunoassay was sufficient in identifying anti-spike convalescent immunity among all patients. There was no consistent correlation between adaptive humoral and cellular anti-spike responses. Our data indicate that the magnitude of anti-spike convalescent humoral and cellular immunity is highly heterogeneous and highlights the need for using multiple assays to comprehensively measure SARS-CoV-2 convalescent immunity. These observations might have implications for COVID-19 surveillance, and optimal vaccination strategies for emerging variants. Further studies are needed to determine the optimal assessment of adaptive humoral and cellular immunity following SARSCoV-2 infection, especially in the context of emerging variants and unclear vaccination schedules.
Collapse
|
10
|
Langgartner D, Winkler R, Brunner-Weisser J, Rohleder N, Jarczok MN, Gündel H, Weimer K, Reber SO. COVID-19 vaccination exacerbates ex vivo IL-6 release from isolated PBMCs. Sci Rep 2023; 13:9496. [PMID: 37308487 DOI: 10.1038/s41598-023-35731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
Ex vivo culturing of isolated PBMCs from individuals vaccinated with the coronavirus disease 2019 (COVID-19) vaccine BNT162b1 revealed a pronounced T cell response in the presence of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The latter was 10-fold more pronounced than the ex vivo response of PBMCs from the same individuals to other common pathogen T cell epitope pools, suggesting COVID-19 vaccination to induce RBD-specific T cell responses and not to facilitate T cell (re)activity in general. In the current study we investigated whether COVID-19 vaccination long-lastingly affects plasma interleukin (IL)-6 concentrations, complete blood counts, ex vivo IL-6 and IL-10 secretion of PBMCs cultured under basal conditions or in the presence of concanavalin (Con) A and lipopolysaccharide (LPS), salivary cortisol and α-amylase, mean arterial pressure (MAP), heart rate (HR) as well as mental and physical health status. The study was initially designed to investigate whether the presence vs. absence of own pets during urban upbringing has protective effects against psychosocial stress-induced immune activation during adulthood. However, as COVID-19 vaccines were approved while the study was ongoing and as, therefore, both vaccinated and non-vaccinated individuals have been recruited, we were able to stratify our data set with respect to the COVID-19 vaccination status and to assess the long-lasting effects of COVID-19 vaccination on physiological immunological, cardiovascular and psychosomatic health parameters. This data is presented in the current study. We show that isolated PBMCs from individuals vaccinated against COVID-19 show a ~ 600-fold increase in basal and a ~ 6000-fold increase in ConA-induced proinflammatory IL-6 secretion, and a ~ 2-fold increase in basal and ConA-induced antiinflammatory IL-10 secretion, both in comparison with non-vaccinated individuals. In contrast, LPS-induced ex vivo IL-6 and IL-10 secretions were not affected by vaccination status, as were plasma IL-6 concentrations, complete blood counts, salivary cortisol and α-amylase, cardiovascular measures and psychosomatic health. In summary, our findings are of relevance for many clinical studies ran before/during the pandemic, clearly indicating that consideration of participants' vaccination status is critical, at least when assessing ex vivo PBMC functionality.
Collapse
Affiliation(s)
- Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| | - Raphael Winkler
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jonas Brunner-Weisser
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| | - Nicolas Rohleder
- Department of Psychology, Chair of Health Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Marc N Jarczok
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| | - Harald Gündel
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| | - Katja Weimer
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
11
|
Cohen JA, Stuart RM, Panovska-Griffiths J, Mudimu E, Abeysuriya RG, Kerr CC, Famulare M, Klein DJ. The changing health impact of vaccines in the COVID-19 pandemic: A modeling study. Cell Rep 2023; 42:112308. [PMID: 36976678 PMCID: PMC10015104 DOI: 10.1016/j.celrep.2023.112308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/22/2022] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Much of the world's population had already been infected with COVID-19 by the time the Omicron variant emerged at the end of 2021, but the scale of the Omicron wave was larger than any that had come before or has happened since, and it left a global imprinting of immunity that changed the COVID-19 landscape. In this study, we simulate a South African population and demonstrate how population-level vaccine effectiveness and efficiency changed over the course of the first 2 years of the pandemic. We then introduce three hypothetical variants and evaluate the impact of vaccines with different properties. We find that variant-chasing vaccines have a narrow window of dominating pre-existing vaccines but that a variant-chasing vaccine strategy may have global utility, depending on the rate of spread from setting to setting. Next-generation vaccines might be able to overcome uncertainty in pace and degree of viral evolution.
Collapse
Affiliation(s)
- Jamie A Cohen
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA.
| | - Robyn M Stuart
- Gender Equality Division (contractor), Bill Melinda Gates Foundation, Seattle, WA, USA
| | - Jasmina Panovska-Griffiths
- The Big Data Institute and the Pandemic Sciences Institute, University of Oxford, Oxford, UK; The Queen's College, University of Oxford, Oxford, UK
| | | | | | - Cliff C Kerr
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Michael Famulare
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Daniel J Klein
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
12
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|
13
|
Elliott T, Cheeseman HM, Evans AB, Day S, McFarlane LR, O’Hara J, Kalyan M, Amini F, Cole T, Winston A, Fidler S, Pollock KM, Harker JA, Shattock RJ. Enhanced immune responses following heterologous vaccination with self-amplifying RNA and mRNA COVID-19 vaccines. PLoS Pathog 2022; 18:e1010885. [PMID: 36194628 PMCID: PMC9565686 DOI: 10.1371/journal.ppat.1010885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/14/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
The optimal vaccination strategy to boost responses in the context of pre-existing immune memory to the SARS-CoV-2 spike (S) glycoprotein is an important question for global public health. To address this, we explored the SARS-CoV-2-specific humoral and cellular immune responses to a novel self-amplifying RNA (saRNA) vaccine followed by a UK authorised mRNA vaccine (BNT162b2) in individuals with and without previous COVID-19, and compared these responses with those who received an authorised vaccine alone. 35 subjects receiving saRNA (saRNA group) as part of the COVAC1 clinical trial and an additional 40 participants receiving an authorised SARS-CoV-2 vaccine only (non-saRNA group) were recruited. Antibody responses were measured by ELISA and a pseudoneutralisation assay for wildtype, Delta and Omicron variants. Cellular responses were measured by IFN-ƴ ELISpot and an activation induced marker (AIM) assay. Approximately 50% in each group had previous COVID-19 prior to vaccination, confirmed by PCR or antibody positivity on ELISA. All of those who received saRNA subsequently received a full course of an authorised vaccine. The majority (83%) of those receiving saRNA who were COVID-19 naïve at baseline seroconverted following the second dose, and those with previous COVID-19 had an increase in antibody titres two weeks following saRNA vaccination (median 27-fold), however titres were lower when compared to mRNA vaccination. Two weeks following the 2nd authorised mRNA vaccine dose, binding and neutralising antibody titres were significantly higher in the saRNA participants with previous COVID-19, compared to non-saRNA, or COVID-19 naive saRNA participants. Cellular responses were again highest in this group, with a higher proportion of spike specific CD8+ than CD4+ T cells when compared to those receiving the mRNA vaccine only. These findings suggest an immunological benefit of increased antigen exposure, both from natural infection and vaccination, particularly evident in those receiving heterologous vaccination with saRNA and mRNA.
Collapse
Affiliation(s)
- Tamara Elliott
- Department of Infectious Disease, Imperial College London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College NIHR BRC, London, United Kingdom
| | | | - Abbey B. Evans
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Suzanne Day
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Leon R. McFarlane
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Jessica O’Hara
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Mohini Kalyan
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Fahimah Amini
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Tom Cole
- Department of Infectious Disease, Imperial College London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alan Winston
- Department of Infectious Disease, Imperial College London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College NIHR BRC, London, United Kingdom
| | - Katrina M. Pollock
- Department of Infectious Disease, Imperial College London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Robin J. Shattock
- Department of Infectious Disease, Imperial College London, United Kingdom
| |
Collapse
|
14
|
Zalewska M, Fus W, Konka A, Wystyrk K, Bochenek A, Botor H, Fronczek M, Zembala-John J, Adamek B. An Immune Response to Heterologous ChAdOx1/BNT162b2 Vaccination against COVID-19: Evaluation of the anti-RBD Specific IgG Antibodies Titers and Interferon Gamma Release Assay (IGRA) Test Results. Vaccines (Basel) 2022; 10:vaccines10091546. [PMID: 36146624 PMCID: PMC9506411 DOI: 10.3390/vaccines10091546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
This study aimed to assess the magnitude of anti-SARS-CoV-2 immunoglobulin G (IgG) titers and Interferon-Gamma Release Assay (IGRA) test results following administration of booster BNT162b2 in 48 ChAd-primed participants (vaccination schedule: ChAd/ChAd/BNT). Whole blood samples were collected: first, before and second, 21 days after the booster dose. The IgG level was measured using chemiluminescent immunoassay; the intensity of the T-cell response—IFNγ concentration—was assessed using IGRA test. At 21 days after the booster, all subjects achieved reactive/positive anti-SARS-CoV-2 IgG, and IGRA test results showed a significant increase compared to the results before booster administration. We compared the results before and after the booster between participants with and without prior history of COVID-19. The IFNγ concentrations in both cohorts were higher in convalescents (both before booster and 21 days after). The IgG titers were subtly lower in COVID-19 convalescents than in naïve but without statistical significance. Data on cell-mediated immunity are scarce, especially with regard to the general population. A better understanding of the complexity of the immune response to SARS-CoV-2 could contribute to developing more effective vaccination strategies.
Collapse
Affiliation(s)
- Marzena Zalewska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, H. Jordana 19, 41-808 Zabrze, Poland
- Correspondence:
| | - Wiktoria Fus
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Adam Konka
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Karolina Wystyrk
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Aneta Bochenek
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Hanna Botor
- Acellmed Ltd., M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Martyna Fronczek
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, H. Jordana 38, 41-808 Zabrze, Poland
| | - Joanna Zembala-John
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
- Department of Medicine and Environmental Epidemiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, H. Jordana 19, 41-808 Zabrze, Poland
- Silesian Center for Heart Diseases in Zabrze, M. Curie—Skłodowskiej 9, 41-800 Zabrze, Poland
| | - Brygida Adamek
- Department of Basic Medical Sciences, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Piekarska 18, 41-902 Bytom, Poland
| |
Collapse
|
15
|
Almendro-Vázquez P, Chivite-Lacaba M, Utrero-Rico A, González-Cuadrado C, Laguna-Goya R, Moreno-Batanero M, Sánchez-Paz L, Luczkowiak J, Labiod N, Folgueira MD, Delgado R, Paz-Artal E. Cellular and humoral immune responses and breakthrough infections after three SARS-CoV-2 mRNA vaccine doses. Front Immunol 2022; 13:981350. [PMID: 36059485 PMCID: PMC9428395 DOI: 10.3389/fimmu.2022.981350] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background SARS-CoV-2 vaccination has proven the most effective measure to control the COVID-19 pandemic. Booster doses are being administered with limited knowledge on their need and effect on immunity. Objective To determine the duration of specific T cells, antibodies and neutralization after 2-dose vaccination, to assess the effect of a third dose on adaptive immunity and to explore correlates of protection against breakthrough infection. Methods 12-month longitudinal assessment of SARS-CoV-2-specific T cells, IgG and neutralizing antibodies triggered by 2 BNT162b2 doses followed by a third mRNA-1273 dose in a cohort of 77 healthcare workers: 17 with SARS-CoV-2 infection prior to vaccination (recovered) and 60 naïve. Results Peak levels of cellular and humoral response were achieved 2 weeks after the second dose. Antibodies declined thereafter while T cells reached a plateau 3 months after vaccination. The decline in neutralization was specially marked in naïve individuals and it was this group who benefited most from the third dose, which resulted in a 20.9-fold increase in neutralization. Overall, recovered individuals maintained higher levels of T cells, antibodies and neutralization 1 to 6 months post-vaccination than naïve. Seventeen asymptomatic or mild SARS-CoV-2 breakthrough infections were reported during follow-up, only in naïve individuals. This viral exposure boosted adaptive immunity. High peak levels of T cells and neutralizing antibodies 15 days post-vaccination associated with protection from breakthrough infections. Conclusion Booster vaccination in naïve individuals and the inclusion of viral antigens other than spike in future vaccine formulations could be useful strategies to prevent SARS-CoV-2 breakthrough infections.
Collapse
Affiliation(s)
- Patricia Almendro-Vázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Patricia Almendro-Vázquez,
| | - Marta Chivite-Lacaba
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alberto Utrero-Rico
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Rocio Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC – Instituto de Salud Carlos III), Madrid, Spain
| | | | - Laura Sánchez-Paz
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Joanna Luczkowiak
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Nuria Labiod
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - María Dolores Folgueira
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC – Instituto de Salud Carlos III), Madrid, Spain
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, Medical School, Universidad Complutense de Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC – Instituto de Salud Carlos III), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Medical School, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Nami M, Han P, Hanlon D, Tatsuno K, Wei B, Sobolev O, Pitruzzello M, Vassall A, Yosinski S, Edelson R, Reed M. Rapid Screen for Antiviral T-Cell Immunity with Nanowire Electrochemical Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109661. [PMID: 35165959 DOI: 10.1002/adma.202109661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The ability to rapidly assess and monitor patient immune responses is critical for clinical diagnostics, vaccine design, and fundamental investigations into the presence or generation of protective immunity against infectious diseases. Recently, findings on the limits of antibody-based protection provided by B-cells have highlighted the importance of engaging pathogen-specific T-cells for long-lasting and broad protection against viruses and their emergent variants such as in SARS-CoV-2. However, low-cost and point-of-care tools for detecting engagement of T-cell immunity in patients are conspicuously lacking in ongoing efforts to assess and control population-wide disease risk. Currently available tools for human T-cell analysis are time and resource-intensive. Using multichannel silicon-nanowire field-effect transistors compatible with complementary metal-oxide-semiconductor, a device designed for rapid and label-free detection of human T-cell immune responses is developed. The generalizability of this approach is demonstrated by measuring T-cell responses against melanoma antigen MART1, common and seasonal viruses CMV, EBV, flu, as well as emergent pandemic coronavirus, SARS-CoV-2. Further, this device provides a modular and translational platform for optimizing vaccine formulations and combinations, offering quick and quantitative readouts for acquisition and persistence of T-cell immunity against variant-driven pathogens such as flu and pandemic SARS-CoV-2.
Collapse
Affiliation(s)
- Mohsen Nami
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
- Department of Neurosurgery, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Patrick Han
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
- Department of Immunobiology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Kazuki Tatsuno
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Brian Wei
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Mary Pitruzzello
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Aaron Vassall
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Shari Yosinski
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
| | - Richard Edelson
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Mark Reed
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
- Department of Applied Physics, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
| |
Collapse
|
17
|
Inhibitors of Deubiquitinating Enzymes Interfere with the SARS-CoV-2 Papain-like Protease and Block Virus Replication In Vitro. Viruses 2022; 14:v14071404. [PMID: 35891385 PMCID: PMC9324251 DOI: 10.3390/v14071404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
The ubiquitin proteasome system (UPS), particularly its deubiquitinating enzymes (DUBs), play a key role in the replication cycle of coronaviruses. The SARS-CoV-2 papain-like protease (Plpro) is known to process the viral polyproteins to form the replicase transcriptase complex and to counteract the host viral response. Recently, it was shown that this viral protease can also act as a deubiquitinating enzyme. In this study, we demonstrate that certain DUB-Inhibitors (DIs) interfere with SARS-CoV-2 replication. The DIs PR-619 and HBX41108 restrict SARS-CoV-2 in both Vero B4 and human Calu-3 lung cells where cells were infected with a Multiplicity of Infection (MOI) of 0.02. An in vitro protease assay using recombinant Plpro and Amido-4-methylcoumarin (AMC)-conjugated substrate revealed that PR-619 and HBX41108 are able to block the protease at concentrations where the interventions restricted virus replication. In contrast, DIs that do not inhibit Plpro had no influence on virus replication, which indicated that the protease might be at least one major target. Future vertical studies that would gain more insights into the mechanisms of how DUBs effect the replication of SARS-CoV-2 will further validate them as a potential therapeutic target.
Collapse
|
18
|
Ballesteros-Sanabria L, Pelaez-Prestel HF, Ras-Carmona A, Reche PA. Resilience of Spike-Specific Immunity Induced by COVID-19 Vaccines against SARS-CoV-2 Variants. Biomedicines 2022; 10:biomedicines10050996. [PMID: 35625733 PMCID: PMC9138591 DOI: 10.3390/biomedicines10050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
The outbreak of SARS-CoV-2 leading to the declaration of the COVID-19 global pandemic has led to the urgent development and deployment of several COVID-19 vaccines. Many of these new vaccines, including those based on mRNA and adenoviruses, are aimed to generate neutralizing antibodies against the spike glycoprotein, which is known to bind to the receptor angiotensin converting enzyme 2 (ACE2) in host cells via the receptor-binding domain (RBD). Antibodies binding to this domain can block the interaction with the receptor and prevent viral entry into the cells. Additionally, these vaccines can also induce spike-specific T cells which could contribute to providing protection against the virus. However, the emergence of new SARS-CoV-2 variants can impair the immunity generated by COVID-19 vaccines if mutations occur in cognate epitopes, precluding immune recognition. Here, we evaluated the chance of five SARS-CoV-2 variants of concern (VOCs), Alpha, Beta, Gamma, Delta and Omicron, to escape spike-specific immunity induced by vaccines. To that end, we examined the impact of the SARS-CoV-2 variant mutations on residues located on experimentally verified spike-specific epitopes, deposited at the Immune Epitope Database, that are targeted by neutralizing antibodies or recognized by T cells. We found about 300 of such B cell epitopes, which were largely overlapping, and could be grouped into 54 B cell epitope clusters sharing ≥ 7 residues. Most of the B cell epitope clusters map in the RBD domain (39 out of 54) and 20%, 50%, 37%, 44% and 57% of the total are mutated in SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants, respectively. We also found 234 experimentally verified CD8 and CD4 T cell epitopes that were distributed evenly throughout the spike protein. Interestingly, in each SARS-CoV-2 VOC, over 87% and 79% of CD8 and CD4 T cell epitopes, respectively, are not mutated. These observations suggest that SARS-CoV-2 VOCs—particularly the Omicron variant—may be prone to escape spike-specific antibody immunity, but not cellular immunity, elicited by COVID-19 vaccines.
Collapse
|
19
|
Gallais F, Gantner P, Planas D, Solis M, Bruel T, Pierre F, Soulier E, Rossolillo P, Fourati S, Sibilia J, Schwartz O, Fafi-Kremer S. Case Report: Evolution of Humoral and Cellular Immunity in Two COVID-19 Breakthrough Infections After BNT162b2 Vaccine. Front Immunol 2022; 13:790212. [PMID: 35281046 PMCID: PMC8905643 DOI: 10.3389/fimmu.2022.790212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background SARS-CoV-2 breakthrough infections after complete vaccination are increasing whereas their determinants remain uncharacterized. Methods We analyzed two cases of post-vaccination SARS-CoV-2 infections by α and β variants, respectively. For each participant both humoral (binding and neutralizing antibodies) and cellular (activation markers and cytokine expression) immune responses were characterized longitudinally. Results The first participant (P1) was infected by an α variant and displayed an extended and short period of viral excretion and symptom. Analysis of cellular and humoral response 72 h post-symptom onset revealed that P1 failed at developing neutralizing antibodies and a potent CD4 memory response (lack of SARS-CoV-2 specific CD4+IL-2+ cells) and CD8 effector response (CD8+IFNγ+ cells). The second participant (P2) developed post-vaccination SARS-CoV-2 infection by a β variant, associated with a short period of viral excretion and symptoms. Despite displaying initially high levels and polyfunctional T cell responses, P2 lacked initial β-directed neutralizing antibodies. Both participants developed and/or increased their neutralization activity and cellular responses against all variants, namely, β and δ variants that lasts up to 3 months after breakthrough infection. Conclusions An analysis of cellular and humoral response suggests two possible mechanisms of breakthrough infection: a poor immune response to vaccine and viral evasion to neutralizing antibodies.
Collapse
Affiliation(s)
- Floriane Gallais
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg, France.,Strasbourg University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche Scientifique Immuno-Rhumathologie Moléculaire (IRM UMR-S) 1109, Strasbourg, France
| | - Pierre Gantner
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg, France.,Strasbourg University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche Scientifique Immuno-Rhumathologie Moléculaire (IRM UMR-S) 1109, Strasbourg, France
| | - Delphine Planas
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 3569, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Morgane Solis
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg, France.,Strasbourg University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche Scientifique Immuno-Rhumathologie Moléculaire (IRM UMR-S) 1109, Strasbourg, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 3569, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Florian Pierre
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg, France.,Strasbourg University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche Scientifique Immuno-Rhumathologie Moléculaire (IRM UMR-S) 1109, Strasbourg, France
| | - Eric Soulier
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg, France.,Strasbourg University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche Scientifique Immuno-Rhumathologie Moléculaire (IRM UMR-S) 1109, Strasbourg, France
| | - Paola Rossolillo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7104, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Illkirch, France
| | - Slim Fourati
- Department of Virology, Hôpital Henri Mondor, Créteil, France.,Mondor Institute for Biomedical Research (IIMRB), Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 955, Créteil, France
| | - Jean Sibilia
- CHU de Strasbourg, Département de Rhumathologie, Strasbourg, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 3569, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Samira Fafi-Kremer
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg, France.,Strasbourg University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche Scientifique Immuno-Rhumathologie Moléculaire (IRM UMR-S) 1109, Strasbourg, France
| |
Collapse
|