1
|
Rubio-Zarapuz A, Parraca JA, Tornero-Aguilera JF, Clemente-Suárez VJ. Unveiling the link: exploring muscle oxygen saturation in fibromyalgia and its implications for symptomatology and therapeutic strategies. Med Gas Res 2025; 15:58-72. [PMID: 39436169 PMCID: PMC11515064 DOI: 10.4103/mgr.medgasres-d-24-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 10/23/2024] Open
Abstract
Fibromyalgia, characterized as a complex chronic pain syndrome, presents with symptoms of pervasive musculoskeletal pain, significant fatigue, and pronounced sensitivity at specific anatomical sites. Despite extensive research efforts, the origins of fibromyalgia remain enigmatic. This narrative review explores the intricate relationship between muscle oxygen saturation and fibromyalgia, positing that disruptions in the oxygenation processes within muscle tissues markedly influence the symptom profile of this disorder. Muscle oxygen saturation, crucial for muscle function, has been meticulously investigated in fibromyalgia patients through non-invasive techniques such as near-infrared spectroscopy and magnetic resonance imaging. The body of evidence consistently indicates substantial alterations in oxygen utilization within muscle fibers, manifesting as reduced efficiency in oxygen uptake during both rest and physical activity. These anomalies play a significant role in fibromyalgia's symptomatology, especially in terms of chronic pain and severe fatigue, potentially creating conditions that heighten pain sensitivity and accumulate metabolic byproducts. Hypothesized mechanisms for these findings encompass dysfunctions in microcirculation, mitochondrial irregularities, and autonomic nervous system disturbances, all meriting further research. Understanding the dynamics of muscle oxygen saturation in fibromyalgia is of paramount clinical importance, offering the potential for tailored therapeutic approaches to alleviate symptoms and improve the quality of life for sufferers. This investigation not only opens new avenues for innovative research but also fosters hope for more effective treatment strategies and improved outcomes for individuals with fibromyalgia.
Collapse
Affiliation(s)
| | - Jose A. Parraca
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| | | | - Vicente J. Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla, Colombia
| |
Collapse
|
2
|
Mullan CW, Summer L, Lopez-Giraldez F, Tobiasova Z, Manes TD, Yasothan S, Song G, Jane-Wit D, Saltzman WM, Pober JS. IL-1β Induces Human Endothelial Surface Expression of IL-15 by Relieving let-7c-3p Suppression of Protein Translation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1338-1348. [PMID: 39302113 PMCID: PMC11493510 DOI: 10.4049/jimmunol.2400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Expression of IL-15 on the surface of human graft endothelial cells (ECs) bound to the IL-15Rα subunit can increase the activation of CTLs, potentiating allograft rejection. Our previous work showed that surface expression of this protein complex could be induced by alloantibody-mediated complement activation through increased IL-1β synthesis, secretion, and autocrine/paracrine IL-1-mediated activation of NF-κB. In this article, we report that cultured human ECs express eight differently spliced IL-15 transcripts. Remarkably, IL-1β does not alter the expression level of any IL-15 transcript but induces surface expression independently of RNA polymerase II-mediated transcription while requiring new protein translation. Mechanistically, IL-1β causes an NF-κB-mediated reduction in the level of microRNA Let-7c-3p, thereby relieving a block of translation of IL-15 surface protein. Let7c-3p anti-miR can induce EC surface expression of IL-15/IL-15Rα in the absence of complement activation or of IL-1, enabling IL-15 transpresentation to boost CD8 T cell activation. Because of the complexity we have uncovered in IL-15 regulation, we recommend caution in interpreting increased total IL-15 mRNA or protein levels as a surrogate for transpresentation.
Collapse
Affiliation(s)
- Clancy W Mullan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Luanna Summer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Francesc Lopez-Giraldez
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genome Analysis, Yale School of Medicine, West Haven, CT
| | - Zuzana Tobiasova
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Thomas D Manes
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Shruthi Yasothan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Guiyu Song
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Daniel Jane-Wit
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Department of Cardiology, VA Connecticut Healthcare System, West Haven, CT
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT
- Department of Dermatology, Yale University, New Haven, CT
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
3
|
Cui K, Mao Y, Jiang L, Zheng Y, Yang L, Yang Y, Wu G, Tang S. Construction and validation of a predictive model of mortality of tuberculosis-destroyed lung patients requiring mechanical ventilation: A single-center retrospective cohort study. Medicine (Baltimore) 2024; 103:e39349. [PMID: 39151533 PMCID: PMC11332759 DOI: 10.1097/md.0000000000039349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/19/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
The mortality rate for intensive care unit tuberculosis-destroyed lung (TDL) patients requiring mechanical ventilation (MV) remains high. We conducted a retrospective analysis of adult TDL patients requiring MV who were admitted to the intensive care unit of a tertiary infectious disease hospital in Chengdu, Sichuan Province, China from January 2019 to March 2023. Univariate and multivariate COX regression analyses were conducted to determine independent patient prognostic risk factors that were used to construct a predictive model of patient mortality. A total of 331 patients were included, the median age was 63.0 (50.0-71.0) years, 262 (79.2%) were males and the mortality rate was 48.64% (161/331). Training and validation data sets were obtained from 245 and 86 patients, respectively. Analysis of the training data set revealed that body mass index <18.5 kg/m2, blood urea nitrogen ≥7.14 mmol/L and septic shock were independent risk factors for increased mortality of TDL patients requiring MV. These variables were then used to construct a risk-based model for predicting patient mortality. Area under curve, sensitivity, and specificity values obtained using the model for the training data set were 0.808, 79.17%, and 68.80%, respectively, and corresponding values obtained using the validation data set were 0.876, 95.12%, and 62.22%, respectively. Concurrent correction curve and decision curve analyses confirmed the high predictive ability of the model, indicating its potential to facilitate early identification and classification-based clinical management of high-risk TDL patients requiring MV.
Collapse
Affiliation(s)
- Kunping Cui
- Intensive Care Unit, Public Health Clinical Center of Chengdu, Sichuan, China
| | - Yi Mao
- Intensive Care Unit, Public Health Clinical Center of Chengdu, Sichuan, China
| | | | - Yongli Zheng
- Public Health Clinical Center of Chengdu, Sichuan, China
| | - Lang Yang
- Intensive Care Unit, Public Health Clinical Center of Chengdu, Sichuan, China
| | - Yixiang Yang
- Intensive Care Unit, Public Health Clinical Center of Chengdu, Sichuan, China
| | - Guihui Wu
- Tuberculosis Department, Public Health Clinical Center of Chengdu, Sichuan, China
| | - Shenjie Tang
- Tuberculosis Department, Beijing Chest Hostpital capital University, Beijing, China
| |
Collapse
|
4
|
Cui K, Mao Y, Feng S, Luo H, Yang J, Bai L. Development and Validation of a Risk Mortality Prediction Model for Patients with Pulmonary Tuberculosis Complicated by Severe Community-Acquired Pneumonia in the Intensive Care Unit. Infect Drug Resist 2024; 17:3113-3124. [PMID: 39050825 PMCID: PMC11268563 DOI: 10.2147/idr.s459290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose The mortality rate from pulmonary tuberculosis (PTB) complicated by severe community-acquired pneumonia (SCAP) in the intensive care unit (ICU) remains high. We aimed to develop a rapid and simple model for the early assessment and stratification of prognosis in these patients. Patients and Methods All adult patients with PTB complicated by SCAP admitted to the ICU of a tertiary hospital in Chengdu, Sichuan, China between 2019 and 2021 (development cohort) and 2022 (validation cohort) were retrospectively included. Data on demographics, comorbidities, laboratory values, and interventions were collected. The outcome was the 28-day mortality. Stepwise backward multivariate Cox analysis was used to develop a mortality risk prediction score model. Receiver operating characteristic (ROC) and calibration curves were used to evaluate the model's predictive efficiency. Decision curve analysis (DCA) was used to validate the model's clinical value and impact on decision making. Results Overall, 357 and 168 patients were included in the development and validation cohorts, respectively. The Pulmonary Tuberculosis Severity Index (PTSI) score included long-term use of glucocorticoid, body mass index (BMI) <18.5 kg/m2, diabetes, blood urea nitrogen (BUN) ≥7.14 mmol/L, PO2/FiO2 <150 mmHg, and vasopressor use. The area under the ROC curve (AUC) values were 0.817 (95% CI: 0.772-0.863) and 0.814 for the development and validation cohorts, respectively. The PTSI score had a higher AUC than the APACHE II, SOFA, and CURB-65 score. The calibration curves indicated good calibration in both cohorts. The DCA of the PTSI score indicated the high clinical application of the model compared with the APACHE II and SOFA scores. Conclusion This prognostic tool was designed to rapidly evaluate the 28-day mortality risk in individuals with PTB complicated by SCAP. It can stratify this patient group into relevant risk categories, guide targeted interventions, and enhance clinical decision making, thereby optimizing patient care and improving outcomes.
Collapse
Affiliation(s)
- Kunping Cui
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yi Mao
- Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, 610000, People’s Republic of China
| | - Shuang Feng
- Ultrasonic Medicine, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, 610000, People’s Republic of China
| | - Haixia Luo
- Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, 610000, People’s Republic of China
| | - Jiao Yang
- Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, 610000, People’s Republic of China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
5
|
Zhu S, Wang K, Yu Z, Tang W, Zhang Y, Shinge SA, Qiang Y, Liu H, Zeng J, Qiao K, Liu C, Li G. Pulsatile flow increases METTL14-induced m 6 A modification and attenuates septic cardiomyopathy: an experimental study. Int J Surg 2024; 110:4103-4115. [PMID: 38549224 PMCID: PMC11254225 DOI: 10.1097/js9.0000000000001402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 07/19/2024]
Abstract
INTRODUCTION Septic cardiomyopathy is a sepsis-mediated cardiovascular complication with severe microcirculatory malperfusion. Emerging evidence has highlighted the protective effects of pulsatile flow in case of microcirculatory disturbance, yet the underlying mechanisms are still elusive. The objective of this study was to investigate the mechanisms of N 6 -methyladenosine (m 6 A) modification in the alleviation of septic cardiomyopathy associated with extracorporeal membrane oxygenation (ECMO)-generated pulsatile flow. METHODS Rat model with septic cardiomyopathy was established and was supported under ECMO either with pulsatile or non-pulsatile flow. Peripheral perfusion index (PPI) and cardiac function parameters were measured using ultrasonography. Dot blot assay was applied to examine the m 6 A level, while qRT-PCR, Western blot, immunofluorescence, and immunohistochemistry were used to measure the expressions of related genes. RNA immunoprecipitation assay was performed to validate the interaction between molecules. RESULTS The ECMO-generated pulsatile flow significantly elevates microcirculatory PPI, improves myocardial function, protects the endothelium, and prolongs survival in rat models with septic cardiomyopathy. The pulsatile flow mediates the METTL14-mediated m 6 A modification to zonula occludens-1 (ZO-1) mRNA (messenger RNA), which stabilizes the ZO-1 mRNA depending on the presence of YTHDF2. The pulsatile flow suppresses the PI3K-Akt signaling pathway, of which the downstream molecule Foxo1, a negative transcription factor of METTL14, binds to the METTL14 promoter and inhibits the METTL14-induced m 6 A modification. CONCLUSION The ECMO-generated pulsatile flow increases METTL14-induced m 6 A modification in ZO-1 and attenuates the progression of septic cardiomyopathy, suggesting that pulsatility might be a new therapeutic strategy in septic cardiomyopathy by alleviating microcirculatory disturbance.
Collapse
Affiliation(s)
- Shenyu Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou
| | - Kai Wang
- Department of Pathology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Zhexuan Yu
- Zhejiang Chinese Medical University, Hangzhou
| | - Wei Tang
- Integrated Hospital of Traditional Chinese Medicine of Southern Medical University
| | - Yu Zhang
- Department of Pathology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Shafiu A. Shinge
- Department of Cardiovascular Surgery, the 8th Affiliated Hospital of Sun Yat-sen University, Shenzhen
| | - Yongjia Qiang
- Department of Cardiovascular Surgery, the 8th Affiliated Hospital of Sun Yat-sen University, Shenzhen
| | - Hangyu Liu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Jianfeng Zeng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong
| | - Kun Qiao
- Department of Thoracic Surgery, The Third People’s Hospital of Shenzhen
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
- Department of Thoracic Surgery, The Third People’s Hospital of Shenzhen
| |
Collapse
|
6
|
Bottari G, Confalone V, Creteur J, Cecchetti C, Taccone FS. The Sublingual Microcirculation in Critically Ill Children with Septic Shock Undergoing Hemoadsorption: A Pilot Study. Biomedicines 2024; 12:1435. [PMID: 39062009 PMCID: PMC11275152 DOI: 10.3390/biomedicines12071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Background: The importance of perfusion-guided resuscitation in septic shock has recently emerged. We explored whether the use of hemoadsorption led to a potential beneficial role in microvascular alterations in this clinical setting. Methods: A pre-planned secondary analysis of a Phase-II interventional single-arm pilot study (NCT05658588) was carried out, where 17 consecutive septic shock children admitted into PICU were treated with continuous renal replacement therapy (CRRT) and CytoSorb. Thirteen patients were eligible to be investigated with sublingual microcirculation at baseline, 24, 48, 72 and 96 h from the onset of blood purification. Patients achieving a microvascular flow index (MFI) ≥ 2.5 and/or proportion of perfused vessels (PPV) exceeding 90% by 96 h were defined as responders. Results: In 10/13 (77%), there was a significant improvement in MFIs (p = 0.01) and PPVs% (p = 0.04) between baseline and 24 h from the end of treatment. Eight patients displayed a high heterogenicity index (HI > 0.5) during blood purification and among these, five showed an improvement by the end of treatment (HI < 0.5). Conclusions: In this pilot study, we have found a potential association between CytoSorb hemoadsorption and a microcirculation improvement in pediatric patients with septic shock, particularly when this observation has been associated with hemodynamic improvement.
Collapse
Affiliation(s)
- Gabriella Bottari
- Pediatric Intensive Care Unit, Bambino Gesuù Children’s Hospital, Scientific Institute for Research, Hospitalization, Healthcare (IRCCS), 00165 Rome, Italy; (V.C.); (C.C.)
| | - Valerio Confalone
- Pediatric Intensive Care Unit, Bambino Gesuù Children’s Hospital, Scientific Institute for Research, Hospitalization, Healthcare (IRCCS), 00165 Rome, Italy; (V.C.); (C.C.)
| | - Jacques Creteur
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (J.C.); (F.S.T.)
| | - Corrado Cecchetti
- Pediatric Intensive Care Unit, Bambino Gesuù Children’s Hospital, Scientific Institute for Research, Hospitalization, Healthcare (IRCCS), 00165 Rome, Italy; (V.C.); (C.C.)
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (J.C.); (F.S.T.)
| |
Collapse
|
7
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
8
|
Saravi B, Goebel U, Hassenzahl LO, Jung C, David S, Feldheiser A, Stopfkuchen-Evans M, Wollborn J. Capillary leak and endothelial permeability in critically ill patients: a current overview. Intensive Care Med Exp 2023; 11:96. [PMID: 38117435 PMCID: PMC10733291 DOI: 10.1186/s40635-023-00582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Capillary leak syndrome (CLS) represents a phenotype of increased fluid extravasation, resulting in intravascular hypovolemia, extravascular edema formation and ultimately hypoperfusion. While endothelial permeability is an evolutionary preserved physiological process needed to sustain life, excessive fluid leak-often caused by systemic inflammation-can have detrimental effects on patients' outcomes. This article delves into the current understanding of CLS pathophysiology, diagnosis and potential treatments. Systemic inflammation leading to a compromise of endothelial cell interactions through various signaling cues (e.g., the angiopoietin-Tie2 pathway), and shedding of the glycocalyx collectively contribute to the manifestation of CLS. Capillary permeability subsequently leads to the seepage of protein-rich fluid into the interstitial space. Recent insights into the importance of the sub-glycocalyx space and preserving lymphatic flow are highlighted for an in-depth understanding. While no established diagnostic criteria exist and CLS is frequently diagnosed by clinical characteristics only, we highlight more objective serological and (non)-invasive measurements that hint towards a CLS phenotype. While currently available treatment options are limited, we further review understanding of fluid resuscitation and experimental approaches to target endothelial permeability. Despite the improved understanding of CLS pathophysiology, efforts are needed to develop uniform diagnostic criteria, associate clinical consequences to these criteria, and delineate treatment options.
Collapse
Affiliation(s)
- Babak Saravi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center, University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, St. Franziskus-Hospital, Muenster, Germany
| | - Lars O Hassenzahl
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Duesseldorf, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Aarne Feldheiser
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Evang. Kliniken Essen-Mitte, Huyssens-Stiftung/Knappschaft, University of Essen, Essen, Germany
| | - Matthias Stopfkuchen-Evans
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jakob Wollborn
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Zhao L, Hu J, Zheng P, Mi B, Chen Z, Zhao X, Wu J, Wang Y. PAR1 regulates sepsis-induced vascular endothelial barrier dysfunction by mediating ERM phosphorylation via the RhoA/ROCK signaling pathway. Int Immunopharmacol 2023; 124:110992. [PMID: 37806106 DOI: 10.1016/j.intimp.2023.110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
Sepsis begins with vascular endothelial barrier breakdown and causes widespread organ failure. Protease-activated receptor 1 (PAR1) is an important target for modulating vascular endothelial permeability; however, little research has been undertaken in sepsis, and its putative molecular mechanism remains unknown. The vascular endothelial permeability was examined by detecting FITC-dextran flux. F-actin was examined by immunofluorescence (IF). PAR1, ERM phosphorylation, and RhoA/ROCK signaling pathway expression in lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs) line were examined by IF and Western blot. To develop the sepsis model, cecal ligation and puncture (CLP) were conducted. The PAR1 inhibitor SCH79797 was utilized to inhibit PAR1 expression in vivo. Vascular permeability in main organs weres measured by Evans blue dye extravasation. The pathological changes in main organs were examined by HE staining. The expression of PAR1, ERM phosphorylation, and the RhoA/ROCK signaling pathway was examined using IF, immunohistochemical and WB in CLP mice. In vitro, in response to LPS stimulation of HUVECs, PAR1 mediated the phosphorylation of ERM, promoted F-actin rearrangement, and increased endothelial hyperpermeability, all of which were prevented by inhibiting PAR1 or RhoA. Additionally, inhibiting PAR1 expression reduced RhoA and ROCK expression. In vivo, we showed that inhibiting PAR1 expression will reduce ezrin/radixin/moesin (ERM) phosphorylation to relieve vascular endothelial barrier dysfunction and thereby ameliorate multiorgan dysfunction syndrome (MODS) in CLP-induced septic mice. This study revealed that PAR1-mediated phosphorylation of ERM induced endothelial barrier dysfunction, which in turn led to MODS in sepsis, and that the RhoA/ROCK signaling pathway underlay these effects.
Collapse
Affiliation(s)
- Linjun Zhao
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China
| | - Jiahui Hu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Rd, Hangzhou City 310052, China
| | - Pingping Zheng
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China
| | - Ben Mi
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China
| | - Zixi Chen
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China
| | - Xu Zhao
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China
| | - Jinhong Wu
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China.
| | - Yi Wang
- Department of Emergency, Hangzhou Tranditional Chinese Medicine Hospitial Affiliated to Zhejiang Chinese Medical University, 453 Stadium Rd, Hangzhou City 310007, China.
| |
Collapse
|
10
|
Wang G, Lian H, Zhang H, Wang X. Microcirculation and Mitochondria: The Critical Unit. J Clin Med 2023; 12:6453. [PMID: 37892591 PMCID: PMC10607663 DOI: 10.3390/jcm12206453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Critical illness is often accompanied by a hemodynamic imbalance between macrocirculation and microcirculation, as well as mitochondrial dysfunction. Microcirculatory disorders lead to abnormalities in the supply of oxygen to tissue cells, while mitochondrial dysfunction leads to abnormal energy metabolism and impaired tissue oxygen utilization, making these conditions important pathogenic factors of critical illness. At the same time, there is a close relationship between the microcirculation and mitochondria. We introduce here the concept of a "critical unit", with two core components: microcirculation, which mainly comprises the microvascular network and endothelial cells, especially the endothelial glycocalyx; and mitochondria, which are mainly involved in energy metabolism but perform other non-negligible functions. This review also introduces several techniques and devices that can be utilized for the real-time synchronous monitoring of the microcirculation and mitochondria, and thus critical unit monitoring. Finally, we put forward the concepts and strategies of critical unit-guided treatment.
Collapse
Affiliation(s)
- Guangjian Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| |
Collapse
|
11
|
Jiang H, Ren Y, Yu J, Hu S, Zhang J. Analysis of lactate metabolism-related genes and their association with immune infiltration in septic shock via bioinformatics method. Front Genet 2023; 14:1223243. [PMID: 37564869 PMCID: PMC10410269 DOI: 10.3389/fgene.2023.1223243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
Background: Lactate, as an essential clinical evaluation index of septic shock, is crucial in the incidence and progression of septic shock. This study aims to investigate the differential expression, regulatory relationship, clinical diagnostic efficacy, and immune infiltration of lactate metabolism-related genes (LMGs) in septic shock. Methods: Two sepsis shock datasets (GSE26440 and GSE131761) were screened from the GEO database, and the common differentially expressed genes (DEGs) of the two datasets were screened out. LMGs were selected from the GeneCards database, and lactate metabolism-related DEGs (LMDEGs) were determined by integrating DEGs and LMGs. Protein-protein interaction networks, mRNA-miRNA, mRNA-RBP, and mRNA-TF interaction networks were constructed using STRING, miRDB, ENCORI, and CHIPBase databases, respectively. Receiver operating characteristic (ROC) curves were constructed for each of the LMDEGs to evaluate the diagnostic efficacy of the expression changes in relation to septic shock. Finally, immune infiltration analysis was performed using ssGSEA and CIBERSORT. Results: This study identified 10 LMDEGs, including LDHB, STAT3, LDHA, GSR, FOXM1, PDP1, GCDH, GCKR, ABCC1, and CDKN3. Enrichment analysis revealed that DEGs were significantly enriched in pathways such as pyruvate metabolism, hypoxia pathway, and immune-inflammatory pathways. PPI networks based on LMDEGs, as well as 148 pairs of mRNA-miRNA interactions, 243 pairs of mRNA-RBP interactions, and 119 pairs of mRNA-TF interactions were established. ROC curves of eight LMDEGs (LDHA, GSR, STAT3, CDKN3, FOXM1, GCKR, PDP1, and LDHB) with consistent expression patterns in two datasets had an area under the curve (AUC) ranging from 0.662 to 0.889. The results of ssGSEA and CIBERSORT both showed significant differences in the infiltration of various immune cells, including CD8 T cells, T regulatory cells, and natural killer cells, and LMDEGs such as STAT3, LDHB, LDHA, PDP1, GSR, FOXM1, and CDKN3 were significantly associated with various immune cells. Conclusion: The LMDEGs are significantly associated with the immune-inflammatory response in septic shock and have a certain diagnostic accuracy for septic shock.
Collapse
Affiliation(s)
- Huimin Jiang
- Emergency Intensive Care Unit, Ningxiang People’s Hospital Affiliated to Hunan University of Chinese Medicine, Changsha, China
| | - Yun Ren
- Emergency Department, Ningxiang People’s Hospital Affiliated to Hunan University of Chinese Medicine, Changsha, China
| | - Jiale Yu
- Emergency Department, Ningxiang People’s Hospital Affiliated to Hunan University of Chinese Medicine, Changsha, China
| | - Sheng Hu
- Emergency Department, Ningxiang People’s Hospital Affiliated to Hunan University of Chinese Medicine, Changsha, China
| | - Jihui Zhang
- Emergency Intensive Care Unit, Ningxiang People’s Hospital Affiliated to Hunan University of Chinese Medicine, Changsha, China
- Emergency Department, Ningxiang People’s Hospital Affiliated to Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Nagaraju N, Varma A, Taksande A, Meshram RJ. Bone Marrow Changes in Septic Shock: A Comprehensive Review. Cureus 2023; 15:e42517. [PMID: 37637609 PMCID: PMC10457471 DOI: 10.7759/cureus.42517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Septic shock is a life-threatening condition characterized by systemic inflammation resulting from a severe infection. Although the primary focus of sepsis research has traditionally been on the dysfunctional immune response, recent studies have highlighted the important role of bone marrow in the pathophysiology of septic shock. The bone marrow, traditionally regarded as the hematopoietic organ responsible for blood cell production, undergoes significant changes during sepsis, contributing to the overall immune dysregulation observed in this condition. This comprehensive review aims to provide a detailed overview of the bone marrow changes associated with septic shock. It explores the alterations in the bone marrow microenvironment, hematopoietic progenitor cells, and the subsequent effects on leukocyte production and function. Key cellular and molecular mechanisms involved in bone marrow dysfunction during septic shock are discussed, including the dysregulation of cytokines, chemokines, growth factors, and signaling pathways. Furthermore, this review highlights the clinical implications of bone marrow changes in septic shock. It emphasizes the impact of altered hematopoiesis on immune cell populations, such as neutrophils, monocytes, and lymphocytes, and their role in the progression and outcome of sepsis. The potential prognostic value of bone marrow parameters and the therapeutic implications of targeting bone marrow dysfunction are also addressed. The review summarizes relevant preclinical and clinical studies to comprehensively understand the current knowledge of bone marrow changes in septic shock. The limitations and challenges of studying bone marrow in the context of sepsis are acknowledged, and future directions for research are proposed.
Collapse
Affiliation(s)
- Nimmanagoti Nagaraju
- Paediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Varma
- Paediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amar Taksande
- Paediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Revat J Meshram
- Paediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
13
|
Zhang L, Wan H, Zhang M, Lu W, Xu F, Dong H. Estrogen receptor subtype mediated anti-inflammation and vasorelaxation via genomic and nongenomic actions in septic mice. Front Endocrinol (Lausanne) 2023; 14:1152634. [PMID: 37265700 PMCID: PMC10230057 DOI: 10.3389/fendo.2023.1152634] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Aim Sepsis is a life-threatening disease with high mortality worldwide. Septic females have lower severity and mortality than the males, suggesting estrogen exerts a protective action, but nothing is known about the role of vascular endothelial estrogen receptor subtypes in this process. In the present study, we aimed to study the estrogen receptors on mesenteric arterioles in normal and sepsis mice and to elucidate the underlying mechanisms. Methods Sepsis was induced in mice by intraperitoneal injection of LPS. The changes in the expression and release of the serum and cell supernatant proinflammatory cytokines, including TNF-α, IL-1β and IL-6, were measured by qPCR and ELISA, and the functions of multiple organs were analyzed. The functional activities of mouse mesenteric arterioles were determined by a Mulvany-style wire myograph. The expression of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptor (IP3R) in endothelial cells were examined by Western blot and their functions were characterized by cell Ca2+ imaging. Results Septic female mice had higher survival rate than the male mice, and pretreatment with E2 for 5 days significantly improved the survival rate and inhibited proinflammatory cytokines in septic male mice. E2 ameliorated pulmonary, intestinal, hepatic and renal multiple organ injuries in septic male mice; and ER subtypes inhibited proinflammatory cytokines in endothelial cells via PLC/IP3R/Ca2+ pathway. E2/ER subtypes immediately induced endothelial-derived hyperpolarization (EDH)-mediated vasorelaxation via PLC/IP3R/Ca2+ pathway, which was more impaired in septic male mice. E2/ER subtypes could rescue the impaired acetylcholine (ACh)-induced EDH-mediated vasorelaxation in septic male mice. Conclusions E2 through ER subtypes mediates anti-inflammation and vasorelaxation via genomic and nongenomic actions in sepsis. Mechanistically, activation of endothelial ER subtypes reduces proinflammatory cytokines and induces EDH-mediated vasorelaxation via PLC/IP3R/Ca2+ pathway, leading to amelioration of sepsis-induced organ injury and survival rate.
Collapse
Affiliation(s)
- Luyun Zhang
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hanxing Wan
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mengting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hui Dong
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
14
|
Joffre J, Raia L, Urbina T, Bonny V, Gabarre P, Missri L, Baudel JL, Coppo P, Guidet B, Maury E, Ait-Oufella H. Reversible skin microvascular hyporeactivity in patients with immune-mediated thrombocytopenic thrombotic purpura. Crit Care 2023; 27:116. [PMID: 36944989 PMCID: PMC10028781 DOI: 10.1186/s13054-023-04405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare disease characterized by arteriolar and capillary microthrombosis precipitating organ failure. However, the contribution of endothelial dysfunction on impaired microvascular blood flow in iTTP patients has been poorly explored. This pilot observational study aimed to explore endothelial-mediated vasoreactivity in iTTP patients at admission and its changes after plasma exchange therapy (PE). METHODS We conducted a prospective observational study in patients (> 18-year old) admitted in ICU for iTTP. Using laser Doppler flowmetry and acetylcholine (Ach) iontophoresis in the forearm, we recorded the skin microvascular blood flow and the endothelium-mediated vasoreactivity at admission and after PE. Demographics, biological, clinical courses, and outcomes were also collected. As a control group, we used a previously published cohort of young diabetic patients after correction of ketoacidosis. RESULTS Eighteen confirmed iTTP patients and 34 controls were included in the study, mainly female (72%) aged 43 ± 16-year-old. At admission, 55% had neurological abnormalities, 50% cardiac issues and 27.8% an acute kidney injury. Median platelet count was 19 G/mL [10-37]. Baseline microvascular blood flow was decreased in iTTP patients when compared to controls (5.97 ± 4.5 vs. 10.1 ± 6.3 PU, P = 0.03), associated with markedly impaired endothelial-mediated skin microvascular reactivity (AUC: 9627 ± 8122 vs. 16,475 ± 11,738, P = 0.03). Microvascular reactivity improved after the first PE session (AUC: 9627 ± 8122 vs 16,558 ± 10,699, P = 0.007, respectively, baseline and post-PE1) and much more after the second session (26,431 ± 23,181, P = 0.04 post-PE1 vs post-PE2). Hemolysis biomarkers (LDH and bilirubin) negatively correlated with skin microvascular flow and vasoreactivity. CONCLUSION We highlighted a marked yet reversible skin endothelium-mediated microvascular hyporeactivity in iTTP patients that could participate in organ injury pathophysiology.
Collapse
Affiliation(s)
- Jérémie Joffre
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
- Centre de Recherche Saint-Antoine Inserm UMR-S 938, Sorbonne University, 75012, Paris, France
| | - Lisa Raia
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Tomas Urbina
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Vincent Bonny
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Paul Gabarre
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Louai Missri
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Jean-Luc Baudel
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Paul Coppo
- Hematology Department, AP-HP, Saint Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
- French Reference Center for Thrombotic Microangiopathies (CNR-MAT), Saint Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Bertrand Guidet
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Eric Maury
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Hafid Ait-Oufella
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France.
- Paris Cardiovascular Research Center, Inserm U970, University Paris Cité, Paris, France.
| |
Collapse
|
15
|
Contreras R, Hernández G, Valenzuela ED, González C, Ulloa R, Soto D, Castro R, Guzmán C, Oviedo V, Alegría L, Vidal D, Morales S, Ospina-Tascón GA, Bakker J, Kattan E. Exploring the relationship between capillary refill time, skin blood flow and microcirculatory reactivity during early resuscitation of patients with septic shock: a pilot study. J Clin Monit Comput 2022; 37:839-845. [PMID: 36495360 DOI: 10.1007/s10877-022-00946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Capillary refill time (CRT), a costless and widely available tool, has emerged as a promising target to guide septic shock resuscitation. However, it has yet to gain universal acceptance due to its potential inter-observer variability. Standardization of CRT assessment may minimize this problem, but few studies have compared this approach with techniques that directly assess skin blood flow (SBF). Our objective was to determine if an abnormal CRT is associated with impaired SBF and microvascular reactivity in early septic shock patients. Twelve septic shock patients were subjected to multimodal perfusion and hemodynamic monitoring for 24 h. Three time-points (0, 1, and 24 h) were registered for each patient. SBF was measured by laser doppler. We performed a baseline SBF measurement and two microvascular reactivity tests: one with a thermal challenge at 44 °C and other with a vascular occlusion test. Ten healthy volunteers were evaluated to obtain reference values. The patients (median age 70 years) exhibited a 28-day mortality of 50%. Baseline CRT was 3.3 [2.7-7.3] seconds. In pooled data analysis, abnormal CRT presented a significantly lower SBF when compared to normal CRT [44 (13.3-80.3) vs 193.2 (99.4-285) APU, p = 0.0001]. CRT was strongly associated with SBF (R2 0.76, p < 0.0001). An abnormal CRT also was associated with impaired thermal challenge and vascular occlusion tests. Abnormal CRT values observed during early septic shock resuscitation are associated with impaired skin blood flow, and abnormal skin microvascular reactivity. Future studies should confirm these results.
Collapse
|
16
|
Adams JA, Uryash A, Lopez JR. Non-Invasive Pulsatile Shear Stress Modifies Endothelial Activation; A Narrative Review. Biomedicines 2022; 10:biomedicines10123050. [PMID: 36551807 PMCID: PMC9775985 DOI: 10.3390/biomedicines10123050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The monolayer of cells that line both the heart and the entire vasculature is the endothelial cell (EC). These cells respond to external and internal signals, producing a wide array of primary or secondary messengers involved in coagulation, vascular tone, inflammation, and cell-to-cell signaling. Endothelial cell activation is the process by which EC changes from a quiescent cell phenotype, which maintains cellular integrity, antithrombotic, and anti-inflammatory properties, to a phenotype that is prothrombotic, pro-inflammatory, and permeable, in addition to repair and leukocyte trafficking at the site of injury or infection. Pathological activation of EC leads to increased vascular permeability, thrombosis, and an uncontrolled inflammatory response that leads to endothelial dysfunction. This pathological activation can be observed during ischemia reperfusion injury (IRI) and sepsis. Shear stress (SS) and pulsatile shear stress (PSS) are produced by mechanical frictional forces of blood flow and contraction of the heart, respectively, and are well-known mechanical signals that affect EC function, morphology, and gene expression. PSS promotes EC homeostasis and cardiovascular health. The archetype of inducing PSS is exercise (i.e., jogging, which introduces pulsations to the body as a function of the foot striking the pavement), or mechanical devices which induce external pulsations to the body (Enhanced External Pulsation (EECP), Whole-body vibration (WBV), and Whole-body periodic acceleration (WBPA aka pGz)). The purpose of this narrative review is to focus on the aforementioned noninvasive methods to increase PSS, review how each of these modify specific diseases that have been shown to induce endothelial activation and microcirculatory dysfunction (Ischemia reperfusion injury-myocardial infarction and cardiac arrest and resuscitation), sepsis, and lipopolysaccharide-induced sepsis syndrome (LPS)), and review current evidence and insight into how each may modify endothelial activation and how these may be beneficial in the acute and chronic setting of endothelial activation and microvascular dysfunction.
Collapse
Affiliation(s)
- Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence:
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
17
|
Macdonald S, Peake SL, Corfield AR, Delaney A. Fluids or vasopressors for the initial resuscitation of septic shock. Front Med (Lausanne) 2022; 9:1069782. [PMID: 36507525 PMCID: PMC9729725 DOI: 10.3389/fmed.2022.1069782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Intravenous fluid resuscitation is recommended first-line treatment for sepsis-associated hypotension and/or hypoperfusion. The rationale is to restore circulating volume and optimize cardiac output in the setting of shock. Nonetheless, there is limited high-level evidence to support this practice. Over the past decade emerging evidence of harm associated with large volume fluid resuscitation among patients with septic shock has led to calls for a more conservative approach. Specifically, clinical trials undertaken in Africa have found harm associated with initial fluid resuscitation in the setting of infection and hypoperfusion. While translating these findings to practice in other settings is problematic, there has been a re-appraisal of current practice with some recommending earlier use of vasopressors rather than repeated fluid boluses as an alternative to restore perfusion in septic shock. There is consequently uncertainty and variation in practice. The question of fluids or vasopressors for initial resuscitation in septic shock is the subject of international multicentre clinical trials.
Collapse
Affiliation(s)
- Stephen Macdonald
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, WA, Australia
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Sandra L. Peake
- Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Critical Care Research, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Alasdair R. Corfield
- Consultant Emergency Medicine, Royal Alexandra Hospital, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Anthony Delaney
- Malcolm Fisher Department of Intensive Care Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
- Division of Critical Care, The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
- Faculty of Medicine, Northern Clinical School, University of Sydney, Sydney, NSW, Australia
- Department of Epidemiology and Preventative Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Li X, Tan T, Wu H, Zhang C, Luo D, Zhu W, Li B, Zhuang J. Characteristics of sublingual microcirculatory changes during the early postoperative period following cardiopulmonary bypass-assisted cardiac surgery-a prospective cohort study. J Thorac Dis 2022; 14:3992-4002. [PMID: 36389306 PMCID: PMC9641360 DOI: 10.21037/jtd-22-1159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 02/27/2024]
Abstract
BACKGROUND Persistent microcirculatory dysfunction associated with increased morbidity and mortality. Interventions in the early resuscitation can be tailored to the changes of microcirculation and patient's need. However, there is usually an uncoupling of macrocirculatory and microcirculatory hemodynamics during resuscitation. Current research on the patterns of microcirculatory changes and recovery after cardiopulmonary bypass (CPB)-assisted cardiac surgery is limited. This study aimed to analyze changes in the microcirculatory parameters after CPB and their correlation with macrocirculation and to explore the characteristics of microcirculatory changes following CPB-assisted cardiac surgery. METHODS Between December 2018 and January 2019, 24 adult patients with indwelling pulmonary artery catheters after elective cardiac surgery using CPB were enrolled in this study. Both microcirculatory and macrocirculatory parameters were collected at 0, 6, 16, and 24 hours after admission to the intensive care unit (ICU). Video images of sublingual microcirculation were analyzed to obtain the microcirculatory parameters, including total vascular density (TVD), perfused small vessel density (PSVD), the proportion of perfused small vessels (PPV), microvascular flow index (MFI), and flow heterogeneity index (HI). The characteristics of microcirculatory parameter change following cardiac surgery and the correlation between microcirculatory parameters and macroscopic hemodynamic indicators, oxygen metabolic indicators, and carbon dioxide partial pressure difference (PCO2gap) were analyzed. RESULTS There were significant differences in the changes of TVD (P=0.012) and PSVD (P=0.005) during the first 24 hours postoperatively in patients who underwent CPB-assisted cardiac surgery. The microcirculatory density parameters (TVD: r=-0.5059, P=0.0456; PVD: r=-0.5499, P=0.0273) were correlated with oxygen delivery index (DO2I) at 24 hours after surgery. The microcirculatory flow parameters (PPV: r=0.4370, P=0.0327; MFI: r=0.6496, P=0.0006; and HI: r=-0.5350, P=0.0071) had a strong correlation with PCO2gap at 0 hour after surgery. CONCLUSIONS TVD and PSVD might be two most sensitive indicators affected by CPB-assisted cardiac surgery. There was no consistency between microcirculation and macrocirculation until 24 hours following cardiac surgery, meaning the improvement of systemic hemodynamic indicators does not guarantee correspondently improvement in microcirculation. Early controlled oxygen supply after CPB-assisted cardiac surgery may be conducive to the resuscitation of patients to a certain extent.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Tong Tan
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Hongxiang Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Chongjian Zhang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Dandong Luo
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Weizhong Zhu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Boyu Li
- Department of Center for Private Medical Service & Healthcare, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| |
Collapse
|