1
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
2
|
Nakano K, Watanabe T. Tuning Rex rules HTLV-1 pathogenesis. Front Immunol 2022; 13:959962. [PMID: 36189216 PMCID: PMC9523361 DOI: 10.3389/fimmu.2022.959962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
HTLV-1 is an oncovirus causing ATL and other inflammatory diseases such as HAM/TSP and HU in about 5% of infected individuals. It is also known that HTLV-1-infected cells maintain a disease-free, immortalized, latent state throughout the lifetimes of about 95% of infected individuals. We believe that the stable maintenance of disease-free infected cells in the carrier is an intrinsic characteristic of HTLV-1 that has been acquired during its evolution in the human life cycle. We speculate that the pathogenesis of the virus is ruled by the orchestrated functions of viral proteins. In particular, the regulation of Rex, the conductor of viral replication rate, is expected to be closely related to the viral program in the early active viral replication followed by the stable latency in HTLV-1 infected T cells. HTLV-1 and HIV-1 belong to the family Retroviridae and share the same tropism, e.g., human CD4+ T cells. These viruses show significant similarities in the viral genomic structure and the molecular mechanism of the replication cycle. However, HTLV-1 and HIV-1 infected T cells show different phenotypes, especially in the level of virion production. We speculate that how the activity of HTLV-1 Rex and its counterpart HIV-1 Rev are regulated may be closely related to the properties of respective infected T cells. In this review, we compare various pathological aspects of HTLV-1 and HIV-1. In particular, we investigated the presence or absence of a virally encoded "regulatory valve" for HTLV-1 Rex or HIV-1 Rev to explore its importance in the regulation of viral particle production in infected T cells. Finally, wereaffirm Rex as the key conductor for viral replication and viral pathogenesis based on our recent study on the novel functional aspects of Rex. Since the activity of Rex is closely related to the viral replication rate, we hypothesize that the "regulatory valve" on the Rex activity may have been selectively evolved to achieve the "scenario" with early viral particle production and the subsequent long, stable deep latency in HTLV-1 infected cells.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of Medicine, St. Marianna University, Kawasaki, Japan
| |
Collapse
|
3
|
Labrecque M, Marchand C, Archambault D. Characterization of Signal Sequences Determining the Nuclear/Nucleolar Import and Nuclear Export of the Caprine Arthritis-Encephalitis Virus Rev Protein. Viruses 2020; 12:v12080900. [PMID: 32824614 PMCID: PMC7471974 DOI: 10.3390/v12080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Caprine arthritis-encephalitis virus (CAEV), a lentivirus, relies on the action of the Rev protein for its replication. The CAEV Rev fulfills its function by allowing the nuclear exportation of partially spliced or unspliced viral mRNAs. In this study, we characterized the nuclear and nucleolar localization signals (NLS and NoLS, respectively) and the nuclear export signal (NES) of the CAEV Rev protein. These signals are key actors in the nucleocytoplasmic shuttling of a lentiviral Rev protein. Several deletion and alanine substitution mutants were generated from a plasmid encoding the CAEV Rev wild-type protein that was fused to the enhanced green fluorescent protein (EGFP). Following cell transfection, images were captured by confocal microscopy and the fluorescence was quantified in the different cell compartments. The results showed that the NLS region is localized between amino acids (aa) 59 to 75, has a monopartite-like structure and is exclusively composed of arginine residues. The NoLS was found to be partially associated with the NLS. Finally, the CAEV Rev protein’s NES mapped between aa 89 to 101, with an aa spacing between the hydrophobic residues that was found to be unconventional as compared to that of other retroviral Rev/Rev-like proteins.
Collapse
Affiliation(s)
- Marlène Labrecque
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Claude Marchand
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
4
|
Liu H, Hu PW, Budhiraja S, Misra A, Couturier J, Lloyd RE, Lewis DE, Kimata JT, Rice AP. PACS1 is an HIV-1 cofactor that functions in Rev-mediated nuclear export of viral RNA. Virology 2020; 540:88-96. [PMID: 31759187 PMCID: PMC7335006 DOI: 10.1016/j.virol.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
HIV-1 is dependent upon cellular proteins to mediate the many processes required for viral replication. One such protein, PACS1, functions to localize Furin to the trans-Golgi network where Furin cleaves HIV-1 gp160 Envelope into gp41 and gp120. We show here that PACS1 also shuttles between the nucleus and cytoplasm, associates with the viral Rev protein and its cofactor CRM1, and contributes to nuclear export of viral transcripts. PACS1 appears specific to the Rev-CRM1 pathway and not other retroviral RNA export pathways. Over-expression of PACS1 increases nuclear export of unspliced viral RNA and significantly increases p24 expression in HIV-1-infected Jurkat CD4+ T cells. SiRNA depletion and over-expression experiments suggest that PACS1 may promote trafficking of HIV-1 GagPol RNA to a pathway distinct from that of translation on polyribosomes.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Molecular Virology and Microbiology, USA
| | - Pei-Wen Hu
- Department of Molecular Virology and Microbiology, USA
| | | | - Anisha Misra
- Department of Molecular Virology and Microbiology, USA
| | - Jacob Couturier
- Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | | - Dorothy E Lewis
- Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | | - Andrew P Rice
- Department of Molecular Virology and Microbiology, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
D'Agostino DM, Cavallari I, Romanelli MG, Ciminale V. Post-transcriptional Regulation of HTLV Gene Expression: Rex to the Rescue. Front Microbiol 2019; 10:1958. [PMID: 31507567 PMCID: PMC6714889 DOI: 10.3389/fmicb.2019.01958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and other members of the Deltaretrovirus genus code for a regulatory protein named Rex that binds to the Rex-responsive element present on viral mRNAs. Rex rescues viral mRNAs from complete splicing or degradation and guides them to the cytoplasm for translation. The activity of Rex is essential for expression of viral transcripts coding for the virion components and thus represents a potential target for virus eradication. We present an overview of the functional properties of the HTLV-1 and HTLV-2 Rex proteins (Rex-1 and Rex-2), outline mechanisms controlling Rex function, and discuss similarities and differences in the sequences of Rex coded by HTLV-1, -2, -3, and -4 that may influence their molecular anatomy and functional properties.
Collapse
Affiliation(s)
| | | | - Maria Grazia Romanelli
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Ciminale
- Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| |
Collapse
|
6
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
7
|
Evans EL, Becker JT, Fricke SL, Patel K, Sherer NM. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific. J Virol 2018; 92:e02102-17. [PMID: 29321323 PMCID: PMC5972884 DOI: 10.1128/jvi.02102-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G2/M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that VifNL4-3's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G2/M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle.IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1 particle production but, unexpectedly, are completely resistant to virus-induced cytopathic effects. We mapped these effects to the viral accessory protein Vif, which induces a prolonged G2/M cell cycle arrest followed by apoptosis in human cells. Combined, our results indicate that one or more additional human-specific cofactors govern HIV-1's capacity to modulate the cell cycle, with potential relevance to viral pathogenesis in people and existing animal models.
Collapse
Affiliation(s)
- Edward L Evans
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jordan T Becker
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie L Fricke
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kishan Patel
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Svardal H, Jasinska AJ, Apetrei C, Coppola G, Huang Y, Schmitt CA, Jacquelin B, Ramensky V, Müller-Trutwin M, Antonio M, Weinstock G, Grobler JP, Dewar K, Wilson RK, Turner TR, Warren WC, Freimer NB, Nordborg M. Ancient hybridization and strong adaptation to viruses across African vervet monkey populations. Nat Genet 2017; 49:1705-1713. [PMID: 29083404 PMCID: PMC5709169 DOI: 10.1038/ng.3980] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 09/27/2017] [Indexed: 12/16/2022]
Abstract
Vervet monkeys are among the most widely distributed nonhuman primates, show considerable phenotypic diversity, and have long been an important biomedical model for a variety of human diseases and in vaccine research. Using whole-genome sequencing data from 163 vervets sampled from across Africa and the Caribbean, we find high diversity within and between taxa and clear evidence that taxonomic divergence was reticulate rather than following a simple branching pattern. A scan for diversifying selection across taxa identifies strong and highly polygenic selection signals affecting viral processes. Furthermore, selection scores are elevated in genes whose human orthologs interact with HIV and in genes that show a response to experimental simian immunodeficiency virus (SIV) infection in vervet monkeys but not in rhesus macaques, suggesting that part of the signal reflects taxon-specific adaptation to SIV.
Collapse
Affiliation(s)
- Hannes Svardal
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Anna J Jasinska
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, USA
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Giovanni Coppola
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, USA
- Department of Neurology, University of California Los Angeles, USA
| | - Yu Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | | | | | - Vasily Ramensky
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, USA
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Martin Antonio
- Medical Research Council (MRC), The Gambia Unit, The Gambia
| | - George Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - J Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Ken Dewar
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, USA
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Trudy R Turner
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, USA
| | - Nelson B Freimer
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, USA
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
9
|
Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export. J Virol 2017; 91:JVI.02107-16. [PMID: 27852860 DOI: 10.1128/jvi.02107-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/14/2016] [Indexed: 12/28/2022] Open
Abstract
HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place.
Collapse
|
10
|
Li Y, Bor YC, Fitzgerald MP, Lee KS, Rekosh D, Hammarskjold ML. An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor. Mol Biol Cell 2016; 27:3903-3912. [PMID: 27708137 PMCID: PMC5170612 DOI: 10.1091/mbc.e16-07-0515] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
A small Nxf1 protein, expressed from an NXF1 mRNA with a retained intron is highly expressed in rodent hippocampal and neocortical neurons, colocalizes with Staufen2 proteins in neuronal RNA granules, is present in polysomes, and replaces Nxt1 as an Nxf1 cofactor in export and expression of mRNA with retained introns. The Nxf1 protein is a major nuclear export receptor for the transport of mRNA, and it also is essential for export of retroviral mRNAs with retained introns. In the latter case, it binds to RNA elements known as constitutive transport elements (CTEs) and functions in conjunction with a cofactor known as Nxt1. The NXF1 gene also regulates expression of its own intron-containing RNA through the use of a functional CTE within intron 10. mRNA containing this intron is exported to the cytoplasm, where it can be translated into the 356–amino acid short Nxf1(sNxf1) protein, despite the fact that it is a prime candidate for nonsense-mediated decay (NMD). Here we demonstrate that sNxf1 is highly expressed in nuclei and dendrites of hippocampal and neocortical neurons in rodent brain. Additionally, we show that sNxf1 localizes in RNA granules in neurites of differentiated N2a mouse neuroblastoma cells, where it shows partial colocalization with Staufen2 isoform SS, a protein known to play a role in dendritic mRNA trafficking. We also show that sNxf1 forms heterodimers in conjunction with the full-length Nxf1 and that sNxf1 can replace Nxt1 to enhance the expression of CTE-containing mRNA and promote its association with polyribosomes.
Collapse
Affiliation(s)
- Ying Li
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Yeou-Cherng Bor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mark P Fitzgerald
- Departments of Neuroscience and Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Kevin S Lee
- Departments of Neuroscience and Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
11
|
Mettenleiter TC. Breaching the Barrier-The Nuclear Envelope in Virus Infection. J Mol Biol 2015; 428:1949-61. [PMID: 26522933 DOI: 10.1016/j.jmb.2015.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/22/2015] [Accepted: 10/04/2015] [Indexed: 11/16/2022]
Abstract
Many DNA and a few RNA viruses use the host cell nucleus for virion formation and/or genome replication. To this end, the nuclear envelope (NE) barrier has to be overcome for entry into and egress from the intranuclear replication compartment. Different virus families have devised ingenious ways of entering and leaving the nucleus usurping cellular transport pathways through the nuclear pore complex but also translocating directly through both membranes of the NE. This intriguing diversity in nuclear entry and egress of viruses also highlights different ways nucleocytoplasmic transport can occur. Thus, the study of interactions between viruses and the NE also helps to unravel hitherto unknown cellular pathways such as vesicular nucleocytoplasmic transfer.
Collapse
Affiliation(s)
- Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
12
|
Zhang W, Wu J, Ward MD, Yang S, Chuang YA, Xiao M, Li R, Leahy DJ, Worley PF. Structural basis of arc binding to synaptic proteins: implications for cognitive disease. Neuron 2015; 86:490-500. [PMID: 25864631 DOI: 10.1016/j.neuron.2015.03.030] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/07/2015] [Accepted: 03/07/2015] [Indexed: 11/16/2022]
Abstract
Arc is a cellular immediate-early gene (IEG) that functions at excitatory synapses and is required for learning and memory. We report crystal structures of Arc subdomains that form a bi-lobar architecture remarkably similar to the capsid domain of human immunodeficiency virus (HIV) gag protein. Analysis indicates Arc originated from the Ty3/Gypsy retrotransposon family and was "domesticated" in higher vertebrates for synaptic functions. The Arc N-terminal lobe evolved a unique hydrophobic pocket that mediates intermolecular binding with synaptic proteins as resolved in complexes with TARPγ2 (Stargazin) and CaMKII peptides and is essential for Arc's synaptic function. A consensus sequence for Arc binding identifies several additional partners that include genes implicated in schizophrenia. Arc N-lobe binding is inhibited by small chemicals suggesting Arc's synaptic action may be druggable. These studies reveal the remarkable evolutionary origin of Arc and provide a structural basis for understanding Arc's contribution to neural plasticity and disease.
Collapse
Affiliation(s)
- Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jing Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Matthew D Ward
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, 406-772, Korea
| | - Yang-An Chuang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meifang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruojing Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel J Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Retroviral vectors elevate coexpressed protein levels in trans through cap-dependent translation. Proc Natl Acad Sci U S A 2015; 112:3505-10. [PMID: 25737543 DOI: 10.1073/pnas.1420477112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retroviruses cause immunodeficiency and cancer but also are used as vectors for the expression of heterologous genes. Nevertheless, optimal translation of introduced genes often is not achieved. Here we show that transfection into mammalian cells of lentiviral or gammaretroviral vectors, including those with specific shRNAs, increased expression of a cotransfected gene relative to standard plasmid vectors. Levels of most endogenous cellular proteins were unchanged. Transfer of lentiviral vector sequences into a standard plasmid conferred the ability to give increased expression of cotransfected genes (superinduction). Superinduction by the retroviral vector was not dependent on the cell type or species, the type of reporter gene, or the method of transfection. No differences were detected in the IFN, unfolded protein, or stress responses in the presence of retroviral vectors. RT-PCRs revealed that RNA levels of cotransfected genes were unchanged during superinduction, yet Western blotting, pulse labeling, and the use of bicistronic vectors showed increased cap-dependent translation of cointroduced genes. Expression of the mammalian target of rapamycin (mTOR) kinase target 4E-BP1, but not the mTOR inhibitor Torin 1, preferentially inhibited superinduction relative to basal protein expression. Furthermore, transcription of lentiviral vector sequences from a doxycycline-inducible promoter eliminated superinduction, consistent with a DNA-triggered event. Thus, retroviral DNA increased translation of cointroduced genes in trans by an mTOR-independent signaling mechanism. Our experiments have broad applications for the design of retroviral vectors for transfections, DNA vaccines, and gene therapy.
Collapse
|
14
|
Aligeti M, Behrens RT, Pocock GM, Schindelin J, Dietz C, Eliceiri KW, Swanson CM, Malim MH, Ahlquist P, Sherer NM. Cooperativity among Rev-associated nuclear export signals regulates HIV-1 gene expression and is a determinant of virus species tropism. J Virol 2014; 88:14207-21. [PMID: 25275125 PMCID: PMC4249125 DOI: 10.1128/jvi.01897-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/23/2014] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Murine cells exhibit a profound block to HIV-1 virion production that was recently mapped to a species-specific structural attribute of the murine version of the chromosomal region maintenance 1 (mCRM1) nuclear export receptor and rescued by the expression of human CRM1 (hCRM1). In human cells, the HIV-1 Rev protein recruits hCRM1 to intron-containing viral mRNAs encoding the Rev response element (RRE), thereby facilitating viral late gene expression. Here we exploited murine 3T3 fibroblasts as a gain-of-function system to study hCRM1's species-specific role in regulating Rev's effector functions. We show that Rev is rapidly exported from the nucleus by mCRM1 despite only weak contributions to HIV-1's posttranscriptional stages. Indeed, Rev preferentially accumulates in the cytoplasm of murine 3T3 cells with or without hCRM1 expression, in contrast to human HeLa cells, where Rev exhibits striking en masse transitions between the nuclear and cytoplasmic compartments. Efforts to bias Rev's trafficking either into or out of the nucleus revealed that Rev encoding a second CRM1 binding domain (Rev-2xNES) or Rev-dependent viral gag-pol mRNAs bearing tandem RREs (GP-2xRRE), rescue virus particle production in murine cells even in the absence of hCRM1. Combined, these results suggest a model wherein Rev-associated nuclear export signals cooperate to regulate the number or quality of CRM1's interactions with viral Rev/RRE ribonucleoprotein complexes in the nucleus. This mechanism regulates CRM1-dependent viral gene expression and is a determinant of HIV-1's capacity to produce virions in nonhuman cell types. IMPORTANCE Cells derived from mice and other nonhuman species exhibit profound blocks to HIV-1 replication. Here we elucidate a block to HIV-1 gene expression attributable to the murine version of the CRM1 (mCRM1) nuclear export receptor. In human cells, hCRM1 regulates the nuclear export of viral intron-containing mRNAs through the activity of the viral Rev adapter protein that forms a multimeric complex on these mRNAs prior to recruiting hCRM1. We demonstrate that Rev-dependent gene expression is poor in murine cells despite the finding that, surprisingly, the bulk of Rev interacts efficiently with mCRM1 and is rapidly exported from the nucleus. Instead, we map the mCRM1 defect to the apparent inability of this factor to engage Rev multimers in the context of large viral Rev/RNA ribonucleoprotein complexes. These findings shed new light on HIV-1 gene regulation and could inform the development of novel antiviral strategies that target viral gene expression.
Collapse
Affiliation(s)
- Mounavya Aligeti
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan T Behrens
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ginger M Pocock
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Johannes Schindelin
- Morgridge Institute for Research, Madison, Wisconsin, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Dietz
- Department of Computer and Information Science, University of Constance, Constance, Germany
| | - Kevin W Eliceiri
- Morgridge Institute for Research, Madison, Wisconsin, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Michael H Malim
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA Morgridge Institute for Research, Madison, Wisconsin, USA Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Fleta-Soriano E, Martinez JP, Hinkelmann B, Gerth K, Washausen P, Diez J, Frank R, Sasse F, Meyerhans A. The myxobacterial metabolite ratjadone A inhibits HIV infection by blocking the Rev/CRM1-mediated nuclear export pathway. Microb Cell Fact 2014; 13:17. [PMID: 24475978 PMCID: PMC3910686 DOI: 10.1186/1475-2859-13-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear export of unspliced and partially spliced HIV-1 mRNA is mediated by the recognition of a leucine-rich nuclear export signal (NES) in the HIV Rev protein by the host protein CRM1/Exportin1. This makes the CRM1-Rev complex an attractive target for the development of new antiviral drugs. Here we tested the anti-HIV efficacy of ratjadone A, a CRM1 inhibitor derived from myxobacteria. RESULTS Ratjadone A inhibits HIV infection in vitro in a dose-dependent manner with EC₅₀ values at the nanomolar range. The inhibitory effect of ratjadone A occurs around 12 hours post-infection and is specific for the Rev/CRM1-mediated nuclear export pathway. By using a drug affinity responsive target stability (DARTS) assay we could demonstrate that ratjadone A interferes with the formation of the CRM1-Rev-NES complex by binding to CRM1 but not to Rev. CONCLUSION Ratjadone A exhibits strong anti-HIV activity but low selectivity due to toxic effects. Although this limits its potential use as a therapeutic drug, further studies with derivatives of ratjadones might help to overcome these difficulties in the future.
Collapse
Affiliation(s)
- Eric Fleta-Soriano
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
| | - Bettina Hinkelmann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Gerth
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Washausen
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Juana Diez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ronald Frank
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
16
|
Schumann S, Jackson BR, Baquero-Perez B, Whitehouse A. Kaposi's sarcoma-associated herpesvirus ORF57 protein: exploiting all stages of viral mRNA processing. Viruses 2013; 5:1901-23. [PMID: 23896747 PMCID: PMC3761232 DOI: 10.3390/v5081901] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/17/2022] Open
Abstract
Nuclear mRNA export is a highly complex and regulated process in cells. Cellular transcripts must undergo successful maturation processes, including splicing, 5'-, and 3'-end processing, which are essential for assembly of an export competent ribonucleoprotein particle. Many viruses replicate in the nucleus of the host cell and require cellular mRNA export factors to efficiently export viral transcripts. However, some viral mRNAs undergo aberrant mRNA processing, thus prompting the viruses to express their own specific mRNA export proteins to facilitate efficient export of viral transcripts and allowing translation in the cytoplasm. This review will focus on the Kaposi's sarcoma-associated herpesvirus ORF57 protein, a multifunctional protein involved in all stages of viral mRNA processing and that is essential for virus replication. Using the example of ORF57, we will describe cellular bulk mRNA export pathways and highlight their distinct features, before exploring how the virus has evolved to exploit these mechanisms.
Collapse
Affiliation(s)
| | | | | | - Adrian Whitehouse
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
17
|
Koito A, Ishizaka Y. Retroviruses, retroelements and their restrictions. Front Microbiol 2013; 4:197. [PMID: 23874330 PMCID: PMC3710956 DOI: 10.3389/fmicb.2013.00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 12/13/2022] Open
Affiliation(s)
- Atsushi Koito
- Department of Retrovirology and Self-Defense, Kumamoto University Kumamoto, Japan
| | | |
Collapse
|
18
|
Frankenberg N, Lischka P, Pepperl-Klindworth S, Stamminger T, Plachter B. Nucleocytoplasmic shuttling and CRM1-dependent MHC class I peptide presentation of human cytomegalovirus pp65. Med Microbiol Immunol 2012; 201:567-79. [PMID: 22965172 DOI: 10.1007/s00430-012-0269-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/25/2012] [Indexed: 10/27/2022]
Abstract
The phosphoprotein 65 (pp65) of human cytomegalovirus is a prominent target of the antiviral CD8 T lymphocyte response. This study focused on investigating the properties of pp65 that render it a privileged antigen. It was found that pp65 was metabolically stable. The tegument protein was introduced into MHC class I presentation following its delivery via non-replicating dense bodies. No ubiquitination was found on particle-associated pp65. Proof was obtained that pp65 was a nucleocytoplasmic shuttle protein, using heterokaryon analyses. Based on this finding, inhibition experiments showed that presentation of particle-derived pp65 by HLA-A2 was sensitive to the impairment of the CRM1-mediated nuclear export pathway. The data support the idea that particle-derived pp65 can serve as a nuclear reservoir for proteasomal processing and MHC class I presentation, following its CRM1-dependent nuclear export. The presentation of pp65-derived peptides was also impaired by CRM1-inhibition following de novo synthesis of the tegument protein. However, pp65 protein levels were also reduced when blocking CRM1-mediated export after transient expression. This indicated that pp65 expression rather than direct interference with its own nuclear export was responsible for its reduced presentation in this case. The functionality of CRM1-mediated nuclear export is thus important for the presentation of pp65-derived peptides in the context of MHC class I on organ cells, both after exogenous uptake and after de novo synthesis of the tegument protein, but different mechanisms may account for either case.
Collapse
Affiliation(s)
- Nadine Frankenberg
- Institute for Virology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | | | | | | | | |
Collapse
|
19
|
Jeang KT. Multi-Faceted Post-Transcriptional Functions of HIV-1 Rev. BIOLOGY 2012; 1:165-74. [PMID: 24832222 PMCID: PMC4009778 DOI: 10.3390/biology1020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation of HIV-1 gene expression is largely governed by the activities of the viral Rev protein. In this minireview, the multiple post-transcriptional activities of Rev in the export of partially spliced and unspliced HIV-1 RNAs from the nucleus to the cytoplasm, in the translation of HIV-1 transcripts, and in the packaging of viral genomic RNAs are reviewed in brief.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|