1
|
Dirks C, Cappelli P, Blomqvist M, Ekroth S, Johansson M, Persson M, Drakare S, Pekar H, Zuberovic Muratovic A. Cyanotoxin Occurrence and Diversity in 98 Cyanobacterial Blooms from Swedish Lakes and the Baltic Sea. Mar Drugs 2024; 22:199. [PMID: 38786590 PMCID: PMC11123207 DOI: 10.3390/md22050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The Drinking Water Directive (EU) 2020/2184 includes the parameter microcystin LR, a cyanotoxin, which drinking water producers need to analyze if the water source has potential for cyanobacterial blooms. In light of the increasing occurrences of cyanobacterial blooms worldwide and given that more than 50 percent of the drinking water in Sweden is produced from surface water, both fresh and brackish, the need for improved knowledge about cyanotoxin occurrence and cyanobacterial diversity has increased. In this study, a total of 98 cyanobacterial blooms were sampled in 2016-2017 and identified based on their toxin production and taxonomical compositions. The surface water samples from freshwater lakes throughout Sweden including brackish water from eight east coast locations along the Baltic Sea were analyzed for their toxin content with LC-MS/MS and taxonomic composition with 16S rRNA amplicon sequencing. Both the extracellular and the total toxin content were analyzed. Microcystin's prevalence was highest with presence in 82% of blooms, of which as a free toxin in 39% of blooms. Saxitoxins were found in 36% of blooms in which the congener decarbamoylsaxitoxin (dcSTX) was detected for the first time in Swedish surface waters at four sampling sites. Anatoxins were most rarely detected, followed by cylindrospermopsin, which were found in 6% and 10% of samples, respectively. As expected, nodularin was detected in samples collected from the Baltic Sea only. The cyanobacterial operational taxonomic units (OTUs) with the highest abundance and prevalence could be annotated to Aphanizomenon NIES-81 and the second most profuse cyanobacterial taxon to Microcystis PCC 7914. In addition, two correlations were found, one between Aphanizomenon NIES-81 and saxitoxins and another between Microcystis PCC 7914 and microcystins. This study is of value to drinking water management and scientists involved in recognizing and controlling toxic cyanobacteria blooms.
Collapse
Affiliation(s)
- Caroline Dirks
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
- Wageningen Food Safety Research, P.O. Box 230, 6700AE Wageningen, The Netherlands
| | - Paolo Cappelli
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Maria Blomqvist
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Susanne Ekroth
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Malin Johansson
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Max Persson
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Stina Drakare
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Heidi Pekar
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
- Stockholm Vatten och Avfall, Bryggerivägen 10, SE-106 36 Stockholm, Sweden
| | | |
Collapse
|
2
|
Kurbatova S, Berezina N, Sharov A, Chernova E, Kurashov E, Krylova Y, Yershov I, Mavrin A, Otyukova N, Borisovskaya E, Fedorov R. Effects of Algicidal Macrophyte Metabolites on Cyanobacteria, Microcystins, Other Plankton, and Fish in Microcosms. Toxins (Basel) 2023; 15:529. [PMID: 37755955 PMCID: PMC10535574 DOI: 10.3390/toxins15090529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
To control harmful algae blooms (HABs), methods based on natural mechanisms are now required. We investigated the effects of an algicide derived from macrophyte metabolites, namely mixtures of gallic, tetradecanoic, heptanoic, and octanoic acids (1:1:1:1 mass ratio, a total concentration of 14 mg/L), on the biomass of cyanobacteria and other plankton and the production of microcystins under experimental conditions. Two types of microcosms have been created: simple (microalgae, cyanobacteria, and zooplankton) and complex (microalgae, cyanobacteria, zooplankton, and planktivorous fish). We observed the dynamics of the phytoplankton structure, the concentrations of microcystins and chlorophyll-a, hydrochemistry, and the status of zooplankton and fish in both types of microcosms with and without algicide for one month (from 19 July to 19 August 2021). The introduction of algicide caused changes in phytoplankton structure, a drop in cyanobacterial biomass, and a decrease in the total concentration of microcystins. Surprisingly, the contributions of the most toxic microcystins (LR form) were higher in both types of microcosms exposed to algicide than in microcosms without algicide. The inhibitory effect on the cyanobacterial biomass was most significant in complex ecosystems (containing fish), while it was only observed at the end of the exposure in simple ecosystems. Not only algicide but also phytoplankton consumed by fish and zooplankton, as well as nutrient excretory activity by both consumers, seem to have impact on cyanobacterial biomass. This study found that the using chemical substances similar to macrophyte metabolites can help regulate HABs and cyanotoxins. However, the results differ depending on ecosystem type.
Collapse
Affiliation(s)
- Svetlana Kurbatova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (S.K.); (A.S.); (E.K.); (Y.K.)
| | - Nadezhda Berezina
- Zoological Institute, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Andrey Sharov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (S.K.); (A.S.); (E.K.); (Y.K.)
| | - Ekaterina Chernova
- St. Petersburg Federal Research Center, Russian Academy of Sciences, 199178 St. Petersburg, Russia;
| | - Evgeny Kurashov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (S.K.); (A.S.); (E.K.); (Y.K.)
| | - Yulia Krylova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (S.K.); (A.S.); (E.K.); (Y.K.)
| | - Igor Yershov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (S.K.); (A.S.); (E.K.); (Y.K.)
| | - Alexander Mavrin
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (S.K.); (A.S.); (E.K.); (Y.K.)
| | - Natalia Otyukova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (S.K.); (A.S.); (E.K.); (Y.K.)
| | - Elena Borisovskaya
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (S.K.); (A.S.); (E.K.); (Y.K.)
| | - Roman Fedorov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (S.K.); (A.S.); (E.K.); (Y.K.)
| |
Collapse
|
3
|
Teneva I, Velikova V, Belkinova D, Moten D, Dzhambazov B. Allelopathic Potential of the Cyanotoxins Microcystin-LR and Cylindrospermopsin on Green Algae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1403. [PMID: 36987092 PMCID: PMC10057654 DOI: 10.3390/plants12061403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Allelopathic interactions are widespread in all aquatic habitats, among all groups of aquatic primary biomass producers, including cyanobacteria. Cyanobacteria are producers of potent toxins called cyanotoxins, whose biological and ecological roles, including their allelopathic influence, are still incompletely understood. The allelopathic potential of the cyanotoxins microcystin-LR (MC-LR) and cylindrospermopsin (CYL) on green algae (Chlamydomonas asymmetrica, Dunaliella salina, and Scenedesmus obtusiusculus) was established. Time-dependent inhibitory effects on the growth and motility of the green algae exposed to cyanotoxins were detected. Changes in their morphology (cell shape, granulation of the cytoplasm, and loss of flagella) were also observed. The cyanotoxins MC-LR and CYL were found to affect photosynthesis to varying degrees in the green algae Chlamydomonas asymmetrica, Dunaliella salina, and Scenedesmus obtusiusculus, affecting chlorophyll fluorescence parameters such as the maximum photochemical activity (Fv/Fm) of photosystem II (PSII), the non-photochemical quenching of chlorophyll fluorescence (NPQ), and the quantum yield of the unregulated energy dissipation Y(NO) in PSII. In the context of ongoing climate change and the associated expectations of the increased frequency of cyanobacterial blooms and released cyanotoxins, our results demonstrated the possible allelopathic role of cyanotoxins on competing autotrophs in the phytoplankton communities.
Collapse
Affiliation(s)
- Ivanka Teneva
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Detelina Belkinova
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Dzhemal Moten
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Belykh OI, Sorokovikova EG, Tomberg IV, Fedorova GA, Kuzmin AV, Krasnopeev AY, Suslova MY, Potapov SA, Belykh TI, Norovsuren J, Galachyants AD, Tikhonova IV. Water Quality, Toxicity and Diversity of Planktonic and Benthic Cyanobacteria in Pristine Ancient Lake Khubsugul (Hövsgöl), Mongolia. Toxins (Basel) 2023; 15:toxins15030213. [PMID: 36977104 PMCID: PMC10053237 DOI: 10.3390/toxins15030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
For the first time, microcystin-producing cyanobacteria have been detected in Khubsugul, which is ancient, pristine and one of the world’s largest lakes. The microcystin synthetase genes belonged to the genera Nostoc, Microcystis and possibly Snowella spp. No microcystins were found in the water of the lake. Using the HPLC-HRMS/TOF, five microcystin congeners were identified in biofilms from stony substrates sampled in the coastal zone. The concentration of microcystins in biofilms was low: 41.95 µg g−1 d. wt. by ELISA and 55.8 µg g−1 d. wt. using HPLC. The taxonomic composition of planktonic and benthic cyanobacterial communities was determined by means of microscopy and high-throughput sequencing of 16S rDNA amplicons. Nostocales cyanobacteria dominated benthos of Lake Khubsugul and Synechococcales—plankton. The abundance of cyanobacteria was low both in plankton and benthos; there was no mass development of cyanobacteria. Hydrochemical and microbiological analyses showed that the water in the lake was clean; the number of faecal microorganisms was significantly below the acceptable guideline values. Hydrochemical and hydrophysical parameters, and the concentration of chlorophyll a, were low and within the range of values recorded in the 1970s to 1990s, and corresponded to the oligotrophic state of the lake. There were no signs of anthropogenic eutrophication of the lake and no conditions for the cyanobacterial blooms.
Collapse
Affiliation(s)
- Olga I. Belykh
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
- Correspondence: (O.I.B.); (E.G.S.)
| | - Ekaterina G. Sorokovikova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
- Correspondence: (O.I.B.); (E.G.S.)
| | - Irina V. Tomberg
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Galina A. Fedorova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Anton V. Kuzmin
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Andrey Yu. Krasnopeev
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Maria Yu. Suslova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Sergey A. Potapov
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Tatiana I. Belykh
- Institute for Culture, Social Communication and Information Technology, Baikal State University, 11 Lenin Str., Irkutsk 664003, Russia
| | - Jadambaa Norovsuren
- Institute of Biology of the Mongolian Academy of Sciences, 54B Peace Avenue, Bayanzurkh District, Ulaanbaatar 13330, Mongolia
| | - Agnia D. Galachyants
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Irina V. Tikhonova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| |
Collapse
|
5
|
Litvinchuk LF, Sharov AN, Chernova EN, Smirnov VV, Berezina NA. Mutual links between microcystins-producing cyanobacteria and plankton community in clear and brown northern lakes. FOOD WEBS 2023. [DOI: 10.1016/j.fooweb.2023.e00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Kurbatova SA, Berezina NA, Sharov AN, Ershov IY, Otyukova NG, Chernova EN, Borisovskaya EV. Interactions of Cyanobacteria and Aquatic Organisms: Can Crustaceans Facilitate Cyanobacteria Bloom? RUSS J ECOL+ 2022. [DOI: 10.1134/s1067413622060078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Anam GB, Govarthanan M, Ahn YH. Assessment of nitrogen interaction with temperature on the growth and toxin production of mat-forming toxin-producing Anagnostidinema carotinosum. J Appl Microbiol 2022; 133:2851-2863. [PMID: 35983987 DOI: 10.1111/jam.15784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
AIMS Global warming and eutrophication contribute to the severity of cyanobacteria blooms. However, it is unclear how these factors influence the growth and toxin production of Anagnostidinema carotinosum. METHODS AND RESULTS Based on morphological and molecular analysis, this is the first time A. carotinosum was identified in South Korea. The interactive effect of temperature (25, 30 or 34 °C) and nitrogen (2.5, 3.5 or 4.5 mg NO3 -N l-1 ) on A. carotinosum growth and toxin production were studied. Increasing nitrogen limitation reflects reduced growth and chlorophyll-a content at all temperatures. However, the growth was effective under nitrogen limitation when temperatures exceeded 25 °C. The maximum growth was found at 30 °C, followed by 34 °C under higher nitrate levels (3.5 and 4.5 mg l-1 ). In addition, the cell microcystin and anatoxin-a quota increased significantly at 25 °C with increasing nitrate limitation, decreasing considerably at 30 °C in the same nitrate gradient. CONCLUSION These results suggested temperatures stimulate A. carotinosum growth at 30 and 34 °C and cellular toxin quota at 25 and 34 °C with increasing NO3 -N levels. SIGNIFICANCE AND IMPACT OF THE STUDY These findings imply that limiting nitrogen input alone can effectively reduce biomass; however, controlling A. carotinosum and its toxins at higher temperatures under nitrate limitation is necessary for water quality.
Collapse
Affiliation(s)
- Giridhar Babu Anam
- Department of Civil Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Deagu, South Korea.,Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
8
|
Dev PJ, Sukenik A, Mishra DR, Ostrovsky I. Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150423. [PMID: 34818810 DOI: 10.1016/j.scitotenv.2021.150423] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are notorious for producing harmful algal blooms that present an ever-increasing serious threat to aquatic ecosystems worldwide, impacting the quality of drinking water and disrupting the recreational use of many water bodies. Remote sensing techniques for the detection and quantification of cyanobacterial blooms are required to monitor their initiation and spatiotemporal variability. In this study, we developed a novel semi-analytical approach to estimate the concentration of cyanobacteria-specific pigment phycocyanin (PC) and common phytoplankton pigment chlorophyll a (Chl a) from hyperspectral remote sensing data. The PC algorithm was derived from absorbance-concentration relationship, and the Chl a algorithm was devised based on a conceptual three-band structure model. The developed algorithms were applied to satellite imageries obtained by the Hyperspectral Imager for the Coastal Ocean (HICO™) sensor and tested in Lake Kinneret (Israel) during strong cyanobacterium Microcystis sp. bloom and out-of-bloom times. The sensitivity of the algorithms to errors was evaluated. The Chl a and PC concentrations were estimated with a mean absolute percentage difference (MAPD) of 16% and 28%, respectively. Sensitivity analysis shows that the influences of backscattering and other water constituents do not affect the estimation accuracy of PC (~2% MAPD). The reliable PC/Chl a ratios can be obtained at PC concentrations above 10 mg m-3. The computed PC/Chl a ratio depicts the contribution of cyanobacteria to the total phytoplankton biomass and permits investigating the role of ambient factors in the formation of a complex planktonic community. The novel algorithms have extensive practical applicability and should be suitable for the quantification of PC and Chl a in aquatic ecosystems using hyperspectral remote sensing data as well as data from future multispectral remote sensing satellites, if the respective bands are featured in the sensor.
Collapse
Affiliation(s)
- Pravin Jeba Dev
- Israel Oceanographic and Limnological Research, The Yigal Allon Kinneret Limnological Laboratory, Migdal 14950, Israel
| | - Assaf Sukenik
- Israel Oceanographic and Limnological Research, The Yigal Allon Kinneret Limnological Laboratory, Migdal 14950, Israel
| | - Deepak R Mishra
- Department of Geography, University of Georgia, Athens 30602, GA, USA
| | - Ilia Ostrovsky
- Israel Oceanographic and Limnological Research, The Yigal Allon Kinneret Limnological Laboratory, Migdal 14950, Israel.
| |
Collapse
|
9
|
Harmful algal blooms and cyanotoxins in Lake Amatitlán, Guatemala, coincided with ancient Maya occupation in the watershed. Proc Natl Acad Sci U S A 2021; 118:2109919118. [PMID: 34810262 PMCID: PMC8640734 DOI: 10.1073/pnas.2109919118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Human-induced deforestation and soil erosion were environmental stressors for the ancient Maya of Mesoamerica. Furthermore, intense, periodic droughts during the Terminal Classic Period, ca. Common Era 830 to 950, have been documented from lake sediment cores and speleothems. Today, lakes worldwide that are surrounded by dense human settlement and intense riparian land use often develop algae/cyanobacteria blooms that can compromise water quality by depleting oxygen and producing toxins. Such environmental impacts have rarely been explored in the context of ancient Maya settlement. We measured nutrients, biomarkers for cyanobacteria, and the cyanotoxin microcystin in a sediment core from Lake Amatitlán, highland Guatemala, which spans the last ∼2,100 y. The lake is currently hypereutrophic and characterized by high cyanotoxin concentrations from persistent blooms of the cyanobacterium Microcystis aeruginosa Our paleolimnological data show that harmful cyanobacteria blooms and cyanotoxin production occurred during periods of ancient Maya occupation. Highest prehistoric concentrations of cyanotoxins in the sediment coincided with alterations of the water system in the Maya city of Kaminaljuyú, and changes in nutrient stoichiometry and maximum cyanobacteria abundance were coeval with times of greatest ancient human populations in the watershed. These prehistoric episodes of cyanobacteria proliferation and cyanotoxin production rivaled modern conditions in the lake, with respect to both bloom magnitude and toxicity. This suggests that pre-Columbian Maya occupation of the Lake Amatitlán watershed negatively impacted water potability. Prehistoric cultural eutrophication indicates that human-driven nutrient enrichment of water bodies is not an exclusively modern phenomenon and may well have been a stressor for the ancient Maya.
Collapse
|
10
|
Vilar MCP, da Costa Pena Rodrigues TF, da Silva Ferrão-Filho A, de Oliveira E Azevedo SMF. Grazer-Induced Chemical Defense in a Microcystin-Producing Microcystis aeruginosa (Cyanobacteria) Exposed to Daphnia gessneri Infochemicals. J Chem Ecol 2021; 47:847-858. [PMID: 34569003 DOI: 10.1007/s10886-021-01315-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms that compose phytoplankton and therefore have a trophic relationship with zooplankton, which represent an important link for energy flux in aquatic food webs. Several species can form blooms and produce bioactive metabolites known as cyanotoxins. However, the ecological and adaptative role of these toxins are still under debate. Many studies have addressed the cyanotoxins' function in defense against herbivory when grazing pressure by zooplankton plays a role in phytoplankton top-down control. Thus, the present study evaluated the ecophysiological responses of the cyanobacterial strain Microcystis aeruginosa NPLJ-4 underlying the chemical induced defense against the cladoceran Daphnia gessneri. Exposure to predator infochemicals consisted of cultures established in ASM-1 medium prepared in a filtrate from a culture of adults of D. gessneri at an environmentally relevant density. Daphnia infochemicals promoted a significant increase in toxin production by M. aeruginosa. However, no differences in growth were observed, despite a significant increase in both maximum photosynthetic efficiency and electron transport rate in response to zooplankton. Additionally, there was no significant variation in the production of exopolysaccharides. Overall, although a grazer-induced defense response was demonstrated, there were no effects on M. aeruginosa fitness, which maintained its growth in the presence of Daphnia alarm cues.
Collapse
Affiliation(s)
- Mauro Cesar Palmeira Vilar
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil.
| | - Thiago Ferreira da Costa Pena Rodrigues
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil
| | - Aloysio da Silva Ferrão-Filho
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Sandra Maria Feliciano de Oliveira E Azevedo
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil
| |
Collapse
|
11
|
Omidi A, Pflugmacher S, Kaplan A, Kim YJ, Esterhuizen M. Reviewing Interspecies Interactions as a Driving Force Affecting the Community Structure in Lakes via Cyanotoxins. Microorganisms 2021; 9:1583. [PMID: 34442662 PMCID: PMC8401979 DOI: 10.3390/microorganisms9081583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and β-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.
Collapse
Affiliation(s)
- Azam Omidi
- Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Stephan Pflugmacher
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Bldg., 125 Dysart Rd, Winnipeg, MB R3T 2N2, Canada;
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Young Jun Kim
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
| | - Maranda Esterhuizen
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
- Finland and Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Sukenik A, Kaplan A. Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems: A Comprehensive Outlook on Current and Emerging Mitigation and Control Approaches. Microorganisms 2021; 9:1472. [PMID: 34361909 PMCID: PMC8306311 DOI: 10.3390/microorganisms9071472] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
An intensification of toxic cyanobacteria blooms has occurred over the last three decades, severely affecting coastal and lake water quality in many parts of the world. Extensive research is being conducted in an attempt to gain a better understanding of the driving forces that alter the ecological balance in water bodies and of the biological role of the secondary metabolites, toxins included, produced by the cyanobacteria. In the long-term, such knowledge may help to develop the needed procedures to restore the phytoplankton community to the pre-toxic blooms era. In the short-term, the mission of the scientific community is to develop novel approaches to mitigate the blooms and thereby restore the ability of affected communities to enjoy coastal and lake waters. Here, we critically review some of the recently proposed, currently leading, and potentially emerging mitigation approaches in-lake novel methodologies and applications relevant to drinking-water treatment.
Collapse
Affiliation(s)
- Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O. Box 447, Migdal 14950, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|
13
|
Vilar MCP, Rodrigues TFCP, Silva LO, Pacheco ABF, Ferrão-Filho AS, Azevedo SMFO. Ecophysiological Aspects and sxt Genes Expression Underlying Induced Chemical Defense in STX-Producing Raphidiopsis raciborskii (Cyanobacteria) against the Zooplankter Daphnia gessneri. Toxins (Basel) 2021; 13:406. [PMID: 34200983 PMCID: PMC8230027 DOI: 10.3390/toxins13060406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria stand out among phytoplankton when they form massive blooms and produce toxins. Because cyanotoxin genes date to the origin of metazoans, the hypothesis that cyanotoxins function as a defense against herbivory is still debated. Although their primary cellular function might vary, these metabolites could have evolved as an anti-predator response. Here we evaluated the physiological and molecular responses of a saxitoxin-producing Raphidiopsis raciborskii to infochemicals released by the grazer Daphnia gessneri. Induced chemical defenses were evidenced in R. raciborskii as a significant increase in the transcription level of sxt genes, followed by an increase in saxitoxin content when exposed to predator cues. Moreover, cyanobacterial growth decreased, and no significant effects on photosynthesis or morphology were observed. Overall, the induced defense response was accompanied by a trade-off between toxin production and growth. These results shed light on the mechanisms underlying zooplankton-cyanobacteria interactions in aquatic food webs. The widespread occurrence of the cyanobacterium R. raciborskii in freshwater bodies has been attributed to its phenotypic plasticity. Assessing the potential of this species to thrive over interaction filters such as zooplankton grazing pressure can enhance our understanding of its adaptive success.
Collapse
Affiliation(s)
- Mauro C. P. Vilar
- Laboratory Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil; (T.F.C.P.R.); (L.O.S.); (S.M.F.O.A.)
| | - Thiago F. C. P. Rodrigues
- Laboratory Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil; (T.F.C.P.R.); (L.O.S.); (S.M.F.O.A.)
| | - Luan O. Silva
- Laboratory Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil; (T.F.C.P.R.); (L.O.S.); (S.M.F.O.A.)
| | - Ana Beatriz F. Pacheco
- Laboratory Biological Physics, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil;
| | - Aloysio S. Ferrão-Filho
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
| | - Sandra M. F. O. Azevedo
- Laboratory Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil; (T.F.C.P.R.); (L.O.S.); (S.M.F.O.A.)
| |
Collapse
|
14
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
15
|
Lage S, Mazur-Marzec H, Gorokhova E. Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena. Sci Rep 2021; 11:8970. [PMID: 33903638 PMCID: PMC8076297 DOI: 10.1038/s41598-021-88361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Nodularia spumigena is a bloom-forming diazotrophic cyanobacterium inhabiting brackish waters worldwide. This species produces non-ribosomal peptides (NRPs), including the hepatotoxin nodularin, often referred to as cyanotoxin. Several known classes of NRPs have various biological activities, although their modes of action are poorly understood. In the Baltic N. spumigena, there is a high NRP chemodiversity among strains, allowing their grouping in specific chemotypes and subgroups. Therefore, it is relevant to ask whether the NRP production is affected by intraspecific interactions between the co-existing strains. Using a novel approach that combines culture technique and liquid chromatography-tandem mass spectrometry for the NRP analysis, we examined N. spumigena strains under mono- and co-culture conditions. The test strains were selected to represent N. spumigena belonging to the same or different chemotype subgroups. In this setup, we observed physiological and metabolic responses in the test strains grown without cell contact. The changes in NRP levels to co-culture conditions were conserved within a chemotype subgroup but different between the subgroups. Our results suggest that intraspecific interactions may promote a chemical diversity in N. spumigena population, with higher NRP production compared to a single-strain population. Studying allelochemical signalling in this cyanobacterium is crucial for understanding toxicity mechanisms and plankton community interactions in the Baltic Sea and other aquatic systems experiencing regular blooms.
Collapse
Affiliation(s)
- Sandra Lage
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden ,grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Hanna Mazur-Marzec
- grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Elena Gorokhova
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
16
|
Jacinavicius FR, Geraldes V, Crnkovic CM, Delbaje E, Fiore MF, Pinto E. Effect of ultraviolet radiation on the metabolomic profiles of potentially toxic cyanobacteria. FEMS Microbiol Ecol 2021; 97:6006873. [PMID: 33242088 DOI: 10.1093/femsec/fiaa243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Interactions between climate change and ultraviolet radiation (UVR) have a substantial impact on aquatic ecosystems, especially on photosynthetic organisms. To counteract the damaging effects of UVR, cyanobacteria developed adaptive strategies such as the biosynthesis of secondary metabolites. This study aimed to evaluate the effects of UVR on the metabolomic profiles of potentially toxic cyanobacteria. Twelve strains were irradiated with ultraviolet A and ultraviolet B radiation and parabolic aluminized reflector lamps for 3 days, followed by liquid chromatography-tandem mass spectometry (LC-MS/MS) analysis to assess changes in metabolomic profiles. Matrices were used to generate principal component analysis biplots, and molecular networks were obtained using the Global Natural Products platform. Most strains showed significant changes in their metabolomic profiles after UVR exposure. On average, 7% of MS features were shown to be exclusive to metabolomic profiles before UVR exposure, while 9% were unique to metabolomic profiles after UVR exposure. The identified compounds included aeruginosins, spumigins, cyanopeptolins, microginins, namalides, pseudospumigins, anabaenopeptins, mycosporine-like amino acids, nodularins and microcystins. Data showed that cyanobacteria display broad metabolic plasticity upon UVR exposure, including the synthesis and differential expression of a variety of secondary metabolites. This could result in a competitive advantage, supporting cyanobacterial blooms under various UVR light exposures.
Collapse
Affiliation(s)
| | - Vanessa Geraldes
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil
| | - Camila M Crnkovic
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil
| | - Endrews Delbaje
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| | - Marli F Fiore
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil.,University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| |
Collapse
|
17
|
Habtemariam H, Kifle D, Leta S, Beekman W, Lürling M. Cyanotoxins in drinking water supply reservoir (Legedadi, Central Ethiopia): implications for public health safety. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04313-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AbstractCyanobacterial blooms in drinking water supply affect its quality, which ultimately impacts ecosystem and public health. Thus, this cross-sectional study was conducted to perform a preliminary study on cyanotoxins via analysis of samples collected only once from two sites during the month of peak algal bloom and to subsequently prompt a comprehensive risk assessment in a major drinking water source, Legedadi Reservoir, of Addis Ababa, the capital city of Ethiopia. Samples were collected during peak algal bloom month (January 2018) from two sampling sites, near the dam (S1) and at the center of the reservoir (S2). Identification and enumeration of phytoplankton taxa were done and the measurement of common hepatotoxin (MCs and NOD) concentrations was conducted using liquid chromatography-tandem mass spectrometry. In the reservoir, cyanobacteria made up to 98% of total phytoplankton abundance, with Dolichospermum and Microcystis spp, dominating the phytoplankton community. In these first cyanotoxin analyses conducted for a drinking water supply source in Ethiopia, six major MC variants, namely MC-dmRR, MC-RR, MC-YR, MC-dmLR, MC-LR, and MC-LA, were detected in both algal seston and water samples. MC-LR was the most dominant MCs variant, while nodularin was not detected for both sampling sites. Extracellular total MC concentrations (μg L−1) of 453.89 and 61.63 and intracellular total MC concentrations (μg L−1) of 189.29 and 112.34 were recorded for samples from S1 and S2, respectively. The high concentrations of extracellular MCs, with MC-LR constituting the greatest proportion, indicate the extremely high potential public health risk for end-users.
Collapse
|
18
|
Moschny J, Lorenzen W, Hilfer A, Eckenstaler R, Jahns S, Enke H, Enke D, Schneider P, Benndorf RA, Niedermeyer THJ. Precursor-Directed Biosynthesis and Fluorescence Labeling of Clickable Microcystins. JOURNAL OF NATURAL PRODUCTS 2020; 83:1960-1970. [PMID: 32464061 DOI: 10.1021/acs.jnatprod.0c00251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microcystins, cyclic nonribosomal heptapeptides, are the most well-known cyanobacterial toxins. They are exceptionally well studied, but open questions remain concerning their physiological role for the producing microorganism or their suitability as lead compounds for anticancer drug development. One means to study specialized metabolites in more detail is the introduction of functional groups that make a compound amenable for bioorthogonal, so-called click reactions. Although it was reported that microcystins cannot be derivatized by precursor-directed biosynthesis, we successfully used this approach to prepare clickable microcystins. Supplementing different azide- or terminal alkyne containing amino acid analogues into the cultivation medium of microcystin-producing cyanobacteria strains, we found that these strains differ strongly in their substrate acceptance. Exploiting this flexibility, we generated more than 40 different clickable microcystins. We conjugated one of these derivatives with a fluorogenic dye and showed that neither incorporation of the unnatural amino acid analogue nor attachment of the fluorescent label significantly affects the cytotoxicity against cell lines expressing the human organic anion transporting polypeptides 1B1 or 1B3. Using time-lapse microscopy, we observed that the fluorescent microcystin is rapidly taken up into eukaryotic cells expressing these transporters.
Collapse
Affiliation(s)
- Julia Moschny
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, 06120 Halle (Saale), Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | | | | | - Robert Eckenstaler
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | | | - Heike Enke
- Cyano Biotech GmbH, 12489 Berlin, Germany
| | - Dan Enke
- Cyano Biotech GmbH, 12489 Berlin, Germany
| | - Philipp Schneider
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Timo H J Niedermeyer
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, 06120 Halle (Saale), Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Hernández-García CI, Martínez-Jerónimo F. Multistressor negative effects on an experimental phytoplankton community. The case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137186. [PMID: 32084686 DOI: 10.1016/j.scitotenv.2020.137186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Aquatic ecosystems face serious pollution issues. Discharges of toxic substances and eutrophication may lead to changes in the phytoplankton community and foster cyanobacterial blooms. Glyphosate-based herbicides are chemical stressors of microalgae that may affect the structure of phytoplankton communities, and also stimulate the synthesis of cyanotoxins by cyanobacteria. The simultaneous presence of glyphosate and toxigenic cyanobacteria increases the stress on microalgae, jointly affecting their growth and development. This study evaluated the combined effect of a toxigenic cyanobacterium and glyphosate in the development of an experimental microalgal community. We studied the effect of Microcystis aeruginosa on the population growth of the microalgae Ankistrodesmus falcatus, Chlorella vulgaris, Pseudokirchneriella subcapitata, and Scenedesmus incrassatulus. We also evaluated the combined effect of sub-inhibitory glyphosate (Faena®) concentrations on the content of macromolecules and the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as on the concentration of TBARS. These effects were evaluated through the integrated biomarker response (IBR). In individual experiments, microalgae showed lower growth rates versus M. aeruginosa. In the mixed bioassays, both M. aeruginosa and microalgae showed reduced growth. IC50 values for Faena® ranged from 1.022 to 2.702 mg L-1. In the microalgae + cyanobacteria bioassays, the herbicide lowered the growth rates of microalgae but stimulated the proliferation of M. aeruginosa. The joint action of both stressors affected growth rate and population dynamics, macromolecule content, and led to increased CAT and GPx levels. Faena® influenced growth rate and caused oxidative stress. On the other hand, the herbicide stimulated the synthesis of cyanotoxins, which further affected microalgal development. The experimental community was not only affected by the herbicide, but the mixed culture with cyanobacteria magnified the effects of chemical stress. These results illustrate the potential damage to phytoplankton expected in anthropically eutrophic water bodies that are also polluted by glyphosate.
Collapse
Affiliation(s)
- Claudia I Hernández-García
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N. Col. Santo Tomás, México City 11340, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N. Col. Santo Tomás, México City 11340, Mexico.
| |
Collapse
|
20
|
Bojadzija Savic G, Bormans M, Edwards C, Lawton L, Briand E, Wiegand C. Cross talk: Two way allelopathic interactions between toxic Microcystis and Daphnia. HARMFUL ALGAE 2020; 94:101803. [PMID: 32414501 DOI: 10.1016/j.hal.2020.101803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Due to eutrophication, freshwater ecosystems frequently experience cyanobacterial blooms, many of which produce bioactive metabolites that can affect vertebrates and invertebrates life traits. Zooplankton are able to develop tolerance as a physiological response to cyanobacteria and their bioactive compounds, however, this comes with energetic cost that in turn influence Daphnia life traits and may impair populations. Vice versa, it has been suggested that Daphnia are able to reduce cyanobacterial dominance until a certain cyanobacterial density; it remains unclear whether Daphnia metabolites alone influence the physiological state and bioactive metabolites production of cyanobacteria. Hence, this study investigates mutual physiological reactions of toxic Microcystis aeruginosa PCC7806 and Daphnia magna. We hypothesize that a) the presence of D. magna will negatively affect growth, increase stress response and metabolites production in M. aeruginosa PCC7806 and b) the presence of M. aeruginosa PCC7806 will negatively affect physiological responses and life traits in D. magna. In order to test these hypotheses experiments were conducted in a specially designed co-culture chamber that allows exchange of the metabolites without direct contact. A clear mutual impact was evidenced. Cyanobacterial metabolites reduced survival of D. magna and decreased oxidative stress enzyme activity. Simultaneously, presence of D. magna did not affect photosynthetic activity. However, ROS increase and tendencies in cell density decrease were observed on the same day, suggesting possible energy allocation towards anti-oxidative stress enzymes, or other protection mechanisms against Daphnia infochemicals, as the strain managed to recover. Elevated concentration of intracellular and overall extracellular microcystin MC-LR, as well as intracellular concentrations of aerucyclamide A and D in the presence of Daphnia, indicating a potential protective or anti-grazing function. However, more research is needed to confirm these findings.
Collapse
Affiliation(s)
| | - Myriam Bormans
- Univ Rennes 1, CNRS, ECOBIO - UMR 6553, F-35000 Rennes, France
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, United Kingdom
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, United Kingdom
| | - Enora Briand
- Phycotoxins Laboratory, IFREMER, F-44311 Nantes, France
| | - Claudia Wiegand
- Univ Rennes 1, CNRS, ECOBIO - UMR 6553, F-35000 Rennes, France
| |
Collapse
|
21
|
Henao E, Rzymski P, Waters MN. A Review on the Study of Cyanotoxins in Paleolimnological Research: Current Knowledge and Future Needs. Toxins (Basel) 2019; 12:E6. [PMID: 31861931 PMCID: PMC7020453 DOI: 10.3390/toxins12010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/27/2023] Open
Abstract
Cyanobacterial metabolites are increasingly studied, in regards to their biosynthesis, ecological role, toxicity, and potential biomedical applications. However, the history of cyanotoxins prior to the last few decades is virtually unknown. Only a few paleolimnological studies have been undertaken to date, and these have focused exclusively on microcystins and cylindrospermopsins, both successfully identified in lake sediments up to 200 and 4700 years old, respectively. In this paper, we review direct extraction, quantification, and application of cyanotoxins in sediment cores, and put forward future research prospects in this field. Cyanobacterial toxin research is also compared to other paleo-cyanobacteria tools, such as sedimentary pigments, akinetes, and ancient DNA isolation, to identify the role of each tool in reproducing the history of cyanobacteria. Such investigations may also be beneficial for further elucidation of the biological role of cyanotoxins, particularly if coupled with analyses of other abiotic and biotic sedimentary features. In addition, we identify current limitations as well as future directions for applications in the field of paleolimnological studies on cyanotoxins.
Collapse
Affiliation(s)
- Eliana Henao
- Department of Biology, Universidad del Valle, 100-00 Cali, Colombia
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Matthew N. Waters
- Department of Crop, Soil and Environmental Sciences, Auburn University, Funchess Hall, AL 36849, USA
| |
Collapse
|
22
|
Programmed Cell Death-Like and Accompanying Release of Microcystin in Freshwater Bloom-Forming Cyanobacterium Microcystis: From Identification to Ecological Relevance. Toxins (Basel) 2019; 11:toxins11120706. [PMID: 31817272 PMCID: PMC6950475 DOI: 10.3390/toxins11120706] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 11/16/2022] Open
Abstract
Microcystis is the most common freshwater bloom-forming cyanobacteria. Its massive blooms not only adversely affect the functionality of aquatic ecosystems, but are also associated with the production of microcystins (MCs), a group of potent toxins that become a threat to public health when cell-bound MCs are significantly released from the dying Microcystis into the water column. Managing Microcystis blooms thus requires sufficient knowledge regarding both the cell death modes and the release of toxins. Recently, more and more studies have demonstrated the occurrence of programmed cell death-like (or apoptosis-like) events in laboratory and field samples of Microcystis. Apoptosis is a genetically controlled process that is essential for the development and survival of metazoa; however, it has been gradually realized to be an existing phenomenon playing important ecological roles in unicellular microorganisms. Here, we review the current progress and the existing knowledge gap regarding apoptosis-like death in Microcystis. Specifically, we focus first on the tools utilized to characterize the apoptosis-related biochemical and morphological features in Microcystis. We further outline various stressful stimuli that trigger the occurrence of apoptosis and discuss the potential mechanisms of apoptosis in Microcystis. We then propose a conceptual model to describe the functional coupling of apoptosis and MC in Microcystis. This model could be useful for understanding both roles of MC and apoptosis in this species. Lastly, we conclude the review by highlighting the current knowledge gap and considering the direction of future research. Overall, this review provides a recent update with respect to the knowledge of apoptosis in Microcystis and also offers a guide for future investigations of its ecology and survival strategies.
Collapse
|
23
|
Wang Z, Zhang Y, Huang S, Peng C, Hao Z, Li D. Nitrogen limitation significantly reduces the competitive advantage of toxic Microcystis at high light conditions. CHEMOSPHERE 2019; 237:124508. [PMID: 31408798 DOI: 10.1016/j.chemosphere.2019.124508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Microcystis is a notorious cyanobacterial genus due to its rapid growth rate, huge biomass, and producing toxins in some eutrophic freshwater environments. To reveal the regulatory factors of interspecific competition between toxic and non-toxic Microcystis, three dominant Microcystis strains were selected, and their photosynthesis, population dynamics and microcystins (MCYST) production were measured. The results suggested that nitrogen-limitation (N-limitation) had a greater restriction for the growth of toxic Microcystis than that of non-toxic Microcystis, especially when cultured at high light or high temperature based on the weight analysis of key factors. Comparison of photosynthesis showed that low light or N-rich would favor the competitive advantage of toxic Microcystis while high light combined with N-limitation would promote the competitive advantage of non-toxic Microcystis, and these two competitive advantages could be further amplified by temperature increase. Mixed competitive experiments of toxic and non-toxic Microcystis were conducted, and the results of absorption spectrum (A485/A665) and qPCR (real-time quantitative PCR) suggested that the proportion of toxic Microcystis and the half-time of succession process were significantly reduced by 69.4% and 28.4% (p < 0.01) respectively by combining N-limitation with high light intensity than that measured under N-limitation condition. N-limitation led to a significant decrease of MCYST cellular quota in Microcystis biomass, which would be further decreased to a lower level by the high light. Based on above mentioned analysis, to decrease the MCYST production of Microcystis blooms, we should control nutrient, especial nitrogen through pollutant intercepting and increase the light intensity through improving water transparency.
Collapse
Affiliation(s)
- Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yun Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shun Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Zhixiang Hao
- Tianjin Institute of Water Conservancy Science, Tianjin, 300061, PR China.
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
24
|
Daniel E, Weiss G, Murik O, Sukenik A, Lieman-Hurwitz J, Kaplan A. The response of Microcystis aeruginosa strain MGK to a single or two consecutive H 2 O 2 applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:621-629. [PMID: 31390482 DOI: 10.1111/1758-2229.12789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Various approaches have been proposed to control/eliminate toxic Microcystis sp. blooms including H2 O2 treatments. Earlier studies showed that pre-exposure of various algae to oxidative stress induced massive cell death when cultures were exposed to an additional H2 O2 treatment. We examined the vulnerability of exponential and stationary-phase Microcystis sp. strain MGK cultures to single and double H2 O2 applications. Stationary cultures show a much higher ability to decompose H2 O2 than younger cultures. Nevertheless, they are more sensitive to an additional H2 O2 dose given 1-6 h after the first one. Transcript analyses following H2 O2 application showed a fast rise in glutathione peroxidase abundance (227-fold within an hour) followed by a steep decline thereafter. Other genes potentially engaged in oxidative stress were far less affected. Metabolic-related genes were downregulated after H2 O2 treatments. Among those examined, the transcript level of prk (encoding phosphoribulose kinase) was the slowest to recover in agreement with the decline in photosynthetic rate revealed by fluorescence measurements. Our findings shed light on the response of Microcystis MGK to oxidative stress suggesting that two consecutive H2 O2 applications of low concentrations are far more effective in controlling Microcystis sp. population than a single dose of a higher concentration.
Collapse
Affiliation(s)
- Einat Daniel
- Plants and Environmental Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Gad Weiss
- Plants and Environmental Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Omer Murik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Judy Lieman-Hurwitz
- Plants and Environmental Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Aaron Kaplan
- Plants and Environmental Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
25
|
Omidi A, Esterhuizen-Londt M, Pflugmacher S. Interspecies interactions between Microcystis aeruginosa PCC 7806 and Desmodesmus subspicatus SAG 86.81 in a co-cultivation system at various growth phases. ENVIRONMENT INTERNATIONAL 2019; 131:105052. [PMID: 31357091 DOI: 10.1016/j.envint.2019.105052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
In lakes, cyanobacterial blooms are frequently associated with green algae and dominate the phytoplankton community in successive waves. In the present study, the interactions between Microcystis aeruginosa PCC 7806 and Desmodesmus subspicatus were studied to clarify the probable ecological significance of algal secondary metabolites; focusing on the role of cyanotoxin 'microcystin-LR' (MC-LR). A dialysis co-cultivation technique was applied where M. aeruginosa was grown inside and D. subspicatus was cultured outside of the dialysis tubing. The concentration of the intra- and extracellular MC-LR and the growth of two species were measured at different time points over a period of one month. Additionally, the growth of the two species in the culture filtrate of one another and the effect of the purified MC-LR on the growth of the green alga were studied. The results indicated that the co-existing species could affect each other depending on the growth phases. Despite the early dominance of D. subspicatus during the logarithmic phase, M. aeruginosa suppressed the growth of the green alga at the stationary phase, which coincided with increased MC production and release. However, the inhibitory effects of Microcystis might be related to its other extracellular metabolites rather than, or possibly in addition to, MC.
Collapse
Affiliation(s)
- Azam Omidi
- Technische Universität Berlin, Chair Ecological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Maranda Esterhuizen-Londt
- University of Helsinki, Aquatic Ecotoxicology in an Urban Environment, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland; Korean Institute of Science and Technology Europe (KIST), Joint laboratory of Applied Ecotoxicology, Campus E7 1, 66123 Saarbrücken, Germany; Helsinki Institute of Sustainability (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland.
| | - Stephan Pflugmacher
- University of Helsinki, Aquatic Ecotoxicology in an Urban Environment, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland; Korean Institute of Science and Technology Europe (KIST), Joint laboratory of Applied Ecotoxicology, Campus E7 1, 66123 Saarbrücken, Germany; Helsinki Institute of Sustainability (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland.
| |
Collapse
|
26
|
Jacinavicius FR, Pacheco ABF, Chow F, Verissimo da Costa GC, Kalume DE, Rigonato J, Schmidt EC, Sant'Anna CL. Different ecophysiological and structural strategies of toxic and non-toxic Microcystis aeruginosa (cyanobacteria) strains assessed under culture conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Bojadzija Savic G, Edwards C, Briand E, Lawton L, Wiegand C, Bormans M. Daphnia magna Exudates Impact Physiological and Metabolic Changes in Microcystis aeruginosa. Toxins (Basel) 2019; 11:toxins11070421. [PMID: 31330981 PMCID: PMC6669642 DOI: 10.3390/toxins11070421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/17/2022] Open
Abstract
While the intracellular function of many toxic and bioactive cyanobacterial metabolites is not yet known, microcystins have been suggested to have a protective role in the cyanobacterial metabolism, giving advantage to toxic over nontoxic strains under stress conditions. The zooplankton grazer Daphnia reduce cyanobacterial dominance until a certain density, which may be supported by Daphnia exudates, affecting the cyanobacterial physiological state and metabolites’ production. Therefore, we hypothesized that D. magna spent medium will impact the production of cyanobacterial bioactive metabolites and affect cyanobacterial photosynthetic activity in the nontoxic, but not the toxic strain. Microcystin (MC-LR and des-MC-LR) producing M. aeruginosa PCC7806 and its non-microcystin producing mutant were exposed to spent media of different D. magna densities and culture durations. D. magna spent medium of the highest density (200/L) cultivated for the shortest time (24 h) provoked the strongest effect. D.magna spent medium negatively impacted the photosynthetic activity of M. aeruginosa PCC7806, as well as the dynamics of intracellular and extracellular cyanobacterial metabolites, while its mutant was unaffected. In the presence of Daphnia medium, microcystin does not appear to have a protective role for the strain. On the contrary, extracellular cyanopeptolin A increased in M. aeruginosa PCC7806 although the potential anti-grazing role of this compound would require further studies.
Collapse
Affiliation(s)
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Enora Briand
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | | | - Myriam Bormans
- Univ Rennes, CNRS, ECOBIO-UMR 6553, F-35000 Rennes, France
| |
Collapse
|
28
|
Briand E, Reubrecht S, Mondeguer F, Sibat M, Hess P, Amzil Z, Bormans M. Chemically mediated interactions between Microcystis and Planktothrix: impact on their growth, morphology and metabolic profiles. Environ Microbiol 2019; 21:1552-1566. [PMID: 30485643 DOI: 10.1111/1462-2920.14490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/28/2022]
Abstract
Freshwater cyanobacteria are known for their ability to produce bioactive compounds, some of which have been described as allelochemicals. Using a combined approach of co-cultures and analyses of metabolic profiles, we investigated chemically mediated interactions between two cyanobacterial strains, Microcystis aeruginosa PCC 7806 and Planktothrix agardhii PCC 7805. More precisely, we evaluated changes in growth, morphology and metabolite production and release by both interacting species. Co-culture of Microcystis with Planktothrix resulted in a reduction of the growth of Planktothrix together with a decrease of its trichome size and alterations in the morphology of its cells. The production of intracellular compounds by Planktothrix showed a slight decrease between monoculture and co-culture conditions. Concerning Microcystis, the number of intracellular compounds was higher under co-culture condition than under monoculture. Overall, Microcystis produced a lower number of intracellular compounds under monoculture than Planktothrix, and a higher number of intracellular compounds than Planktothrix under co-culture condition. Our investigation did not allow us to identify specifically the compounds causing the observed physiological and morphological changes of Planktothrix cells. However, altogether, these results suggest that co-culture induces specific compounds as a response by Microcystis to the presence of Planktothrix. Further studies should be undertaken for identification of such potential allelochemicals.
Collapse
Affiliation(s)
- Enora Briand
- Phycotoxins Laboratory, IFREMER, F-44311 Nantes, France.,UMR CNRS 6553 ECOBIO, Rennes 1 University, F-35042 Rennes, France
| | | | | | | | - Philipp Hess
- Phycotoxins Laboratory, IFREMER, F-44311 Nantes, France
| | - Zouher Amzil
- Phycotoxins Laboratory, IFREMER, F-44311 Nantes, France
| | - Myriam Bormans
- UMR CNRS 6553 ECOBIO, Rennes 1 University, F-35042 Rennes, France
| |
Collapse
|
29
|
Relationship between Photosynthetic Capacity and Microcystin Production in Toxic Microcystis Aeruginosa under Different Iron Regimes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091954. [PMID: 30205471 PMCID: PMC6163392 DOI: 10.3390/ijerph15091954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 11/17/2022]
Abstract
Blooms of harmful cyanobacteria have been observed in various water bodies across the world and some of them can produce intracellular toxins, such as microcystins (MCs), which negatively impact aquatic organisms and human health. Iron participates significantly in cyanobacterial photosynthesis and is proposed to be linked to MC production. Here, the cyanobacteria Microcystis aeruginosa was cultivated under different iron regimes to investigate the relationship between photosynthetic capacity and MC production. The results showed that iron addition increased cell density, cellular protein concentration and the Chl-a (chlorophyll-a) content. Similarly, it can also up⁻regulate photosynthetic capacity and promote MC⁻leucine⁻arginine (MC⁻LR) production, but not in a dose⁻dependent manner. Moreover, a significant positive correlation between photosynthetic capacity and MC production was observed, and electron transport parameters were the most important parameters contributing to the variation of intracellular MC⁻LR concentration revealed by Generalized Additive Model analysis. As the electron transport chain was affected by iron variation, adenosine triphosphate production was inhibited, leading to the alteration of MC synthetase gene expression. Therefore, it is demonstrated that MC production greatly relies on redox status and energy metabolism of photosynthesis in M. aeruginosa. In consequence, more attention should be paid to the involvement of photosynthesis in the regulation of MC production by iron variation in the future.
Collapse
|
30
|
Tanabe Y, Hodoki Y, Sano T, Tada K, Watanabe MM. Adaptation of the Freshwater Bloom-Forming Cyanobacterium Microcystis aeruginosa to Brackish Water Is Driven by Recent Horizontal Transfer of Sucrose Genes. Front Microbiol 2018; 9:1150. [PMID: 29922255 PMCID: PMC5996124 DOI: 10.3389/fmicb.2018.01150] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Microcystis aeruginosa is a bloom-forming cyanobacterium found in eutrophic water bodies worldwide. M. aeruginosa blooms usually occur in freshwater; however, they have also been reported to occur in brackish water. Because M. aeruginosa often produces the cyanotoxin microcystin, they are a major concern to public health and environment. Despite this, the ecology, genomic basis, and evolutionary process underlying the M. aeruginosa bloom invasion from fresh to brackish water have been poorly investigated. Hence, in the present study, we have sequenced and characterized genomes of two newly discovered salt-tolerant M. aeruginosa strains obtained from Japanese brackish water lakes (Lakes Shinji and Tofutsu). Both genomes contain a set of genes for the synthesis of osmolyte sucrose (sppA, spsA, and susA), hitherto identified in only one strain (PCC 7806) of M. aeruginosa. Chemical and gene expression analyses confirmed sucrose accumulation induced by salt. A comprehensive genetic survey of >200 strains indicated that sucrose genes are extremely rare in M. aeruginosa. Most surprisingly, comparative genome analyses of the three strains indicated extremely low genetic diversity in the sucrose genes compared with other core genome genes, suggesting very recent acquisitions via horizontal transfer. Invasion of M. aeruginosa blooms into brackish water may be a recent event triggered by anthropogenic eutrophication of brackish water.
Collapse
Affiliation(s)
- Yuuhiko Tanabe
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Tsukuba, Japan
| | | | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Tsukuba, Japan
| | - Kiyoshi Tada
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Tsukuba, Japan
| | - Makoto M Watanabe
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
31
|
Scherer PI, Absmeier C, Urban M, Raeder U, Geist J, Zwirglmaier K. Influence of cyanobacteria, mixotrophic flagellates, and virioplankton size fraction on transcription of microcystin synthesis genes in the toxic cyanobacterium Microcystis aeruginosa. Microbiologyopen 2018; 7:e00538. [PMID: 28944994 PMCID: PMC5822348 DOI: 10.1002/mbo3.538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023] Open
Abstract
Toxic cyanobacteria such as Microcystis aeruginosa are a worldwide concern in freshwater reservoirs. Problems associated with their mass occurrence are predicted to increase in the future due to global warming. The hepatotoxic secondary metabolite microcystin is of particular concern in this context. This study aimed to determine whether co-occurring microorganisms influence the expression of microcystin biosynthesis genes. To this end, we performed cocultivation experiments and measured mcyB and mcyD transcripts in M. aeruginosa using RT-qPCR. We utilized representatives from three different plankton groups: the picocyanobacterium Synechococcus elongatus, the unicellular flagellate grazer Ochromonas danica, and virioplankton from two different lakes. The presence of S. elongatus significantly increased mcyB and mcyD transcription in M. aeruginosa. Cocultivation with the mixotrophic chrysophyte O. danica did not increase the transcription of mcyB and mcyD; in fact, mcyD transcripts decreased significantly. The virioplankton size fraction of environmental water samples induced a significant increase in mcyB and mcyD transcription when obtained from lakes with cyanobacterial blooms. Our results show that co-occurring microorganisms influence the expression of microcystin biosynthesis genes in M. aeruginosa.
Collapse
Affiliation(s)
- Pia I. Scherer
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
| | - Carolin Absmeier
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
| | - Maria Urban
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
- Bundeswehr Institute of MicrobiologyMunichGermany
| | - Uta Raeder
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
| | - Juergen Geist
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
| | - Katrin Zwirglmaier
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
- Bundeswehr Institute of MicrobiologyMunichGermany
| |
Collapse
|
32
|
Omidi A, Esterhuizen-Londt M, Pflugmacher S. Still challenging: the ecological function of the cyanobacterial toxin microcystin – What we know so far. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1326059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Azam Omidi
- Institute of Biotechnology, Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, Berlin, Germany and
| | - Maranda Esterhuizen-Londt
- Institute of Biotechnology, Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, Berlin, Germany and
| | - Stephan Pflugmacher
- Institute of Biotechnology, Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, Berlin, Germany and
- Joint laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe (KIST), Saarbrücken, Germany
| |
Collapse
|
33
|
Martínez-Ruiz EB, Martínez-Jerónimo F. How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:36-46. [PMID: 27400062 DOI: 10.1016/j.ecoenv.2016.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Nickel (Ni) is an essential metal for some organisms, but also a common toxic pollutant released into the water. Toxicity of Ni has not been completely established for cyanobacteria; for this reason, we evaluated the effect of sub-inhibitory Ni concentrations on a toxigenic strain of Microcystis aeruginosa and on microcystins production. Population growth, photosynthetic pigments concentration, biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]), as well as macromolecules (proteins, carbohydrates and lipids) were quantified; SEM and TEM observations were also performed. Population growth was affected starting at 3µgL(-1), and at 24µgL(-1) growth was completely inhibited; the 96-h Ni(2+) IC50 was 3.7µgL(-1). Ni exposure increased pigments concentration, augmented all the macromolecules, and increased activities of CAT and GPx; alterations on the internal cell structure were also observed. The integrated biomarker response revealed that Ni(2+) augmented the antioxidant response and the macromolecules content. Ni stress also increased microcystins production. M. aeruginosa was affected by Ni at very low concentrations, even lower than those established as safe limit to protect aquatic biota. Aside from the toxic effects produced in this cyanobacterium, stimulation to produce toxins could potentiate the environmental risks associated with water pollution and eutrophication.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico, D.F. 11340, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico, D.F. 11340, Mexico.
| |
Collapse
|
34
|
Perez-Garcia O, Lear G, Singhal N. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems. Front Microbiol 2016; 7:673. [PMID: 27242701 PMCID: PMC4870247 DOI: 10.3389/fmicb.2016.00673] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022] Open
Abstract
We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations.
Collapse
Affiliation(s)
- Octavio Perez-Garcia
- Department of Civil and Environmental Engineering, University of Auckland Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, The University of Auckland Auckland, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland Auckland, New Zealand
| |
Collapse
|
35
|
A review on factors affecting microcystins production by algae in aquatic environments. World J Microbiol Biotechnol 2016; 32:51. [PMID: 26874538 DOI: 10.1007/s11274-015-2003-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
Microcystins, a toxin produced by Microcystis aeruginosa have become a global environmental issue in recent years. As a consequence of eutrophication, microcystins have become widely disseminated in drinking water sources, seriously impairing drinking water quality. This review focuses on the relationship between microcystins synthesis and physical, chemical, and biological environmental factors that are significant in controlling their production. Light intensity and temperature are the more important physical factors, and in many cases, an optimum level for these two factors has been observed. Nitrogen and phosphorus are the key chemical factors causing frequent occurrence of harmful algal blooms and microcystins production. The absorption of nutrients and metabolic activities of algae are affected by different concentrations and forms of nitrogen and phosphorus, leading to variations in microcystins production Metal ions and emerging pollutants are other significant chemical factors, whose comprehensive impact is still being studied. Algae can also interact with biological agents like predators and competitors in aquatic environments, and such interactions are suggested to promote MCs production and release. This review further highlights areas that require further research in order to gain a better understanding of microcystins production. It provides a theoretical basis for the control of microcystins production and releasing into aquatic environments.
Collapse
|
36
|
Otten TG, Paerl HW. Health Effects of Toxic Cyanobacteria in U.S. Drinking and Recreational Waters: Our Current Understanding and Proposed Direction. Curr Environ Health Rep 2016; 2:75-84. [PMID: 26231244 DOI: 10.1007/s40572-014-0041-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyanobacterial-derived water quality impairment issues are a growing concern worldwide. In addition to their ecological impacts, these organisms are prolific producers of bioactive secondary metabolites, many of which are known human intoxicants. To date only a handful of these compounds have been thoroughly studied and their toxicological risks estimated. While there are currently no national guidelines in place to deal with this issue, it is increasingly likely that within the next several years guidelines will be implemented. The intent of this review is to survey all relevant literature pertaining to cyanobacterial harmful algal bloom secondary metabolites, to inform a discussion on how best to manage this global public health threat.
Collapse
Affiliation(s)
- Timothy G Otten
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA,
| | | |
Collapse
|
37
|
Waters MN. A 4700-Year History of Cyanobacteria Toxin Production in a Shallow Subtropical Lake. Ecosystems 2015. [DOI: 10.1007/s10021-015-9943-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Rastogi RP, Madamwar D, Incharoensakdi A. Bloom Dynamics of Cyanobacteria and Their Toxins: Environmental Health Impacts and Mitigation Strategies. Front Microbiol 2015; 6:1254. [PMID: 26635737 PMCID: PMC4646972 DOI: 10.3389/fmicb.2015.01254] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/28/2015] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are ecologically one of the most prolific groups of phototrophic prokaryotes in both marine and freshwater habitats. Both the beneficial and detrimental aspects of cyanobacteria are of considerable significance. They are important primary producers as well as an immense source of several secondary products, including an array of toxic compounds known as cyanotoxins. Abundant growth of cyanobacteria in freshwater, estuarine, and coastal ecosystems due to increased anthropogenic eutrophication and global climate change has created serious concern toward harmful bloom formation and surface water contamination all over the world. Cyanobacterial blooms and the accumulation of several cyanotoxins in water bodies pose severe ecological consequences with high risk to aquatic organisms and global public health. The proper management for mitigating the worldwide incidence of toxic cyanobacterial blooms is crucial for maintenance and sustainable development of functional ecosystems. Here, we emphasize the emerging information on the cyanobacterial bloom dynamics, toxicology of major groups of cyanotoxins, as well as a perspective and integrative approach to their management.
Collapse
Affiliation(s)
- Rajesh P. Rastogi
- BRD School of Biosciences, Sardar Patel UniversityAnand, India
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn UniversityBangkok, Thailand
| | - Datta Madamwar
- BRD School of Biosciences, Sardar Patel UniversityAnand, India
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn UniversityBangkok, Thailand
| |
Collapse
|
39
|
Ongley SE, Pengelly JJL, Neilan BA. Elevated Na(+) and pH influence the production and transport of saxitoxin in the cyanobacteria Anabaena circinalis AWQC131C and Cylindrospermopsis raciborskii T3. Environ Microbiol 2015; 18:427-38. [PMID: 26347118 DOI: 10.1111/1462-2920.13048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Saxitoxins (STX), neurotoxic alkaloids, fall under the umbrella of paralytic shellfish toxins produced by marine dinoflagellates and freshwater cyanobacteria. The genes responsible for the production of STX have been proposed, but factors that influence their expression and induce toxin efflux remain unclear. Here we characterize the putative STX NorM-like MATE transporters SxtF and SxtM. Complementation of the antibiotic-sensitive strain Escherichia coli KAM32 with these transporters decreased fluoroquinolone sensitivity, indicating that while becoming evolutionary specialized for STX transport these transporters retain relaxed specificity typical of this class. The transcriptional response of STX biosynthesis (sxtA) along with that of the STX transporters (sxtM and sxtF from Cylindrospermopsis raciborskii T3, and sxtM from Anabaena circinalis AWQC131C) were assessed in response to ionic stress. These data, coupled with a measure of toxin intracellular to extracellular ratios, provide an insight into the physiology of STX export. Cylindrospermopsis raciborskii and Anabaena circinalis exhibited opposing responses under conditions of ionic stress. High Na(+) (10 mM) induced moderate alterations of transcription and STX localization, whereas high pH (pH 9) stimulated the greatest physiological response. Saxitoxin production and cellular localization are responsive to ionic strength, indicating a role of this molecule in the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Jasper J L Pengelly
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
40
|
Ma Z, Fang T, Thring RW, Li Y, Yu H, Zhou Q, Zhao M. Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris. HARMFUL ALGAE 2015; 48:21-29. [PMID: 29724472 DOI: 10.1016/j.hal.2015.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/04/2015] [Accepted: 07/04/2015] [Indexed: 06/08/2023]
Abstract
Global warming was believed to accelerate the expansion of cyanobacterial blooms. However, the impact of changes due to the allelopathic effects of cyanobacterial blooms with or without algal toxin production on the ecophysiology of its coexisting phytoplankton species arising from global warming were unknown until recently. In this study, the allelopathic effects of toxic and non-toxic Microcystis aeruginosa strains on the growth of green alga Chlorella vulgaris and photosynthesis of the co-cultivations of C. vulgaris and toxic M. aeruginosa FACHB-905 or non-toxic M. aeruginosa FACHB-469 were investigated at different temperatures. The growth of C. vulgaris, co-cultured with the toxic or non-toxic M. aeruginosa strains, was promoted at 20°C but inhibited at temperatures ≥25°C. The inhibitory effects of the toxic and non-toxic M. aeruginosa strains on of the co-cultivations (C. vulgaris and non-toxic M. aeruginosa FACHB-469 or toxic M. aeruginosa FACHB-905) also linearly increased with elevated temperatures. Furthermore, toxic M. aeruginosa FACHB-905 induced more inhibition toward growth of C. vulgaris or Pmax and Rd of the mixtures than non-toxic M. aeruginosa FACHB-469. C. vulgaris dominated over non-toxic M. aeruginosa FACHB-469 but toxic M. aeruginosa FACHB-905 overcame C. vulgaris when they were co-cultured in mesocosms in water temperatures from 20 to 25°C. The results indicate that allelopathic effects of M. aeruginosa strains on C. vulgaris are both temperature- and species-dependent: it was stimulative for C. vulgaris at low temperatures such as 20°C, but inhibitory at high temperatures (≥25°C); the toxic strain was determined to be more harmful to C. vulgaris than the non-toxic one. This suggests that global warming may aggravate the ecological risk of cyanobacteria blooms, especially those with toxic species as the main contributors.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Joint Research Institute of Ecology and Environment, Wenzhou University, Wenzhou 325035, China
| | - Tingxuan Fang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Joint Research Institute of Ecology and Environment, Wenzhou University, Wenzhou 325035, China
| | - Ronald W Thring
- Joint Research Institute of Ecology and Environment, Wenzhou University, Wenzhou 325035, China; Environmental Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada V2N4Z9
| | - Yubao Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Joint Research Institute of Ecology and Environment, Wenzhou University, Wenzhou 325035, China
| | - Hengguo Yu
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Joint Research Institute of Ecology and Environment, Wenzhou University, Wenzhou 325035, China
| | - Qin Zhou
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Joint Research Institute of Ecology and Environment, Wenzhou University, Wenzhou 325035, China
| | - Min Zhao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Joint Research Institute of Ecology and Environment, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
41
|
Kaplan A, Weiss G, Sukenik A. Cyanobacterial secondary metabolites mediate interspecies-intraspecies communication in the water body. Environ Microbiol 2015. [DOI: 10.1111/1462-2920.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron Kaplan
- Department of Plant and Environmental Sciences; The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram Jerusalem 9190401 Israel
| | - Gad Weiss
- Department of Plant and Environmental Sciences; The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram Jerusalem 9190401 Israel
| | - Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory; Israel Oceanographic and Limnological Research; P.O.B. 447 Migdal 14950 Israel
| |
Collapse
|
42
|
Briand E, Bormans M, Gugger M, Dorrestein PC, Gerwick WH. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ Microbiol 2015; 18:384-400. [PMID: 25980449 DOI: 10.1111/1462-2920.12904] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
The cyanobacteria Microcystis proliferate in freshwater ecosystems and produce bioactive compounds including the harmful toxins microcystins (MC). These secondary metabolites play an important role in shaping community composition through biotic interactions although their role and mode of regulation are poorly understood. As natural cyanobacterial populations include producing and non-producing strains, we tested if the production of a range of peptides by coexisting cells could be regulated through intraspecific interactions. With an innovative co-culturing chamber together with advanced mass spectrometry (MS) techniques, we monitored the growth and compared the metabolic profiles of a MC-producing as well as two non-MC-producing Microcystis strains under mono- and co-culture conditions. In monocultures, these strains grew comparably; however, the non-MC-producing mutant produced higher concentrations of cyanopeptolins, aerucyclamides and aeruginosins than the wild type. Physiological responses to co-culturing were reflected in a quantitative change in the production of the major peptides. Using a MS/MS-based molecular networking approach, we identified new analogues of known classes of peptides as well as new compounds. This work provides new insights into the factors that regulate the production of MC and other secondary metabolites in cyanobacteria, and suggests interchangeable or complementary functions allowing bloom-forming cyanobacteria to efficiently colonize and dominate in fluctuating aquatic environments.
Collapse
Affiliation(s)
- Enora Briand
- UMR CNRS 6553 ECOBIO, University of Rennes 1, 35042, Rennes Cedex, France.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Myriam Bormans
- UMR CNRS 6553 ECOBIO, University of Rennes 1, 35042, Rennes Cedex, France
| | - Muriel Gugger
- Collection of Cyanobacteria, Institut Pasteur, 75724, Paris, France
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
43
|
Microcystins and anatoxin-a in Arctic biocrust cyanobacterial communities. Toxicon 2015; 101:35-40. [DOI: 10.1016/j.toxicon.2015.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 11/23/2022]
|
44
|
Brutemark A, Vandelannoote A, Engström-Öst J, Suikkanen S. A less saline Baltic Sea promotes cyanobacterial growth, hampers intracellular microcystin production, and leads to strain-specific differences in allelopathy. PLoS One 2015; 10:e0128904. [PMID: 26042598 PMCID: PMC4456099 DOI: 10.1371/journal.pone.0128904] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/03/2015] [Indexed: 11/19/2022] Open
Abstract
Salinity is one of the main factors that explain the distribution of species in the Baltic Sea. Increased precipitation and consequent increase in freshwater inflow is predicted to decrease salinity in some areas of the Baltic Sea. Clearly such changes may have profound effects on the organisms living there. Here we investigate the response of the commonly occurring cyanobacterium Dolichospermum spp. to three salinities, 0, 3 and 6. For the three strains tested we recorded growth, intracellular toxicity (microcystin) and allelopathic properties. We show that Dolichospermum can grow in all the three salinities tested with highest growth rates in the lowest salinity. All strains showed allelopathic potential and it differed significantly between strains and salinities, but was highest in the intermediate salinity and lowest in freshwater. Intracellular toxin concentration was highest in salinity 6. In addition, based on monitoring data from the northern Baltic Proper and the Gulf of Finland, we show that salinity has decreased, while Dolichospermum spp. biomass has increased between 1979 and 2013. Thus, based on our experimental findings it is evident that salinity plays a large role in Dolichospermum growth, allelopathic properties and toxicity. In combination with our long-term data analyses, we conclude that decreasing salinity is likely to result in a more favourable environment for Dolichospermum spp. in some areas of the Baltic Sea.
Collapse
Affiliation(s)
- Andreas Brutemark
- ARONIA Coastal Zone Research Team, Novia University of Applied Sciences & Åbo Akademi University, Ekenäs, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | | | - Jonna Engström-Öst
- ARONIA Coastal Zone Research Team, Novia University of Applied Sciences & Åbo Akademi University, Ekenäs, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Sanna Suikkanen
- Marine Research Centre, Finnish Environment Institute SYKE, Helsinki, Finland
| |
Collapse
|
45
|
Jakubowska N, Szeląg-Wasielewska E. Toxic picoplanktonic cyanobacteria--review. Mar Drugs 2015; 13:1497-518. [PMID: 25793428 PMCID: PMC4377996 DOI: 10.3390/md13031497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria of a picoplanktonic cell size (0.2 to 2.0 µm) are common organisms of both freshwater and marine ecosystems. However, due to their small size and relatively short study history, picoplanktonic cyanobacteria, in contrast to the microplanktonic cyanobacteria, still remains a poorly studied fraction of plankton. So far, only little information on picocyanobacteria toxicity has been reported, while the number of reports concerning their presence in ecosystems is increasing. Thus, the issue of picocyanobacteria toxicity needs more researchers' attention and interest. In this report, we present information on the current knowledge concerning the picocyanobacteria toxicity, as well as their harmfulness and problems they can cause.
Collapse
Affiliation(s)
- Natalia Jakubowska
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Elżbieta Szeląg-Wasielewska
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
46
|
Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO2 partial pressure conditions. Appl Environ Microbiol 2015; 81:3069-76. [PMID: 25724956 DOI: 10.1128/aem.03556-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/12/2015] [Indexed: 11/20/2022] Open
Abstract
Cylindrospermopsin (CYN) and 7-deoxy-cylindrospermopsin (dCYN) are potent hepatotoxic alkaloids produced by numerous species of cyanobacteria, including the freshwater Cylindrospermopsis raciborskii. C. raciborskii is an invasive cyanobacterium, and the study of how environmental parameters drive CYN production has received significant interest from water managers and health authorities. Light and CO2 affect cell growth and physiology in photoautotrophs, and these are potential regulators of cyanotoxin biosynthesis. In this study, we investigated how light and CO2 affect CYN and dCYN pool size as well as the expression of the key genes, cyrA and cyrK, involved in CYN biosynthesis in a toxic C. raciborskii strain. For cells growing at different light intensities (10 and 100 μmol photons m(-2) s(-1)), we observed that the rate of CYN pool size production (μCYN) was coupled to the cell division rate (μc) during batch culture. This indicated that CYN pool size under our experimental conditions is constant and cell quotas of CYN (QCYN) and dCYN (QdCYN) are fixed. Moreover, a lack of correlation between expression of cyrA and total CYN cell quotas (QCYNs) suggests that the CYN biosynthesis is regulated posttranscriptionally. Under elevated CO2 (1,300 ppm), we observed minor effects on QCYN and no effects on expression of cyrA and cyrK. We conclude that the CYN pool size is constitutive and not affected by light and CO2 conditions. Thus, C. raciborskii bloom toxicity is determined by the absolute abundance of C. raciborskii cells within the water column and the relative abundance of toxic and nontoxic strains.
Collapse
|
47
|
Rzymski P, Poniedziałek B. In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers. WATER RESEARCH 2014; 66:320-337. [PMID: 25222334 DOI: 10.1016/j.watres.2014.08.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Despite a significant interest in cyanotoxins over recent decades, their biological role is still poorly elucidated. Cylindrospermopsin (CYN) is a cyanobacterial metabolite that is globally identified in surface fresh- and brackish waters and whose producers are observed to spread throughout different climate zones. This paper provides a comprehensive review of the characteristics and global distribution of CYN-producing species, the variety of their chemotypes and the occurrence of strains which, while incapable of toxin synthesis, are able to produce other bioactive compounds including those that are hitherto unknown and yet to be identified. Environmental conditions that can trigger CYN production and promote growth of CYN-producers in aquatic ecosystems are also discussed. Finally, on the basis of existing experimental evidence, potential ecological role(s) of CYN are indicated. It is eventually concluded that CYN can be at least partially responsible for the ecological success of certain cyanobacteria species.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| | - Barbara Poniedziałek
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
48
|
Bullerjahn GS, Post AF. Physiology and molecular biology of aquatic cyanobacteria. Front Microbiol 2014; 5:359. [PMID: 25076944 PMCID: PMC4099938 DOI: 10.3389/fmicb.2014.00359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 12/02/2022] Open
Affiliation(s)
- George S Bullerjahn
- Department of Biological Sciences, Bowling Green State University Bowling Green, OH, USA
| | - Anton F Post
- Marine Biological Laboratory Woods Hole Woods Hole, MA, USA
| |
Collapse
|
49
|
Boopathi T, Ki JS. Impact of environmental factors on the regulation of cyanotoxin production. Toxins (Basel) 2014; 6:1951-78. [PMID: 24967641 PMCID: PMC4113735 DOI: 10.3390/toxins6071951] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are capable of thriving in almost all environments. Recent changes in climatic conditions due to increased human activities favor the occurrence and severity of harmful cyanobacterial bloom all over the world. Knowledge of the regulation of cyanotoxins by the various environmental factors is essential for effective management of toxic cyanobacterial bloom. In recent years, progress in the field of molecular mechanisms involved in cyanotoxin production has paved the way for assessing the role of various factors on the cyanotoxin production. In this review, we present an overview of the influence of various environmental factors on the production of major group of cyanotoxins, including microcystins, nodularin, cylindrospermopsin, anatoxins and saxitoxins.
Collapse
Affiliation(s)
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 110-743, Korea.
| |
Collapse
|
50
|
Agha R, Quesada A. Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role. Toxins (Basel) 2014; 6:1929-50. [PMID: 24960202 PMCID: PMC4073138 DOI: 10.3390/toxins6061929] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic compounds. While current research is strongly focused on exploring new oligopeptide variants and their bioactive properties, the biological role of these compounds remains elusive. Oligopeptides production abilities show a remarkably patchy distribution among conspecific strains. This observation has prompted alternative approaches to unveil their adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing the diversity, distribution, and dynamics of chemotypes in natural systems have provided important insights into the structure and ecology of cyanobacterial populations and the adaptive value of oligopeptides. This review presents an overview of the fundamentals of this emerging approach and its most relevant findings, and discusses our current understanding of the role of oligopeptides in the ecology of cyanobacteria.
Collapse
Affiliation(s)
- Ramsy Agha
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| |
Collapse
|