1
|
Liu Y, Zhou J, Yang Y, Chen X, Chen L, Wu Y. Intestinal Microbiota and Its Effect on Vaccine-Induced Immune Amplification and Tolerance. Vaccines (Basel) 2024; 12:868. [PMID: 39203994 PMCID: PMC11359036 DOI: 10.3390/vaccines12080868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
This review provides the potential of intestinal microbiota in vaccine design and application, exploring the current insights into the interplay between the intestinal microbiota and the immune system, with a focus on its intermediary function in vaccine efficacy. It summarizes families and genera of bacteria that are part of the intestinal microbiota that may enhance or diminish vaccine efficacy and discusses the foundational principles of vaccine sequence design and the application of gut microbial characteristics in vaccine development. Future research should further investigate the use of multi-omics technologies to elucidate the interactive mechanisms between intestinal microbiota and vaccine-induced immune responses, aiming to optimize and improve vaccine design.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yangping Wu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, China
| |
Collapse
|
2
|
Chen Y, Cao Z, Lu S, Wang Z, Ma C, Zhang G, Chen M, Yang J, Ren Z, Xu J. Pediococcus pentosaceus MIANGUAN Enhances the Immune Response to Vaccination in Mice. Probiotics Antimicrob Proteins 2024; 16:1117-1129. [PMID: 38169032 DOI: 10.1007/s12602-023-10205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Increasing evidence shows that some probiotics can improve vaccine responses as adjuvants. This study aimed to evaluate the effect of Pediococcus pentosaceus MIANGUAN (PPM) on SARS-CoV-2 vaccine-elicited immune response in mice. Six-week-old female ICR mice were primed and boosted with SARS-CoV-2 vaccine intramuscularly at weeks 0 and 4, respectively. Mice were gavaged with PPM (5 × 109 CFU/mouse) or PBS (control) for 3 days immediately after boosting vaccination. Compared to the control, oral PPM administration resulted in significantly higher levels of RBD-specific IgG binding antibodies (> 2.3-fold) and RBD-specific IgG1 binding antibodies (> 4-fold) in the serum. Additionally, PPM-treated mice had higher titers of RBD-specific IgG binding antibodies (> 2.29-fold) and neutralization antibodies (> 1.6-fold) in the lung compared to the control mice. The transcriptional analyses showed that the B cell receptor (BCR) signaling pathway was upregulated in both splenocytes and BAL cells in the PPM group vs. the control group. In addition, the number of IFN-γ-producing splenocytes (mainly in CD4 + T cells as determined by flow cytometry) in response to restimulation of RBD peptides was significantly increased in the PPM group. RNA sequencing showed that the genes associated with T cell activation and maturation and MHC class II pathway (CD4, H2-DMa, H2-DMb1, H2-Oa, Ctss) were upregulated, suggesting that oral administration of PPM may enhance CD4 + T cell responses through MHC class II pathway. Furthermore, PPM administration could downregulate the expression level of proinflammatory genes. To conclude, oral administration of PPM could boost SARS-CoV-2 vaccine efficacy through enhancing the specific humoral and cellular immunity response and decrease the expression of inflammation pathways.
Collapse
Affiliation(s)
- Yulu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Zhijie Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Simin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhihuan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Caiyun Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Gui Zhang
- Infection Management Office, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Mengshan Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Institute of Public Health, Nankai University, Tianjin, 300071, China
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China.
| | - Jianguo Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China.
- Institute of Public Health, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Mei J, Yang Q, Jiang L, Wang T, Li Y, Yu X, Wu Z. Immune protection of grass carp by oral vaccination with recombinant Bacillus methylotrophicus expressing the heterologous tolC gene. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109701. [PMID: 38878911 DOI: 10.1016/j.fsi.2024.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/19/2024]
Abstract
In the field of aquaculture, the enhancement of animal health and disease prevention is progressively being tackled using alternatives to antibiotics, including vaccines and probiotics. This study was designed to evaluate the potential of a recombinant Bacillus methylotrophicus, engineered to express the outer membrane channel protein TolC of Aeromonas hydrophila AH3 and the green fluorescent protein GFP, as an oral vaccine. Initially, the genes encoding tolC and GFP were cloned into a prokaryotic expression system, and anti-TolC mouse antiserum was generated. Subsequently, the tolC gene was subcloned into a modified pMDGFP plasmid, which was transformed into B. methylotrophicus WM-1 for protein expression. The recombinant B. methylotrophicus BmT was then administered to grass carp via co-feeding, and its efficacy as an oral vaccine was assessed. Our findings demonstrated successful expression of the 55 kDa TolC and 28 kDa GFP proteins, and the preparation of polyclonal antibodies with high specificity. The BmT exhibited stable expression of the GFP-TolC fusion protein and excellent genetic stability. Following oral immunization, significant elevations were observed in serum-specific IgM levels and the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in grass carp. Concurrently, significant upregulation of immune-related genes, including IFN-I, IL-10, IL-1β, TNF-α, and IgT, was noted in the intestines, head kidney, and spleen of the grass carp. Colonization tests further revealed that the BmT persisted in the gut of immunized fish even after a fasting period of 7 days. Notably, oral administration of BmT enhanced the survival rate of grass carp following A. hydrophila infection. These results suggest that the oral BmT vaccine developed in this study holds promise for future applications in aquaculture.
Collapse
Affiliation(s)
- Jing Mei
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Liyan Jiang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Tao Wang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Xu C, Aqib AI, Fatima M, Muneer S, Zaheer T, Peng S, Ibrahim EH, Li K. Deciphering the Potential of Probiotics in Vaccines. Vaccines (Basel) 2024; 12:711. [PMID: 39066349 PMCID: PMC11281421 DOI: 10.3390/vaccines12070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The demand for vaccines, particularly those prepared from non-conventional sources, is rising due to the emergence of drug resistance around the globe. Probiotic-based vaccines are a wise example of such vaccines which represent new horizons in the field of vaccinology in providing an enhanced and diversified immune response. The justification for incorporating probiotics into vaccines lies in the fact that that they hold the capacity to regulate immune function directly or indirectly by influencing the gastrointestinal microbiota and related pathways. Several animal-model-based studies have also highlighted the efficacy of these vaccines. The aim of this review is to collect and summarize the trends in the recent scientific literature regarding the role of probiotics in vaccines and vaccinology, along with their impact on target populations.
Collapse
Affiliation(s)
- Chang Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Sadia Muneer
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Essam H. Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Oyanguren M, Molina E, Mugica M, Ladero-Auñon I, Fuertes M, Fernández M, Benavides J, Elguezabal N. Probiotic bacteria can modulate immune responses to paratuberculosis vaccination. Front Cell Infect Microbiol 2024; 14:1394070. [PMID: 38895731 PMCID: PMC11183331 DOI: 10.3389/fcimb.2024.1394070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) is the etiological agent of paratuberculosis (PTB), a chronic intestinal inflammatory disease that causes high economical losses in dairy livestock worldwide. Due to the absence of widely available preventive or therapeutical treatments, new alternative therapies are needed. In this study, the effect of a probiotic alone or in combination with a commercial vaccine has been evaluated in a rabbit model. Vaccination enhanced the humoral response, exerted a training effect of peripheral polymorphonuclear neutrophils (PMNs) against homologous and heterologous stimuli, stimulated the release of pro-inflammatory cytokines by gut-associated lymphoid tissue (GALT) macrophages, and reduced the bacterial burden in GALT as well. However, the administration of the probiotic after vaccination did not affect the PMN activity, increased metabolic demand, and supressed pro-inflammatory cytokines, although humoral response and bacterial burden decrease in GALT was maintained similar to vaccination alone. The administration of the probiotic alone did not enhance the humoral response or PMN activity, and the bacterial burden in GALT was further increased compared to the only challenged group. In conclusion, the probiotic was able to modulate the immune response hampering the clearance of the infection and was also able to affect the response of innate immune cells after vaccination. This study shows that the administration of a probiotic can modulate the immune response pathways triggered by vaccination and/or infection and even exacerbate the outcome of the disease, bringing forward the importance of verifying treatment combinations in the context of each particular infectious agent.
Collapse
Affiliation(s)
- Maddi Oyanguren
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Elena Molina
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Maitane Mugica
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Iraia Ladero-Auñon
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Miguel Fuertes
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Miguel Fernández
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montana (IGM) Consejo Superior de Investigaciones Científicas-Universidad de León (CSIC-ULE), León, Spain
| | - Natalia Elguezabal
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
6
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
7
|
Jesus GFA, Galvani NC, Abel JDS, Scussel R, Fagundes MĹ, Córneo EDS, Rossetto M, Sargiani D, de Ávila RAM, Michels M. Nuxcell Neo ® improves vaccine efficacy in antibody response. Front Vet Sci 2024; 11:1248811. [PMID: 38414656 PMCID: PMC10898353 DOI: 10.3389/fvets.2024.1248811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Current vaccination protocols raise concerns about the efficacy of immunization. There is evidence that changes in the gut microbiota can impact immune response. The formation of the gut microbiota in newborns plays a crucial role in immunity. Probiotic bacteria and prebiotics present important health-promoting and immunomodulatory properties. Thus, we hypothesize that pro and prebiotic supplementation can improve the efficacy of vaccination in newborns. In this protocol, newborn mice were used and treated with a single-dose rabies vaccine combined with Nuxcell Neo® (2 g/animal/week) for 3 weeks. Samples were collected on days 7, 14, and 21 after vaccination for analysis of cytokines and concentration of circulating antibodies. Our results show an increased concentration of antibodies in animals vaccinated against rabies and simultaneously treated with Nuxcell Neo® on days 14 and 21 when compared to the group receiving only the vaccine. In the cytokine levels analysis, it was possible to observe that there weren't relevant and significant changes between the groups, which demonstrates that the health of the animal remains stable. The results of our study confirm the promising impact of the use of Nuxcell Neo® on the immune response after vaccination.
Collapse
Affiliation(s)
| | - Nathalia Coral Galvani
- Laboratory of Experimental Pathophysiology, UNESC—University of Southern Santa Catarina, Criciúma, Brazil
| | - Jéssica da Silva Abel
- Laboratory of Experimental Pathophysiology, UNESC—University of Southern Santa Catarina, Criciúma, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Pathophysiology, UNESC—University of Southern Santa Catarina, Criciúma, Brazil
| | - Mírian ĺvens Fagundes
- Laboratory of Experimental Pathophysiology, UNESC—University of Southern Santa Catarina, Criciúma, Brazil
| | - Emily da Silva Córneo
- Laboratory of Experimental Pathophysiology, UNESC—University of Southern Santa Catarina, Criciúma, Brazil
| | | | | | | | - Monique Michels
- Biohall Consulting, Research and Innovation, Itajaí, Santa Catarina, Brazil
| |
Collapse
|
8
|
Santacroce L, Topi S, Charitos IA, Lovero R, Luperto P, Palmirotta R, Jirillo E. Current Views about the Inflammatory Damage Triggered by Bacterial Superantigens and Experimental Attempts to Neutralize Superantigen-Mediated Toxic Effects with Natural and Biological Products. PATHOPHYSIOLOGY 2024; 31:18-31. [PMID: 38251046 PMCID: PMC10801599 DOI: 10.3390/pathophysiology31010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Superantigens, i.e., staphylococcal enterotoxins and toxic shock syndrome toxin-1, interact with T cells in a different manner in comparison to conventional antigens. In fact, they activate a larger contingent of T lymphocytes, binding outside the peptide-binding groove of the major histocompatibility complex class II. Involvement of many T cells by superantigens leads to a massive release of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-2, IL-6, tumor necrosis factor-alpha and interferon-gamma. Such a storm of mediators has been shown to account for tissue damage, multiorgan failure and shock. Besides conventional drugs and biotherapeutics, experiments with natural and biological products have been undertaken to attenuate the toxic effects exerted by superantigens. In this review, emphasis will be placed on polyphenols, probiotics, beta-glucans and antimicrobial peptides. In fact, these substances share a common functional denominator, since they skew the immune response toward an anti-inflammatory profile, thus mitigating the cytokine wave evoked by superantigens. However, clinical applications of these products are still scarce, and more trials are needed to validate their usefulness in humans.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | - Ioannis Alexandros Charitos
- Division of Pneumology and Respiratory Rehabilitation, Maugeri Clinical Scientific Research Institutes (IRCCS) of Pavia—Scientific Institute of Bari, 70124 Bari, Italy
| | - Roberto Lovero
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy
| | | | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| |
Collapse
|
9
|
Malek A, Ahmadi Badi S, Karimi G, Bizouarn T, Irian S, Siadat SD. The effect of Bacteroides fragilis and its postbiotics on the expression of genes involved in the endocannabinoid system and intestinal epithelial integrity in Caco-2 cells. J Diabetes Metab Disord 2023; 22:1417-1424. [PMID: 37975078 PMCID: PMC10638345 DOI: 10.1007/s40200-023-01264-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 11/19/2023]
Abstract
Purpose Gut microbiota and its derivatives by constantly interacting with the host, regulate the host function. Intestinal epithelium integrity is under the control of various factors including the endocannabinoid system (ECS). Accordingly, we aimed at investigating the effect of Bacteroides fragilis and its postbiotics (i.e., heat-inactivated, cell-free supernatants (CFS) and outer membrane vesicles (OMVs)) on the expression of genes involved in ECS (cnr1, faah, pparg) and the epithelial barrier permeability (ocln, tjp1) in a Caco-2 cell line. Methods Caco-2 cell line was treated with live or heat-inactivated B. fragilis at MOIs of 50 and 100, or stimulated with 7% V/V CFS and B. fragilis OMVs at a dose of 50 and 100 µg/ml overnight. RT-qPCR was applied for expression analysis. Results Heat-inactivated B. fragilis induced cnr1, pparg, tjp1, and suppressed faah expression, while live B. fragilis had the opposite effect. OMVs increased pparg, and tjp1 expression by reducing the activity of ECS through an increase in faah and a reduction in cnr1 expression. Finally, an increase in the expression of pparg and ocln, and a reduction in the expression of cnr1 was detected in Caco-2 cells treated with CFS. Conclusion The live and heat-inactivated B. fragilis inversely affected cnr1, faah, pparg, and tjp1 expression in Caco-2 cells. Increased tjp1 mRNA levels by affecting the expression of ECS related genes is taken as an indication of the potential beneficial effects of B. fragilis postbiotics and making them potential candidates for improving permeability in the leaky gut syndrome. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01264-8.
Collapse
Affiliation(s)
- Amin Malek
- Department of Cell & Molecular Sciences Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Ahmadi Badi
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gilda Karimi
- Department of Cell & Molecular Sciences Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Tania Bizouarn
- Universit´e Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, Orsay, 91405 France
| | - Saeed Irian
- Department of Cell & Molecular Sciences Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Kazemi D, Doosti A, Shakhsi-Niaei M. Immunization of BALB/c mice with BAB1-0278: An initial investigation of a novel potential vaccine for brucellosis based on Lactococcus Lactis vector. Microb Pathog 2023; 185:106417. [PMID: 37866552 DOI: 10.1016/j.micpath.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The gram-negative intracellular bacterium Brucella abortus causes bovine brucellosis, a zoonotic disease that costs a lot of money. This work developed a vector vaccine against brucellosis utilizing recombinant L. lactis expressing Brucella outer membrane protein BAB1-0278. Gene sequences were obtained from GenBank. The proteins' immunogenicity was tested with Vaxijen. The target vector was converted into L. lactis after enzymatic digestion and PCR validated the BAB1-0278 gene cloning in the pNZ8148 vector. The target protein was extracted using a Ni-NTA column and confirmed using SDS-PAGE and western blot. After vaccination with the target vaccine, the expression of IgG subclasses was evaluated by the ELISA method. Cytokine production was also measured by the qPCR method in the small intestine and spleen. Lymphocyte proliferation and innate immune response (NLR, CRP, and PLR) were also assessed. Finally, after the challenge test, the spleen tissue was examined by H&E staining. BAB1-0278 was chosen because of its antigenicity score of 0.5614. A 237-bp gene fragment was discovered using enzymatic digestion and PCR. The presence of a 13 kDa protein band was confirmed by SDS-PAGE and western blot. In comparison to the PBS group, mice given the L. lactis-pNZ8148-BAB1-0278-Usp45 vaccine 14 days after priming had substantially greater levels of total IgG, IgG1, and IgG2a (P < 0.001). Also, the production of cytokines (IFN-γ, TNFα, IL-4, and IL-10) indicating cellular immunity increased compared to the control group (P < 0.001). The target group had a lower inflammatory response, morphological impairment, alveolar edema, and lymphocyte infiltration. An efficient probiotic-based oral brucellosis vaccination was created. These studies have proven that the recommended immunization gives the best protection, which supports its promotion.
Collapse
Affiliation(s)
- Donya Kazemi
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mostafa Shakhsi-Niaei
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
11
|
Liu Q, Huo X, Tian Q, Wang P, Zhao F, Yang C, Su J. The oral antigen-adjuvant fusion vaccine P-MCP-FlaC provides effective protective effect against largemouth bass ranavirus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109179. [PMID: 37863125 DOI: 10.1016/j.fsi.2023.109179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Largemouth bass ranavirus (LMBV) is highly contagious and lethal to largemouth bass, causing significant economic losses to the aquaculture industry. Oral vaccination is generally considered the most ideal strategy for protecting fish from viral infection. In this study, the fusion protein MCP-FlaC, consisting of the main capsid protein (MCP) as the antigen and flagellin C (FlaC) as the adjuvant, was intracellularly expressed in Pichia pastoris. Subsequently, the recombinant P. pastoris was freeze-dried to prepare the oral vaccine P-MCP-FlaC. Transmission electron microscopy and scanning electron microscopy analysis showed that the morphology and structure of the freeze-dried recombinant P. pastoris vaccine remained intact. The experiment fish (n = 100) was divided into five groups (P-MCP-FlaC, P-MCP, P-FlaC, P-pPIC3.5K, control) to evaluate the protective efficacy of the recombinant vaccine. Oral P-MCP-FlaC vaccine effectively up-regulated the serum enzymes activity (total superoxide dismutase, lysozyme, total antioxidant capacity, and complement component 3). The survival rate of P-MCP-FlaC group was significantly higher than that of the other groups. The mRNA expression of crucial immune genes (IL-1β, TNF-α, MHC-II, IFN-γ, Mx, IgM, IgT) was also signally elevated in P-MCP-FlaC group. Vaccine P-MCP-FlaC markedly inhibited the replication of LMBV in the spleen, head kidney, and intestine, while reducing the degree of lesion in the spleen. These results suggest that the oral P-MCP-FlaC vaccine could effectively control LMBV infection, proving an effective strategy for viral diseases prevention in aquaculture.
Collapse
Affiliation(s)
- Qian Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingqing Tian
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengxu Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fengxia Zhao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Zhang X, Xiao H, Zhang H, Jiang Y. Lactobacillus plantarum surface-displayed FomA ( Fusobacterium nucleatum) protein generally stimulates protective immune responses in mice. Front Microbiol 2023; 14:1228857. [PMID: 37799603 PMCID: PMC10548212 DOI: 10.3389/fmicb.2023.1228857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/07/2023] [Indexed: 10/07/2023] Open
Abstract
A significant correlation is observed between Fusobacterium nucleatum (F. nucleatum) and the evolution of inflammatory bowel disease (IBD). Particularly, FomA, a critical pathogenic element of F. nucleatum, inflicts substantial detriment to human intestinal health. Our research focused on the development of recombinant Lactobacillus plantarum that expresses FomA protein, demonstrating its potential in protecting mice from severe IBD induced by F. nucleatum. To commence, two recombinant strains, namely L. plantarum NC8-pSIP409-pgsA'-FomA and NC8-pSIP409-FnBPA-pgsA'-FomA, were successfully developed. Validation of the results was achieved through flow cytometry, ELISA, and MTT assays. It was observed that recombinant L. plantarum instigated mouse-specific humoral immunity and elicited mucosal and T cell-mediated immune responses. Significantly, it amplified the immune reaction of B cells and CD4+T cells, facilitated the secretion of cytokines such as IgA, IL4, and IL10, and induced lymphocyte proliferation in response to FomA protein stimulation. Finally, we discovered that administering recombinant L. plantarum could protect mice from severe IBD triggered by F. nucleatum, subsequently reducing pathological alterations and inflammatory responses. These empirical findings further the study of an innovative oral recombinant Lactobacillus vaccine.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huaiyu Zhang
- Department of Rehabilitation Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Najam A, Ahmad S, Abid R, Ali H, Husnain M, Aziz T, Adeel SS, Muhammad N, Ghazanfar S. Immune-adjuvant effect of vitamin A and probiotics supplementation on humoral response to cell culture rabies vaccine in rabbits. 3 Biotech 2023; 13:232. [PMID: 37323857 PMCID: PMC10258788 DOI: 10.1007/s13205-023-03631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
This study was carried out to evaluate the effects of vitamin A (Vit A) and probiotic co-supplementation with rabies vaccine on humoral immune response in New Zealand white (NZW) rabbits. For this experiment, 54 rabbits were randomized into six experimental and three control groups. Mixed cultures of commercial probiotics supplements and a dose of Vit A were administered to each animal. Results were compared with the control group fed with only basal diet. Animals in different treatment groups showed significantly higher sero-conversions against rabies vaccine. There was a significant increase (p < 0.001) in the titers of rabies antibodies in all treatment groups on 14th and 35th days than control C3 group. Both commercial probiotics irrespective of brand increase the humoral immune response of rabbits against rabies vaccine. The mean titer values of all groups G1-G6 and sub-controls (C1, C2) were generally above 3.6 EU/ml on day 14th and between 3.7 and 3.9 EU/ml, showing highest sero-conversion on 35th day than mean titer of C3 control = 3.091 and 3.505 EU/ml respectively on both days. The maximum titer values were obtained with the addition of organic carrots to the daily diet. These results suggest that simple dietary interventions using probiotics and Vit A in natural form may enhance the efficacy of rabies vaccine in the host. These cost-effective strategies can be applied for getting higher yields of polyclonal antibody production in animal models, thus providing promising means of improving the final product yield and can be adopted easily by the manufacturers.
Collapse
Affiliation(s)
- Amina Najam
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Safia Ahmad
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Rameesha Abid
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, 45500 Pakistan
| | - Hussain Ali
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
| | - Murtaza Husnain
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Tariq Aziz
- Department of Zoology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Syeda Shazia Adeel
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
| | - Naeil Muhammad
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519 Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, 45500 Pakistan
| |
Collapse
|
14
|
Sarnelli G, Del Re A, Pesce M, Lu J, Esposito G, Sanseverino W, Corpetti C, Basili Franzin S, Seguella L, Palenca I, Rurgo S, De Palma FDE, Zilli A, Esposito G. Oral Immunization with Escherichia coli Nissle 1917 Expressing SARS-CoV-2 Spike Protein Induces Mucosal and Systemic Antibody Responses in Mice. Biomolecules 2023; 13:biom13030569. [PMID: 36979504 PMCID: PMC10046078 DOI: 10.3390/biom13030569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
As of October 2022, the COVID-19 pandemic continues to pose a major public health conundrum, with increased rates of symptomatic infections in vaccinated individuals. An ideal vaccine candidate for the prevention of outbreaks should be rapidly scalable, easy to administer, and able to elicit a potent mucosal immunity. Towards this aim, we proposed an engineered Escherichia coli (E. coli) Nissle 1917 (EcN) strain with SARS-CoV-2 spike protein (SP)-coding plasmid, which was able to expose SP on its cellular surface by a hybridization with the adhesin involved in diffuse adherence 1 (AIDA1). In this study, we presented the effectiveness of a 16-week intragastrically administered, engineered EcN in producing specific systemic and mucosal immunoglobulins against SARS-CoV-2 SP in mice. We observed a time-dependent increase in anti-SARS-CoV-2 SP IgG antibodies in the sera at week 4, with a titre that more than doubled by week 12 and a stable circulating titre by week 16 (+309% and +325% vs. control; both p < 0.001). A parallel rise in mucosal IgA antibody titre in stools, measured via intestinal and bronchoalveolar lavage fluids of the treated mice, reached a plateau by week 12 and until the end of the immunization protocol (+300, +47, and +150%, at week 16; all p < 0.001 vs. controls). If confirmed in animal models of infection, our data indicated that the engineered EcN may be a potential candidate as an oral vaccine against COVID-19. It is safe, inexpensive, and, most importantly, able to stimulate the production of both systemic and mucosal anti-SARS-CoV-2 spike-protein antibodies.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
| | - Jie Lu
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Anatomy and Cell Biology, China Medical University, Shenyang 110122, China
| | - Giovanni Esposito
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, 80131 Naples, Italy
| | - Walter Sanseverino
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
| | - Chiara Corpetti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Basili Franzin
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Palenca
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
| | - Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, 80131 Naples, Italy
| | - Aurora Zilli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Esposito
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
15
|
Ismael M, Gu Y, Cui Y, Wang T, Yue F, Qin Y, Lü X. Probiotic of Lactiplantibacillus plantarum NWAFU-BIO-BS29 Isolated from Chinese Traditional Fermented Milk and Its Potential Therapeutic Applications Based on Gut Microbiota Regulation. Foods 2022; 11:3766. [PMID: 36496574 PMCID: PMC9738876 DOI: 10.3390/foods11233766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Lactic acid bacteria are one of the bioresources that can promote the host's health and have potential therapeutic applications. This study aimed to evaluate the probiotic properties of novel Lactiplantibacillus plantarum NWAFU-BISO-BS29 isolated in vitro from traditional Chinese fermented milk, assess its safety, and study its interaction with the gut microbiota using a BALB/c mouse model. The findings reveal that this strain had a high tolerance to gastric acidity (64.4%) and bile salts (19.83-87.92%) with remarkable auto-aggregation and co-aggregation abilities (33.01-83.96%), respectively. Furthermore, it lowered the cholesterol levels in dead cells (44.02%) and live cells (34.95%) and produced short-chain fatty acids (SCFAs). Likewise, it showed good antioxidant properties and strong antipathogen activity against Escherichia coli and Staphylococcus aureus with inhibition zones at 21 and 25 mm, respectively. The safety assessment results indicate that all of the virulence factor genes were not detected in the whole DNA; additionally, no hemolysis or resistance to antibiotics commonly used in food and feed was observed. Interestingly, the 16S rRNA gene sequencing of the mouse gut microbiota showed a marked alteration in the microbial composition of the administrated group, with a noticeable increase in Firmicutes, Patescibacteria, Campylobacterota, Deferribacterota, Proteobacteria, and Cyanobacteria at the phylum level. The modulation of gut microbial diversity significantly improved the production of SCFCs due to the abundance of lactobacillus genera, which was consistent with the functional gene predictive analysis and is believed to have health-promoting properties. Based on these results, our novel strain is considered a safe and good probiotic and could hold high potential to be used as a starter culture or to safely supplement functional foods as a probiotic and may provide new insights into therapeutic interventions.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
- Sudanese Standards and Metrology Organization, Khartoum 13573, Sudan
| | - Yaxin Gu
- College of Food Science, China Agricultural University, Beijing 100083, China
| | - Yanlong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yanting Qin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|