1
|
Zwi-Dantsis L, Mohamed S, Massaro G, Moeendarbary E. Adeno-Associated Virus Vectors: Principles, Practices, and Prospects in Gene Therapy. Viruses 2025; 17:239. [PMID: 40006994 PMCID: PMC11861813 DOI: 10.3390/v17020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Gene therapy offers promising potential as an efficacious and long-lasting therapeutic option for genetic conditions, by correcting defective mutations using engineered vectors to deliver genetic material to host cells. Among these vectors, adeno-associated viruses (AAVs) stand out for their efficiency, versatility, and safety, making them one of the leading platforms in gene therapy. The enormous potential of AAVs has been demonstrated through their use in over 225 clinical trials and the FDA's approval of six AAV-based gene therapy products, positioning these vectors at the forefront of the field. This review highlights the evolution and current applications of AAVs in gene therapy, focusing on their clinical successes, ongoing developments, and the manufacturing processes required for the rapid commercial growth anticipated in the AAV therapy market. It also discusses the broader implications of these advancements for future therapeutic strategies targeting more complex and multi-systemic conditions and biological processes such as aging. Finally, we explore some of the major challenges currently confronting the field.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Saira Mohamed
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Mandalawatta HP, Rajendra K, Fairfax K, Hewitt AW. Emerging trends in virus and virus-like particle gene therapy delivery to the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102280. [PMID: 39206077 PMCID: PMC11350507 DOI: 10.1016/j.omtn.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy and gene-editing techniques offer the very real potential for successful treatment of neurological diseases. However, drug delivery constraints continue to impede viable therapeutic interventions targeting the brain due to its anatomical complexity and highly restrictive microvasculature that is impervious to many molecules. Realizing the therapeutic potential of gene-based therapies requires robust encapsulation and safe and efficient delivery to the target cells. Although viral vectors have been widely used for targeted delivery of gene-based therapies, drawbacks such as host genome integration, prolonged expression, undesired off-target mutations, and immunogenicity have led to the development of alternative strategies. Engineered virus-like particles (eVLPs) are an emerging, promising platform that can be engineered to achieve neurotropism through pseudotyping. This review outlines strategies to improve eVLP neurotropism for therapeutic brain delivery of gene-editing agents.
Collapse
Affiliation(s)
| | - K.C. Rajendra
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kirsten Fairfax
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
3
|
Li W, Feng SL, Herrschaft L, Samulski RJ, Li C. Rationally engineered novel AAV capsids for intra-articular gene delivery. Mol Ther Methods Clin Dev 2024; 32:101211. [PMID: 38435130 PMCID: PMC10907215 DOI: 10.1016/j.omtm.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Intra-articular adeno-associated virus (AAV) gene therapy has been explored as a potential strategy for joint diseases. However, concerns of low transduction efficacy, off-target expression, and neutralizing antibodies (Nabs) still need to be addressed. In this study, we demonstrated that AAV6 was the best serotype to transduce joints after screening serotypes 1 to 9. To develop a more effective AAV vector, a set of novel AAV capsids were rationally engineered. The mutant AAV62 created by swapping variable region I (VRI) of AAV2 into AAV6 induced a higher transduction efficiency per AAV genome copy number. To further investigate the roles of specific amino acids in the transduction of AAV62 and AAV6, we found out that AAV6D with the deletion of threonine at residue 265 induced a 2-fold higher transduction than AAV6, while the transduction efficiency from AAV6M with the mutation of alanine to glutamine at residue 263 was 10-fold lower. AAV6D efficiently transduced both synoviocytes and chondrocytes with low AAV genome copy numbers in other tissues and less Nab formation. This study demonstrates that novel AAV mutants with rational engineering may enhance joint transduction after intra-articular administration in mice, with the potential to evade AAV Nabs and minimize off-target effects in the liver.
Collapse
Affiliation(s)
- Wenjun Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Susi Liu Feng
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lizette Herrschaft
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27510, USA
| |
Collapse
|
4
|
Esposito EP, Han IC, Johnson TV. Gene and cell-based therapies for retinal and optic nerve disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:243-262. [PMID: 39341657 DOI: 10.1016/b978-0-323-90120-8.00016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Leading causes of blindness worldwide include neurodegenerative diseases of the retina, which cause irreversible loss of retinal pigment epithelium (RPE) and photoreceptors, and optic neuropathies, which result in retinal ganglion cell (RGC) death. Because photoreceptor and RGCs do not spontaneously regenerate in mammals, including humans, vision loss from these conditions is, at present, permanent. Recent advances in gene and cell-based therapies have provided new hope to patients affected by these conditions. This chapter reviews the current state and future of these approaches to treating ocular neurodegenerative disease. Gene therapies for retinal degeneration and optic neuropathies primarily focus on correcting known pathogenic mutations that cause inherited conditions to halt progression. There are multiple retinal and optic neuropathy gene therapies in clinical trials, and one retinal gene therapy is approved in the United States, Canada, Europe, and Australia. Cell-based therapies are mutation agnostic and have the potential to repopulate neurons regardless of the underlying etiology of degeneration. While photoreceptor cell replacement is nearing a human clinical trial, RPE transplantation is currently in phase I/II clinical trials. RGC replacement faces numerous logistical challenges, but preclinical research has laid the foundation for functional repair of optic neuropathies to be feasible.
Collapse
Affiliation(s)
- Edward P Esposito
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ian C Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thomas V Johnson
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
5
|
Singh M, Brooks A, Toofan P, McLuckie K. Selection of appropriate non-clinical animal models to ensure translatability of novel AAV-gene therapies to the clinic. Gene Ther 2024; 31:56-63. [PMID: 37612361 DOI: 10.1038/s41434-023-00417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Gene Therapy Medicinal Products consist of a recombinant nucleic acid intended for the modulation or manipulation of a genetic sequence. A single administration of a novel gene therapy has the potential to be curative, with a durable long-term benefit to patients. Adeno-associated viral vectors have become the viral vector of choice for in vivo delivery of therapeutic transgenes as they are mildly immunogenic, can effectively transduce a variety of human tissues and cells, and have low levels of genomic integration. Central to the effective translation of data generated in discovery studies to the clinic is the selection of appropriate animal species for pivotal non-clinical studies. This review aims to support the selection of appropriate animal models for non-clinical studies to advance the development of novel adeno-associated virus gene therapies.
Collapse
Affiliation(s)
- Mark Singh
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK.
| | - Andrew Brooks
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Parto Toofan
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Keith McLuckie
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| |
Collapse
|
6
|
Zeballos C MA, Moore HJ, Smith TJ, Powell JE, Ahsan NS, Zhang S, Gaj T. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat Commun 2023; 14:6492. [PMID: 37838698 PMCID: PMC10576788 DOI: 10.1038/s41467-023-42147-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
The TDP-43 proteinopathies, which include amyotrophic lateral sclerosis and frontotemporal dementia, are a devastating group of neurodegenerative disorders that are characterized by the mislocalization and aggregation of TDP-43. Here we demonstrate that RNA-targeting CRISPR effector proteins, a programmable class of gene silencing agents that includes the Cas13 family of enzymes and Cas7-11, can be used to mitigate TDP-43 pathology when programmed to target ataxin-2, a modifier of TDP-43-associated toxicity. In addition to inhibiting the aggregation and transit of TDP-43 to stress granules, we find that the in vivo delivery of an ataxin-2-targeting Cas13 system to a mouse model of TDP-43 proteinopathy improved functional deficits, extended survival, and reduced the severity of neuropathological hallmarks. Further, we benchmark RNA-targeting CRISPR platforms against ataxin-2 and find that high-fidelity forms of Cas13 possess improved transcriptome-wide specificity compared to Cas7-11 and a first-generation effector. Our results demonstrate the potential of CRISPR technology for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- M Alejandra Zeballos C
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hayden J Moore
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tyler J Smith
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jackson E Powell
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Najah S Ahsan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Piletska E, Veron P, Bertin B, Mingozzi F, Jones D, Norman RL, Earley J, Karim K, Garcia-Cruz A, Piletsky S. Analysis of Adeno-Associated Virus Serotype 8 (AAV8)-antibody complexes using epitope mapping by molecular imprinting leads to the identification of Fab peptides that potentially evade AAV8 neutralisation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102691. [PMID: 37329939 DOI: 10.1016/j.nano.2023.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Gene therapy is a promising approach for treating genetic disorders by delivering therapeutic genes to replace or correct malfunctioning genes. However, the introduced gene therapy vector can trigger an immune response, leading to reduced efficacy and potential harm to the patient. To improve the efficiency and safety of gene therapy, preventing the immune response to the vector is crucial. This can be achieved through the use of immunosuppressive drugs, vector engineering to evade the immune system, or delivery methods that bypass the immune system altogether. By reducing the immune response, gene therapy can deliver therapeutic genes more effectively and potentially cure genetic diseases. In this study, a novel molecular imprinting technique, combined with mass-spectrometry and bioinformatics, was used to identify four antigen-binding fragments (Fab) sequences of Adeno-Associated Virus (AAV) - neutralising antibodies capable of binding to AAV. The identified Fab peptides were shown to prevent AAV8's binding to antibodies, demonstrating their potential to improve gene therapy efficiency by preventing the immune response.
Collapse
Affiliation(s)
- Elena Piletska
- School of Chemistry, University of Leicester, LE1 7RH, UK.
| | - Philippe Veron
- Laboratory of Immunology, Genethon, 91002 Evry Cedex, France
| | | | | | - Donald Jones
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK; Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Rachel L Norman
- Cancer Research Centre, RKCSB, University of Leicester, Leicester LE1 7RH, UK; Van Geest MS Omics Facility, University of Leicester, Leicester LE1 9HN, UK
| | - Joseph Earley
- School of Chemistry, University of Leicester, LE1 7RH, UK
| | - Kal Karim
- School of Chemistry, University of Leicester, LE1 7RH, UK
| | | | | |
Collapse
|
8
|
Wright JF. Re-administration of AAV vectors by masking with host albumin: A Goldilocks hypothesis. Mol Ther 2023; 31:1870-1873. [PMID: 37369207 PMCID: PMC10362410 DOI: 10.1016/j.ymthe.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Affiliation(s)
- J Fraser Wright
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Gene Therapy and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:235-254. [DOI: 10.1007/978-981-19-5642-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Strecker M, Wlotzka K, Strassheimer F, Roller B, Ludmirski G, König S, Röder J, Opitz C, Alekseeva T, Reul J, Sevenich L, Tonn T, Wels W, Steinbach J, Buchholz C, Burger M. AAV-mediated gene transfer of a checkpoint inhibitor in combination with HER2-targeted CAR-NK cells as experimental therapy for glioblastoma. Oncoimmunology 2022; 11:2127508. [PMID: 36249274 PMCID: PMC9559045 DOI: 10.1080/2162402x.2022.2127508] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GB) is the most common primary brain tumor, which is characterized by low immunogenicity of tumor cells and prevalent immunosuppression in the tumor microenvironment (TME). Targeted local combination immunotherapy is a promising strategy to overcome these obstacles. Here, we evaluated tumor-cell specific delivery of an anti-PD-1 immunoadhesin (aPD-1) via a targeted adeno-associated viral vector (AAV) as well as HER2-specific NK-92/5.28.z (anti-HER2.CAR/NK-92) cells as components for a combination immunotherapy. In co-culture experiments, target-activated anti-HER2.CAR/NK-92 cells modified surrounding tumor cells and bystander immune cells by triggering the release of inflammatory cytokines and upregulation of PD-L1. Tumor cell-specific delivery of aPD-1 was achieved by displaying a HER2-specific designed ankyrin repeat protein (DARPin) on the AAV surface. HER2-AAV mediated gene transfer into GB cells correlated with HER2 expression levels, without inducing anti-viral responses in transduced cells. Furthermore, AAV-transduction did not interfere with anti-HER2.CAR/NK-92 cell-mediated tumor cell lysis. After selective transduction of HER2+ cells, aPD-1 expression was detected at the mRNA and protein level. The aPD-1 immunoadhesin was secreted in a time-dependent manner, bound its target on PD-1-expressing cells and was able to re-activate T cells by efficiently disrupting the PD-1/PD-L1 axis. Moreover, high intratumoral and low systemic aPD-1 concentrations were achieved following local injection of HER2-AAV into orthotopic tumor grafts in vivo. aPD-1 was selectively produced in tumor tissue and could be detected up to 10 days after a single HER2-AAV injection. In subcutaneous GL261-HER2 and Tu2449-HER2 immunocompetent mouse models, administration of the combination therapy significantly prolonged survival, including complete tumor control in several animals in the GL261-HER2 model. In summary, local therapy with aPD-1 encoding HER2-AAVs in combination with anti-HER2.CAR/NK-92 cells may be a promising novel strategy for GB immunotherapy with the potential to enhance efficacy and reduce systemic side effects of immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- M.I. Strecker
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - K. Wlotzka
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - F. Strassheimer
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - B. Roller
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - G. Ludmirski
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - S. König
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - J. Röder
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - C. Opitz
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - T. Alekseeva
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - J. Reul
- Paul-Ehrlich-Institut, Molecular Biotechnology and Gene Therapy, Langen, Germany
| | - L. Sevenich
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - T. Tonn
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany
| | - W.S. Wels
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - J.P. Steinbach
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - C.J. Buchholz
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Paul-Ehrlich-Institut, Molecular Biotechnology and Gene Therapy, Langen, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| | - M.C. Burger
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Ramamurthy RM, Atala A, Porada CD, Almeida-Porada G. Organoids and microphysiological systems: Promising models for accelerating AAV gene therapy studies. Front Immunol 2022; 13:1011143. [PMID: 36225917 PMCID: PMC9549755 DOI: 10.3389/fimmu.2022.1011143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
The FDA has predicted that at least 10-20 gene therapy products will be approved by 2025. The surge in the development of such therapies can be attributed to the advent of safe and effective gene delivery vectors such as adeno-associated virus (AAV). The enormous potential of AAV has been demonstrated by its use in over 100 clinical trials and the FDA’s approval of two AAV-based gene therapy products. Despite its demonstrated success in some clinical settings, AAV-based gene therapy is still plagued by issues related to host immunity, and recent studies have suggested that AAV vectors may actually integrate into the host cell genome, raising concerns over the potential for genotoxicity. To better understand these issues and develop means to overcome them, preclinical model systems that accurately recapitulate human physiology are needed. The objective of this review is to provide a brief overview of AAV gene therapy and its current hurdles, to discuss how 3D organoids, microphysiological systems, and body-on-a-chip platforms could serve as powerful models that could be adopted in the preclinical stage, and to provide some examples of the successful application of these models to answer critical questions regarding AAV biology and toxicity that could not have been answered using current animal models. Finally, technical considerations while adopting these models to study AAV gene therapy are also discussed.
Collapse
|
12
|
Zhao Z, Kim J, Suja VC, Kapate N, Gao Y, Guo J, Muzykantov VR, Mitragotri S. Red Blood Cell Anchoring Enables Targeted Transduction and Re-Administration of AAV-Mediated Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201293. [PMID: 35780495 PMCID: PMC9404386 DOI: 10.1002/advs.202201293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/14/2022] [Indexed: 05/09/2023]
Abstract
Adeno-associated virus (AAV)-mediated gene therapy is a promising therapeutic modality for curing many diseases including monogenic diseases. However, limited tissue-targeting and restricted re-administration due to the vector immunogenicity largely restrict its therapeutic potential. Here, using a red blood cell (RBC) as the carrier vehicle for AAV is demonstrated to improve its tissue-targeted transduction and enable its re-administration. Anchoring AAV to the RBC surface minimally affected its infectability toward endothelial cells. Meanwhile, AAV anchored onto RBCs is predominantly delivered to and shows efficient transduction in the lungs by virtue of the biophysical features of RBCs. RBC-anchored AAVs lead to a four- to five-fold enhancement in target gene expression in the lungsas compared to free AAVs following a single- or dual-dosing regimen. While RBC anchoring does not prevent the induction of adaptive immune responses against AAV, it results in successful transgene expression upon re-administration following prior AAV exposure. The ability to re-administer is partially attributed to the delayed and reduced AAV neutralization by neutralizing antibodies, resulting from the combination of limited exposure of physically confined AAVs and the short time required to reach the lungs. This study's findings suggest that the RBC-mediated approach is a promising strategy for repetitive, targeted AAV gene therapy.
Collapse
Affiliation(s)
- Zongmin Zhao
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Present address:
Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Illinois ChicagoChicagoIL60612USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Vinny Chandran Suja
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Junling Guo
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and NanomedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| |
Collapse
|
13
|
Soltani Dehnavi S, Eivazi Zadeh Z, Harvey AR, Voelcker NH, Parish CL, Williams RJ, Elnathan R, Nisbet DR. Changing Fate: Reprogramming Cells via Engineered Nanoscale Delivery Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108757. [PMID: 35396884 DOI: 10.1002/adma.202108757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The incorporation of nanotechnology in regenerative medicine is at the nexus of fundamental innovations and early-stage breakthroughs, enabling exciting biomedical advances. One of the most exciting recent developments is the use of nanoscale constructs to influence the fate of cells, which are the basic building blocks of healthy function. Appropriate cell types can be effectively manipulated by direct cell reprogramming; a robust technique to manipulate cellular function and fate, underpinning burgeoning advances in drug delivery systems, regenerative medicine, and disease remodeling. Individual transcription factors, or combinations thereof, can be introduced into cells using both viral and nonviral delivery systems. Existing approaches have inherent limitations. Viral-based tools include issues of viral integration into the genome of the cells, the propensity for uncontrollable silencing, reduced copy potential and cell specificity, and neutralization via the immune response. Current nonviral cell reprogramming tools generally suffer from inferior expression efficiency. Nanomaterials are increasingly being explored to address these challenges and improve the efficacy of both viral and nonviral delivery because of their unique properties such as small size and high surface area. This review presents the state-of-the-art research in cell reprogramming, focused on recent breakthroughs in the deployment of nanomaterials as cell reprogramming delivery tools.
Collapse
Affiliation(s)
- Shiva Soltani Dehnavi
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- ANU College of Engineering & Computer Science, Canberra, ACT, 2601, Australia
| | - Zahra Eivazi Zadeh
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413, Iran
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, and Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Richard J Williams
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - David R Nisbet
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
14
|
Freitas MVD, Frâncio L, Haleva L, Matte UDS. Protection is not always a good thing: The immune system's impact on gene therapy. Genet Mol Biol 2022; 45:e20220046. [PMID: 35852088 PMCID: PMC9295005 DOI: 10.1590/1678-4685-gmb-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
There are many clinical trials underway for the development of gene therapies, and some have resulted in gene therapy products being commercially approved already. Significant progress was made to develop safer and more effective strategies to deliver and regulate genetic products. An unsolved aspect is the immune system, which can affect the efficiency of gene therapy in different ways. Here we present an overview of approved gene therapy products and the immune response elicited by gene delivery systems. These include responses against the vector or its content after delivery and against the product of the corrected gene. Strategies to overcome the hurdles include hiding the vector or/and the transgene product from the immune system and hiding the immune system from the vector/transgene product. Combining different strategies, such as patient screening and intelligent vector design, gene therapy is set to make a difference in the life of patients with severe genetic diseases.
Collapse
Affiliation(s)
- Martiela Vaz de Freitas
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório Células Tecidos e Genes, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática Centro de Pesquisa Experimental, Porto Alegre, RS, Brazil
| | - Lariane Frâncio
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório Células Tecidos e Genes, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Laura Haleva
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Porto Alegre, RS, Brazil
| | - Ursula da Silveira Matte
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório Células Tecidos e Genes, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática Centro de Pesquisa Experimental, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Schindeler A, Lee LR, O'Donohue AK, Ginn SL, Munns CF. Curative Cell and Gene Therapy for Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:826-836. [PMID: 35306687 PMCID: PMC9324990 DOI: 10.1002/jbmr.4549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 11/17/2022]
Abstract
Osteogenesis imperfecta (OI) describes a series of genetic bone fragility disorders that can have a substantive impact on patient quality of life. The multidisciplinary approach to management of children and adults with OI primarily involves the administration of antiresorptive medication, allied health (physiotherapy and occupational therapy), and orthopedic surgery. However, advances in gene editing technology and gene therapy vectors bring with them the promise of gene-targeted interventions to provide an enduring or perhaps permanent cure for OI. This review describes emergent technologies for cell- and gene-targeted therapies, major hurdles to their implementation, and the prospects of their future success with a focus on bone disorders. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Lucinda R Lee
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Alexandra K O'Donohue
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadAustralia
| | - Craig F Munns
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- Department of Endocrinology and DiabetesQueensland Children's HospitalBrisbaneQLDAustralia
- Child Health Research Centre and Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
16
|
Mirzayi P, Shobeiri P, Kalantari A, Perry G, Rezaei N. Optogenetics: implications for Alzheimer's disease research and therapy. Mol Brain 2022; 15:20. [PMID: 35197102 PMCID: PMC8867657 DOI: 10.1186/s13041-022-00905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD), a critical neurodegenerative condition, has a wide range of effects on brain activity. Synaptic plasticity and neuronal circuits are the most vulnerable in Alzheimer’s disease, but the exact mechanism is unknown. Incorporating optogenetics into the study of AD has resulted in a significant leap in this field during the last decades, kicking off a revolution in our knowledge of the networks that underpin cognitive functions. In Alzheimer's disease, optogenetics can help to reduce and reverse neural circuit and memory impairments. Here we review how optogenetically driven methods have helped expand our knowledge of Alzheimer's disease, and how optogenetic interventions hint at a future translation into therapeutic possibilities for further utilization in clinical settings. In conclusion, neuroscience has witnessed one of its largest revolutions following the introduction of optogenetics into the field.
Collapse
Affiliation(s)
- Parsa Mirzayi
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran.
| |
Collapse
|
17
|
Hamann MV, Beschorner N, Vu XK, Hauber I, Lange UC, Traenkle B, Kaiser PD, Foth D, Schneider C, Büning H, Rothbauer U, Hauber J. Improved targeting of human CD4+ T cells by nanobody-modified AAV2 gene therapy vectors. PLoS One 2021; 16:e0261269. [PMID: 34928979 PMCID: PMC8687595 DOI: 10.1371/journal.pone.0261269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) are considered non-pathogenic in humans, and thus have been developed into powerful vector platforms for in vivo gene therapy. Although the various AAV serotypes display broad tropism, frequently infecting multiple tissues and cell types, vectors for specific and efficient targeting of human CD4+ T lymphocytes are largely missing. In fact, a substantial translational bottleneck exists in the field of therapeutic gene transfer that would require in vivo delivery into peripheral disease-related lymphocytes for subsequent genome editing. To solve this issue, capsid modification for retargeting AAV tropism, and in turn improving vector potency, is considered a promising strategy. Here, we genetically modified the minor AAV2 capsid proteins, VP1 and VP2, with a set of novel nanobodies with high-affinity for the human CD4 receptor. These novel vector variants demonstrated improved targeting of human CD4+ cells, including primary human peripheral blood mononuclear cells (PBMC) and purified human CD4+ T lymphocytes. Thus, the technical approach presented here provides a promising strategy for developing specific gene therapy vectors, particularly targeting disease-related peripheral blood CD4+ leukocytes.
Collapse
Affiliation(s)
- Martin V. Hamann
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| | - Niklas Beschorner
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| | - Xuan-Khang Vu
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - Ilona Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Ulrike C. Lange
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bjoern Traenkle
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
| | - Philipp D. Kaiser
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
| | - Daniel Foth
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Hildegard Büning
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - Ulrich Rothbauer
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Reutlingen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| |
Collapse
|
18
|
Varin J, Morival C, Maillard N, Adjali O, Cronin T. Risk Mitigation of Immunogenicity: A Key to Personalized Retinal Gene Therapy. Int J Mol Sci 2021; 22:12818. [PMID: 34884622 PMCID: PMC8658027 DOI: 10.3390/ijms222312818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy (GT) for ocular disorders has advanced the most among adeno-associated virus (AAV)-mediated therapies, with one product already approved in the market. The bank of retinal gene mutations carefully compiled over 30 years, the small retinal surface that does not require high clinical vector stocks, and the relatively immune-privileged environment of the eye explain such success. However, adverse effects due to AAV-delivery, though rare in the retina have led to the interruption of clinical trials. Risk mitigation, as the key to safe and efficient GT, has become the focus of 'bedside-back-to-bench' studies. Herein, we overview the inflammatory adverse events described in retinal GT trials and analyze which components of the retinal immunological environment might be the most involved in these immune responses, with a focus on the innate immune system composed of microglial surveillance. We consider the factors that can influence inflammation in the retina after GT such as viral sensors in the retinal tissue and CpG content in promoters or transgene sequences. Finally, we consider options to reduce the immunological risk, including dose, modified capsids or exclusion criteria for clinical trials. A better understanding and mitigation of immune risk factors inducing host immunity in AAV-mediated retinal GT is the key to achieving safe and efficient GT.
Collapse
Affiliation(s)
| | | | | | - Oumeya Adjali
- CHU de Nantes, INSERM UMR1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, F-44200 Nantes, France; (J.V.); (C.M.); (N.M.)
| | - Therese Cronin
- CHU de Nantes, INSERM UMR1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, F-44200 Nantes, France; (J.V.); (C.M.); (N.M.)
| |
Collapse
|
19
|
Macdonald J, Marx J, Büning H. Capsid-Engineering for Central Nervous System-Directed Gene Therapy with Adeno-Associated Virus Vectors. Hum Gene Ther 2021; 32:1096-1119. [PMID: 34662226 DOI: 10.1089/hum.2021.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Closing the gap in knowledge on the cause of neurodegenerative disorders is paving the way toward innovative treatment strategies, among which gene therapy has emerged as a top candidate. Both conventional gene therapy and genome editing approaches are being developed, and a great number of human clinical trials are ongoing. Already 2 years ago, the first gene therapy for a neurodegenerative disease, spinal muscular atrophy type 1 (SMA1), obtained market approval. To realize such innovative strategies, gene therapy delivery tools are key assets. Here, we focus on recombinant adeno-associated virus (AAV) vectors and report on strategies to improve first-generation vectors. Current efforts focus on the viral capsid to modify the host-vector interaction aiming at increasing the efficacy of target cell transduction, at simplifying vector administration, and at reducing the risk of vector dose-related side effects.
Collapse
Affiliation(s)
- Josephine Macdonald
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jennifer Marx
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Guerra-Rebollo M, Stampa M, Lázaro MÁ, Cascante A, Fornaguera C, Borrós S. Electrostatic Coating of Viral Particles for Gene Delivery Applications in Muscular Dystrophies: Influence of Size on Stability and Antibody Protection. J Neuromuscul Dis 2021; 8:815-825. [PMID: 34366365 DOI: 10.3233/jnd-210662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne Muscular Dystrophy (DMD) is one of the most common muscular dystrophies, caused by mutated forms of the dystrophin gene. Currently, the only treatment available is symptoms management. Novel approximations are trying to treat these patients with gene therapy, namely, using viral vectors. However, these vectors can be recognized by the immune system decreasing their therapeutic activity and making impossible a multidose treatment due to the induction of the humoral immunity following the first dose. OBJECTIVE Our objective is to demonstrate the feasibility of using a hybrid vector to avoid immune clearance, based on the electrostatic coating of adeno-associated virus (AAVs) vectors with our proprietary polymers. METHODS We coated model adeno-associated virus vectors by electrostatic interaction of our cationic poly (beta aminoester) polymers with the viral anionic capsid and characterized biophysical properties. Once the nanoformulations were designed, we studied their in vivo biodistribution by bioluminescence analysis and we finally studied the capacity of the polymers as potential coatings to avoid antibody neutralization. RESULTS We tested two polymer combinations and we demonstrated the need for poly(ethylene glycol) addition to avoid vector aggregation after coating. In vivo biodistribution studies demonstrated that viral particles are located in the liver (short times) and also in muscles (long times), the target organ. However, we did not achieve complete antibody neutralization shielding using this electrostatic coating. CONCLUSIONS The null hypothesis stands: although it is feasible to coat viral particles by electrostatic interaction with a proprietary polymer, this strategy is not appropriate for AAVs due to their small size, so other alternatives are required as a novel treatment for DMD patients.
Collapse
Affiliation(s)
- Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| | - María Stampa
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain
| | | | - Anna Cascante
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| |
Collapse
|
21
|
Hamilton BA, Wright JF. Challenges Posed by Immune Responses to AAV Vectors: Addressing Root Causes. Front Immunol 2021; 12:675897. [PMID: 34084173 PMCID: PMC8168460 DOI: 10.3389/fimmu.2021.675897] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Host immune responses that limit durable therapeutic gene expression and cause clinically significant inflammation remain a major barrier to broadly successful development of adeno-associated virus (AAV)-based human gene therapies. In this article, mechanisms of humoral and cellular immune responses to the viral vector are discussed. A perspective is provided that removal of pathogen-associated molecular patterns in AAV vector genomes to prevent the generation of innate immune danger signals following administration is a key strategy to overcome immunological barriers.
Collapse
Affiliation(s)
- Bradley A Hamilton
- Center for Definitive and Curative Medicine, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - J Fraser Wright
- Center for Definitive and Curative Medicine, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
22
|
Discussing investigational AAV gene therapy with hemophilia patients: A guide. Blood Rev 2021; 47:100759. [DOI: 10.1016/j.blre.2020.100759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 01/19/2023]
|
23
|
Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery 2021; 89:185-195. [PMID: 33913505 PMCID: PMC8279839 DOI: 10.1093/neuros/nyab147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
The field of chemogenetics has rapidly expanded over the last decade, and engineered receptors are currently utilized in the lab to better understand molecular interactions in the nervous system. We propose that chemogenetic receptors can be used for far more than investigational purposes. The potential benefit of adding chemogenetic neuromodulation to the current neurosurgical toolkit is substantial. There are several conditions currently treated surgically, electrically, and pharmacologically in clinic, and this review highlights how chemogenetic neuromodulation could improve patient outcomes over current neurosurgical techniques. We aim to emphasize the need to take these techniques from bench to bedside.
Collapse
Affiliation(s)
- Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
24
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
25
|
Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR. Is Viral Vector Gene Delivery More Effective Using Biomaterials? Adv Healthc Mater 2021; 10:e2001238. [PMID: 33191667 DOI: 10.1002/adhm.202001238] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Gene delivery has been extensively investigated for introducing foreign genetic material into cells to promote expression of therapeutic proteins or to silence relevant genes. This approach can regulate genetic or epigenetic disorders, offering an attractive alternative to pharmacological therapy or invasive protein delivery options. However, the exciting potential of viral gene therapy has yet to be fully realized, with a number of clinical trials failing to deliver optimal therapeutic outcomes. Reasons for this include difficulty in achieving localized delivery, and subsequently lower efficacy at the target site, as well as poor or inconsistent transduction efficiency. Thus, ongoing efforts are focused on improving local viral delivery and enhancing its efficiency. Recently, biomaterials have been exploited as an option for more controlled, targeted and programmable gene delivery. There is a growing body of literature demonstrating the efficacy of biomaterials and their potential advantages over other delivery strategies. This review explores current limitations of gene delivery and the progress of biomaterial-mediated gene delivery. The combination of biomaterials and gene vectors holds the potential to surmount major challenges, including the uncontrolled release of viral vectors with random delivery duration, poorly localized viral delivery with associated off-target effects, limited viral tropism, and immune safety concerns.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Stephanie Franks
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Vini Gautam
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria 3010 Australia
| | - Stuart I. Hodgetts
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Alan R. Harvey
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Richard J. Williams
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT) School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| |
Collapse
|
26
|
Tsanov M. Neurons under genetic control: What are the next steps towards the treatment of movement disorders? Comput Struct Biotechnol J 2020; 18:3577-3589. [PMID: 33304456 PMCID: PMC7708864 DOI: 10.1016/j.csbj.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022] Open
Abstract
Since the implementation of deep-brain stimulation as a therapy for movement disorders, there has been little progress in the clinical application of novel alternative treatments. Movement disorders are a group of neurological conditions, which are characterised with impairment of voluntary movement and share similar anatomical loci across the basal ganglia. The focus of the current review is on Parkinson's disease and Huntington's disease as they are the most investigated hypokinetic and hyperkinetic movement disorders, respectively. The last decade has seen enormous advances in the development of laboratory techniques that control neuronal activity. The two major ways to genetically control the neuronal function are: 1) expression of light-sensitive proteins that allow for the optogenetic control of the neuronal spiking and 2) expression or suppression of genes that control the transcription and translation of proteins. However, the translation of these methodologies from the laboratories into the clinics still faces significant challenges. The article summarizes the latest developments in optogenetics and gene therapy. Here, I compare the physiological mechanisms of established electrical deep brain stimulation to the experimental optogenetical deep brain stimulation. I compare also the advantages of DNA- and RNA-based techniques for gene therapy of familial movement disorders. I highlight the benefits and the major issues of each technique and I discuss the translational potential and clinical feasibility of optogenetic stimulation and gene expression control. The review emphasises recent technical breakthroughs that could initiate a notable leap in the treatment of movement disorders.
Collapse
Affiliation(s)
- Marian Tsanov
- School of Medicine, University College Dublin, Ireland
| |
Collapse
|
27
|
Robinson TM, Chen MY, Lam MT, Ykema MR, Suh J. Display of Self-Peptide on Adeno-Associated Virus Capsid Decreases Phagocytic Uptake in Vitro. ACS Synth Biol 2020; 9:2246-2251. [PMID: 32865992 DOI: 10.1021/acssynbio.0c00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adeno-associated virus (AAV) vectors are currently investigated as gene transfer agents for the treatment of a variety of diseases. However, activation of the host immune response upon vector administration limits the use of AAV in the clinical setting. To decrease host detection of AAVs, we tested the CD47-based "don't-eat-me" signal in the context of the AAV capsid. We genetically incorporated the bioactive region of CD47, named "self-peptide" (SP), onto the surface of the AAV2 capsid. AAV mutants were structurally and functionally characterized for vector production, SP and linker incorporation into the capsid, transduction efficiency, and phagocytic susceptibility. We demonstrate that utilizing linkers improves the AAV2 capsid's tolerance to SP insertion. Notably, the SP significantly decreases the phagocytic susceptibility of AAV2 in vitro. Collectively, these results suggest that display of the SP motif on the AAV capsid surface can inhibit phagocytosis of the vector in vitro via the "don't-eat-me" signaling.
Collapse
Affiliation(s)
- Tawana M. Robinson
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Maria Y. Chen
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Michael T. Lam
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Matthew R. Ykema
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
28
|
Shen Y, Campbell RE, Côté DC, Paquet ME. Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans. Front Neural Circuits 2020; 14:41. [PMID: 32760252 PMCID: PMC7373823 DOI: 10.3389/fncir.2020.00041] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
As the technological hurdles are overcome and optogenetic techniques advance to have more control over neurons, therapies based on these approaches will begin to emerge in the clinic. Here, we consider the technical challenges surrounding the transition of this breakthrough technology from an investigative tool to a true therapeutic avenue. The emerging strategies and remaining tasks surrounding genetically encoded molecules which respond to light as well as the vehicles required to deliver them are discussed.The use of optogenetics in humans would represent a completely new paradigm in medicine and would be associated with unprecedented technical considerations. To be applied for stimulation of neurons in humans, an ideal optogenetic tool would need to be non-immunogenic, highly sensitive, and activatable with red light or near-infrared light (to maximize light penetration while minimizing photodamage). To enable sophisticated levels of neuronal control, the combined use of optogenetic actuators and indicators could enable closed-loop all-optical neuromodulation. Such systems would introduce additional challenges related to spectral orthogonality between actuator and indicator, the need for decision making computational algorithms and requirements for large gene cassettes. As in any gene therapy, the therapeutic efficiency of optogenetics will rely on vector delivery and expression in the appropriate cell type. Although viral vectors such as those based on AAVs are showing great potential in human trials, barriers to their general use remain, including immune responses, delivery/transport, and liver clearance. Limitations associated with the gene cassette size which can be packaged in currently approved vectors also need to be addressed.
Collapse
Affiliation(s)
- Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Daniel C Côté
- Centre de Recherche CERVO, Université Laval, Quebec City, QC, Canada.,Département de Physique et Génie Physique, Université Laval, Quebec City, QC, Canada
| | - Marie-Eve Paquet
- Centre de Recherche CERVO, Université Laval, Quebec City, QC, Canada.,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
29
|
An essential N-terminal serine-rich motif in the AAV VP1 and VP2 subunits that may play a role in viral transcription. Virology 2020; 546:127-132. [PMID: 32452411 DOI: 10.1016/j.virol.2020.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 11/23/2022]
Abstract
Adeno-associated virus (AAV) is one of the most researched, clinically utilized gene therapy vectors. Though clinical success has been achieved, transgene delivery and expression may be hindered by cellular and tissue barriers. Understanding the role of receptor binding, entry, endosomal escape, cytoplasmic and nuclear trafficking, capsid uncoating, and viral transcription in therapeutic efficacy is paramount. Previous studies have shown that N-terminal regions of the AAV capsid proteins are responsible for endosomal escape and nuclear trafficking, however the mechanisms remain unknown. We identified a highly-conserved three-residue serine/threonine (S/T) motif in the capsid N-terminus, previously uncharacterized in its role in intracellular trafficking and transduction. Using alanine scanning mutagenesis, we found S155 and the flanking residues, D154 and G158, are essential for AAV2 transduction efficiency. Remarkably, specific capsid mutants show a 5 to 9-fold decrease in viral mRNA transcripts, highlighting a potential role of the S/T motif in transcription of the viral genome.
Collapse
|
30
|
Nidetz NF, McGee MC, Tse LV, Li C, Cong L, Li Y, Huang W. Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. Pharmacol Ther 2019; 207:107453. [PMID: 31836454 DOI: 10.1016/j.pharmthera.2019.107453] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Adeno-associated viral (AAV) vectors have emerged as the leading gene delivery platform for gene therapy and vaccination. Three AAV-based gene therapy drugs, Glybera, LUXTURNA, and ZOLGENSMA were approved between 2012 and 2019 by the European Medicines Agency and the United States Food and Drug Administration as treatments for genetic diseases hereditary lipoprotein lipase deficiency (LPLD), inherited retinal disease (IRD), and spinal muscular atrophy (SMA), respectively. Despite these therapeutic successes, clinical trials have demonstrated that host anti-viral immune responses can prevent the long-term gene expression of AAV vector-encoded genes. Therefore, it is critical that we understand the complex relationship between AAV vectors and the host immune response. This knowledge could allow for the rational design of optimized gene transfer vectors capable of either subverting host immune responses in the context of gene therapy applications, or stimulating desirable immune responses that generate protective immunity in vaccine applications to AAV vector-encoded antigens. This review provides an overview of our current understanding of the AAV-induced immune response and discusses potential strategies by which these responses can be manipulated to improve AAV vector-mediated gene transfer.
Collapse
Affiliation(s)
- Natalie F Nidetz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Longping V Tse
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yunxing Li
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Khatib TZ, Martin KR. Neuroprotection in Glaucoma: Towards Clinical Trials and Precision Medicine. Curr Eye Res 2019; 45:327-338. [PMID: 31475591 DOI: 10.1080/02713683.2019.1663385] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose: The eye is currently at the forefront of translational medicine and therapeutics. However, despite advances in technology, primary open-angle glaucoma remains the leading cause of irreversible blindness worldwide. Traditional intraocular pressure (IOP)-lowering therapies are often not sufficient to prevent progression to blindness, even in patients with access to high-quality healthcare. Neuroprotection strategies, which aim to boost the ability of target cells to withstand a pathological insult, have shown significant promise in animal models but none have shown clinically relevant efficacy in human clinical trials to date. We sought to evaluate the current status of neuroprotection clinical trials for glaucoma and identify limitations which have prevented translation of new glaucoma therapies to date.Methods: Literature searches identified English language references. Sources included MEDLINE, EMBASE, the Cochrane Library and Web of Science databases; reference lists of retrieved studies; and internet pages of relevant organisations, meetings and conference proceedings, and clinical trial registries.Results: We discuss six key neuroprotective strategies for glaucoma that have reached the clinical trial stage. Delivery of neurotrophic factors through gene therapy is also progressing towards glaucoma clinical trials. Refinements in trial design and the use of new modalities to define structural and functional endpoints may improve our assessment of disease activity and treatment efficacy. Advances in our understanding of compartmentalised glaucomatous degeneration and continued progress in the molecular profiling of glaucoma patients will enable us to predict individual risk and tailor treatment.Conclusion: New approaches to future glaucoma neuroprotection trials could improve the prospects for new glaucoma therapies. Glaucoma treatment tailored according to an individual's unique risk profile may become increasingly common in the future.
Collapse
Affiliation(s)
- Tasneem Z Khatib
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Eye Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Medical Sciences Division, University of Oxford, Oxford, UK
| | - Keith R Martin
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Eye Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Cambridge NIHR Biomedical Research Centre, Cambridge, UK.,Wellcome Trust - 5 MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
32
|
Affiliation(s)
- João Alves-Cruzeiro
- Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2HQ Sheffield, United Kingdom
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2HQ Sheffield, United Kingdom
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2HQ Sheffield, United Kingdom
| |
Collapse
|
33
|
Pipe S, Leebeek FWG, Ferreira V, Sawyer EK, Pasi J. Clinical Considerations for Capsid Choice in the Development of Liver-Targeted AAV-Based Gene Transfer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:170-178. [PMID: 31660419 PMCID: PMC6807344 DOI: 10.1016/j.omtm.2019.08.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As gene transfer with adeno-associated virus (AAV) vectors is starting to enter clinical practice, this review examines the impact of vector capsid choice in liver-directed gene transfer for hemophilia. Given that there are multiple clinical trials completed and ongoing in this field, it is important to review the clinical evidence, particularly as a range of AAV-vector serotypes including AAV2, AAV5, AAV8, and AAV10 have been tested. Although there have been a number of successful trials, the development of two investigational AAV vectors for hemophilia B has been discontinued because they did not meet efficacy and/or safety expectations. Whether this difference between success and failure of gene transfer approaches reflects capsid choice, vector design, manufacturing system, or other variables is a question of great interest. Here, we examine the body of evidence across trials to determine the possible influences of serotype choice on key clinical outcomes such as safety, vector clearance, treatment eligibility, occurrence of transaminase elevations, activation of capsid-directed cytotoxic T cell responses, and clinical efficacy. In summary, gene transfer requires a balance between achieving sufficient transgene expression and minimizing destructive immune responses, which may be affected by AAV-vector serotype choice.
Collapse
Affiliation(s)
- Steven Pipe
- Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Frank W G Leebeek
- Frank W. G. Leebeek, Erasmus University Medical Centre, Department of Hematology, Rotterdam, the Netherlands
| | | | | | - John Pasi
- Haemophilia Centre, The Royal London Hospital, Barts and The London School of Medicine and Dentistry, London, UK
| |
Collapse
|
34
|
Richter C, Bruegmann T. No light without the dark: Perspectives and hindrances for translation of cardiac optogenetics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:39-50. [PMID: 31515056 DOI: 10.1016/j.pbiomolbio.2019.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
Over the last decade, optogenetic stimulation of the heart and its translational potential for rhythm control attracted more and more interest. Optogenetics allows to stimulate cardiomyocytes expressing the light-gated cation channel Channelrhodopsin 2 (ChR2) with light and thus high spatio-temporal precision. Therefore this new approach can overcome the technical limitations of electrical stimulation. In regard of translational approaches, the prospect of pain-free stimulation, if ChR2 expression is restricted to cardiomyocytes, is especially intriguing and could be highly beneficial for cardioversion and defibrillation. However, there is no light without shadow and cardiac optogenetics has to surmount critical hurdles, namely "how" to inscribe light-sensitivity by expressing ChR2 in a native heart and how to avoid side effects such as possible immune responses against the gene transfer. Furthermore, implantable light devices have to be developed which ensure sufficient illumination in a highly contractile environment. Therefore this article reviews recent advantages in the field of cardiac optogenetics with a special focus on the hindrances for the potential translation of this new approach into clinics and provides an outlook how these have to be carefully investigated and could be solved step by step.
Collapse
Affiliation(s)
- Claudia Richter
- RG Biomedical Physics, Max Planck Institute for Dynamics & Self-Organization, Am Fassberg 17, 37077, Goettingen, Germany; Department of Cardiology and Pneumology, University Medical Center, Robert-Koch-Str. 42a, 37075, Goettingen, Germany; DZHK e.V. (German Center for Cardiovascular Research), Partner Site Goettingen, 37075, Goettingen, Germany.
| | - Tobias Bruegmann
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Goettingen, 37075, Goettingen, Germany; Institute for Cardiovascular Physiology, University Medical Center Goettingen, Humboldtallee 23, 37073, Goettingen, Germany.
| |
Collapse
|
35
|
Williams JJ, Watson AM, Vazquez AL, Schwartz AB. Viral-Mediated Optogenetic Stimulation of Peripheral Motor Nerves in Non-human Primates. Front Neurosci 2019; 13:759. [PMID: 31417342 PMCID: PMC6684788 DOI: 10.3389/fnins.2019.00759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: Reanimation of muscles paralyzed by disease states such as spinal cord injury remains a highly sought therapeutic goal of neuroprosthetic research. Optogenetic stimulation of peripheral motor nerves expressing light-sensitive opsins is a promising approach to muscle reanimation that may overcome several drawbacks of traditional methods such as functional electrical stimulation (FES). However, the utility of these methods has only been demonstrated in rodents to date, while translation to clinical practice will likely first require demonstration and refinement of these gene therapy techniques in non-human primates. Approach: Three rhesus macaques were injected intramuscularly with either one or both of two optogenetic constructs (AAV6-hSyn-ChR2-eYFP and/or AAV6-hSyn-Chronos-eYFP) to transduce opsin expression in the corresponding nerves. Neuromuscular junctions were targeted for virus delivery using an electrical stimulating injection technique. Functional opsin expression was periodically evaluated up to 13 weeks post-injection by optically stimulating targeted nerves with a 472 nm fiber-coupled laser while recording electromyographic (EMG) responses. Main Results: One monkey demonstrated functional expression of ChR2 at 8 weeks post-injection in each of two injected muscles, while the second monkey briefly exhibited contractions coupled to optical stimulation in a muscle injected with the Chronos construct at 10 weeks. A third monkey injected only in one muscle with the ChR2 construct showed strong optically coupled contractions at 5 ½ weeks which then disappeared by 9 weeks. EMG responses to optical stimulation of ChR2-transduced nerves demonstrated graded recruitment relative to both stimulus pulse-width and light intensity, and followed stimulus trains up to 16 Hz. In addition, the EMG response to prolonged stimulation showed delayed fatigue over several minutes. Significance: These results demonstrate the feasibility of viral transduction of peripheral motor nerves for functional optical stimulation of motor activity in non-human primates, a variable timeline of opsin expression in a animal model closer to humans, and fundamental EMG response characteristics to optical nerve stimulation. Together, they represent an important step in translating these optogenetic techniques as a clinically viable gene therapy.
Collapse
Affiliation(s)
- Jordan J. Williams
- Department of Neurobiology, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alan M. Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto L. Vazquez
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew B. Schwartz
- Department of Neurobiology, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
36
|
Thorne B, Takeya R, Vitelli F, Swanson X. Gene Therapy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:351-399. [PMID: 28289769 DOI: 10.1007/10_2016_53] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.
Collapse
Affiliation(s)
- Barb Thorne
- Thorne Bio-Consulting LLC, Sammamish, WA, USA
| | | | | | | |
Collapse
|
37
|
Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun 2019; 10:1842. [PMID: 31015529 PMCID: PMC6478683 DOI: 10.1038/s41467-019-09693-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 03/19/2019] [Indexed: 01/19/2023] Open
Abstract
The CRISPR-Cas9 system has raised hopes for developing personalized gene therapies for complex diseases. Its application for genetic and epigenetic therapies in humans raises concerns over immunogenicity of the bacterially derived Cas9 protein. Here we detect antibodies to Streptococcus pyogenes Cas9 (SpCas9) in at least 5% of 143 healthy individuals. We also report pre-existing human CD8+T cell immunity in the majority of healthy individuals screened. We identify two immunodominant SpCas9 T cell epitopes for HLA-A*02:01 using an enhanced prediction algorithm that incorporates T cell receptor contact residue hydrophobicity and HLA binding and evaluated them by T cell assays using healthy donor PBMCs. In a proof-of-principle study, we demonstrate that Cas9 protein can be modified to eliminate immunodominant epitopes through targeted mutation while preserving its function and specificity. Our study highlights the problem of pre-existing immunity against CRISPR-associated nucleases and offers a potential solution to mitigate the T cell immune response. Possible immunogenicity of the Cas9 protein raises concerns about therapeutic applications. Here the authors identify pre-existing CD8+T-cell immunity in healthy individuals and in response modify Cas9 to remove the immunodominant epitopes.
Collapse
|
38
|
Evasion of Pre-Existing Immunity to Cas9: a Prerequisite for Successful Genome Editing In Vivo? CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00237-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Loesch R, Desbois-Mouthon C, Colnot S. Potentials of CRISPR in liver research and therapy. Clin Res Hepatol Gastroenterol 2019; 43:5-11. [PMID: 29884474 DOI: 10.1016/j.clinre.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023]
Abstract
The CRISPR technology is rapidly transforming the field of liver research by its versatility and easy use. In vivo gene editing of hepatocytes in adult mice can be achieved using a broad toolbox for both fundamental research and development of therapeutic strategies for future clinical applications. Recent studies showed that CRISPR has a real potential to treat hereditary liver diseases as well as virally induced pathologies. This short review recapitulates very recent advancements regarding the use of CRISPR in liver research and therapy.
Collapse
Affiliation(s)
- Robin Loesch
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Christèle Desbois-Mouthon
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Sorbonne université, Inserm, Saint-Antoine research center, 75012 Paris, France
| | - Sabine Colnot
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
40
|
Herrmann AK, Bender C, Kienle E, Grosse S, El Andari J, Botta J, Schürmann N, Wiedtke E, Niopek D, Grimm D. A Robust and All-Inclusive Pipeline for Shuffling of Adeno-Associated Viruses. ACS Synth Biol 2019; 8:194-206. [PMID: 30513195 DOI: 10.1021/acssynbio.8b00373] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adeno-associated viruses (AAV) are attractive templates for engineering of synthetic gene delivery vectors. A particularly powerful technology for breeding of novel vectors with improved properties is DNA family shuffling, i.e., generation of chimeric capsids by homology-driven DNA recombination. Here, to make AAV DNA shuffling available to a wider community, we present a robust experimental and bioinformatical pipeline comprising: (i) standardized and partially codon-optimized plasmids carrying 12 different AAV capsid genes; (ii) a scalable protocol including troubleshooting guide for viral library production; and (iii) the freely available software SALANTO for comprehensive analysis of chimeric AAV DNA and protein sequences. Moreover, we describe a set of 12 premade and ready-to-use AAV libraries. Finally, we demonstrate the usefulness of DNA barcoding technology to trace AAV capsid libraries within a complex mixture. Our protocols and resources facilitate the implementation and tailoring of AAV evolution technology in any laboratory interested in customized viral gene transfer.
Collapse
Affiliation(s)
- Anne-Kathrin Herrmann
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Christian Bender
- Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Mainz, 55131, Germany
| | - Eike Kienle
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Stefanie Grosse
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Jihad El Andari
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Julia Botta
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, 69120, Germany
| | - Nina Schürmann
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Ellen Wiedtke
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Dominik Niopek
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, 69120, Germany
| | - Dirk Grimm
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, 69120, Germany
| |
Collapse
|
41
|
Benskey MJ, Sandoval IM, Miller K, Sellnow RL, Gezer A, Kuhn NC, Vashon R, Manfredsson FP. Basic Concepts in Viral Vector-Mediated Gene Therapy. Methods Mol Biol 2019; 1937:3-26. [PMID: 30706387 DOI: 10.1007/978-1-4939-9065-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Today any researcher with the desire can easily purchase a viral vector. However, despite the availability of viral vectors themselves, the requisite knowledge that is absolutely essential to conducting a gene therapy experiment remains somewhat obscure and esoteric. To utilize viral vectors to their full potential, a large number of decisions must be made, in some instances prior to even obtaining the vector itself. For example, critical decisions include selection of the proper virus, selection of the proper expression cassette, whether to produce or purchase a viral vector, proper viral handling and storage, the most appropriate delivery method, selecting the proper controls, how to ensure your virus is expressing properly, and many other complex decisions that are essential to performing a successful gene therapy experiment. The need to make so many important decisions can be overwhelming and potentially prohibitive, especially to the novice gene therapist. In order to aid in this challenging process, here we provide an overview of basic gene therapy modalities and a decision tree that can be used to make oneself aware of the options available to the beginning gene therapist. This information can be used as a road map to help navigate the complex and perhaps confusing process of designing a successful gene therapy experiment.
Collapse
Affiliation(s)
- Matthew J Benskey
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - Kathryn Miller
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Rhyomi L Sellnow
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Aysegul Gezer
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Nathan C Kuhn
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Roslyn Vashon
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA.
- Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
42
|
Gessler DJ, Tai PWL, Li J, Gao G. Intravenous Infusion of AAV for Widespread Gene Delivery to the Nervous System. Methods Mol Biol 2019; 1950:143-163. [PMID: 30783972 PMCID: PMC7339923 DOI: 10.1007/978-1-4939-9139-6_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is a fascinating and intricate set of biological structures that we have yet to fully understand. Studying the in vivo function of the CNS and finding novel methods for treating neurological disorders have been particularly challenging. One difficulty is correcting genetic disorders afflicting the CNS in a targeted manner. Recombinant adeno-associated viruses (rAAVs) have emerged as promising therapeutic tools for treating genetic defects of the CNS, due to their excellent safety profile and ability to cross the blood-brain barrier (BBB). While stereotactic injection of AAV is promising for localized gene delivery, it is less desirable for some applications because of the technique's invasiveness and limited intraparenchymal spread. Alternatively, intravascular administration can achieve widespread delivery of rAAV to the CNS. In this chapter, we will discuss the prevalent routes of administration to deliver rAAV to the CNS via intravenous (IV) injection in mice. We will highlight key considerations for using rAAV, and the advantages and disadvantages of each administration method. We will also briefly discuss intravenous delivery in larger animal models, factors that may impact experimental interpretations, and outlooks for clinical translation.
Collapse
Affiliation(s)
- Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
43
|
Fuentes CM, Schaffer DV. Adeno-associated virus-mediated delivery of CRISPR-Cas9 for genome editing in the central nervous system. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 7:33-41. [PMID: 34046535 PMCID: PMC8153090 DOI: 10.1016/j.cobme.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The emergence of CRISPR-Cas9 as a powerful genome editing tool has led to several studies exploring its potential to treat neurological disorders. Cas9 and its sgRNA can be readily engineered to target any gene and can be multiplexed to target several genes at once. Furthermore, the use of adeno-associated virus (AAV) to deliver with Cas9 and its sgRNA is a promising therapeutic combination with strong potential to reach the clinic. Here we discuss how Cas9 editing has been utilized for gene insertion, knockout, and deletion in vivo for applications in the central nervous system (CNS). Furthermore, we highlight major challenges that remain for AAV-Cas9-sgRNA clinical translation.
Collapse
Affiliation(s)
- Christina M. Fuentes
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemical and Biolomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
44
|
Herrmann AK, Grimm D. High-Throughput Dissection of AAV-Host Interactions: The Fast and the Curious. J Mol Biol 2018; 430:2626-2640. [PMID: 29782834 DOI: 10.1016/j.jmb.2018.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
Over 50 years after its initial description, adeno-associated virus (AAV) remains the most exciting but also most elusive study object in basic or applied virology. On the one hand, its simple structure not only facilitates investigations into virus biology but, combined with the availability of numerous natural AAV variants with distinct infection efficiency and specificity, also makes AAV a preferred substrate for engineering of gene delivery vectors. On the other hand, it is striking to witness a recent flurry of reports that highlight and partially close persistent gaps in our understanding of AAV virus and vector biology. This is all the more perplexing considering that recombinant AAVs have already been used in >160 clinical trials and recently been commercialized as gene therapeutics. Here, we discuss a reason for these advances in AAV research, namely, the advent and application of powerful high-throughput technology for dissection of AAV-host interactions and optimization of AAV gene therapy vectors. As relevant examples, we focus on the discovery of (i) a "new" cellular AAV receptor, AAVR, (ii) host restriction factors for AAV entry, and (iii) AAV capsid determinants that mediate trafficking through the blood-brain barrier. While items i/ii are prototypes of extra- or intracellular AAV host factors that were identified via high-throughput screenings, item iii exemplifies the power of molecular evolution to investigate the virus itself. In the future, we anticipate that these and other key technologies will continue to accelerate the dissection of AAV biology and will yield a wealth of new designer viruses for clinical use.
Collapse
Affiliation(s)
- Anne-Kathrin Herrmann
- Cluster of Excellence CellNetworks,Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Cluster of Excellence CellNetworks,Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Naso MF, Tomkowicz B, Perry WL, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2018; 31:317-334. [PMID: 28669112 PMCID: PMC5548848 DOI: 10.1007/s40259-017-0234-5] [Citation(s) in RCA: 812] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been a resurgence in gene therapy efforts that is partly fueled by the identification and understanding of new gene delivery vectors. Adeno-associated virus (AAV) is a non-enveloped virus that can be engineered to deliver DNA to target cells, and has attracted a significant amount of attention in the field, especially in clinical-stage experimental therapeutic strategies. The ability to generate recombinant AAV particles lacking any viral genes and containing DNA sequences of interest for various therapeutic applications has thus far proven to be one of the safest strategies for gene therapies. This review will provide an overview of some important factors to consider in the use of AAV as a vector for gene therapy.
Collapse
Affiliation(s)
- Michael F Naso
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA.
| | - Brian Tomkowicz
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA
| | - William L Perry
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA
| | | |
Collapse
|
46
|
Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10. [PMID: 29083112 DOI: 10.1002/wsbm.1408] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/27/2022]
Abstract
Genome-editing therapeutics are poised to treat human diseases. As we enter clinical trials with the most promising CRISPR-Cas9 and CRISPR-Cas12a (Cpf1) modalities, the risks associated with administering these foreign biomolecules into human patients become increasingly salient. Preclinical discovery with CRISPR-Cas9 and CRISPR-Cas12a systems and foundational gene therapy studies indicate that the host immune system can mount undesired responses against the administered proteins and nucleic acids, the gene-edited cells, and the host itself. These host defenses include inflammation via activation of innate immunity, antibody induction in humoral immunity, and cell death by T-cell-mediated cytotoxicity. If left unchecked, these immunological reactions can curtail therapeutic benefits and potentially lead to mortality. Ways to assay and reduce the immunogenicity of Cas9 and Cas12a proteins are therefore critical for ensuring patient safety and treatment efficacy, and for bringing us closer to realizing the vision of permanent genetic cures. WIREs Syst Biol Med 2018, 10:e1408. doi: 10.1002/wsbm.1408 This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Translational, Genomic, and Systems Medicine > Translational Medicine Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Wei Leong Chew
- Synthetic Biology, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
47
|
Grimm D, Büning H. Small But Increasingly Mighty: Latest Advances in AAV Vector Research, Design, and Evolution. Hum Gene Ther 2017; 28:1075-1086. [DOI: 10.1089/hum.2017.172] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Dirk Grimm
- Heidelberg University Hospital, Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Weinmann J, Grimm D. Next-generation AAV vectors for clinical use: an ever-accelerating race. Virus Genes 2017; 53:707-713. [PMID: 28762205 DOI: 10.1007/s11262-017-1502-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022]
Abstract
During the past five decades, it has become evident that Adeno-associated virus (AAV) represents one of the most potent, most versatile, and thus most auspicious platforms available for gene delivery into cells, animals and, ultimately, humans. Particularly attractive is the ease with which the viral capsid-the major determinant of virus-host interaction including cell specificity and antibody recognition-can be modified and optimized at will. This has motivated countless researchers to develop high-throughput technologies in which genetically engineered AAV capsid libraries are subjected to a vastly hastened emulation of natural evolution, with the aim to enrich novel synthetic AAV capsids displaying superior features for clinical application. While the power and potential of these forward genetics approaches is undisputed, they are also inherently challenging as success depends on a combination of library quality, fidelity, and complexity. Here, we will describe and discuss two original, very exciting strategies that have emerged over the last three years and that promise to alleviate at least some of these concerns, namely, (i) a reverse genetics approach termed "ancestral AAV sequence reconstruction," and (ii) AAV genome barcoding as a technology that can advance both, forward and reverse genetics stratagems. Notably, despite the conceptual differences of these two technologies, they pursue the same goal which is tailored acceleration of AAV evolution and thus winning the race for the next-generation AAV vectors for clinical use.
Collapse
Affiliation(s)
- Jonas Weinmann
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,BioQuant, University of Heidelberg, Heidelberg, Germany. .,German Center for Infection Research (DZIF), partner site Heidelberg, Braunschweig, Germany.
| |
Collapse
|
49
|
Therapeutic advances in musculoskeletal AAV targeting approaches. Curr Opin Pharmacol 2017; 34:56-63. [PMID: 28743034 DOI: 10.1016/j.coph.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022]
Abstract
The use of recombinant adeno-associated viruses (rAAVs) is highly prevalent in musculoskeletal gene therapies due to their versatility, high transduction efficiency, natural tropism and vector genome persistence for years. As the largest organ in the body, treatment of skeletal muscle for widespread and sufficient therapeutic gene expression is highly challenging. In addition to disease-specific hurdles, vector genome loss, off-target gene transfer and immune responses to treatment can diminish the overall benefit of rAAV therapies. A variety of approaches have been developed to overcome these challenges and improve musculoskeletal targeting of rAAVs. This review focuses on recent advancements and remaining obstacles in creating optimal rAAV-based therapies for musculoskeletal application.
Collapse
|
50
|
Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, Li F, Xiao W, Zhao H, Dai S, Qin X, Mo X, Young WB, Khalili K, Hu W. In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models. Mol Ther 2017; 25:1168-1186. [PMID: 28366764 PMCID: PMC5417847 DOI: 10.1016/j.ymthe.2017.03.012] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/05/2023] Open
Abstract
CRISPR-associated protein 9 (Cas9)-mediated genome editing provides a promising cure for HIV-1/AIDS; however, gene delivery efficiency in vivo remains an obstacle to overcome. Here, we demonstrate the feasibility and efficiency of excising the HIV-1 provirus in three different animal models using an all-in-one adeno-associated virus (AAV) vector to deliver multiplex single-guide RNAs (sgRNAs) plus Staphylococcus aureus Cas9 (saCas9). The quadruplex sgRNAs/saCas9 vector outperformed the duplex vector in excising the integrated HIV-1 genome in cultured neural stem/progenitor cells from HIV-1 Tg26 transgenic mice. Intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 excised HIV-1 proviral DNA and significantly reduced viral RNA expression in several organs/tissues of Tg26 mice. In EcoHIV acutely infected mice, intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 reduced systemic EcoHIV infection, as determined by live bioluminescence imaging. Additionally, this quadruplex vector induced efficient proviral excision, as determined by PCR genotyping in the liver, lungs, brain, and spleen. Finally, in humanized bone marrow/liver/thymus (BLT) mice with chronic HIV-1 infection, successful proviral excision was detected by PCR genotyping in the spleen, lungs, heart, colon, and brain after a single intravenous injection of quadruplex sgRNAs/saCas9 AAV-DJ/8. In conclusion, in vivo excision of HIV-1 proviral DNA by sgRNAs/saCas9 in solid tissues/organs can be achieved via AAV delivery, a significant step toward human clinical trials.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- Dependovirus/genetics
- Dependovirus/metabolism
- Disease Models, Animal
- Endonucleases/genetics
- Endonucleases/metabolism
- Gene Editing/methods
- Genetic Therapy/methods
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Genome, Viral
- HIV Infections/pathology
- HIV Infections/therapy
- HIV Infections/virology
- HIV Long Terminal Repeat
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- Mice
- Mice, Transgenic
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Proviruses/genetics
- Proviruses/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Staphylococcus aureus/chemistry
- Staphylococcus aureus/enzymology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
- pol Gene Products, Human Immunodeficiency Virus/genetics
- pol Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Chaoran Yin
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Ting Zhang
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xiying Qu
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yonggang Zhang
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Raj Putatunda
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Xiao
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Fang Li
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Weidong Xiao
- Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Department of Clinical Science, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Shen Dai
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xuebin Qin
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Won-Bin Young
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| | - Wenhui Hu
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|