1
|
Rytter H, Roger K, Chhuon C, Ding X, Coureuil M, Jamet A, Henry T, Guerrera IC, Charbit A. Dual proteomics of infected macrophages reveal bacterial and host players involved in the Francisella intracellular life cycle and cell to cell dissemination by merocytophagy. Sci Rep 2024; 14:7797. [PMID: 38565565 PMCID: PMC10987565 DOI: 10.1038/s41598-024-58261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Bacterial pathogens adapt and replicate within host cells, while host cells develop mechanisms to eliminate them. Using a dual proteomic approach, we characterized the intra-macrophage proteome of the facultative intracellular pathogen, Francisella novicida. More than 900 Francisella proteins were identified in infected macrophages after a 10-h infection. Biotin biosynthesis-related proteins were upregulated, emphasizing the role of biotin-associated genes in Francisella replication. Conversely, proteins encoded by the Francisella pathogenicity island (FPI) were downregulated, supporting the importance of the F. tularensis Type VI Secretion System for vacuole escape, not cytosolic replication. In the host cell, over 300 proteins showed differential expression among the 6200 identified during infection. The most upregulated host protein was cis-aconitate decarboxylase IRG1, known for itaconate production with antimicrobial properties in Francisella. Surprisingly, disrupting IRG1 expression did not impact Francisella's intracellular life cycle, suggesting redundancy with other immune proteins or inclusion in larger complexes. Over-representation analysis highlighted cell-cell contact and actin polymerization in macrophage deregulated proteins. Using flow cytometry and live cell imaging, we demonstrated that merocytophagy involves diverse cell-to-cell contacts and actin polymerization-dependent processes. These findings lay the groundwork for further exploration of merocytophagy and its molecular mechanisms in future research.Data are available via ProteomeXchange with identifier PXD035145.
Collapse
Affiliation(s)
- Héloïse Rytter
- Université Paris CitéINSERM UMR-S1151, CNRS UMR-S8253Institut Necker Enfants Malades, 156-160 rue de Vaugirard, 75015, Paris, France
- INSERM U1151-CNRS UMR 8253, Team 7: Pathogénie des Infections Systémiques, 75015, Paris, France
| | - Kevin Roger
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, UniversitéParis-Cité, Federative Research Structure Necker, Paris, France
| | - Cerina Chhuon
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, UniversitéParis-Cité, Federative Research Structure Necker, Paris, France
| | - Xiongqi Ding
- Université Paris CitéINSERM UMR-S1151, CNRS UMR-S8253Institut Necker Enfants Malades, 156-160 rue de Vaugirard, 75015, Paris, France
- INSERM U1151-CNRS UMR 8253, Team 7: Pathogénie des Infections Systémiques, 75015, Paris, France
| | - Mathieu Coureuil
- Université Paris CitéINSERM UMR-S1151, CNRS UMR-S8253Institut Necker Enfants Malades, 156-160 rue de Vaugirard, 75015, Paris, France
- INSERM U1151-CNRS UMR 8253, Team 7: Pathogénie des Infections Systémiques, 75015, Paris, France
| | - Anne Jamet
- Université Paris CitéINSERM UMR-S1151, CNRS UMR-S8253Institut Necker Enfants Malades, 156-160 rue de Vaugirard, 75015, Paris, France
- INSERM U1151-CNRS UMR 8253, Team 7: Pathogénie des Infections Systémiques, 75015, Paris, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Ida Chiara Guerrera
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, UniversitéParis-Cité, Federative Research Structure Necker, Paris, France.
| | - Alain Charbit
- Université Paris CitéINSERM UMR-S1151, CNRS UMR-S8253Institut Necker Enfants Malades, 156-160 rue de Vaugirard, 75015, Paris, France.
- INSERM U1151-CNRS UMR 8253, Team 7: Pathogénie des Infections Systémiques, 75015, Paris, France.
| |
Collapse
|
2
|
Borgschulte HS, Jacob D, Zeeh J, Scholz HC, Heuner K. Ulceroglandular form of tularemia after squirrel bite: a case report. J Med Case Rep 2022; 16:309. [PMID: 35974355 PMCID: PMC9381146 DOI: 10.1186/s13256-022-03510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background The diagnosis of tularemia is not often considered in Germany as the disease is still rare in this country. Nonetheless, Francisella tularensis, the causative agent of tularemia, can infect numerous animal species and should, therefore, not be neglected as a dangerous pathogen. Tularemia can lead to massively swollen lymph nodes and might even be fatal without antibiotic treatment. To our knowledge, the case described here is the first report of the disease caused by a squirrel bite in Germany. Case presentation A 59-year-old German woman with a past medical history of hypothyroidism and cutaneous lupus erythematosus presented at the emergency room at St. Katharinen Hospital with ongoing symptoms and a swollen right elbow persisting despite antibiotic therapy with cefuroxime for 7 days after she had been bitten (right hand) by a wild squirrel (Eurasian red squirrel). After another 7 days of therapy with piperacillin/tazobactam, laboratory analysis using real-time polymerase chain reaction (PCR) confirmed the suspected diagnosis of tularemia on day 14. After starting the recommended antibiotic treatment with ciprofloxacin, the patient recovered rapidly. Conclusion This is the first report of a case of tularemia caused by a squirrel bite in Germany. A naturally infected squirrel has recently been reported in Switzerland for the first time. The number of human cases of tularemia has been increasing over the last years and, therefore, tularemia should be taken into consideration as a diagnosis, especially in a patient bitten by an animal who also presents with headache, increasing pain, lymphadenitis, and fever, as well as impaired wound healing. The pathogen can easily be identified by a specific real-time PCR assay of wound swabs and/or by antibody detection, for example by enzyme-linked immunosorbent assay (ELISA), if the incident dates back longer than 2 weeks.
Collapse
Affiliation(s)
- Hannah Sophia Borgschulte
- Department of Internal Medicine 2, St. Katharinen-Hospital, Kapellenstr. 1-5, 50226, Frechen, Germany
| | - Daniela Jacob
- Division of Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany
| | - Jörg Zeeh
- Department of Internal Medicine 2, St. Katharinen-Hospital, Kapellenstr. 1-5, 50226, Frechen, Germany
| | - Holger C Scholz
- Division of Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany
| | - Klaus Heuner
- Division of Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany.
| |
Collapse
|
3
|
The Biosynthetic Pathway of Ubiquinone Contributes to Pathogenicity of Francisella novicida. J Bacteriol 2021; 203:e0040021. [PMID: 34543102 DOI: 10.1128/jb.00400-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia. Because of its extreme infectivity and high mortality rate, this pathogen was classified as a biothreat agent. Francisella spp. are strict aerobes, and ubiquinone (UQ) has been previously identified in these bacteria. While the UQ biosynthetic pathways were extensively studied in Escherichia coli, allowing the identification of 15 Ubi proteins to date, little is known about Francisella spp. In this study, and using Francisella novicida as a surrogate organism, we first identified ubiquinone 8 (UQ8) as the major quinone found in the membranes of this bacterium. Next, we characterized the UQ biosynthetic pathway in F. novicida using a combination of bioinformatics, genetics, and biochemical approaches. Our analysis disclosed the presence in Francisella of 10 putative Ubi proteins, and we confirmed 8 of them by heterologous complementation in E. coli. The UQ biosynthetic pathways from F. novicida and E. coli share similar patterns. However, differences were highlighted: the decarboxylase remains unidentified in Francisella spp., and homologs of the Ubi proteins involved in the O2-independent UQ pathway are not present. This is in agreement with the strictly aerobic niche of this bacterium. Next, via two approaches, i.e., the use of an inhibitor (3-amino-4-hydroxybenzoic acid) and a transposon mutant, both of which strongly impair the synthesis of UQ, we demonstrated that UQ is essential for the growth of F. novicida in respiratory medium and contributes to its pathogenicity in Galleria mellonella used as an alternative animal model. IMPORTANCE Francisella tularensis is the causative bacterium of tularemia and is classified as a biothreat agent. Using multidisciplinary approaches, we investigated the ubiquinone (UQ) biosynthetic pathway that operates in F. novicida used as a surrogate. We show that UQ8 is the major quinone identified in the membranes of Francisella novicida. We identified a new competitive inhibitor that strongly decreased the biosynthesis of UQ. Our demonstration of the crucial roles of UQ for the respiratory metabolism of F. novicida and for the involvement in its pathogenicity in the Galleria mellonella model should stimulate the search for selective inhibitors of bacterial UQ biosynthesis.
Collapse
|
4
|
Rytter H, Jamet A, Ziveri J, Ramond E, Coureuil M, Lagouge-Roussey P, Euphrasie D, Tros F, Goudin N, Chhuon C, Nemazanyy I, de Moraes FE, Labate C, Guerrera IC, Charbit A. The pentose phosphate pathway constitutes a major metabolic hub in pathogenic Francisella. PLoS Pathog 2021; 17:e1009326. [PMID: 34339477 PMCID: PMC8360588 DOI: 10.1371/journal.ppat.1009326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/12/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic pathways are now considered as intrinsic virulence attributes of pathogenic bacteria and thus represent potential targets for antibacterial strategies. Here we focused on the role of the pentose phosphate pathway (PPP) and its connections with other metabolic pathways in the pathophysiology of Francisella novicida. The involvement of the PPP in the intracellular life cycle of Francisella was first demonstrated by studying PPP inactivating mutants. Indeed, we observed that inactivation of the tktA, rpiA or rpe genes severely impaired intramacrophage multiplication during the first 24 hours. However, time-lapse video microscopy demonstrated that rpiA and rpe mutants were able to resume late intracellular multiplication. To better understand the links between PPP and other metabolic networks in the bacterium, we also performed an extensive proteo-metabolomic analysis of these mutants. We show that the PPP constitutes a major bacterial metabolic hub with multiple connections to glycolysis, the tricarboxylic acid cycle and other pathways, such as fatty acid degradation and sulfur metabolism. Altogether our study highlights how PPP plays a key role in the pathogenesis and growth of Francisella in its intracellular niche.
Collapse
Affiliation(s)
- Héloise Rytter
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Anne Jamet
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Jason Ziveri
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Elodie Ramond
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Pauline Lagouge-Roussey
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Daniel Euphrasie
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Fabiola Tros
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Nicolas Goudin
- Pole Bio-analyse d’images, Structure Fédérative de Recherche Necker INSERM US24- CNRS UMS 3633, Paris, France
| | - Cerina Chhuon
- Université de Paris, Paris, France
- Plateforme Protéome Institut Necker, PPN, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Ivan Nemazanyy
- Université de Paris, Paris, France
- Plateforme Etude du métabolisme, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Fabricio Edgar de Moraes
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Ida Chiara Guerrera
- Université de Paris, Paris, France
- Plateforme Protéome Institut Necker, PPN, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
- * E-mail: (ICG); (AC)
| | - Alain Charbit
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
- * E-mail: (ICG); (AC)
| |
Collapse
|
5
|
First Description of a Temperate Bacteriophage (vB _FhiM_KIRK) of Francisella hispaniensis Strain 3523. Viruses 2021; 13:v13020327. [PMID: 33672748 PMCID: PMC7924643 DOI: 10.3390/v13020327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022] Open
Abstract
Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) including the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and the phage particles seem to be defective for infecting new bacterial cells. Nevertheless, recombinant KIRK DNA was able to integrate site-specifically into the genome of different Francisella species after DNA transformation.
Collapse
|
6
|
Pessione E. The Less Expensive Choice: Bacterial Strategies to Achieve Successful and Sustainable Reciprocal Interactions. Front Microbiol 2021; 11:571417. [PMID: 33584557 PMCID: PMC7873842 DOI: 10.3389/fmicb.2020.571417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria, the first organisms that appeared on Earth, continue to play a central role in ensuring life on the planet, both as biogeochemical agents and as higher organisms' symbionts. In the last decades, they have been employed both as bioremediation agents for cleaning polluted sites and as bioconversion effectors for obtaining a variety of products from wastes (including eco-friendly plastics and green energies). However, some recent reports suggest that bacterial biodiversity can be negatively affected by the present environmental crisis (global warming, soil desertification, and ocean acidification). This review analyzes the behaviors positively selected by evolution that render bacteria good models of sustainable practices (urgent in these times of climate change and scarcity of resources). Actually, bacteria display a tendency to optimize rather than maximize, to economize energy and building blocks (by using the same molecule for performing multiple functions), and to recycle and share metabolites, and these are winning strategies when dealing with sustainability. Furthermore, their ability to establish successful reciprocal relationships by means of anticipation, collective actions, and cooperation can also constitute an example highlighting how evolutionary selection favors behaviors that can be strategic to contain the present environmental crisis.
Collapse
Affiliation(s)
- Enrica Pessione
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
7
|
Jacob D, Barduhn A, Tappe D, Rauch J, Heuner K, Hierhammer D, vom Berge K, Riehm JM, Hanczaruk M, Böhm S, Böhmer MM, Konrad R, Bouschery B, Dauer M, Schichtl E, Hossain H, Grunow R. Outbreak of Tularemia in a Group of Hunters in Germany in 2018-Kinetics of Antibody and Cytokine Responses. Microorganisms 2020; 8:microorganisms8111645. [PMID: 33114188 PMCID: PMC7690809 DOI: 10.3390/microorganisms8111645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/01/2023] Open
Abstract
In November 2018, an outbreak of tularemia occurred among hare hunters in Bavaria, Germany. At least one infected hare was confirmed as the source of infection. A number of hunting dogs showed elevated antibody titers to Francisella tularensis, but the absence of titer increases in subsequent samples did not point to acute infections in dogs. Altogether, 12 persons associated with this hare hunt could be diagnosed with acute tularemia by detection of specific antibodies. In nine patients, the antibody and cytokine responses could be monitored over time. Eight out of these nine patients had developed detectable antibodies three weeks after exposure; in one individual the antibody response was delayed. All patients showed an increase in various cytokines and chemokines with a peak for most mediators in the first week after exposure. Cytokine levels showed individual variations, with high and low responders. The kinetics of seroconversion has implications on serological diagnoses of tularemia.
Collapse
Affiliation(s)
- Daniela Jacob
- Robert Koch Institute, 13353 Berlin, Germany; (D.J.); (A.B.); (K.H.)
| | - Anne Barduhn
- Robert Koch Institute, 13353 Berlin, Germany; (D.J.); (A.B.); (K.H.)
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (D.T.); (J.R.)
| | - Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (D.T.); (J.R.)
| | - Klaus Heuner
- Robert Koch Institute, 13353 Berlin, Germany; (D.J.); (A.B.); (K.H.)
| | - Daniela Hierhammer
- Local Health Authority, 92421 Schwandorf, Bavaria, Germany; (D.H.); (K.v.B.)
| | - Katharina vom Berge
- Local Health Authority, 92421 Schwandorf, Bavaria, Germany; (D.H.); (K.v.B.)
| | - Julia M. Riehm
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (J.M.R.); (M.H.); (S.B.); (M.M.B.); (R.K.)
| | - Matthias Hanczaruk
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (J.M.R.); (M.H.); (S.B.); (M.M.B.); (R.K.)
| | - Stefanie Böhm
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (J.M.R.); (M.H.); (S.B.); (M.M.B.); (R.K.)
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, 13353 Berlin, Germany
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, 169 73 Solna, Sweden
| | - Merle M. Böhmer
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (J.M.R.); (M.H.); (S.B.); (M.M.B.); (R.K.)
- Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University, 39106 Magdeburg, Germany
| | - Regina Konrad
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (J.M.R.); (M.H.); (S.B.); (M.M.B.); (R.K.)
| | - Berit Bouschery
- Department of Medicine II, Klinikum St. Marien, 92224 Amberg, Germany; (B.B.); (M.D.)
| | - Marc Dauer
- Department of Medicine II, Klinikum St. Marien, 92224 Amberg, Germany; (B.B.); (M.D.)
- Department of Medicine II, Saarland University, 66421 Homburg, Germany
| | | | - Hamid Hossain
- Institute of Laboratory Medicine and Microbiology, Klinikum St. Marien, 92224 Amberg, Germany;
- Institute of Laboratory Medicine and Microbiology, Kliniken Nordoberpfalz AG, 92637 Weiden, Germany
| | - Roland Grunow
- Robert Koch Institute, 13353 Berlin, Germany; (D.J.); (A.B.); (K.H.)
- Correspondence:
| |
Collapse
|
8
|
Jacob D, Köppen K, Radonić A, Haldemann B, Zanger P, Heuner K, Grunow R. Molecular identification of the source of an uncommon tularaemia outbreak, Germany, autumn 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 31064636 PMCID: PMC6505183 DOI: 10.2807/1560-7917.es.2019.24.18.1800419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background In 2016, an uncommon outbreak of oropharyngeal tularaemia involving six human cases occurred in Germany, caused by drinking contaminated fresh must after a grape harvest. Aim We describe the details of laboratory investigations leading to identification of the outbreak strain, its characterisation by next generation sequencing (NGS) and the finding of the possible source of contamination. Methods We incubated wine samples in different media and on agar plates. NGS was performed on DNA isolated from young wine, sweet reserve and an outbreak case’s lymph node. A draft genome of the outbreak strain was generated. Vertebrate-specific PCRs using primers targeting the mitochondrial cytochrome b gene and product analyses by blast search were used to identify the putative source of must contamination. Results No bacterial isolate could be obtained. Analysis of the draft genome sequence obtained from the sweet reserve attributed this sequence to Francisella tularensis subsp. holarctica, belonging to the B.12/B.34 phylogenetic clade (erythromycin-resistant biovar II). In addition, the DNA sequence obtained from the case’s isolate supported our hypothesis that infection was caused by drinking contaminated must. The vertebrate-specific cytochrome b sequence derived from the young wine and the sweet reserve could be assigned to Apodemus sylvaticus (wood mouse), suggesting that a wood mouse infected with F. tularensis may have contaminated the must. Conclusion The discovered source of infection and the transmission scenario of F. tularensis in this outbreak have not been observed previously and suggest the need for additional hygienic precautionary measures when processing and consuming freshly pressed must.
Collapse
Affiliation(s)
- Daniela Jacob
- These authors contributed equally to this work.,Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Kristin Köppen
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany.,These authors contributed equally to this work
| | - Aleksandar Radonić
- Genome Sequencing (MF 2), Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Berit Haldemann
- Bioinformatics (MF 1), Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Philipp Zanger
- Heidelberg Institute of Global Health, Unit of Epidemiology and Biostatistics, University Hospitals, Heidelberg, Germany.,Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospitals, Heidelberg, Germany.,Federal State Agency for Consumer & Health Protection Rhineland-Palatinate, Koblenz, Germany
| | - Klaus Heuner
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany.,These authors contributed equally to this work
| | - Roland Grunow
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
9
|
Chen F, Köppen K, Rydzewski K, Einenkel R, Morguet C, Vu DT, Eisenreich W, Heuner K. Myo-Inositol as a carbon substrate in Francisella and insights into the metabolism of Francisella sp. strain W12-1067. Int J Med Microbiol 2020; 310:151426. [PMID: 32444321 DOI: 10.1016/j.ijmm.2020.151426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
Recently, a new environmental Francisella strain, Francisella sp. strain W12-1067, has been identified in Germany. This strain is negative for the Francisella pathogenicity island (FPI) but exhibits a putative alternative type VI secretion system. Some known virulence factors of Francisella are present, but the pathogenic capacity of this species is not known yet. In silico genome analysis reveals the presence of a gene cluster tentatively enabling myo-inositol (MI) utilization via a putative inositol oxygenase. Labelling experiments starting from 2H-inositol demonstrate that this gene cluster is indeed involved in the metabolism of MI. We further show that, under in vitro conditions, supply of MI increases growth rates of strain W12-1067 in the absence of glucose and that the metabolism of MI is strongly reduced in a W12-1067 mutant lacking the MI gene cluster. The positive growth effect of MI in the absence of glucose is restored in this mutant strain by introducing the complete MI gene cluster. F. novicida Fx1 is also positive for the MI metabolizing gene cluster and MI again increases growth in a glucose-free medium, in contrast to F. novicida strain U112, which is shown to be a natural mutant of the MI metabolizing gene cluster. Labelling experiments of Francisella sp. strain W12-1067 in medium T containing 13C-glucose, 13C-serine or 13C-glycerol as tracers suggest a bipartite metabolism where glucose is mainly metabolized through glycolysis, but not through the Entner-Doudoroff pathway or the pentose phosphate pathway. Carbon flux from 13C-glycerol and 13C-serine is less active, and label from these tracers is transferred mostly into amino acids, lactate and fatty acids. Together, the metabolism of Francisella sp. strain W12-1067 seems to be more related to the respective one in F. novicida rather than in F. tularensis subsp. holarctica.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Kristin Köppen
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| | - Kerstin Rydzewski
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| | - Rosa Einenkel
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| | - Clara Morguet
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Duc Tung Vu
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany.
| | - Klaus Heuner
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
10
|
Screen for fitness and virulence factors of Francisella sp. strain W12-1067 using amoebae. Int J Med Microbiol 2019; 309:151341. [PMID: 31451389 DOI: 10.1016/j.ijmm.2019.151341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is the causative agent of the human disease referred to as tularemia. Other Francisella species are known but less is understood about their virulence factors. The role of environmental amoebae in the life-cycle of Francisella is still under discussion. Francisella sp. strain W12-1067 (F-W12) is an environmental Francisella isolate recently identified in Germany which is negative for the Francisella pathogenicity island, but exhibits a putative alternative type VI secretion system. Putative virulence factors have been identified in silico in the genome of F-W12. In this work, we established a "scatter screen", used earlier for pathogenic Legionella, to verify experimentally and identify candidate fitness factors using a transposon mutant bank of F-W12 and Acanthamoeba lenticulata as host organism. In these experiments, we identified 79 scatter clones (amoeba sensitive), which were further analyzed by an infection assay identifying 9 known virulence factors, but also candidate fitness factors of F-W12 not yet described as fitness factors in Francisella. The majority of the identified genes encoded proteins involved in the synthesis or maintenance of the cell envelope (LPS, outer membrane, capsule) or in the metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway). Further 13C-flux analysis of the Tn5 glucokinase mutant strain revealed that the identified gene indeed encodes the sole active glucokinase in F-W12. In conclusion, candidate fitness factors of the new Francisella species F-W12 were identified using the scatter screen method which might also be usable for other Francisella species.
Collapse
|
11
|
Faber M, Heuner K, Jacob D, Grunow R. Tularemia in Germany-A Re-emerging Zoonosis. Front Cell Infect Microbiol 2018; 8:40. [PMID: 29503812 PMCID: PMC5821074 DOI: 10.3389/fcimb.2018.00040] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/31/2018] [Indexed: 11/17/2022] Open
Abstract
Tularemia, also known as “rabbit fever,” is a zoonosis caused by the facultative intracellular, gram-negative bacterium Francisella tularensis. Infection occurs through contact with infected animals (often hares), arthropod vectors (such as ticks or deer flies), inhalation of contaminated dust or through contaminated food and water. In this review, we would like to provide an overview of the current epidemiological situation in Germany using published studies and case reports, an analysis of recent surveillance data and our own experience from the laboratory diagnostics, and investigation of cases. While in Germany tularemia is a rarely reported disease, there is evidence of recent re-emergence. We also describe some peculiarities that were observed in Germany, such as a broad genetic diversity, and a recently discovered new genus of Francisella and protracted or severe clinical courses of infections with the subspecies holarctica. Because tularemia is a zoonosis, we also touch upon the situation in the animal reservoir and one-health aspects of this disease. Apparently, many pieces of the puzzle need to be found and put into place before the complex interaction between wildlife, the environment and humans are fully understood. Funding for investigations into rare diseases is scarce. Therefore, combining efforts in several countries in the framework of international projects may be necessary to advance further our understanding of this serious but also scientifically interesting disease.
Collapse
Affiliation(s)
- Mirko Faber
- Gastrointestinal Infections, Zoonoses and Tropical Infections (Division 35), Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Working Group, Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Robert Koch Institute, Berlin, Germany.,Highly Pathogenic Microorganisms, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Daniela Jacob
- Highly Pathogenic Microorganisms, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Roland Grunow
- Highly Pathogenic Microorganisms, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
12
|
Chen F, Rydzewski K, Kutzner E, Häuslein I, Schunder E, Wang X, Meighen-Berger K, Grunow R, Eisenreich W, Heuner K. Differential Substrate Usage and Metabolic Fluxes in Francisella tularensis Subspecies holarctica and Francisella novicida. Front Cell Infect Microbiol 2017; 7:275. [PMID: 28680859 PMCID: PMC5478678 DOI: 10.3389/fcimb.2017.00275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Francisella tularensis is an intracellular pathogen for many animals causing the infectious disease, tularemia. Whereas F. tularensis subsp. holarctica is highly pathogenic for humans, F. novicida is almost avirulent for humans, but virulent for mice. In order to compare metabolic fluxes between these strains, we performed 13C-labeling experiments with F. tularensis subsp. holarctica wild type (beaver isolate), F. tularensis subsp. holarctica strain LVS, or F. novicida strain U112 in complex media containing either [U-13C6]glucose, [1,2-13C2]glucose, [U-13C3]serine, or [U-13C3]glycerol. GC/MS-based isotopolog profiling of amino acids, polysaccharide-derived glucose, free fructose, amino sugars derived from the cell wall, fatty acids, 3-hydroxybutyrate, lactate, succinate and malate revealed uptake and metabolic usage of all tracers under the experimental conditions with glucose being the major carbon source for all strains under study. The labeling patterns of the F. tularensis subsp. holarctica wild type were highly similar to those of the LVS strain, but showed remarkable differences to the labeling profiles of the metabolites from the F. novicida strain. Glucose was directly used for polysaccharide and cell wall biosynthesis with higher rates in F. tularensis subsp. holarctica or metabolized, with higher rates in F. novicida, via glycolysis and the non-oxidative pentose phosphate pathway (PPP). Catabolic turnover of glucose via gluconeogenesis was also observed. In all strains, Ala was mainly synthesized from pyruvate, although no pathway from pyruvate to Ala is annotated in the genomes of F. tularensis and F. novicida. Glycerol efficiently served as a gluconeogenetic substrate in F. novicida, but only less in the F. tularensis subsp. holarctica strains. In any of the studied strains, serine did not serve as a major substrate and was not significantly used for gluconeogenesis under the experimental conditions. Rather, it was only utilized, at low rates, in downstream metabolic processes, e.g., via acetyl-CoA in the citrate cycle and for fatty acid biosynthesis, especially in the F. tularensis subsp. holarctica strains. In summary, the data reflect differential metabolite fluxes in F. tularensis subsp. holarctica and F. novicida suggesting that the different utilization of substrates could be related to host specificity and virulence of Francisella.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Kerstin Rydzewski
- Working Group "Cellular Interactions of Bacterial Pathogens", ZBS 2, Robert Koch InstituteBerlin, Germany
| | - Erika Kutzner
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Ina Häuslein
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Eva Schunder
- Working Group "Cellular Interactions of Bacterial Pathogens", ZBS 2, Robert Koch InstituteBerlin, Germany
| | - Xinzhe Wang
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Kevin Meighen-Berger
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Roland Grunow
- Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Robert Koch InstituteBerlin, Germany
| | - Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Klaus Heuner
- Working Group "Cellular Interactions of Bacterial Pathogens", ZBS 2, Robert Koch InstituteBerlin, Germany
| |
Collapse
|
13
|
Ziveri J, Barel M, Charbit A. Importance of Metabolic Adaptations in Francisella Pathogenesis. Front Cell Infect Microbiol 2017; 7:96. [PMID: 28401066 PMCID: PMC5368251 DOI: 10.3389/fcimb.2017.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Francisella tularensis is a highly infectious Gram-negative bacterium and the causative agent of the zoonotic disease tularemia. This bacterial pathogen can infect a broad variety of animal species and can be transmitted to humans in numerous ways with various clinical outcomes. Although, Francisella possesses the capacity to infect numerous mammalian cell types, the macrophage constitutes the main intracellular niche, used for in vivo bacterial dissemination. To survive and multiply within infected macrophages, Francisella must imperatively escape from the phagosomal compartment. In the cytosol, the bacterium needs to control the host innate immune response and adapt its metabolism to this nutrient-restricted niche. Our laboratory has shown that intracellular Francisella mainly relied on host amino acid as major gluconeogenic substrates and provided evidence that the host metabolism was also modified upon Francisella infection. We will review here our current understanding of how Francisella copes with the available nutrient sources provided by the host cell during the course of infection.
Collapse
Affiliation(s)
- Jason Ziveri
- Sorbonne Paris Cité, Université Paris DescartesParis, France; Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Team 11: Pathogenesis of Systemic InfectionsParis, France
| | - Monique Barel
- Sorbonne Paris Cité, Université Paris DescartesParis, France; Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Team 11: Pathogenesis of Systemic InfectionsParis, France
| | - Alain Charbit
- Sorbonne Paris Cité, Université Paris DescartesParis, France; Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Team 11: Pathogenesis of Systemic InfectionsParis, France
| |
Collapse
|
14
|
Barel M, Charbit A. Role of Glycosylation/Deglycolysation Processes in Francisella tularensis Pathogenesis. Front Cell Infect Microbiol 2017; 7:71. [PMID: 28377902 PMCID: PMC5359314 DOI: 10.3389/fcimb.2017.00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Francisella tularensis is able to invade, survive and replicate inside a variety of cell types. However, in vivo F. tularensis preferentially enters host macrophages where it rapidly escapes to the cytosol to avoid phagosomal stresses and to multiply to high numbers. We previously showed that human monocyte infection by F. tularensis LVS triggered deglycosylation of the glutamine transporter SLC1A5. However, this deglycosylation, specifically induced by Francisella infection, was not restricted to SLC1A5, suggesting that host protein deglycosylation processes in general might contribute to intracellular bacterial adaptation. Indeed, we later found that Francisella infection modulated the transcription of numerous glycosidase and glycosyltransferase genes in human macrophages and analysis of cell extracts revealed an important increase of N and O-protein glycosylation. In eukaryotic cells, glycosylation has significant effects on protein folding, conformation, distribution, stability, and activity and dysfunction of protein glycosylation may lead to development of diseases like cancer and pathogenesis of infectious diseases. Pathogenic bacteria have also evolved dedicated glycosylation machineries and have notably been shown to use these glycoconjugates as ligands to specifically interact with the host. In this review, we will focus on Francisella and summarize our current understanding of the importance of these post-translational modifications on its intracellular niche adaptation.
Collapse
Affiliation(s)
- Monique Barel
- Sorbonne Paris Cité, Bâtiment Leriche, Université Paris DescartesParis, France; Institut National de la Santé et de la Recherche Médicale, Institut Necker-Enfants Malades, INSERM U1151 -Team 11, Pathogenesis of Systemic InfectionsParis, France; Centre National de la Recherche Scientifique, UMR8253Paris, France
| | - Alain Charbit
- Sorbonne Paris Cité, Bâtiment Leriche, Université Paris DescartesParis, France; Institut National de la Santé et de la Recherche Médicale, Institut Necker-Enfants Malades, INSERM U1151 -Team 11, Pathogenesis of Systemic InfectionsParis, France; Centre National de la Recherche Scientifique, UMR8253Paris, France
| |
Collapse
|
15
|
Abstract
Francisella tularensis, the causative organism in Tularemia, is a relatively rare disease. There are a few radiological clues to elucidate its presence when suspicion arises. There should be strong consideration for Tularemia in the differential of any patient with its classic symptoms, diffuse cervical lymphadenopathy with evidence of necrosis, and enlarged adenoids. Ultrasound may demonstrate suppurative lymphadenopathy suggestive of infection, as in the case presented. CT often will demonstrate the extent of lymphadenopathy. On chest radiography, tularemia pneumonia is often the presenting finding, which may demonstrate bilateral or lobar infiltrates. Additionally, hilar lymphadenopathy and pleural effusions are often associated findings. Cavitary lesions may be present, which are better delineated on CT scan. We present a case of a 7-year-old male who presented with a painful right-sided palpable neck mass for 9 days, who was diagnosed with Tularemia after numerous admissions.
Collapse
Affiliation(s)
- Neil Anand
- Department of Radiology, Morristown Medical Center, Morristown, NJ, USA
| | - Osmani Deochand
- Department of Radiology, Morristown Medical Center, Morristown, NJ, USA
| | - Robyn Murphy
- Department of Radiology, Morristown Medical Center, Morristown, NJ, USA
| |
Collapse
|
16
|
Duzlu O, Yildirim A, Inci A, Gumussoy KS, Ciloglu A, Onder Z. Molecular Investigation ofFrancisella-Like Endosymbiont in Ticks andFrancisella tularensisin Ixodid Ticks and Mosquitoes in Turkey. Vector Borne Zoonotic Dis 2016; 16:26-32. [DOI: 10.1089/vbz.2015.1818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Onder Duzlu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Turkey
| | - Alparslan Yildirim
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Turkey
| | - Abdullah Inci
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Turkey
| | - Kadir Semih Gumussoy
- Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Turkey
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Arif Ciloglu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Turkey
| | - Zuhal Onder
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
17
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2015; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
18
|
Brissac T, Ziveri J, Ramond E, Tros F, Kock S, Dupuis M, Brillet M, Barel M, Peyriga L, Cahoreau E, Charbit A. Gluconeogenesis, an essential metabolic pathway for pathogenic Francisella. Mol Microbiol 2015; 98:518-34. [PMID: 26192619 DOI: 10.1111/mmi.13139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 01/23/2023]
Abstract
Intracellular multiplication and dissemination of the infectious bacterial pathogen Francisella tularensis implies the utilization of multiple host-derived nutrients. Here, we demonstrate that gluconeogenesis constitutes an essential metabolic pathway in Francisella pathogenesis. Indeed, inactivation of gene glpX, encoding the unique fructose 1,6-bisphosphatase of Francisella, severely impaired bacterial intracellular multiplication when cells were supplemented by gluconeogenic substrates such as glycerol or pyruvate. The ΔglpX mutant also showed a severe virulence defect in the mouse model, confirming the importance of this pathway during the in vivo life cycle of the pathogen. Isotopic profiling revealed the major role of the Embden-Meyerhof (glycolysis) pathway in glucose catabolism in Francisella and confirmed the importance of glpX in gluconeogenesis. Altogether, the data presented suggest that gluconeogenesis allows Francisella to cope with the limiting glucose availability it encounters during its infectious cycle by relying on host amino acids. Hence, targeting the gluconeogenic pathway might constitute an interesting therapeutic approach against this pathogen.
Collapse
Affiliation(s)
- Terry Brissac
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Jason Ziveri
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Elodie Ramond
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Fabiola Tros
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Stephanie Kock
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Marion Dupuis
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Magali Brillet
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Monique Barel
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Lindsay Peyriga
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, Toulouse, 31077, France.,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, 31400, France.,CNRS, UMR5504, Toulouse, 31400, France
| | - Edern Cahoreau
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, Toulouse, 31077, France.,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, 31400, France.,CNRS, UMR5504, Toulouse, 31400, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| |
Collapse
|
19
|
Barel M, Ramond E, Gesbert G, Charbit A. The complex amino acid diet of Francisella in infected macrophages. Front Cell Infect Microbiol 2015; 5:9. [PMID: 25705612 PMCID: PMC4319460 DOI: 10.3389/fcimb.2015.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis, the agent of the zoonotic disease tularemia, is a highly infectious bacterium for a large number of animal species and can be transmitted to humans by various means. The bacterium is able to infect a variety of cell types but replicates in mammalian hosts mainly in the cytosol of infected macrophages. In order to resist the stressful and nutrient-restricted intracellular environments, it encounters during its systemic dissemination, Francisella has developed dedicated stress resistance mechanisms and adapted its metabolic and nutritional needs. Recent data form our laboratory and from several other groups have shown that Francisella simultaneously relies on multiple host amino acid sources during its intracellular life cycle. This review will summarize how intracellular Francisella use different amino acid sources, and their role in phagosomal escape and/or cytosolic multiplication and systemic dissemination. We will first summarize the data that we have obtained on two amino acid transporters involved in Francisella phagosomal escape and cytosolic multiplication i.e., the glutamate transporter GadC and the asparagine transporter AnsP, respectively. The specific contribution of glutamate and asparagine to the physiology of the bacterium will be evoked. Then, we will discuss how Francisella has adapted to obtain and utilize host amino acid resources, and notably the contribution of host transporters and autophagy process in the establishment of a nutrient-replete intracellular niche.
Collapse
Affiliation(s)
- Monique Barel
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| | - Elodie Ramond
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| | - Gael Gesbert
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| |
Collapse
|
20
|
Importance of branched-chain amino acid utilization in Francisella intracellular adaptation. Infect Immun 2014; 83:173-83. [PMID: 25332124 DOI: 10.1128/iai.02579-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intracellular bacterial pathogens have adapted their metabolism to optimally utilize the nutrients available in infected host cells. We recently reported the identification of an asparagine transporter required specifically for cytosolic multiplication of Francisella. In the present work, we characterized a new member of the major super family (MSF) of transporters, involved in isoleucine uptake. We show that this transporter (here designated IleP) plays a critical role in intracellular metabolic adaptation of Francisella. Inactivation of IleP severely impaired intracellular F. tularensis subsp. novicida multiplication in all cell types tested and reduced bacterial virulence in the mouse model. To further establish the importance of the ileP gene in F. tularensis pathogenesis, we constructed a chromosomal deletion mutant of ileP (ΔFTL_1803) in the F. tularensis subsp. holarctica live vaccine strain (LVS). Inactivation of IleP in the F. tularensis LVS provoked comparable intracellular growth defects, confirming the critical role of this transporter in isoleucine uptake. The data presented establish, for the first time, the importance of isoleucine utilization for efficient phagosomal escape and cytosolic multiplication of Francisella and suggest that virulent F. tularensis subspecies have lost their branched-chain amino acid biosynthetic pathways and rely exclusively on dedicated uptake systems. This loss of function is likely to reflect an evolution toward a predominantly intracellular life style of the pathogen. Amino acid transporters should be thus considered major players in the adaptation of intracellular pathogens.
Collapse
|
21
|
Şenel E, Satılmış Ö, Acar B. Dermatologic manifestations of tularemia: a study of 151 cases in the mid-Anatolian region of Turkey. Int J Dermatol 2014; 54:e33-7. [PMID: 25208535 DOI: 10.1111/ijd.12431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tularemia is a serious and potentially life-threatening zoonosis caused by Francisella tularensis, a highly infective, gram-negative coccobacillus. Although there are plenty of case reports and studies of tularemia outbreaks, the literature is lacking in reports on dermatologic manifestations of the disease. OBJECTIVES This study aimed to identify skin manifestations in clinical forms of tularemia. METHODS A total of 151 patients diagnosed with tularemia at Çankırı State Hospital, Çankırı, Turkey, were retrospectively examined. Dermatologic data for these patients were assessed. RESULTS The most frequent clinical manifestation of tularemia was the glandular form (49.7%), followed by the oropharyngeal, ulceroglandular, and oculoglandular forms (39.1, 6.0, and 5.3%, respectively). Physical manifestations were observed in 64.5% of females and 56.9% of males. Lymphadenopathy and tonsillitis were the most frequent physical findings and were noted in 57.6 and 25.2% of patients, respectively. Erythema multiforme was found in 17 patients (11.3%), most of whom presented with the oropharyngeal and glandular forms, and was followed by ulcer (6.0%), urticaria (3.3%), erythema nodosum (2.6%), and cellulitis (0.7%). However, it should be noted that this study was retrospective and that its patient sample demonstrated four of the six clinical forms of tularemia. CONCLUSIONS Patients with the oropharyngeal form of tularemia had statistically significantly more physical findings than those with other clinical forms of the disease (P < 0.001). There were statistically more skin findings in the ulceroglandular form (P < 0.001). There was no statistical correlation between serum antibody titers and cutaneous findings (P = 0.585). Although the literature reports that skin lesions are observed more frequently in women than in men, we did not find any statistically significant difference between the sexes in any type of skin lesion.
Collapse
Affiliation(s)
- Engin Şenel
- Department of Dermatology, Hitit University Faculy of Medicine, Çankırı State Hospital, Çankırı, Turkey
| | | | | |
Collapse
|
22
|
Carvalho CL, Lopes de Carvalho I, Zé-Zé L, Núncio MS, Duarte EL. Tularaemia: a challenging zoonosis. Comp Immunol Microbiol Infect Dis 2014; 37:85-96. [PMID: 24480622 PMCID: PMC7124367 DOI: 10.1016/j.cimid.2014.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/28/2013] [Accepted: 01/04/2014] [Indexed: 01/21/2023]
Abstract
In recent years, several emerging zoonotic vector-borne infections with potential impact on human health have been identified in Europe, including tularaemia, caused by Francisella tularensis. This remarkable pathogen, one of the most virulent microorganisms currently known, has been detected in increasingly new settings and in a wide range of wild species, including lagomorphs, rodents, carnivores, fish and invertebrate arthropods. Also, a renewed concern has arisen with regard to F. tularensis: its potential use by bioterrorists. Based on the information published concerning the latest outbreaks, the aim of this paper is to review the main features of the agent, its biology, immunology and epidemiology. Moreover, special focus will be given to zoonotic aspects of the disease, as tularaemia outbreaks in human populations have been frequently associated with disease in animals.
Collapse
Affiliation(s)
- C L Carvalho
- Institute of Mediterranean Agricultural and Environmental Science (ICAAM), School of Science and Technology ECT, University of Évora, Portugal; Centre for Vectors and Infectious Diseases Research, National Health Institute Doutor Ricardo Jorge, Águas de Moura, Portugal
| | - I Lopes de Carvalho
- Emergency Response and Bio-preparedness Unit, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - L Zé-Zé
- Centre for Vectors and Infectious Diseases Research, National Health Institute Doutor Ricardo Jorge, Águas de Moura, Portugal
| | - M S Núncio
- Centre for Vectors and Infectious Diseases Research, National Health Institute Doutor Ricardo Jorge, Águas de Moura, Portugal
| | - E L Duarte
- Institute of Mediterranean Agricultural and Environmental Science (ICAAM), School of Science and Technology ECT, University of Évora, Portugal.
| |
Collapse
|
23
|
Ramond E, Gesbert G, Rigard M, Dairou J, Dupuis M, Dubail I, Meibom K, Henry T, Barel M, Charbit A. Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape. PLoS Pathog 2014; 10:e1003893. [PMID: 24453979 PMCID: PMC3894225 DOI: 10.1371/journal.ppat.1003893] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022] Open
Abstract
Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle.
Collapse
Affiliation(s)
- Elodie Ramond
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Gael Gesbert
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Mélanie Rigard
- Centre international de recherche en infectiologie, Université de Lyon, Lyon, France
- Bacterial Pathogenesis and Innate Immunity Laboratory, INSERM U851 “Immunity, Infection and Vaccination”, Lyon, France
| | - Julien Dairou
- Platform “Bioprofiler” Université Paris Diderot, Paris, France
| | - Marion Dupuis
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Iharilalao Dubail
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Karin Meibom
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Thomas Henry
- Centre international de recherche en infectiologie, Université de Lyon, Lyon, France
- Bacterial Pathogenesis and Innate Immunity Laboratory, INSERM U851 “Immunity, Infection and Vaccination”, Lyon, France
| | - Monique Barel
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| |
Collapse
|
24
|
Gesbert G, Ramond E, Rigard M, Frapy E, Dupuis M, Dubail I, Barel M, Henry T, Meibom K, Charbit A. Asparagine assimilation is critical for intracellular replication and dissemination of Francisella. Cell Microbiol 2013; 16:434-49. [PMID: 24134488 DOI: 10.1111/cmi.12227] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 12/28/2022]
Abstract
In order to develop a successful infectious cycle, intracellular bacterial pathogens must be able to adapt their metabolism to optimally utilize the nutrients available in the cellular compartments and tissues where they reside. Francisella tularensis, the agent of the zoonotic disease tularaemia, is a highly infectious bacterium for a large number of animal species. This bacterium replicates in its mammalian hosts mainly in the cytosol of infected macrophages. We report here the identification of a novel amino acid transporter of the major facilitator superfamily of secondary transporters that is required for bacterial intracellular multiplication and systemic dissemination. We show that inactivation of this transporter does not affect phagosomal escape but prevents multiplication in the cytosol of all cell types tested. Remarkably, the intracellular growth defect of the mutant was fully and specifically reversed by addition of asparagine or asparagine-containing dipeptides as well as by simultaneous addition of aspartic acid and ammonium. Importantly, bacterial virulence was also restored in vivo, in the mouse model, by asparagine supplementation. This work unravels thus, for the first time, the importance of asparagine for cytosolicmultiplication of Francisella. Amino acid transporters are likely to constitute underappreciated players in bacterial intracellular parasitism.
Collapse
Affiliation(s)
- Gael Gesbert
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, 96 rue Didot 75993, Paris, Cedex 14, France; INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Francisella tularensis intracellular survival: to eat or to die. Microbes Infect 2013; 15:989-997. [PMID: 24513705 DOI: 10.1016/j.micinf.2013.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022]
Abstract
Francisella tularensis is a highly infectious facultative intracellular bacterium causing the zoonotic disease tularemia. Numerous attributes required for F. tularensis intracellular multiplication have been identified recently. However, the mechanisms by which the majority of them interfere with the infected host are still poorly understood. The following review summarizes our current knowledge on the different steps of Francisella intramacrophagic life cycle and expands on the importance of nutrient acquisition.
Collapse
|
26
|
Bulut OC, Dyckhoff G, Splettstoesser W, Nemeth J, Klauschen F, Penzel R, Plinkert PK, Simon C, Weichert W, Stenzinger A. Unmasked: when a clinically malignant disease turns out infectious. A rare case of tularemia. Int J Surg Pathol 2012; 21:76-81. [PMID: 22674915 DOI: 10.1177/1066896912448424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article reports on a 62-year-old man, who presented with cervical mass and rather nonspecific symptoms. The medical history and clinical workup initially favored a malignant disease such as a carcinoma of unknown primary as the underlying cause. Eventually, the patient was diagnosed with a granulomatous lymphadenitis caused by Francisella tularensis subsp holarctica. Tularemia is a rare disease in Western Europe and can present in multiple ways encompassing almost asymptomatic infections and fatal disease. A rapid diagnosis is often hampered by nonspecific symptoms and the generally low prevalence and incidence of this disease in endemic countries. This case report also provides a comprehensive review of the literature on cervical tularemia and discusses the differential diagnoses.
Collapse
|