1
|
Michaelis S, Gomez-Valero L, Chen T, Schmid C, Buchrieser C, Hilbi H. Small molecule communication of Legionella: the ins and outs of autoinducer and nitric oxide signaling. Microbiol Mol Biol Rev 2024; 88:e0009723. [PMID: 39162424 PMCID: PMC11426016 DOI: 10.1128/mmbr.00097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
SUMMARYLegionella pneumophila is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of Legionella-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. L. pneumophila produces, secretes, and detects the α-hydroxyketone compound Legionella autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by L. pneumophila in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. L. pneumophila detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked via the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by Legionella species.
Collapse
Affiliation(s)
- Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Tong Chen
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Colautti A, Civilini M, Bortolomeazzi R, Franchi M, Felice A, De Martin S, Iacumin L. Genotypic and phenotypic profiling of 127 Legionella pneumophila strains: Insights into regional spread. PLoS One 2024; 19:e0307646. [PMID: 39028750 PMCID: PMC11259292 DOI: 10.1371/journal.pone.0307646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Given the recent global surge in Legionnaires' disease cases, the monitoring of Legionella pneumophila becomes increasingly crucial. Epidemiological cases often stem from local outbreaks rather than widespread dissemination, emphasizing the need to study the characteristics of this pathogen at a local level. This study focuses on isolates of L. pneumophila in the Italian region of Friuli Venezia Giulia to assess specific genotype and phenotype distribution over time and space. To this end, a total of 127 L. pneumophila strains isolated between 2005 and 2017 within national surveillance programs were analysed. Rep-PCR, RAPD, and Sau-PCR were used for genotypic characterization, while phenotypic characterization was conducted through fatty acids analysis. RAPD and Sau-PCR effectively assessed genetic characteristics, identifying different profiles for the isolates and excluding the presence of clones. Although Sau-PCR is rarely used to analyse this pathogen, it emerged as the most discriminatory technique. Phenotypically, hierarchical cluster analysis categorized strains into three groups based on varying membrane fatty acid percentages. However, both phenotypic and genotypic analyses revealed a ubiquitous profile distribution at a regional level. These results suggest an absence of correlations between strain profiles, geographical location, and isolation time, indicating instead high variability and strain dissemination within this region.
Collapse
Affiliation(s)
- Andrea Colautti
- Department of Agricultural, Food, Environmental and Animal Science (Di4A), University of Udine, Udine, Italy
| | - Marcello Civilini
- Department of Agricultural, Food, Environmental and Animal Science (Di4A), University of Udine, Udine, Italy
| | - Renzo Bortolomeazzi
- Department of Agricultural, Food, Environmental and Animal Science (Di4A), University of Udine, Udine, Italy
| | - Marinella Franchi
- Laboratory of Microbiology, ARPA–Regional Agency for Environmental Protection Friuli Venezia Giulia, Udine, Italy
| | - Antonella Felice
- Laboratory of Microbiology, ARPA–Regional Agency for Environmental Protection Friuli Venezia Giulia, Udine, Italy
| | - Stefano De Martin
- Laboratory of Microbiology, ARPA–Regional Agency for Environmental Protection Friuli Venezia Giulia, Udine, Italy
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science (Di4A), University of Udine, Udine, Italy
| |
Collapse
|
3
|
Hayatimehr S, Mirkalantari S, Amirmozafari N, Jazi FM, Moghadam MT. Virulence Genes and Biofilm Formation Among Legionella pneumophila Isolates Collected from Hospital Water Sources. Curr Microbiol 2024; 81:141. [PMID: 38625380 DOI: 10.1007/s00284-023-03609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/29/2023] [Indexed: 04/17/2024]
Abstract
Legionella pneumophila can be transmitted to people, especially immunocompromised patients, via hospital water pipe systems and cause severe pneumonia. The aim of our study was to investigate the presence of major virulence factor genes, ability of biofilms formation, and correlation between presence of Legionella isolates and temperature, pH, and residual chlorine of water. Hundred water samples were collected from nine hospitals in Tehran, Iran. Temperature, pH, and residual chlorine were determined during sampling. Different virulence genes and the ability to form biofilms were subsequently analyzed among the L. pneumophila isolates. Results showed that 12 (12%) samples were positive in culture method and all of the isolates were positive as L. pneumophila species (mip). A correlation was found between Legionella culture positivity and temperature and pH of water, but there was no significant correlation between residual chlorine of water samples and the presence of Legionella. The isolation of Legionella rate in summer and spring was higher than winter and autumn. Twelve (100%) isolates were positive for mip genes, 9 (75%) for dot genes, 8 (66.66%) for hsp, 6 (50%) for lvh, and 4 (33.33%) for rtx. All of the isolates displayed strong ability for biofilm production every three days. Two of these isolates (16.6%) displayed weak ability to form biofilm on the first day of incubation. This study revealed that water sources in hospitals were colonized by virulent Legionella and should be continuously monitored to avoid elevated concentrations of Legionella with visible biofilm formation.
Collapse
Affiliation(s)
- Sara Hayatimehr
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Mesas Gómez M, Molina-Moya B, de Araujo Souza B, Boldrin Zanoni MV, Julián E, Domínguez J, Pividori MI. Improved biosensing of Legionella by integrating filtration and immunomagnetic separation of the bacteria retained in filters. Mikrochim Acta 2024; 191:82. [PMID: 38191940 PMCID: PMC10774190 DOI: 10.1007/s00604-023-06122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
A novel approach is presented that combines filtration and the direct immunomagnetic separation of the retained bacteria Legionella in filters, for further electrochemical immunosensing. This strategy allows for the separation and preconcentration of the water-borne pathogen from high-volume samples, up to 1000 mL. The limit of detection of the electrochemical immunosensor resulted in 100 CFU mL-1 and improved up to 0.1 CFU mL-1 when the preconcentration strategy was applied in 1 L of sample (103-fold improvement). Remarkably, the immunosensor achieves the limit of detection in less than 2.5 h and simplified the analytical procedure. This represents the lowest concentration reported to date for electrochemical immunosensing of Legionella cells without the need for pre-enrichment or DNA amplification. Furthermore, the study successfully demonstrates the extraction of bacteria retained on different filtering materials using immunomagnetic separation, highlighting the high efficiency of the magnetic particles to pull out the bacteria directly from solid materials. This promising feature expands the applicability of the method beyond water systems for detecting bacteria retained in air filters of air conditioning units by directly performing the immunomagnetic separation in the filters.
Collapse
Affiliation(s)
- Melania Mesas Gómez
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Bárbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bárbara de Araujo Souza
- Department of Analytical Chemistry, Institute of Chemistry, UNESP, Universidad Estadual Paulista, Araraquara, SP, Brazil
| | - Maria Valnice Boldrin Zanoni
- Department of Analytical Chemistry, Institute of Chemistry, UNESP, Universidad Estadual Paulista, Araraquara, SP, Brazil
| | - Esther Julián
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José Domínguez
- Institut d'Investigació Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Isabel Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
5
|
Fan M, Kiefer P, Charki P, Hedberg C, Seibel J, Vorholt JA, Hilbi H. The Legionella autoinducer LAI-1 is delivered by outer membrane vesicles to promote interbacterial and interkingdom signaling. J Biol Chem 2023; 299:105376. [PMID: 37866633 PMCID: PMC10692735 DOI: 10.1016/j.jbc.2023.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Legionella pneumophila is an environmental bacterium, which replicates in amoeba but also in macrophages, and causes a life-threatening pneumonia called Legionnaires' disease. The opportunistic pathogen employs the α-hydroxy-ketone compound Legionella autoinducer-1 (LAI-1) for intraspecies and interkingdom signaling. LAI-1 is produced by the autoinducer synthase Legionella quorum sensing A (LqsA), but it is not known, how LAI-1 is released by the pathogen. Here, we use a Vibrio cholerae luminescence reporter strain and liquid chromatography-tandem mass spectrometry to detect bacteria-produced and synthetic LAI-1. Ectopic production of LqsA in Escherichia coli generated LAI-1, which partitions to outer membrane vesicles (OMVs) and increases OMV size. These E. coli OMVs trigger luminescence of the V. cholerae reporter strain and inhibit the migration of Dictyostelium discoideum amoeba. Overexpression of lqsA in L.pneumophila under the control of strong stationary phase promoters (PflaA or P6SRNA), but not under control of its endogenous promoter (PlqsA), produces LAI-1, which is detected in purified OMVs. These L. pneumophila OMVs trigger luminescence of the Vibrio reporter strain and inhibit D. discoideum migration. L. pneumophila OMVs are smaller upon overexpression of lqsA or upon addition of LAI-1 to growing bacteria, and therefore, LqsA affects OMV production. The overexpression of lqsA but not a catalytically inactive mutant promotes intracellular replication of L. pneumophila in macrophages, indicating that intracellularly produced LA1-1 modulates the interaction in favor of the pathogen. Taken together, we provide evidence that L. pneumophila LAI-1 is secreted through OMVs and promotes interbacterial communication and interactions with eukaryotic host cells.
Collapse
Affiliation(s)
- Mingzhen Fan
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Paul Charki
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Christian Hedberg
- Institute of Chemistry and Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | | | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Ayesha A, Chow FWN, Leung PHM. Role of Legionella pneumophila outer membrane vesicles in host-pathogen interaction. Front Microbiol 2023; 14:1270123. [PMID: 37817751 PMCID: PMC10561282 DOI: 10.3389/fmicb.2023.1270123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Legionella pneumophila is an opportunistic intracellular pathogen that inhabits artificial water systems and can be transmitted to human hosts by contaminated aerosols. Upon inhalation, it colonizes and grows inside the alveolar macrophages and causes Legionnaires' disease. To effectively control and manage Legionnaires' disease, a deep understanding of the host-pathogen interaction is crucial. Bacterial extracellular vesicles, particularly outer membrane vesicles (OMVs) have emerged as mediators of intercellular communication between bacteria and host cells. These OMVs carry a diverse cargo, including proteins, toxins, virulence factors, and nucleic acids. OMVs play a pivotal role in disease pathogenesis by helping bacteria in colonization, delivering virulence factors into host cells, and modulating host immune responses. This review highlights the role of OMVs in the context of host-pathogen interaction shedding light on the pathogenesis of L. pneumophila. Understanding the functions of OMVs and their cargo provides valuable insights into potential therapeutic targets and interventions for combating Legionnaires' disease.
Collapse
Affiliation(s)
| | | | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Krysińska M, Baranowski B, Deszcz B, Pawłowski K, Gradowski M. Pan-kinome of Legionella expanded by a bioinformatics survey. Sci Rep 2022; 12:21782. [PMID: 36526881 PMCID: PMC9758233 DOI: 10.1038/s41598-022-26109-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The pathogenic Legionella bacteria are notorious for delivering numerous effector proteins into the host cell with the aim of disturbing and hijacking cellular processes for their benefit. Despite intensive studies, many effectors remain uncharacterized. Motivated by the richness of Legionella effector repertoires and their oftentimes atypical biochemistry, also by several known atypical Legionella effector kinases and pseudokinases discovered recently, we undertook an in silico survey and exploration of the pan-kinome of the Legionella genus, i.e., the union of the kinomes of individual species. In this study, we discovered 13 novel (pseudo)kinase families (all are potential effectors) with the use of non-standard bioinformatic approaches. Together with 16 known families, we present a catalog of effector and non-effector protein kinase-like families within Legionella, available at http://bioinfo.sggw.edu.pl/kintaro/ . We analyze and discuss the likely functional roles of the novel predicted kinases. Notably, some of the kinase families are also present in other bacterial taxa, including other pathogens, often phylogenetically very distant from Legionella. This work highlights Nature's ingeniousness in the pathogen-host arms race and offers a useful resource for the study of infection mechanisms.
Collapse
Affiliation(s)
- Marianna Krysińska
- grid.13276.310000 0001 1955 7966Department of Biochemistry and Microbiology, Warsaw University of Life Sciences — SGGW, Warsaw, Poland
| | - Bartosz Baranowski
- grid.413454.30000 0001 1958 0162Laboratory of Plant Pathogenesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bartłomiej Deszcz
- grid.13276.310000 0001 1955 7966Department of Biochemistry and Microbiology, Warsaw University of Life Sciences — SGGW, Warsaw, Poland
| | - Krzysztof Pawłowski
- grid.13276.310000 0001 1955 7966Department of Biochemistry and Microbiology, Warsaw University of Life Sciences — SGGW, Warsaw, Poland ,grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA ,grid.4514.40000 0001 0930 2361Department of Translational Medicine, Lund University, Lund, Sweden ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Dallas, TX, USA
| | - Marcin Gradowski
- grid.13276.310000 0001 1955 7966Department of Biochemistry and Microbiology, Warsaw University of Life Sciences — SGGW, Warsaw, Poland
| |
Collapse
|
8
|
Tomaskovic I, Gonzalez A, Dikic I. Ubiquitin and Legionella: From bench to bedside. Semin Cell Dev Biol 2022; 132:230-241. [PMID: 35177348 DOI: 10.1016/j.semcdb.2022.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
Legionella pneumophila, a Gram-negative intracellular bacterium, is one of the major causes of Legionnaires' disease, a specific type of atypical pneumonia. Despite intensive research efforts that elucidated many relevant structural, molecular and medical insights into Legionella's pathogenicity, Legionnaires' disease continues to present an ongoing public health concern. Legionella's virulence is based on its ability to simultaneously hijack multiple molecular pathways of the host cell to ensure its fast replication and dissemination. Legionella usurps the host ubiquitin system through multiple effector proteins, using the advantage of both conventional and unconventional (phosphoribosyl-linked) ubiquitination, thus providing optimal conditions for its replication. In this review, we summarize the current understanding of L. pneumophila from medical, biochemical and molecular perspectives. We describe the clinical disease presentation, its diagnostics and treatment, as well as host-pathogen interactions, with the emphasis on the ability of Legionella to target the host ubiquitin system upon infection. Furthermore, the interdisciplinary use of innovative technologies enables better insights into the pathogenesis of Legionnaires' disease and provides new opportunities for its treatment and prevention.
Collapse
Affiliation(s)
- Ines Tomaskovic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alexis Gonzalez
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue Straße 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Iliadi V, Staykova J, Iliadis S, Konstantinidou I, Sivykh P, Romanidou G, Vardikov DF, Cassimos D, Konstantinidis TG. Legionella pneumophila: The Journey from the Environment to the Blood. J Clin Med 2022; 11:jcm11206126. [PMID: 36294446 PMCID: PMC9605555 DOI: 10.3390/jcm11206126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
An outbreak of a potentially fatal form of pneumonia in 1976 and in the annual convention of the American Legion was the first time that Legionella spp. was identified. Thereafter, the term Legionnaires’ disease (LD) was established. The infection in humans is transmitted by the inhalation of aerosols that contain the microorganisms that belong to the Legionellaceae family and the genus Legionella. The genus Legionella contains genetically heterogeneous species and serogroups. The Legionella pneumophila serogroup 1 (Lp1) is the most often detected strain in outbreaks of LD. The pathogenesis of LD infection initiates with the attachment of the bacterial cells to the host cells, and subsequent intracellular replication. Following invasion, Legionella spp. activates its virulence mechanisms: generation of specific compartments of Legionella-containing vacuole (LCV), and expression of genes that encode a type IV secretion system (T4SS) for the translocation of proteins. The ability of L. pneumophila to transmigrate across the lung’s epithelium barrier leads to bacteremia, spread, and invasion of many organs with subsequent manifestations, complications, and septic shock. The clinical manifestations of LD depend on the bacterial load in the aerosol, the virulence factors, and the immune status of the patient. The infection has two distinct forms: the non- pneumatic form or Pontiac fever, which is a milder febrile flu-like illness, and LD, a more severe form, which includes pneumonia. In addition, the extrapulmonary involvement of LD can include heart, brain, abdomen, and joints.
Collapse
Affiliation(s)
- Valeria Iliadi
- Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia
| | - Jeni Staykova
- Faculty of Public Health, Medical University of Sofia, Byalo More Str. 8, 1527 Sofia, Bulgaria
| | - Sergios Iliadis
- Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia
| | | | - Polina Sivykh
- State Budgetary Health City Polyclinic No 2 (GBUZ GB2) of Krasnodar, Seleznev Street 4/10, 350059 Krasnodar, Russia
| | - Gioulia Romanidou
- Nephrology Department, General Hospital “Sismanogleio”, 69100 Komotini, Greece
| | - Daniil F. Vardikov
- Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Tkachey Str. 70-16, 192029 St. Petersburg, Russia
| | - Dimitrios Cassimos
- Pediatric Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Theocharis G. Konstantinidis
- Blood Transfusion Center, University General Hospital of Alexandroupolis Dragana Campus, 68100 Alexandroupolis, Greece
- Correspondence: ; Tel.: +30-2551-352005
| |
Collapse
|
10
|
Ortí-Lucas RM, Luciano E. New immunomagnetic separation method to analyze risk factors for Legionella colonization in health care centres. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:744-750. [PMID: 35264765 PMCID: PMC8906530 DOI: 10.1038/s41370-022-00421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND It's pivotal to control the presence of legionella in sanitary structures. So, it's important to determine the risk factors associated with Legionella colonization in health care centres. In recent years that is why new diagnostic techniques have been developed. OBJECTIVE To evaluate risks factors for Legionella colonization using a novel and more sensitive Legionella positivity index. METHODS A total of 204 one-litre water samples (102 cold water samples and 102 hot water samples), were collected from 68 different sampling sites of the hospital water system and tested for Legionella spp. by two laboratories using culture, polymerase chain reaction and a method based on immunomagnetic separation (IMS). A Legionella positivity index was defined to evaluate Legionella colonization and associated risk factors in the 68 water samples sites. We performed bivariate analyses and then logistic regression analysis with adjustment of potentially confounding variables. We compared the performance of culture and IMS methods using this index as a new gold standard to determine if rapid IMS method is an acceptable alternative to the use of slower culture method. RESULTS Based on the new Legionella positivity index, no statistically significant differences were found neither between laboratories nor between methods (culture, IMS). Positivity was significantly correlated with ambulatory health assistance (p = 0.05) and frequency of use of the terminal points. The logistic regression model revealed that chlorine (p = 0.009) and the frequency of use of the terminal points (p = 0.001) are predictors of Legionella colonization. Regarding this index, the IMS method proved more sensitive (69%) than culture method (65.4%) in hot water samples. SIGNIFICANCE We showed that the frequency of use of terminal points should be considered when examining environmental Legionella colonization, which can be better evaluated using the provided Legionella positivity index. This study has implications for the prevention of Legionnaires' disease in hospital settings.
Collapse
Affiliation(s)
- Rafael Manuel Ortí-Lucas
- Research group on Public Health and Patient Safety, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
- Department of Preventive Medicine, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | - Eugenio Luciano
- Department of Preventive Medicine, Hospital Clínico Universitario de Valencia, Valencia, Spain.
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| |
Collapse
|
11
|
Khan MT, Mahmud A, Hasan M, Azim KF, Begum MK, Rolin MH, Akter A, Mondal SI. Proteome Exploration of Legionella pneumophila To Identify Novel Therapeutics: a Hierarchical Subtractive Genomics and Reverse Vaccinology Approach. Microbiol Spectr 2022; 10:e0037322. [PMID: 35863001 PMCID: PMC9430848 DOI: 10.1128/spectrum.00373-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is the causative agent of a severe type of pneumonia (lung infection) called Legionnaires' disease. It is emerging as an antibiotic-resistant strain day by day. Hence, identifying novel drug targets and vaccine candidates is essential to fight against this pathogen. Here, attempts were taken through a subtractive genomics approach on the complete proteome of L. pneumophila to address the challenges of multidrug resistance. A total of 2,930 proteins from L. pneumophila proteome were investigated through diverse subtractive proteomics approaches, e.g., identification of human nonhomologous and pathogen-specific essential proteins, druggability and "anti-target" analysis, subcellular localization prediction, human microbiome nonhomology screening, and protein-protein interaction studies to find out effective drug and vaccine targets. Only three fulfilled these criteria and were proposed as novel drug targets against L. pneumophila. Furthermore, outer membrane protein TolB was identified as a potential vaccine target with a better antigenicity score. Antigenicity and transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis, and a molecular docking approach were adopted to generate the most potent epitopes. The final vaccine was constructed by the combination of highly immunogenic epitopes, along with suitable adjuvant and linkers. The designed vaccine construct showed higher binding interaction with different major histocompatibility complex (MHC) molecules and human immune TLR-2 receptors with minimum deformability at the molecular level. The present study aids the development of novel therapeutics and vaccine candidates for efficient treatment and prevention of L. pneumophila infections. However, further wet-lab-based phenotypic and genomic investigations and in vivo trials are highly recommended to validate our prediction experimentally. IMPORTANCE Legionella pneumophila is a human pathogen distributed worldwide, causing Legionnaires' disease (LD), a severe form of pneumonia and respiratory tract infection. L. pneumophila is emerging as an antibiotic-resistant strain, and controlling LD is now difficult. Hence, developing novel drugs and vaccines against L. pneumophila is a major research priority. Here, the complete proteome of L. pneumophila was considered for subtractive genomics approaches to address the challenge of antimicrobial resistance. Our subtractive proteomics approach identified three potential drug targets that are promising for future application. Furthermore, a possible vaccine candidate, "outer membrane protein TolB," was proposed using reverse vaccinology analysis. The constructed vaccine candidate showed higher binding interaction with MHC molecules and human immune TLR-2 receptors at the molecular level. Overall, the present study aids in developing novel therapeutics and vaccine candidates for efficient treatment of the infections caused by L. pneumophila.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Musammat Kulsuma Begum
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohimenul Haque Rolin
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Arzuba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
12
|
Investigation of Conditions for Capture of Live Legionella pneumophila with Polyclonal and Recombinant Antibodies. BIOSENSORS 2022; 12:bios12060380. [PMID: 35735528 PMCID: PMC9221320 DOI: 10.3390/bios12060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Since Legionella pneumophila has caused punctual epidemics through various water systems, the need for a biosensor for fast and accurate detection of pathogenic bacteria in industrial and environmental water has increased. In this report, we evaluated conditions for the capture of live L. pneumophila on a surface by polyclonal antibodies (pAb) and recombinant antibodies (recAb) targeting the bacterial lipopolysaccharide. Using immunoassay and PCR quantification, we demonstrated that, when exposed to live L. pneumophila in PBS or in a mixture containing other non-target bacteria, recAb captured one third fewer L. pneumophila than pAb, but with a 40% lower standard deviation, even when using the same batch of pAb. The presence of other bacteria did not interfere with capture nor increase background by either Ab. Increased reproducibility, as manifested by low standard deviation, is a characteristic that is coveted for biosensing. Hence, the recAb provided a better choice for immune adhesion in biosensors even though it was slightly less sensitive than pAb. Polyclonal or recombinant antibodies can specifically capture large targets such as whole bacteria, and this opens the door to multiple biosensor approaches where any of the components of the bacteria can then be measured for detection or characterisation.
Collapse
|
13
|
Shen Y, Xu J, Zhi S, Wu W, Chen Y, Zhang Q, Zhou Y, Deng Z, Li W. MIP From Legionella pneumophila Influences the Phagocytosis and Chemotaxis of RAW264.7 Macrophages by Regulating the lncRNA GAS5/miR-21/SOCS6 Axis. Front Cell Infect Microbiol 2022; 12:810865. [PMID: 35573783 PMCID: PMC9105720 DOI: 10.3389/fcimb.2022.810865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Background The intracellular pathogen Legionella pneumophila (L. pneumophila) is a causative agent of pneumonia and does great harm to human health. These bacteria are phagocytosed by alveolar macrophages and survive to replicate within the macrophages. Despite macrophage infectivity potentiator (MIP) protein serving as an essential virulence factor during the invasion process of L. pneumophila, the regulatory mechanism of MIP protein in the process of bacterial infection to host cells is not yet completely understood. This research thus aims to explore the interaction between MIP and macrophage phagocytosis. Methods Through the experiment of the co-culture of RAW264.7 macrophages with different concentrations of MIP, the chemotactic activity of macrophages was detected and the phagocytosis was determined by a neutral red uptake assay. The expression of long noncoding RNA (lncRNA) GAS5, microRNA-21 (miR-21), and suppressor of cytokine signaling (SOCS)6 was determined by qRT-PCR. Target genes were detected by dual luciferase assay. Results MIP could reduce the phagocytosis and improve the chemotaxis of RAW264.7 macrophages. The expression of both lncRNA GAS5 and SOCS6 was increased whereas the expression of miR-21 was decreased when macrophages were treated with MIP. Dual luciferase assay revealed that lncRNA GAS5 could interact with miR-21, and SOCS6 served as the target of miR-21. After GAS5 overexpression, the phagocytosis of RAW264.7 treated with MIP was increased whereas the chemotaxis was decreased. In contrast, the opposite results were found in RAW264.7 following GAS5 interference. Conclusions The present results revealed that MIP could influence RAW264.7 macrophages on phagocytic and chemotactic activities through the axis of lncRNA GAS5/miR-21/SOCS6.
Collapse
Affiliation(s)
- Youfeng Shen
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Jian Xu
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Shenshen Zhi
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wenyan Wu
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Zhou
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ze Deng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Li
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Wei Li,
| |
Collapse
|
14
|
Talapko J, Frauenheim E, Juzbašić M, Tomas M, Matić S, Jukić M, Samardžić M, Škrlec I. Legionella pneumophila-Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms 2022; 10:microorganisms10020255. [PMID: 35208710 PMCID: PMC8879694 DOI: 10.3390/microorganisms10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is defined as a bacterium that can cause severe pneumonia. It is found in the natural environment and in water, and is often found in water tanks. It can be an integral part of biofilms in nature, and the protozoa in which it can live provide it with food and protect it from harmful influences; therefore, it has the ability to move into a sustainable but uncultured state (VBNC). L. pneumophila has been shown to cause infections in dental practices. The most common transmission route is aerosol generated in dental office water systems, which can negatively affect patients and healthcare professionals. The most common way of becoming infected with L. pneumophila in a dental office is through water from dental instruments, and the dental unit. In addition to these bacteria, patients and the dental team may be exposed to other harmful bacteria and viruses. Therefore, it is vital that the dental team regularly maintains and decontaminates the dental unit, and sterilizes all accessories that come with it. In addition, regular water control in dental offices is necessary.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Erwin Frauenheim
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Suzana Matić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- General Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia
| | - Marija Samardžić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Correspondence:
| |
Collapse
|
15
|
Pascale MR, Salaris S, Mazzotta M, Girolamini L, Fregni Serpini G, Manni L, Grottola A, Cristino S. New Insight regarding Legionella Non- Pneumophila Species Identification: Comparison between the Traditional mip Gene Classification Scheme and a Newly Proposed Scheme Targeting the rpoB Gene. Microbiol Spectr 2021; 9:e0116121. [PMID: 34908503 PMCID: PMC8672888 DOI: 10.1128/spectrum.01161-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The identification of Legionella non-pneumophila species (non-Lp) in clinical and environmental samples is based on the mip gene, although several studies suggest its limitations and the need to expand the classification scheme to include other genes. In this study, the development of a new classification scheme targeting the rpoB gene is proposed to obtain a more reliable identification of 135 Legionella environmental isolates. All isolates were sequenced for the mip and rpoB genes, and the results were compared to study the discriminatory power of the proposed rpoB scheme. Complete concordance between the mip and rpoB results based on genomic percent identity was found for 121/135 (89.6%) isolates; in contrast, discordance was found for 14/135 (10.4%) isolates. Additionally, due to the lack of reference values for the rpoB gene, inter- and intraspecies variation intervals were calculated based on a pairwise identity matrix that was built using the entire rpoB gene (∼4,107 bp) and a partial region (329 bp) to better evaluate the genomic identity obtained. The interspecies variation interval found here (4.9% to 26.7%) was then proposed as a useful sequence-based classification scheme for the identification of unknown non-Lp isolates. The results suggest that using both the mip and rpoB genes makes it possible to correctly discriminate between several species, allowing possible new species to be identified, as confirmed by preliminary whole-genome sequencing analyses performed on our isolates. Therefore, starting from a valid and reliable identification approach, the simultaneous use of mip and rpoB associated with other genes, as it occurs with the sequence-based typing (SBT) scheme developed for Legionella pneumophila, could support the development of multilocus sequence typing to improve the knowledge and discovery of Legionella species subtypes. IMPORTANCELegionella spp. are a widely spread bacteria that cause a fatal form of pneumonia. While traditional laboratory techniques have provided valuable systems for Legionella pneumophila identification, the amplification of the mip gene has been recognized as the only useful tool for Legionella non-pneumophila species identification both in clinical and environmental samples. Several studies focused on the mip gene classification scheme showed its limitations and the need to improve the classification scheme, including other genes. Our study provides significant advantages on Legionella identification, providing a reproducible new rpoB gene classification scheme that seems to be more accurate than mip gene sequencing, bringing out greater genetic variation on Legionella species. In addition, the combined use of both the mip and rpoB genes allowed us to identify presumed new Legionella species, improving epidemiological investigations and acquiring new understanding on Legionella fields.
Collapse
Affiliation(s)
- Maria Rosaria Pascale
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Silvano Salaris
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marta Mazzotta
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Luna Girolamini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giulia Fregni Serpini
- Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Molecular Microbiology and Virology Unit, University Hospital-Policlinico Modena, Modena, Italy
| | - Laura Manni
- Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Molecular Microbiology and Virology Unit, University Hospital-Policlinico Modena, Modena, Italy
| | - Antonella Grottola
- Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Molecular Microbiology and Virology Unit, University Hospital-Policlinico Modena, Modena, Italy
| | - Sandra Cristino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Budowa IV systemu sekrecji Legionella pneumophilai jego znaczenie w patogenezie. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Bakterie Legionella pneumophila w środowisku naturalnym pasożytują wewnątrz komórek wybranych gatunków pierwotniaków, a po przedostaniu się do sztucznych systemów dystrybucji wody stają się ważnym czynnikiem etiologicznym zapalenia płuc u ludzi. Główną cechą determinującą patogenność tych bakterii jest zdolność do życia i replikacji w makrofagach płucnych, czyli w komórkach wyspecjalizowanych do fagocytozy, zabijania i trawienia mikroorganizmów. Warunkiem wstępnym rozwoju infekcji jest przełamanie mechanizmów bójczych makrofagów i utworzenie wakuoli replikacyjnej LCV (Legionella containing vacuole). Biogeneza wakuoli LCV jest możliwa dzięki sprawnemu funkcjonowaniu IV systemu sekrecji Dot/Icm, który jest wielobiałkowym, złożonym kompleksem umiejscowionym w wewnętrznej i zewnętrznej membranie osłony komórkowej bakterii. System Dot/Icm liczy 27 elementów, na które składają się m.in. kompleks rdzeniowo-transmembranowy, tworzący strukturalny szkielet całego systemu oraz kompleks białek sprzęgających. Geny kodujące komponenty systemu Dot/Icm są zorganizowane na dwóch regionach chromosomu bak-teryjnego. System sekrecji Dot/Icm umożliwia L. pneumophila wprowadzenie do cytozolu komórki gospodarza ponad 300 białek efektorowych, których skoordynowane działanie powoduje utrzymanie integralności błony wakuoli replikacyjnej oraz pozwala na manipulowanie różnymi procesami komórki. Ważnym elementem strategii wewnątrzkomórkowego namnażania się L. pneumophila jest modulowanie transportu pęcherzykowego, interakcja z retikulum endoplazmatycznym oraz zakłócenie biosyntezy białek, procesów autofagii i apoptozy komórki gospodarza. Poznanie złożonych mechanizmów regulacji i funkcji białek efektorowych systemu Dot/Icm ma decydujące znaczenie w zapobieganiu i leczeniu choroby legionistów.
Collapse
|
17
|
Bacterial Long-Range Warfare: Aerial Killing of Legionella pneumophila by Pseudomonas fluorescens. Microbiol Spectr 2021; 9:e0040421. [PMID: 34378969 PMCID: PMC8552673 DOI: 10.1128/spectrum.00404-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, is mostly found in man-made water systems and is one of the most closely monitored waterborne pathogens. With the aim of finding natural ways to control waterborne pathogens and thus further reduce the impact of disinfection by-products on human health, some studies have demonstrated the ability of bacteria to kill Legionella through the production of secondary metabolites or antimicrobial compounds. Here, we describe an unexpected growth inhibition of L. pneumophila when exposed to a physically separated strain of Pseudomonas fluorescens, designated as MFE01. Most of the members of the Legionellaceae family are sensitive to the volatile substances emitted by MFE01, unlike other bacteria tested. Using headspace solid-phase microextraction GC-MS strategy, a volatilome comparison revealed that emission of 1-undecene, 2-undecanone, and 2-tridecanone were mainly reduced in a Tn5-transposon mutant unable to inhibit at distance the growth of L. pneumophila strain Lens. We showed that 1-undecene was mainly responsible for the inhibition at distance in vitro, and led to cell lysis in small amounts, as determined by gas chromatography-mass spectrometry (GC-MS). Collectively, our results provide new insights into the mode of action of bacterial volatiles and highlight them as potent anti-Legionella agents to focus research on novel strategies to fight legionellosis. IMPORTANCE Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation. In fact, most studies to date have focused on their antifungal activities and only a few have reported on their antibacterial properties. Here, we describe that 1-undecene, naturally produced by P. fluorescens, is a volatile with potent activity against bacteria of the genus Legionella. In small amounts, it is capable of inducing cell lysis even when the producing strain is physically separated from the target. This is the first time that such activity is described. This molecule could therefore constitute an efficient compound to counter bacterial pathogens whose treatment may fail, particularly in pulmonary diseases. Indeed, inhalation of these volatiles should be considered as a possible route of therapy in addition to antibiotic treatment.
Collapse
|
18
|
Human macrophages utilize a wide range of pathogen recognition receptors to recognize Legionella pneumophila, including Toll-Like Receptor 4 engaging Legionella lipopolysaccharide and the Toll-like Receptor 3 nucleic-acid sensor. PLoS Pathog 2021; 17:e1009781. [PMID: 34280250 PMCID: PMC8321404 DOI: 10.1371/journal.ppat.1009781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/29/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokines made by macrophages play a critical role in determining the course of Legionella pneumophila infection. Prior murine-based modeling indicated that this cytokine response is initiated upon recognition of L. pneumophila by a subset of Toll-like receptors, namely TLR2, TLR5, and TLR9. Through the use of shRNA/siRNA knockdowns and subsequently CRISPR/Cas9 knockouts (KO), we determined that TRIF, an adaptor downstream of endosomal TLR3 and TLR4, is required for full cytokine secretion by human primary and cell-line macrophages. By characterizing a further set of TLR KO's in human U937 cells, we discerned that, contrary to the viewpoint garnered from murine-based studies, TLR3 and TLR4 (along with TLR2 and TLR5) are in fact vital to the macrophage response in the early stages of L. pneumophila infection. This conclusion was bolstered by showing that i) chemical inhibitors of TLR3 and TLR4 dampen the cytokine output of primary human macrophages and ii) transfection of TLR3 and TLR4 into HEK cells conferred an ability to sense L. pneumophila. TLR3- and TLR4-dependent cytokines promoted migration of human HL-60 neutrophils across an epithelial layer, pointing to the biological importance for the newfound signaling pathway. The response of U937 cells to L. pneumophila LPS was dependent upon TLR4, a further contradiction to murine-based studies, which had concluded that TLR2 is the receptor for Legionella LPS. Given the role of TLR3 in sensing nucleic acid (i.e., dsRNA), we utilized newly-made KO U937 cells to document that DNA-sensing by cGAS-STING and DNA-PK are also needed for the response of human macrophages to L. pneumophila. Given the lack of attention given them in the bacterial field, C-type lectin receptors were similarly examined; but, they were not required. Overall, this study arguably represents the most extensive, single-characterization of Legionella-recognition receptors within human macrophages.
Collapse
|
19
|
Uysal Ciloglu F, Saridag AM, Kilic IH, Tokmakci M, Kahraman M, Aydin O. Identification of methicillin-resistant Staphylococcus aureus bacteria using surface-enhanced Raman spectroscopy and machine learning techniques. Analyst 2021; 145:7559-7570. [PMID: 33135033 DOI: 10.1039/d0an00476f] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To combat antibiotic resistance, it is extremely important to select the right antibiotic by performing rapid diagnosis of pathogens. Traditional techniques require complicated sample preparation and time-consuming processes which are not suitable for rapid diagnosis. To address this problem, we used surface-enhanced Raman spectroscopy combined with machine learning techniques for rapid identification of methicillin-resistant and methicillin-sensitive Gram-positive Staphylococcus aureus strains and Gram-negative Legionella pneumophila (control group). A total of 10 methicillin-resistant S. aureus (MRSA), 3 methicillin-sensitive S. aureus (MSSA) and 6 L. pneumophila isolates were used. The obtained spectra indicated high reproducibility and repeatability with a high signal to noise ratio. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and various supervised classification algorithms were used to discriminate both S. aureus strains and L. pneumophila. Although there were no noteworthy differences between MRSA and MSSA spectra when viewed with the naked eye, some peak intensity ratios such as 732/958, 732/1333, and 732/1450 proved that there could be a significant indicator showing the difference between them. The k-nearest neighbors (kNN) classification algorithm showed superior classification performance with 97.8% accuracy among the traditional classifiers including support vector machine (SVM), decision tree (DT), and naïve Bayes (NB). Our results indicate that SERS combined with machine learning can be used for the detection of antibiotic-resistant and susceptible bacteria and this technique is a very promising tool for clinical applications.
Collapse
Affiliation(s)
- Fatma Uysal Ciloglu
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey.
| | | | | | | | | | | |
Collapse
|
20
|
Goraj W, Pytlak A, Kowalska B, Kowalski D, Grządziel J, Szafranek-Nakonieczna A, Gałązka A, Stępniewska Z, Stępniewski W. Influence of pipe material on biofilm microbial communities found in drinking water supply system. ENVIRONMENTAL RESEARCH 2021; 196:110433. [PMID: 33166536 DOI: 10.1016/j.envres.2020.110433] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The biofilms and water samples from a model installation built of PVC-U, PE-HD and cast iron pipes were investigated using standard heterotrophic plate count and 16S rRNA Next Generation Sequencing. The results of the high throughput identification imply that the construction material strongly influences the microbiome composition. PVC-U and PE-HD pipes were dominated with Proteobacteria (54-60%) while the cast pipe was overgrown by Nitrospirae (64%). It was deduced that the plastic pipes create a more convenient environment for the potentially pathogenic taxa than the cast iron. The 7-year old biofilms were described as complex habitats with sharp oxidation-reduction gradients, where co-existence of methanogenic and methanotrophic microbiota takes place. Furthermore, it was found that the drinking water distribution systems (DWDS) are a useful tool for studying the ecology of rare bacterial phyla. New ecophysiological aspects were described for Aquihabitans, Thermogutta and Vampirovibrio. The discrepancy between identity of HPC-derived bacteria and NGS-revealed composition of biofilm and water microbiomes point to the need of introducing new diagnostical protocols to enable proper assessment of the drinking water safety, especially in DWDSs operating without disinfection.
Collapse
Affiliation(s)
- Weronika Goraj
- Department of Biology and Biotechnology of Microorganisms, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Street 1 I, 20-708, Lublin, Poland
| | - Anna Pytlak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Beata Kowalska
- Faculty of Environmental Protection Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618, Lublin, Poland
| | - Dariusz Kowalski
- Faculty of Environmental Protection Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618, Lublin, Poland
| | - Jarosław Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), Czartoryskich Street 8, 24-100, Puławy, Poland
| | - Anna Szafranek-Nakonieczna
- Department of Biology and Biotechnology of Microorganisms, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Street 1 I, 20-708, Lublin, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), Czartoryskich Street 8, 24-100, Puławy, Poland
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów Street 1 I, 20-708, Lublin, Poland
| | - Witold Stępniewski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
21
|
The Role of Lipids in Legionella-Host Interaction. Int J Mol Sci 2021; 22:ijms22031487. [PMID: 33540788 PMCID: PMC7867332 DOI: 10.3390/ijms22031487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Legionella are Gram-stain-negative rods associated with water environments: either natural or man-made systems. The inhalation of aerosols containing Legionella bacteria leads to the development of a severe pneumonia termed Legionnaires' disease. To establish an infection, these bacteria adapt to growth in the hostile environment of the host through the unusual structures of macromolecules that build the cell surface. The outer membrane of the cell envelope is a lipid bilayer with an asymmetric composition mostly of phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. The major membrane-forming phospholipid of Legionella spp. is phosphatidylcholine (PC)-a typical eukaryotic glycerophospholipid. PC synthesis in Legionella cells occurs via two independent pathways: the N-methylation (Pmt) pathway and the Pcs pathway. The utilisation of exogenous choline by Legionella spp. leads to changes in the composition of lipids and proteins, which influences the physicochemical properties of the cell surface. This phenotypic plasticity of the Legionella cell envelope determines the mode of interaction with the macrophages, which results in a decrease in the production of proinflammatory cytokines and modulates the interaction with antimicrobial peptides and proteins. The surface-exposed O-chain of Legionella pneumophila sg1 LPS consisting of a homopolymer of 5-acetamidino-7-acetamido-8-O-acetyl-3,5,7,9-tetradeoxy-l-glycero-d-galacto-non-2-ulosonic acid is probably the first component in contact with the host cell that anchors the bacteria in the host membrane. Unusual in terms of the structure and function of individual LPS regions, it makes an important contribution to the antigenicity and pathogenicity of Legionella bacteria.
Collapse
|
22
|
Palusińska-Szysz M, Zdybicka-Barabas A, Luchowski R, Reszczyńska E, Śmiałek J, Mak P, Gruszecki WI, Cytryńska M. Choline Supplementation Sensitizes Legionella dumoffii to Galleria mellonella Apolipophorin III. Int J Mol Sci 2020; 21:ijms21165818. [PMID: 32823647 PMCID: PMC7461559 DOI: 10.3390/ijms21165818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/30/2023] Open
Abstract
The growth of Legionella dumoffii can be inhibited by Galleria mellonella apolipophorin III (apoLp-III) which is an insect homologue of human apolipoprotein E., and choline-cultured L. dumoffii cells are considerably more susceptible to apoLp-III than bacteria grown without choline supplementation. In the present study, the interactions of apoLp-III with intact L. dumoffii cells cultured without and with exogenous choline were analyzed to explain the basis of this difference. Fluorescently labeled apoLp-III (FITC-apoLp-III) bound more efficiently to choline-grown L. dumoffii, as revealed by laser scanning confocal microscopy. The cell envelope of these bacteria was penetrated more deeply by FITC-apoLp-III, as demonstrated by fluorescence lifetime imaging microscopy analyses. The increased susceptibility of the choline-cultured L. dumoffii to apoLp-III was also accompanied by alterations in the cell surface topography and nanomechanical properties. A detailed analysis of the interaction of apoLp-III with components of the L. dumoffii cells was carried out using both purified lipopolysaccharide (LPS) and liposomes composed of L. dumoffii phospholipids and LPS. A single micelle of L. dumoffii LPS was formed from 12 to 29 monomeric LPS molecules and one L. dumoffii LPS micelle bound two molecules of apoLp-III. ApoLp-III exhibited the strongest interactions with liposomes with incorporated LPS formed of phospholipids isolated from bacteria cultured on exogenous choline. These results indicated that the differences in the phospholipid content in the cell membrane, especially PC, and LPS affected the interactions of apoLp-III with bacterial cells and suggested that these differences contributed to the increased susceptibility of the choline-cultured L. dumoffii to G. mellonella apoLp-III.
Collapse
Affiliation(s)
- Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland
- Correspondence:
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.Z.-B.); (M.C.)
| | - Rafał Luchowski
- Department of Biophysics, Institute of Physics, Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 1, 20-031 Lublin, Poland; (R.L.); (W.I.G.)
| | - Emilia Reszczyńska
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland;
| | - Justyna Śmiałek
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland; (J.Ś.); (P.M.)
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland; (J.Ś.); (P.M.)
| | - Wiesław I. Gruszecki
- Department of Biophysics, Institute of Physics, Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 1, 20-031 Lublin, Poland; (R.L.); (W.I.G.)
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.Z.-B.); (M.C.)
| |
Collapse
|
23
|
Mehdi Abdol M, Mohabati Mobarez A, Khoramabadi N, Papian S, Talebi Bezmin Abadi A. Potent T-cell mediated immune response against Legionella pneumophila in mice following vaccination with detoxified lipopolysaccharide non-covalently combined with recombinant flagellin A and peptidoglycan-associated lipoprotein. Microb Pathog 2020; 149:104364. [PMID: 32771655 DOI: 10.1016/j.micpath.2020.104364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/28/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Legionella pneumophila is a Gram-negative intracellular bacterium and the cause of an atypical pneumonia in humans - legionnaire's disease. Immunological assessment of bacterial antigens clarifies the way that host may develop protection against the pathogen. Lipopolysaccharide (LPS) is the main antigen of Gram-negative bacteria but is less studied because of its carbohydrate nature. Here, we immunized mice with detoxified LPS in combination with immunogenic proteins and looked into the result of bacterial challenge. METHODS LPS of L. pneumophila was extracted by hot phenol-water method. Purified LPS was detoxified by sodium hydroxide alkaline procedure. BALB/c mice were immunized mainly with non-covalent combination of detoxified LPS (dLPS) and either of recombinant FlaA or PAL separately. Afterwards, specific serum IgG was assessed by ELISA. Mice were challenged intravenously with sublethal dose of L. pneumpphila then splenocytes were cultured. Cytokine responses of splenocytes were analyzed by ELISA. RESULTS Polysaccharide antigen did not elicit significant serum IgG. Combination of the dLPS with recombinant FlaA and PAL led to risen IgG and its subclasses (IgG1, IgG2a and IgG2b) against polysaccharide. Mice immunized with combination of the dLPS and recombinant proteins showed significant elevation of cytokine responses in splenocyte culture after being challenged with L. pneumophila. CONCLUSIONS Our results suggest that combination of polysaccharide antigen derived from Legionella LPS may confer raised cell-mediated responses against the pathogen when combined with Th-1 stimulating protein antigens. Although not covalently bond, Legionella detoxified LPS combination with recombinant FlaA and PAL effectively elicited Th-1 type cytokines and humoral responses against L. pneumophila in BALB/c mice.
Collapse
Affiliation(s)
- Mohsen Mehdi Abdol
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Nima Khoramabadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shaghayegh Papian
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Talebi Bezmin Abadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Cervero-Aragó S, Schrammel B, Dietersdorfer E, Sommer R, Lück C, Walochnik J, Kirschner A. Viability and infectivity of viable but nonculturable Legionella pneumophila strains induced at high temperatures. WATER RESEARCH 2019; 158:268-279. [PMID: 31048196 PMCID: PMC6520252 DOI: 10.1016/j.watres.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Thermal disinfection is commonly used to prevent the proliferation of culturable Legionella in engineered water systems (EWS). In response to such stress, culturable Legionella populations can switch into a viable but nonculturable (VBNC) state. The importance of such VBNC Legionella cells is currently hotly debated. Here, we investigated the stress response patterns and transitions of the bacteria to the VBNC state at 55 °C, 60 °C and 70 °C on two L. pneumophila strains for >80 days using a combination of cell-based viability indicators. Complete loss of culturability at 55 °C, 60 °C and 70 °C occurred after 3-8 h, 60 min and <2 min, respectively. In contrast, L. pneumophila strains required 9 days at 55 °C, 8 h at 60 °C and 20 min at 70 °C to achieve a 2 log reduction in cells with intact membranes and high esterase activity; a 4 log reduction was achieved only after 150, 8-15 and 1-4 days, respectively. In parallel, the presence of diagnostic outer-membrane epitopes (OMEs) and changes in the infectivity patterns of the two strains towards amoebae and THP-1 cells were assessed. OMEs were more persistent than viability indicators, showing their potential as targets for VBNC Legionella detection. L. pneumophila strains infected amoebae and THP-1 cells for at least 85 days at 55 °C and 60 °C and for up to 8 days at 70 °C. However, they did so with reduced efficiency, requiring prolonged co-incubation times with the hosts and higher Legionella cell numbers in comparison to culturable cells. Consequently, infection of amoebae by thermally induced VBNC L. pneumophila with lowered virulence can be expected in EWS. Although the gold standard method cannot detect VBNC Legionella, it provides important information about the most virulent bacterial subpopulations. Our results indicate that a prolonged thermal regime ≥60 °C at the central parts of warm water systems is not only effective against culturable L. pneumophila but in the long run even against VBNC cells.
Collapse
Affiliation(s)
- Sílvia Cervero-Aragó
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.
| | - Barbara Schrammel
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Elisabeth Dietersdorfer
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Regina Sommer
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| | - Christian Lück
- Technical University Dresden, Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", Helmholtzstr. 10, D 01069, Dresden, Germany
| | - Julia Walochnik
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Alexander Kirschner
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria; Karl Landsteiner University of Health Sciences, Division Water Quality and Health, Dr. Karl Dorrekstraße 30, A-3400, Krems, Austria
| |
Collapse
|
25
|
Avila-Calderón ED, Otero-Olarra JE, Flores-Romo L, Peralta H, Aguilera-Arreola MG, Morales-García MR, Calderón-Amador J, Medina-Chávez O, Donis-Maturano L, Ruiz-Palma MDS, Contreras-Rodríguez A. The Outer Membrane Vesicles of Aeromonas hydrophila ATCC ® 7966 TM: A Proteomic Analysis and Effect on Host Cells. Front Microbiol 2018; 9:2765. [PMID: 30519218 PMCID: PMC6250952 DOI: 10.3389/fmicb.2018.02765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/29/2018] [Indexed: 01/26/2023] Open
Abstract
Gram-negative bacteria release outer membrane vesicles (OMVs) into the extracellular environment. OMVs have been studied extensively in bacterial pathogens, however, information related with the composition of Aeromonas hydrophila OMVs is missing. In this study we analyzed the composition of purified OMVs from A. hydrophila ATCC® 7966TM by proteomics. Also we studied the effect of OMVs on human peripheral blood mononuclear cells (PBMCs). Vesicles were grown in agar plates and then purified through ultracentrifugation steps. Purified vesicles showed an average diameter of 90-170 nm. Moreover, 211 unique proteins were found in OMVs from A. hydrophila; some of them are well-known as virulence factors such as: haemolysin Ahh1, RtxA toxin, extracellular lipase, HcpA protein, among others. OMVs from A. hydrophila ATCC® 7966TM induced lymphocyte activation and apoptosis in monocytes, as well as over-expression of pro-inflammatory cytokines. This work contributed to the knowledge of the composition of the vesicles of A. hydrophila ATCC® 7966TM and their interaction with the host cell.
Collapse
Affiliation(s)
- Eric Daniel Avila-Calderón
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Erick Otero-Olarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leopoldo Flores-Romo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Humberto Peralta
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ma. Guadalupe Aguilera-Arreola
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Juana Calderón-Amador
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Olin Medina-Chávez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Donis-Maturano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - María del Socorro Ruiz-Palma
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- División Químico-Biológicas, Universidad Tecnológica de Tecámac, Tecámac, Mexico
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
26
|
Dietersdorfer E, Kirschner A, Schrammel B, Ohradanova-Repic A, Stockinger H, Sommer R, Walochnik J, Cervero-Aragó S. Starved viable but non-culturable (VBNC) Legionella strains can infect and replicate in amoebae and human macrophages. WATER RESEARCH 2018; 141:428-438. [PMID: 29409685 DOI: 10.1016/j.watres.2018.01.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 05/22/2023]
Abstract
Legionella infections are among the most important waterborne infections with constantly increasing numbers of cases in industrialized countries, as a result of aging populations, rising numbers of immunocompromised individuals and increased need for conditioned water due to climate change. Surveillance of water systems is based on microbiological culture-based techniques; however, it has been shown that high percentages of the Legionella populations in water systems are not culturable. In the past two decades, the relevance of such viable but non-culturable (VBNC) legionellae has been controversially discussed, and whether VBNC legionellae can directly infect human macrophages, the primary targets of Legionella infections, remains unclear. In this study, it was demonstrated for the first time that several starved VBNC Legionella strains (four L. pneumophila serogroup 1 strains, a serogroup 6 strain and a L. micdadei strain) can directly infect different types of human macrophages and amoebae even after one year of starvation in ultrapure water. However, under these conditions, the strains caused infection with reduced efficacy, as represented by the lower percentages of infected cells, prolonged time in co-culture and higher multiplicities of infection required. Interestingly, the VBNC cells remained mostly non-culturable even after multiplication within the host cells. Amoebal infection by starved VBNC Legionella, which likely occurs in oligotrophic biofilms, would result in an increase in the bacterial concentration in drinking-water systems. If cells remain in the VBNC state, the real number of active legionellae will be underestimated by the use of culture-based standard techniques. Thus, further quantitative research is needed in order to determine, whether and how many starved VBNC Legionella cells are able to cause disease in humans.
Collapse
Affiliation(s)
- Elisabeth Dietersdorfer
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Department of Medical Parasitology, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Alexander Kirschner
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.
| | - Barbara Schrammel
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Lazarettgasse 19, A-1090 Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Lazarettgasse 19, A-1090 Vienna, Austria
| | - Regina Sommer
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| | - Julia Walochnik
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Department of Medical Parasitology, Kinderspitalgasse 15, A-1090, Vienna, Austria.
| | - Sílvia Cervero-Aragó
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| |
Collapse
|
27
|
Schrammel B, Petzold M, Cervero-Aragó S, Sommer R, Lück C, Kirschner A. Persistent presence of outer membrane epitopes during short- and long-term starvation of five Legionella pneumophila strains. BMC Microbiol 2018; 18:75. [PMID: 30016940 PMCID: PMC6050704 DOI: 10.1186/s12866-018-1220-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/29/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Legionella pneumophila, the causative agent of Legionnaire's disease, may enter a viable but non-culturable (VBNC) state triggered by environmental stress conditions. Specific outer-membrane epitopes of L. pneumophila are used in many diagnostic applications and some of them are linked to important virulence-related factors or endotoxins. However, it is not clear how the presence and status of these epitopes are influenced by environmental stress conditions. In this study, changes of outer membrane epitopes for monoclonal antibodies (mAb) from the Dresden panel and the major outer membrane protein MOMP were analysed for five L. pneumophila strains during short- and long-term starvation in ultrapure water. RESULTS With ELISA and single cell immuno-fluorescence analysis, we could show that for most of the investigated mAb-strain combinations the total number of mAb-stained Legionella cells stayed constant for up to 400 days. Especially the epitopes of mAb 3/1, 8/5, 26/1 and 20/1, which are specific for L. pneumophila serogroup 1 subtypes, and the mAb 9/1, specific for serogroup 6, showed long-term persistence. For most mAb- stained cells, a high percentage of viable cells was observed at least until 118 days of starvation. At the same time, we observed a reduction of the fluorescence intensity of the stained cells during starvation indicating a loss of epitopes from the cell surface. However, most of the epitopes, including the virulence-associated mAb 3/1 epitope were still present with high fluorescence intensity after 400 days of starvation in up to 50% of the starved L. pneumophila population. CONCLUSIONS The results demonstrate the continuous presence of outer membrane epitopes of L. pneumophila during short-term and long-term starvation. Thus, culture-independent mAb-based diagnostic and detection tools, such as immuno-magnetic separation and microarray techniques are applicable for both L. pneumophila in the culturable and the VBNC state even after long-term starvation but nevertheless require careful testing before application. However, the mere presence of those epitopes is not necessarily an indication of viability or infectivity.
Collapse
Affiliation(s)
- Barbara Schrammel
- Institute for Hygiene and Applied Immunology - Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Markus Petzold
- Institute for Medical Microbiology and Hygiene, Medical Faculty “Carl Gustav Carus”, University of Technology Dresden, Dresden, Germany
| | - Sílvia Cervero-Aragó
- Institute for Hygiene and Applied Immunology - Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| | - Regina Sommer
- Institute for Hygiene and Applied Immunology - Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| | - Christian Lück
- Institute for Medical Microbiology and Hygiene, Medical Faculty “Carl Gustav Carus”, University of Technology Dresden, Dresden, Germany
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology - Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| |
Collapse
|
28
|
Buse HY, Hoelle JM, Muhlen C, Lytle D. Electrophoretic mobility of Legionella pneumophila serogroups 1 to 14. FEMS Microbiol Lett 2018; 365:4939473. [PMID: 29566231 PMCID: PMC6055225 DOI: 10.1093/femsle/fny067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 12/25/2022] Open
Abstract
Legionella pneumophila (Lp) is ubiquitous in the aquatic environment and can persist within drinking water distribution systems (DWDS) enabling these systems to serve as a potential source of human infections. Bacterial surface charge, deduced from electrophoretic mobility (EPM), is a well-recognized contributor to microorganism mobility, adherence and interactions with their surrounding environment. In this study, the EPM of 32 Lp strains representing serogroup (sg) 1 to 14 were measured, in 9.15 mM KH2PO4 at pH 8, to understand cell surface properties that may influence their occurrence within DWDS. EPM measurements indicated the charge of Lp varied widely between serogroups with five distinct clusters, from least to most negatively charged: (i) sg1 to 3, 5, and 12; (ii) sg6, 8, and 10; (iii) sg9 and 13; (iv) sg7, 11, and 14; and (v) sg4. The EPM of sg1 and 4 strains were pH dependent; however, values were constant between pH 6 and 9, a range typical of drinking water, suggesting that EPM differences between Lp serogroups could impact their survival within DWDS. Understanding the ecological importance of Lp surface properties (e.g. in mobility, colonization, resistance to disinfectants, etc.) within DWDS would aid in mitigation of health risks associated with this water-based pathogen.
Collapse
Affiliation(s)
- Helen Y Buse
- US Environmental Protection Agency, Office of Research and Development, National Homeland Security Research Center, Cincinnati, OH 45268, USA
| | - Jill M Hoelle
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268, USA
| | - Christy Muhlen
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268, USA
| | - Darren Lytle
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268, USA
| |
Collapse
|
29
|
Virulence Traits of Environmental and Clinical Legionella pneumophila Multilocus Variable-Number Tandem-Repeat Analysis (MLVA) Genotypes. Appl Environ Microbiol 2018. [PMID: 29523542 DOI: 10.1128/aem.00429-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila causes water-based infections resulting in severe pneumonia. Recently, we showed that different MLVA-8 (multilocus variable-number tandem-repeat analysis using 8 loci) genotypes dominated different sites of a drinking-water distribution system. Each genotype displayed a unique temperature-dependent growth behavior. Here we compared the pathogenicity potentials of different MLVA-8 genotypes of environmental and clinical strains. The virulence traits studied were hemolytic activity and cytotoxicity toward amoebae and macrophages. Clinical strains were significantly more hemolytic than environmental strains, while their cytotoxicity toward amoebae was significantly lower at 30°C. No significant differences were detected between clinical and environmental strains in cytotoxicity toward macrophages. Significant differences in virulence were observed between the environmental genotypes (Gt). Gt15 strains showed a significantly higher hemolytic activity. In contrast, Gt4 and Gt6 strains were more infective toward Acanthamoeba castellanii Moreover, Gt4 strains exhibited increased cytotoxicity toward macrophages and demonstrated a broader temperature range of amoebal lysis than Gt6 and Gt15 strains. Understanding the virulence traits of Legionella genotypes may improve the assessment of public health risks of Legionella in drinking water.IMPORTANCELegionella pneumophila is the causative agent of a severe form of pneumonia. Here we demonstrated that clinical strains were significantly more cytotoxic toward red blood cells than environmental strains, while their cytotoxicity toward macrophages was similar. Genotype 4 (Gt4) strains were highly cytotoxic toward amoebae and macrophages and lysed amoebae in a broader temperature range than to the other studied genotypes. The results can explain the relatively high success of Gt4 in the environment and in clinical samples; thus, Gt4 strains should be considered a main factor for the assessment of public health risks of Legionella in drinking water. Our findings shed light on the ecology, virulence, and pathogenicity potential of different L. pneumophila genotypes, which can be a valuable parameter for future modeling and quantitative microbial risk assessment of Legionella in drinking-water systems.
Collapse
|
30
|
Legionella quorum sensing and its role in pathogen–host interactions. Curr Opin Microbiol 2018; 41:29-35. [DOI: 10.1016/j.mib.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
|
31
|
Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells. WATER 2018. [DOI: 10.3390/w10020132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Prevalence and Virulence Factor Profiles of Legionella pneumophila Isolated from the Cases of Respiratory Tract Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep 2017; 7:44795. [PMID: 28317932 PMCID: PMC5357938 DOI: 10.1038/srep44795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/14/2017] [Indexed: 01/17/2023] Open
Abstract
The evolutionarily conserved processes of endosome-lysosome maturation and macroautophagy are established mechanisms that limit survival of intracellular bacteria. Similarly, another emerging mechanism is LC3-associated phagocytosis (LAP). Here we report that an intracellular vacuolar pathogen, Legionella dumoffii, is specifically targeted by LAP over classical endocytic maturation and macroautophagy pathways. Upon infection, the majority of L. dumoffii resides in ER-like vacuoles and replicate within this niche, which involves inhibition of classical endosomal maturation. The establishment of the replicative niche requires the bacterial Dot/Icm type IV secretion system (T4SS). Intriguingly, the remaining subset of L. dumoffii transiently acquires LC3 to L. dumoffii-containing vacuoles in a Dot/Icm T4SS-dependent manner. The LC3-decorated vacuoles are bound by an apparently undamaged single membrane, and fail to associate with the molecules implicated in selective autophagy, such as ubiquitin or adaptors. The process requires toll-like receptor 2, Rubicon, diacylglycerol signaling and downstream NADPH oxidases, whereas ULK1 kinase is dispensable. Together, we have discovered an intracellular pathogen, the survival of which in infected cells is limited predominantly by LAP. The results suggest that L. dumoffii is a valuable model organism for examining the mechanistic details of LAP, particularly induced by bacterial infection.
Collapse
|
34
|
Lin G, Chen W, Su Y, Qin Y, Huang L, Yan Q. Ribose operon repressor (RbsR) contributes to the adhesion of Aeromonas hydrophila to Anguilla japonica mucus. Microbiologyopen 2017; 6. [PMID: 28127946 PMCID: PMC5552941 DOI: 10.1002/mbo3.451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
The characterization of adhesion between pathogenic bacteria and the host is critical. Pathogenic Aeromonas hydrophila was shown to adhere in vitro to the mucus of Anguilla japonica. To further investigate the adhesion mechanisms of A. hydrophila, a mini-Tn10 transposon mutagenesis system was used to generate an insertion mutant library by cell conjugation. Seven mutants that were impaired in adhesion to mucus were selected out of 332 individual colonies, and mutant M196 was the most severely impaired strain. National Center for Biotechnology Information (NCBI) blast analysis showed that mutant M196 was inserted by mini-Tn10 with an ORF of approximately 1,005 bp (GenBank accession numbers KP280172). This ORF is predicted to encode a protein consist of 334 amino acid, which displays the highest identity (98%) with the RbsR of A. hydrophila ATCC 7966. Random inactivation of rbsR gene affected the pleiotropic phenotypes of A. hydrophila. The adhesion ability and the survival level of the rbsR gene mutant (M196) were attenuated compared with the wild-type and rbsR complementary type. The findings of this study indicated that RbsR plays roles in the bacterial adhesion and intracellular survival of A. hydrophila.
Collapse
Affiliation(s)
- Guifang Lin
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Wenbo Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Qingpi Yan
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
35
|
Mercante JW, Morrison SS, Desai HP, Raphael BH, Winchell JM. Genomic Analysis Reveals Novel Diversity among the 1976 Philadelphia Legionnaires' Disease Outbreak Isolates and Additional ST36 Strains. PLoS One 2016; 11:e0164074. [PMID: 27684472 PMCID: PMC5042515 DOI: 10.1371/journal.pone.0164074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila was first recognized as a cause of severe and potentially fatal pneumonia during a large-scale outbreak of Legionnaires’ disease (LD) at a Pennsylvania veterans’ convention in Philadelphia, 1976. The ensuing investigation and recovery of four clinical isolates launched the fields of Legionella epidemiology and scientific research. Only one of the original isolates, “Philadelphia-1”, has been widely distributed or extensively studied. Here we describe the whole-genome sequencing (WGS), complete assembly, and comparative analysis of all Philadelphia LD strains recovered from that investigation, along with L. pneumophila isolates sharing the Philadelphia sequence type (ST36). Analyses revealed that the 1976 outbreak was due to multiple serogroup 1 strains within the same genetic lineage, differentiated by an actively mobilized, self-replicating episome that is shared with L. pneumophila str. Paris, and two large, horizontally-transferred genomic loci, among other polymorphisms. We also found a completely unassociated ST36 strain that displayed remarkable genetic similarity to the historical Philadelphia isolates. This similar strain implies the presence of a potential clonal population, and suggests important implications may exist for considering epidemiological context when interpreting phylogenetic relationships among outbreak-associated isolates. Additional extensive archival research identified the Philadelphia isolate associated with a non-Legionnaire case of “Broad Street pneumonia”, and provided new historical and genetic insights into the 1976 epidemic. This retrospective analysis has underscored the utility of fully-assembled WGS data for Legionella outbreak investigations, highlighting the increased resolution that comes from long-read sequencing and a sequence type-matched genomic data set.
Collapse
Affiliation(s)
- Jeffrey W. Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shatavia S. Morrison
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Heta P. Desai
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Brian H. Raphael
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jonas M. Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
36
|
Bashir M, Ahmed M, Weinmaier T, Ciobanu D, Ivanova N, Pieber TR, Vaishampayan PA. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens. Front Microbiol 2016; 7:1321. [PMID: 27667984 PMCID: PMC5017214 DOI: 10.3389/fmicb.2016.01321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/10/2016] [Indexed: 01/09/2023] Open
Abstract
Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella pneumophila, and their corresponding virulence factors were present in all cleanroom samples. This is the first functional metagenomics study describing presence of pathogens and their corresponding virulence factors in cleanroom environments. The results of this study should be considered for microbial monitoring of enclosed environments such as schools, homes, hospitals and more isolated habitation such the International Space Station and future manned missions to Mars.
Collapse
Affiliation(s)
- Mina Bashir
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of TechnologyPasadena, CA, USA; Division of Endocrinology and Diabetology, Medical University of GrazGraz, Austria
| | - Mahjabeen Ahmed
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of TechnologyPasadena, CA, USA; Department of Biological Sciences, California State Polytechnic UniversityPomona, CA, USA
| | - Thomas Weinmaier
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna Vienna, Austria
| | - Doina Ciobanu
- Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | - Natalia Ivanova
- Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Medical University of Graz Graz, Austria
| | - Parag A Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
37
|
Borges V, Nunes A, Sampaio DA, Vieira L, Machado J, Simões MJ, Gonçalves P, Gomes JP. Legionella pneumophila strain associated with the first evidence of person-to-person transmission of Legionnaires' disease: a unique mosaic genetic backbone. Sci Rep 2016; 6:26261. [PMID: 27196677 PMCID: PMC4872527 DOI: 10.1038/srep26261] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/29/2016] [Indexed: 01/23/2023] Open
Abstract
A first strong evidence of person-to-person transmission of Legionnaires’ Disease (LD) was recently reported. Here, we characterize the genetic backbone of this case-related Legionella pneumophila strain (“PtVFX/2014”), which also caused a large outbreak of LD. PtVFX/2014 is phylogenetically divergent from the most worldwide studied outbreak-associated L. pneumophila subspecies pneumophila serogroup 1 strains. In fact, this strain is also from serogroup 1, but belongs to the L. pneumophila subspecies fraseri. Its genomic mosaic backbone reveals eight horizontally transferred regions encompassing genes, for instance, involved in lipopolysaccharide biosynthesis or encoding virulence-associated Dot/Icm type IVB secretion system (T4BSS) substrates. PtVFX/2014 also inherited a rare ~65 kb pathogenicity island carrying virulence factors and detoxifying enzymes believed to contribute to the emergence of best-fitted strains in water reservoirs and in human macrophages, as well as a inter-species transferred (from L. oakridgensis) ~37.5 kb genomic island (harboring a lvh/lvr T4ASS cluster) that had never been found intact within L. pneumophila species. PtVFX/2014 encodes another lvh/lvr cluster near to CRISPR-associated genes, which may boost L. pneumophila transition from an environmental bacterium to a human pathogen. Overall, this unique genomic make-up may impact PtVFX/2014 ability to adapt to diverse environments, and, ultimately, to be transmitted and cause human disease.
Collapse
Affiliation(s)
- Vítor Borges
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| | - Daniel A Sampaio
- Innovation and Technology Unit, National Institute of Health, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, National Institute of Health, Lisbon, Portugal
| | - Jorge Machado
- Coordination of the Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Maria J Simões
- National Reference Laboratory for Legionella, National Institute of Health, Lisbon, Portugal
| | - Paulo Gonçalves
- National Reference Laboratory for Legionella, National Institute of Health, Lisbon, Portugal
| | - João P Gomes
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| |
Collapse
|
38
|
Jung AL, Stoiber C, Herkt CE, Schulz C, Bertrams W, Schmeck B. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages. PLoS Pathog 2016; 12:e1005592. [PMID: 27105429 PMCID: PMC4841580 DOI: 10.1371/journal.ppat.1005592] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
The formation and release of outer membrane vesicles (OMVs) is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila), a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host.
Collapse
Affiliation(s)
- Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Cornelia Stoiber
- Institute for Virology, Philipps-University Marburg, Marburg, Germany
| | - Christina E. Herkt
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Christine Schulz
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University, Member of the German Center for Lung Research (DZL), Marburg, Germany
- * E-mail:
| |
Collapse
|
39
|
Palusińska-Szysz M, Zdybicka-Barabas A, Reszczyńska E, Luchowski R, Kania M, Gisch N, Waldow F, Mak P, Danikiewicz W, Gruszecki WI, Cytryńska M. The lipid composition of Legionella dumoffii membrane modulates the interaction with Galleria mellonella apolipophorin III. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:617-29. [PMID: 27094351 DOI: 10.1016/j.bbalip.2016.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 11/26/2022]
Abstract
Apolipophorin III (apoLp-III), an insect homologue of human apolipoprotein E (apoE), is a widely used model protein in studies on protein-lipid interactions, and anti-Legionella activity of Galleria mellonella apoLp-III has been documented. Interestingly, exogenous choline-cultured Legionella dumoffii cells are considerably more susceptible to apoLp-III than non-supplemented bacteria. In order to explain these differences, we performed, for the first time, a detailed analysis of L. dumoffii lipids and a comparative lipidomic analysis of membranes of bacteria grown without and in the presence of exogenous choline. (31)P NMR analysis of L. dumoffii phospholipids (PLs) revealed a considerable increase in the phosphatidylcholine (PC) content in bacteria cultured on choline medium and a decrease in the phosphatidylethanolamine (PE) content in approximately the same range. The interactions of G. mellonella apoLp-III with lipid bilayer membranes prepared from PLs extracted from non- and choline-supplemented L. dumoffii cells were examined in detail by means of attenuated total reflection- and linear dichroism-Fourier transform infrared spectroscopy. Furthermore, the kinetics of apoLp-III binding to liposomes formed from L. dumoffii PLs was analysed by fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy using fluorescently labelled G. mellonella apoLp-III. Our results indicated enhanced binding of apoLp-III to and deeper penetration into lipid membranes formed from PLs extracted from the choline-supplemented bacteria, i.e. characterized by an increased PC/PE ratio. This could explain, at least in part, the higher susceptibility of choline-cultured L. dumoffii to G. mellonella apoLp-III.
Collapse
Affiliation(s)
- Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Emilia Reszczyńska
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 1, 20-031 Lublin, Poland; Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Rafał Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 1, 20-031 Lublin, Poland.
| | - Magdalena Kania
- Mass Spectrometry Group, Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224 Warsaw, Poland.
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845 Borstel, Germany.
| | - Franziska Waldow
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845 Borstel, Germany.
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow; Malopolska Centre of Biotechnology, Gronostajowa 7A St., 30-387 Krakow, Poland.
| | - Witold Danikiewicz
- Mass Spectrometry Group, Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224 Warsaw, Poland.
| | - Wiesław I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 1, 20-031 Lublin, Poland.
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| |
Collapse
|
40
|
Berjeaud JM, Chevalier S, Schlusselhuber M, Portier E, Loiseau C, Aucher W, Lesouhaitier O, Verdon J. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment. Front Microbiol 2016; 7:486. [PMID: 27092135 PMCID: PMC4824771 DOI: 10.3389/fmicb.2016.00486] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/23/2016] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila, the major causative agent of Legionnaires’ disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing.
Collapse
Affiliation(s)
- Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen Evreux, France
| | - Margot Schlusselhuber
- Laboratoire Aliments Bioprocédés Toxicologie Environnements, EA 4651, Université de Caen Caen, France
| | - Emilie Portier
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Clémence Loiseau
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Willy Aucher
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen Evreux, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| |
Collapse
|
41
|
Díaz-Flores Á, Montero JC, Castro FJ, Alejandres EM, Bayón C, Solís I, Fernández-Lafuente R, Rodríguez G. Comparing methods of determining Legionella spp. in complex water matrices. BMC Microbiol 2015; 15:91. [PMID: 25925400 PMCID: PMC4436101 DOI: 10.1186/s12866-015-0423-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/15/2015] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Legionella testing conducted at environmental laboratories plays an essential role in assessing the risk of disease transmission associated with water systems. However, drawbacks of culture-based methodology used for Legionella enumeration can have great impact on the results and interpretation which together can lead to underestimation of the actual risk. Up to 20% of the samples analysed by these laboratories produced inconclusive results, making effective risk management impossible. Overgrowth of competing microbiota was reported as an important factor for culture failure. For quantitative polymerase chain reaction (qPCR), the interpretation of the results from the environmental samples still remains a challenge. Inhibitors may cause up to 10% of inconclusive results. This study compared a quantitative method based on immunomagnetic separation (IMS method) with culture and qPCR, as a new approach to routine monitoring of Legionella. RESULTS First, pilot studies evaluated the recovery and detectability of Legionella spp using an IMS method, in the presence of microbiota and biocides. The IMS method results were not affected by microbiota while culture counts were significantly reduced (1.4 log) or negative in the same samples. Damage by biocides of viable Legionella was detected by the IMS method. Secondly, a total of 65 water samples were assayed by all three techniques (culture, qPCR and the IMS method). Of these, 27 (41.5%) were recorded as positive by at least one test. Legionella spp was detected by culture in 7 (25.9%) of the 27 samples. Eighteen (66.7%) of the 27 samples were positive by the IMS method, thirteen of them reporting counts below 10(3) colony forming units per liter (CFU l(-1)), six presented interfering microbiota and three presented PCR inhibition. Of the 65 water samples, 24 presented interfering microbiota by culture and 8 presented partial or complete inhibition of the PCR reaction. So the rate of inconclusive results of culture and PCR was 36.9 and 12.3%, respectively, without any inconclusive results reported for the IMS method. CONCLUSION The IMS method generally improved the recovery and detectability of Legionella in environmental matrices, suggesting the possibility to use IMS method as valuable indicator of risk. Thus, this method may significantly improve our knowledge about the exposure risk to these bacteria, allowing us to implement evidence-based monitoring and disinfection strategies.
Collapse
Affiliation(s)
- Álvaro Díaz-Flores
- Departamento de Microbiología General III, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Campus Moncloa, 28040, Madrid, Spain.
| | - Juan Carlos Montero
- Instituto de Ciencias de la Salud Ctra, de Extremadura Km. 114, 45600, Talavera de la Reina, Spain.
| | - Francisco Javier Castro
- Laboratorio Regional de Salud Pública Consejería de Sanidad y Consumo/Comunidad de Madrid, C/ Sierra del Alquife N 8, 2 Planta, 28053, Madrid, Spain.
| | - Eva María Alejandres
- Laboratorio Regional de Salud Pública Consejería de Sanidad y Consumo/Comunidad de Madrid, C/ Sierra del Alquife N 8, 2 Planta, 28053, Madrid, Spain.
| | - Carmen Bayón
- Laboratorio Regional de Salud Pública Consejería de Sanidad y Consumo/Comunidad de Madrid, C/ Sierra del Alquife N 8, 2 Planta, 28053, Madrid, Spain.
| | | | - Roberto Fernández-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Campus UAM-CSIC, 28049, Cantoblanco, Madrid, Spain.
| | - Guillermo Rodríguez
- Biótica, Bioquímica Analítica, S.L, Science and Technology Park of Jaume I University, Campus RiuSec - Espaitec 2, planta baja, E12071, Castellón de la Plana, Spain.
| |
Collapse
|
42
|
Moumène A, Marcelino I, Ventosa M, Gros O, Lefrançois T, Vachiéry N, Meyer DF, Coelho AV. Proteomic profiling of the outer membrane fraction of the obligate intracellular bacterial pathogen Ehrlichia ruminantium. PLoS One 2015; 10:e0116758. [PMID: 25710494 PMCID: PMC4339577 DOI: 10.1371/journal.pone.0116758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/13/2014] [Indexed: 01/27/2023] Open
Abstract
The outer membrane proteins (OMPs) of Gram-negative bacteria play a crucial role in virulence and pathogenesis. Identification of these proteins represents an important goal for bacterial proteomics, because it aids in vaccine development. Here, we have developed such an approach for Ehrlichia ruminantium, the obligate intracellular bacterium that causes heartwater. A preliminary whole proteome analysis of elementary bodies, the extracellular infectious form of the bacterium, had been performed previously, but information is limited about OMPs in this organism and about their role in the protective immune response. Identification of OMPs is also essential for understanding Ehrlichia's OM architecture, and how the bacterium interacts with the host cell environment. First, we developed an OMP extraction method using the ionic detergent sarkosyl, which enriched the OM fraction. Second, proteins were separated via one-dimensional electrophoresis, and digested peptides were analyzed via nano-liquid chromatographic separation coupled with mass spectrometry (LC-MALDI-TOF/TOF). Of 46 unique proteins identified in the OM fraction, 18 (39%) were OMPs, including 8 proteins involved in cell structure and biogenesis, 4 in transport/virulence, 1 porin, and 5 proteins of unknown function. These experimental data were compared to the predicted subcellular localization of the entire E. ruminantium proteome, using three different algorithms. This work represents the most complete proteome characterization of the OM fraction in Ehrlichia spp. The study indicates that suitable subcellular fractionation experiments combined with straightforward computational analysis approaches are powerful for determining the predominant subcellular localization of the experimentally observed proteins. We identified proteins potentially involved in E. ruminantium pathogenesis, which are good novel targets for candidate vaccines. Thus, combining bioinformatics and proteomics, we discovered new OMPs for E. ruminantium that are valuable data for those investigating new vaccines against this organism. In summary, we provide both pioneering data and novel insights into the pathogenesis of this obligate intracellular bacterium.
Collapse
Affiliation(s)
- Amal Moumène
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
- Université des Antilles et de la Guyane, 97159, Pointe-à-Pitre cedex, Guadeloupe, France
| | - Isabel Marcelino
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel Ventosa
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Olivier Gros
- Université des Antilles et de la Guyane, Institut de Biologie Paris Seine, UMR7138 UPMC-CNRS, Equipe Biologie de la Mangrove, UFR des Sciences Exactes et Naturelles, Département de Biologie, BP 592, 97159, Pointe-à-Pitre cedex, Guadeloupe, France
| | | | - Nathalie Vachiéry
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
| | - Damien F. Meyer
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
- * E-mail:
| | - Ana V. Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
43
|
Diverse protist grazers select for virulence-related traits in Legionella. ISME JOURNAL 2015; 9:1607-18. [PMID: 25575308 DOI: 10.1038/ismej.2014.248] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022]
Abstract
It is generally accepted that selection for resistance to grazing by protists has contributed to the evolution of Legionella pneumophila as a pathogen. Grazing resistance is becoming more generally recognized as having an important role in the ecology and evolution of bacterial pathogenesis. However, selection for grazing resistance presupposes the existence of protist grazers that provide the selective pressure. To determine whether there are protists that graze on pathogenic Legionella species, we investigated the existence of such organisms in a variety of environmental samples. We isolated and characterized diverse protists that graze on L. pneumophila and determined the effects of adding L. pneumophila on the protist community structures in microcosms made from these environmental samples. Several unrelated organisms were able to graze efficiently on L. pneumophila. The community structures of all samples were markedly altered by the addition of L. pneumophila. Surprisingly, some of the Legionella grazers were closely related to species that are known hosts for L. pneumophila, indicating the presence of unknown specificity determinants for this interaction. These results provide the first direct support for the hypothesis that protist grazers exert selective pressure on Legionella to acquire and retain adaptations that contribute to survival, and that these properties are relevant to the ability of the bacteria to cause disease in people. We also report a novel mechanism of killing of amoebae by one Legionella species that requires an intact Type IV secretion system but does not involve intracellular replication. We refer to this phenomenon as 'food poisoning'.
Collapse
|
44
|
Galleria mellonella apolipophorin III – an apolipoprotein with anti-Legionella pneumophila activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2689-97. [DOI: 10.1016/j.bbamem.2014.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
|
45
|
The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Mol Immunol 2014; 63:134-42. [PMID: 25037631 DOI: 10.1016/j.molimm.2014.06.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 01/17/2023]
Abstract
Lipid A, a component of bacterial lipopolysaccharide, is a conserved microbe-associated molecular pattern that activates the MD-2/TLR4 receptor complex. Nevertheless, bacteria produce lipid A molecules of considerable structural diversity. The human MD-2/TLR4 receptor most efficiently recognizes hexaacylated bisphosphorylated lipid A produced by enterobacteria, but in some animal species the immune response can be elicited also by alternative lipid A varieties, such as tetraacylated lipid IVa or pentaacylated lipid A of Rhodobacter spheroides. Several crystal structures revealed that hexaacylated lipid A and tetraacylated lipid IVa activate the murine MD-2/TLR4 in a similar manner, but failed to explain the antagonistic vs. agonistic activity of lipid IVa in the human vs. equine receptor, respectively. Targeted mutagenesis studies of the receptor complex revealed intricate combination of electrostatic and hydrophobic interactions primarily within the MD-2 co-receptor, but with a contribution of TLR4 as well, that contribute to species-specific recognition of lipid A. We will review current knowledge regarding lipid A diversity and species-specific activation of the MD-2/TLR4 receptor complex in different species (e.g. human, mouse or equine) by lipid A varieties.
Collapse
|
46
|
Abstract
Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behavior, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behavior, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies.
Collapse
Affiliation(s)
- Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
47
|
Human lung tissue explants reveal novel interactions during Legionella pneumophila infections. Infect Immun 2013; 82:275-85. [PMID: 24166955 DOI: 10.1128/iai.00703-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model for Legionella pneumophila infection comprising living human lung tissue. We stimulated lung explants with L. pneumophila strains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion of L. pneumophila to the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA(-) strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context of L. pneumophila infections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations.
Collapse
|
48
|
Abstract
The lipopolysaccharide(LPS) of Legionella spp. is an immuno-dominant antigen and the basis for Legionella pneumophila serogroup classification. The LPS shows a peculiar structure composed of a very hydrophobic lipid A acylated by long chain fatty acids and an O-antigen-specific chain consisting of homopolymeric legionaminic acid. In this chapter we describe a method for the isolation of LPS from L. pneumophila. In the first part we describe the chemical purification, in the second part we outline the application of monoclonal antibody (mAb) in Western blot and immuno-localization by indirect immunofluorescence. This report does not describe physico-chemical methods that analyze the structure of lipopolysaccharide entities.
Collapse
Affiliation(s)
- Christian Lück
- Institute for Medical Microbiology and Hygiene, University of Technology, Dresden, Germany.
| | | |
Collapse
|
49
|
Legionella pneumophila transcriptional response following exposure to CuO nanoparticles. Appl Environ Microbiol 2013; 79:2713-20. [PMID: 23416998 DOI: 10.1128/aem.03462-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Copper ions are an effective antimicrobial agent used to control Legionnaires' disease and Pontiac fever arising from institutional drinking water systems. Here, we present data on an alternative bactericidal agent, copper oxide nanoparticles (CuO-NPs), and its efficacy on Legionella pneumophila. In broth cultures, the CuO-NPs caused growth inhibition, which appeared to be concentration and exposure time dependent. The transcriptomic response of L. pneumophila to CuO-NP exposure was investigated by using a whole-genome microarray. The expression of genes involved in metabolism, transcription, translation, DNA replication and repair, and unknown/hypothetical proteins was significantly affected by exposure to CuO-NPs. In addition, expression of 21 virulence genes was also affected by exposure to CuO-NP and further evaluated by quantitative reverse transcription-PCR (qRT-PCR). Some virulence gene responses occurred immediately and transiently after addition of CuO-NPs to the cells and faded rapidly (icmV, icmW, lepA), while expression of other genes increased within 6 h (ceg29, legLC8, legP, lem19, lem24, lpg1689, and rtxA), 12 h (cegC1, dotA, enhC, htpX, icmE, pvcA, and sidF), and 24 h (legP, lem19, and ceg19), but for most of the genes tested, expression was reduced after 24 h of exposure. Genes like ceg29 and rtxA appeared to be the most responsive to CuO-NP exposures and along with other genes identified in this study may prove useful to monitor and manage the impact of drinking water disinfection on L. pneumophila.
Collapse
|
50
|
Buchrieser C. Legionella: from protozoa to humans. Front Microbiol 2011; 2:182. [PMID: 22016745 PMCID: PMC3193031 DOI: 10.3389/fmicb.2011.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/18/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS URA 2171 Paris, France
| |
Collapse
|