1
|
Crosta A, Valle B, Caccianiga M, Gobbi M, Ficetola FG, Pittino F, Franzetti A, Azzoni RS, Lencioni V, Senese A, Corlatti L, Buda J, Poniecka E, Novotná Jaroměřská T, Zawierucha K, Ambrosini R. Ecological interactions in glacier environments: a review of studies on a model Alpine glacier. Biol Rev Camb Philos Soc 2024. [PMID: 39247954 DOI: 10.1111/brv.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Glaciers host a variety of cold-adapted taxa, many of which have not yet been described. Interactions among glacier organisms are even less clear. Understanding ecological interactions is crucial to unravelling the functioning of glacier ecosystems, particularly in light of current glacier retreat. Through a review of the existing literature, we aim to provide a first overview of the biodiversity, primary production, trophic networks, and matter flow of a glacier ecosystem. We use the Forni Glacier (Central Italian Alps) - one of the best studied alpine glaciers in the world - as a model system for our literature review and integrate additional original data. We reveal the importance of allochthonous organic matter inputs, of Cyanobacteria and eukaryotic green algae in primary production, and the key role of springtails (Vertagopus glacialis) on the glacier surface in sustaining populations of two apex terrestrial predators: Nebria castanea (Coleoptera: Carabidae) and Pardosa saturatior (Araneae: Lycosidae). The cryophilic tardigrade Cryobiotus klebelsbergi is the apex consumer in cryoconite holes. This short food web highlights the fragility of nodes represented by invertebrates, contrasting with structured microbial communities in all glacier habitats. Although further research is necessary to quantify the ecological interactions of glacier organisms, this review summarises and integrates existing knowledge about the ecological processes on alpine glaciers and supports the importance of glacier-adapted organisms in providing ecosystem services.
Collapse
Affiliation(s)
- Arianna Crosta
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milan, 20133, Italy
| | - Barbara Valle
- Department of Life Sciences, Università degli Studi di Siena, Via A. Moro 2, Siena, 53100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, 90133, Italy
| | - Marco Caccianiga
- Department of Bioscience, University of Milan, via Celoria 26, Milan, 20133, Italy
| | - Mauro Gobbi
- Climate and Ecology Unit, Research and Museum Collections Office, MUSE-Science Museum, Corso del Lavoro e della Scienza 3, Trento, 38122, Italy
| | - Francesco Gentile Ficetola
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milan, 20133, Italy
| | - Francesca Pittino
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, 20126, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, 20126, Italy
| | - Roberto Sergio Azzoni
- Department of Earth Sciences 'A. Desio', University of Milan, via Mangiagalli 34, Milan, 20133, Italy
| | - Valeria Lencioni
- Climate and Ecology Unit, Research and Museum Collections Office, MUSE-Science Museum, Corso del Lavoro e della Scienza 3, Trento, 38122, Italy
| | - Antonella Senese
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milan, 20133, Italy
| | - Luca Corlatti
- ERSAF - Direzione Parco Stelvio, via De Simoni 42, Bormio, (SO) 23032, Italy
- Chair of Wildlife Ecology and Management, University of Freiburg, Tennenbacher Str. 4, Freiburg, 79106, Germany
| | - Jakub Buda
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Ewa Poniecka
- Laboratory of RNA Biology - ERA Chairs Group, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, Warsaw, 02-109, Poland
| | - Tereza Novotná Jaroměřská
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, 37005, Czech Republic
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milan, 20133, Italy
| |
Collapse
|
2
|
Liu Y, Jiao N, Xu Zhong K, Zang L, Zhang R, Xiao X, Shi Y, Zhang Z, Tao Y, Bai L, Gao B, Yang Y, Huang X, Ji M, Liu J, Liu P, Yao T. Diversity and function of mountain and polar supraglacial DNA viruses. Sci Bull (Beijing) 2023; 68:2418-2433. [PMID: 37739838 DOI: 10.1016/j.scib.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/30/2023] [Indexed: 09/24/2023]
Abstract
Mountain and polar glaciers cover 10% of the Earth's surface and are typically extreme environments that challenge life of all forms. Viruses are abundant and active in supraglacial ecosystems and play a crucial role in controlling the supraglacial microbial communities. However, our understanding of virus ecology on glacier surfaces and their potential impacts on downstream ecosystems remains limited. Here, we present the supraglacial virus genome (SgVG) catalog, a 15-fold expanded genomic inventory of 10,840 DNA-virus species from 38 mountain and polar glaciers, spanning habitats such as snow, ice, meltwater, and cryoconite. Supraglacial DNA-viruses were highly specific compared to viruses in other ecosystems yet exhibited low public health risks. Supraglacial viral communities were primarily constrained by habitat, with cryoconite displaying the highest viral activity levels. We observed a prevalence of lytic viruses in all habitats, especially in cryoconite, but a high level of lysogenic viruses in snow and ice. Additionally, we found that supraglacial viruses could be linked to ∼83% of obtained prokaryotic phyla/classes and possessed the genetic potential to promote metabolism and increase cold adaptation, cell mobility, and phenolic carbon use of hosts in hostile environmental conditions using diverse auxiliary metabolic genes. Our results provide the first systematic characterization of the diversity, function, and public health risks evaluation of mountain and polar supraglacial DNA viruses. This understanding of glacial viruses is crucial for function assessments and ecological modeling of glacier ecosystems, especially for the Tibetan Plateau's Mountain glaciers, which support ∼20% of the human populations on Earth.
Collapse
Affiliation(s)
- Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Lin Zang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518000, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Shi
- University of Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liping Bai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Bianli Gao
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Yunlan Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xingyu Huang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mukan Ji
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Junzhi Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China.
| | - Tandong Yao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Vagelas I, Reizopoulou A, Exadactylos A, Madesis P, Karapetsi L, Michail G. Stalactites Core Prospect as Environmental "Microbial Ark": The Actinomycetota Diversity Paradigm, First Reported from a Greek Cave. Pol J Microbiol 2023; 72:155-168. [PMID: 37314357 DOI: 10.33073/pjm-2023-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 06/15/2023] Open
Abstract
Speleothems found in caves worldwide are considered the natural libraries of paleontology. Bacteria found in these ecosystems are generally limited to Proteobacteria and Actinomycetota, but rare microbiome and "Dark Matter" is generally under-investigated and often neglected. This research article discusses, for the first time to our knowledge, the diachronic diversity of Actinomycetota entrapped inside a cave stalactite. The planet's environmental microbial community profile of different eras can be stored in these refugia (speleothems). These speleothems could be an environmental "Microbial Ark" storing rare microbiome and "Dark Matter" bacterial communities evermore.
Collapse
Affiliation(s)
- Ioannis Vagelas
- 2Laboratory of Plant Pathology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Angeliki Reizopoulou
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Athanasios Exadactylos
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Panagiotis Madesis
- 3Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Lefkothea Karapetsi
- 3Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
- 4Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), Thessaloniki, Greece
| | - George Michail
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
4
|
Ruiz-Blas F, Muñoz-Hisado V, Garcia-Lopez E, Moreno A, Bartolomé M, Leunda M, Martinez-Alonso E, Alcázar A, Cid C. The hidden microbial ecosystem in the perennial ice from a Pyrenean ice cave. Front Microbiol 2023; 14:1110091. [PMID: 36778858 PMCID: PMC9909108 DOI: 10.3389/fmicb.2023.1110091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Over the last years, perennial ice deposits located within caves have awakened interest as places to study microbial communities since they represent unique cryospheric archives of climate change. Since the beginning of the twentieth century, the temperature has gradually increased, and it is estimated that by the end of this century the increase in average temperature could be around 4.0°C. In this context of global warming the ice deposits of the Pyrenean caves are undergoing a significant regression. Among this type of caves, that on the Cotiella Massif in the Southern Pyrenees is one of the southernmost studied in Europe. These types of caves house microbial communities which have so far been barely explored, and therefore their study is necessary. In this work, the microbial communities of the Pyrenean ice cave A294 were identified using metabarcoding techniques. In addition, research work was carried out to analyze how the age and composition of the ice affect the composition of the bacterial and microeukaryotic populations. Finally, the in vivo effect of climate change on the cellular machinery that allow microorganisms to live with increasing temperatures has been studied using proteomic techniques.
Collapse
Affiliation(s)
- Fátima Ruiz-Blas
- Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain
- Section Geomicrobiology, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | | | | | - Ana Moreno
- Departamento de Procesos Geoambientales y Cambio Global, Instituto Pirenaico de Ecología - CSIC, Zaragoza, Spain
| | - Miguel Bartolomé
- Departamento de Procesos Geoambientales y Cambio Global, Instituto Pirenaico de Ecología - CSIC, Zaragoza, Spain
- Institut für Geologie und Mineralogie, Universität zu Köln, Köln, Germany
| | - Maria Leunda
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zurich, Switzerland
- Department of Plant Biology and Ecology, University of the Basque Country, Leioa, Spain
| | - Emma Martinez-Alonso
- Department of Investigation, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Madrid, Spain
| | - Alberto Alcázar
- Department of Investigation, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain
| |
Collapse
|
5
|
Garcia-Lopez E, Ruiz-Blas F, Sanchez-Casanova S, Peña Perez S, Martin-Cerezo ML, Cid C. Microbial Communities in Volcanic Glacier Ecosystems. Front Microbiol 2022; 13:825632. [PMID: 35547132 PMCID: PMC9084427 DOI: 10.3389/fmicb.2022.825632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Glaciers constitute a polyextremophilic environment characterized by low temperatures, high solar radiation, a lack of nutrients, and low water availability. However, glaciers located in volcanic regions have special characteristics, since the volcanic foci provide them with heat and nutrients that allow the growth of microbial communities highly adapted to this environment. Most of the studies on these glacial ecosystems have been carried out in volcanic environments in the northern hemisphere, including Iceland and the Pacific Northwest. To better know, the microbial diversity of the underexplored glacial ecosystems and to check what their specific characteristics were, we studied the structure of bacterial communities living in volcanic glaciers in Deception Island, Antarctica, and in the Kamchatka peninsula. In addition to geographic coordinates, many other glacier environmental factors (like volcanic activity, altitude, temperature, pH, or ice chemical composition) that can influence the diversity and distribution of microbial communities were considered in this study. Finally, using their taxonomic assignments, an attempt was made to compare how different or similar are the biogeochemical cycles in which these microbiomes are involved.
Collapse
Affiliation(s)
- Eva Garcia-Lopez
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Fatima Ruiz-Blas
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Sonia Peña Perez
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Cristina Cid
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
6
|
Garcia-Lopez E, Moreno A, Bartolomé M, Leunda M, Sancho C, Cid C. Glacial Ice Age Shapes Microbiome Composition in a Receding Southern European Glacier. Front Microbiol 2021; 12:714537. [PMID: 34867842 PMCID: PMC8636055 DOI: 10.3389/fmicb.2021.714537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Glaciers and their microbiomes are exceptional witnesses of the environmental conditions from remote times. Climate change is threatening mountain glaciers, and especially those found in southern Europe, such as the Monte Perdido Glacier (northern Spain, Central Pyrenees). This study focuses on the reconstruction of the history of microbial communities over time. The microorganisms that inhabit the Monte Perdido Glacier were identified using high-throughput sequencing, and the microbial communities were compared along an altitudinal transect covering most of the preserved ice sequence in the glacier. The results showed that the glacial ice age gradient did shape the diversity of microbial populations, which presented large differences throughout the last 2000 years. Variations in microbial community diversity were influenced by glacial conditions over time (nutrient concentration, chemical composition, and ice age). Some groups were exclusively identified in the oldest samples as the bacterial phyla Fusobacteria and Calditrichaeota, or the eukaryotic class Rhodophyceae. Among groups only found in modern samples, the green sulfur bacteria (phylum Chlorobi) stood out, as well as the bacterial phylum Gemmatimonadetes and the eukaryotic class Tubulinea. A patent impact of human contamination was also observed on the glacier microbiome. The oldest samples, corresponding to the Roman Empire times, were influenced by the beginning of mining exploitation in the Pyrenean area, with the presence of metal-tolerant microorganisms. The most recent samples comprise 600-year-old ancient ice in which current communities are living.
Collapse
Affiliation(s)
- Eva Garcia-Lopez
- Molecular Evolution Department, Centro de Astrobiologia (CSIC-INTA), Madrid, Spain
| | - Ana Moreno
- Departamento de Procesos Geoambientales y Cambio Global, Instituto Pirenaico de Ecología-CSIC, Zaragoza, Spain
| | - Miguel Bartolomé
- Departamento de Geología, Museo de Ciencias Naturales-CSIC, Madrid, Spain
| | - Maria Leunda
- Oeschger Centre for Climate Change Research, Institute of Plant Sciences, University of Bern, Bern, Switzerland.,Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carlos Sancho
- Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain
| | - Cristina Cid
- Molecular Evolution Department, Centro de Astrobiologia (CSIC-INTA), Madrid, Spain
| |
Collapse
|
7
|
Yarzábal LA, Salazar LMB, Batista-García RA. Climate change, melting cryosphere and frozen pathogens: Should we worry…? ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2021; 4:489-501. [PMID: 38624658 PMCID: PMC8164958 DOI: 10.1007/s42398-021-00184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 11/21/2022]
Abstract
Permanently frozen environments (glaciers, permafrost) are considered as natural reservoirs of huge amounts of microorganisms, mostly dormant, including human pathogens. Due to global warming, which increases the rate of ice-melting, approximately 4 × 1021 of these microorganisms are released annually from their frozen confinement and enter natural ecosystems, in close proximity to human settlements. Some years ago, the hypothesis was put forward that this massive release of potentially-pathogenic microbes-many of which disappeared from the face of the Earth thousands and even millions of years ago-could give rise to epidemics. The recent anthrax outbreaks that occurred in Siberia, and the presence of bacterial and viral pathogens in glaciers worldwide, seem to confirm this hypothesis. In that context, the present review summarizes the currently available scientific evidence that allows us to imagine a near future in which epidemic outbreaks, similar to the abovementioned, could occur as a consequence of the resurrection and release of microbes from glaciers and permafrost. Supplementary Information The online version of this article (10.1007/s42398-021-00184-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis Andrés Yarzábal
- Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas and Calle Humboldt, Cuenca, Ecuador
- Centro de Investigación, Innovación y Transferencia de Tecnología (CIITT), Universidad Católica de Cuenca, Campus Miracielos, Ricaurte, Ecuador
| | - Lenys M. Buela Salazar
- Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas and Calle Humboldt, Cuenca, Ecuador
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico
| |
Collapse
|
8
|
Delpech LM, Vonnahme TR, McGovern M, Gradinger R, Præbel K, Poste AE. Terrestrial Inputs Shape Coastal Bacterial and Archaeal Communities in a High Arctic Fjord (Isfjorden, Svalbard). Front Microbiol 2021; 12:614634. [PMID: 33717004 PMCID: PMC7952621 DOI: 10.3389/fmicb.2021.614634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
The Arctic is experiencing dramatic changes including increases in precipitation, glacial melt, and permafrost thaw, resulting in increasing freshwater runoff to coastal waters. During the melt season, terrestrial runoff delivers carbon- and nutrient-rich freshwater to Arctic coastal waters, with unknown consequences for the microbial communities that play a key role in determining the cycling and fate of terrestrial matter at the land-ocean interface. To determine the impacts of runoff on coastal microbial (bacteria and archaea) communities, we investigated changes in pelagic microbial community structure between the early (June) and late (August) melt season in 2018 in the Isfjorden system (Svalbard). Amplicon sequences of the 16S rRNA gene were generated from water column, river and sediment samples collected in Isfjorden along fjord transects from shallow river estuaries and glacier fronts to the outer fjord. Community shifts were investigated in relation to environmental gradients, and compared to river and marine sediment microbial communities. We identified strong temporal and spatial reorganizations in the structure and composition of microbial communities during the summer months in relation to environmental conditions. Microbial diversity patterns highlighted a reorganization from rich communities in June toward more even and less rich communities in August. In June, waters enriched in dissolved organic carbon (DOC) provided a niche for copiotrophic taxa including Sulfitobacter and Octadecabacter. In August, lower DOC concentrations and Atlantic water inflow coincided with a shift toward more cosmopolitan taxa usually associated with summer stratified periods (e.g., SAR11 Clade Ia), and prevalent oligotrophic marine clades (OM60, SAR92). Higher riverine inputs of dissolved inorganic nutrients and suspended particulate matter also contributed to spatial reorganizations of communities in August. Sentinel taxa of this late summer fjord environment included taxa from the class Verrucomicrobiae (Roseibacillus, Luteolibacter), potentially indicative of a higher fraction of particle-attached bacteria. This study highlights the ecological relevance of terrestrial runoff for Arctic coastal microbial communities and how its impacts on biogeochemical conditions may make these communities susceptible to climate change.
Collapse
Affiliation(s)
- Lisa-Marie Delpech
- Department of Biology, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian Institute for Water Research (NIVA), Tromsø, Norway
| | - Tobias R Vonnahme
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maeve McGovern
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian Institute for Water Research (NIVA), Tromsø, Norway
| | - Rolf Gradinger
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Amanda E Poste
- Norwegian Institute for Water Research (NIVA), Tromsø, Norway
| |
Collapse
|
9
|
García-Lopez E, Serrano S, Calvo MA, Peña Perez S, Sanchez-Casanova S, García-Descalzo L, Cid C. Microbial Community Structure Driven by a Volcanic Gradient in Glaciers of the Antarctic Archipelago South Shetland. Microorganisms 2021; 9:microorganisms9020392. [PMID: 33672948 PMCID: PMC7917679 DOI: 10.3390/microorganisms9020392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/26/2022] Open
Abstract
It has been demonstrated that the englacial ecosystem in volcanic environments is inhabited by active bacteria. To know whether this result could be extrapolated to other Antarctic glaciers and to study the populations of microeukaryotes in addition to those of bacteria, a study was performed using ice samples from eight glaciers in the South Shetland archipelago. The identification of microbial communities of bacteria and microeukaryotes using 16S rRNA and 18S rRNA high throughput sequencing showed a great diversity when compared with microbiomes of other Antarctic glaciers or frozen deserts. Even the composition of the microbial communities identified in the glaciers from the same island was different, which may be due to the isolation of microbial clusters within the ice. A gradient in the abundance and diversity of the microbial communities from the volcano (west to the east) was observed. Additionally, a significant correlation was found between the chemical conditions of the ice samples and the composition of the prokaryotic populations inhabiting them along the volcanic gradient. The bacteria that participate in the sulfur cycle were those that best fit this trend. Furthermore, on the eastern island, a clear influence of human contamination was observed on the glacier microbiome.
Collapse
|
10
|
Taxonomic and functional characterization of a microbial community from a volcanic englacial ecosystem in Deception Island, Antarctica. Sci Rep 2019; 9:12158. [PMID: 31434915 PMCID: PMC6704131 DOI: 10.1038/s41598-019-47994-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Glaciers are populated by a large number of microorganisms including bacteria, archaea and microeukaryotes. Several factors such as solar radiation, nutrient availability and water content greatly determine the diversity and abundance of these microbial populations, the type of metabolism and the biogeochemical cycles. Three ecosystems can be differentiated in glaciers: supraglacial, subglacial and englacial ecosystems. Firstly, the supraglacial ecosystem, sunlit and oxygenated, is predominantly populated by photoautotrophic microorganisms. Secondly, the subglacial ecosystem contains a majority of chemoautotrophs that are fed on the mineral salts of the rocks and basal soil. Lastly, the englacial ecosystem is the least studied and the one that contains the smallest number of microorganisms. However, these unknown englacial microorganisms establish a food web and appear to have an active metabolism. In order to study their metabolic potentials, samples of englacial ice were taken from an Antarctic glacier. Microorganisms were analyzed by a polyphasic approach that combines a set of -omic techniques: 16S rRNA sequencing, culturomics and metaproteomics. This combination provides key information about diversity and functions of microbial populations, especially in rare habitats. Several whole essential proteins and enzymes related to metabolism and energy production, recombination and translation were found that demonstrate the existence of cellular activity at subzero temperatures. In this way it is shown that the englacial microorganisms are not quiescent, but that they maintain an active metabolism and play an important role in the glacial microbial community.
Collapse
|
11
|
Sun W, Li W, Ji X, Li H, Qin K, Wei Y. Cold-Adapted Bacterial Diversity in Mingyong Glacier based on Combination Analysis of Fatty Acids and 16S rRNA Gene Sequence. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
12
|
Rivera-Perez JI, Santiago-Rodriguez TM, Toranzos GA. Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology. Microbiol Spectr 2016; 4:10.1128/microbiolspec.EMF-0006-2015. [PMID: 27726770 PMCID: PMC5287379 DOI: 10.1128/microbiolspec.emf-0006-2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 01/14/2023] Open
Abstract
Paleomicrobiology, or the study of ancient microorganisms, has raised both fascination and skepticism for many years. While paleomicrobiology is not a recent field, the application of emerging techniques, such as DNA sequencing, is proving essential and has provided novel information regarding the evolution of viruses, antibiotic resistance, saprophytes, and pathogens, as well as ancient health and disease status, cultural customs, ethnic diets, and historical events. In this review, we highlight the importance of studying ancient microbial DNA, its contributions to current knowledge, and the role that forensic paleomicrobiology has played in deciphering historical enigmas. We also discuss the emerging techniques used to study the microbial composition of ancient samples as well as major concerns that accompany ancient DNA analyses.
Collapse
|
13
|
Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol Res 2016; 192:192-202. [PMID: 27664737 DOI: 10.1016/j.micres.2016.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
Abstract
Snow ecosystems represent a large part of the Earth's biosphere and harbour diverse microbial communities. Despite our increased knowledge of snow microbial communities, the question remains as to their functional potential, particularly with respect to their role in adapting to and modifying the specific snow environment. In this work, we investigated the diversity and functional capabilities of microorganisms from 3 regions of East Antarctica, with respect to compounds present in snow and tested whether their functional signature reflected the snow environment. A diverse assemblage of bacteria (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Deinococcus-Thermus, Planctomycetes, Verrucomicrobia), archaea (Euryarchaeota), and eukarya (Basidiomycota, Ascomycota, Cryptomycota and Rhizaria) were detected through culture-dependent and -independent methods. Although microbial communities observed in the three snow samples were distinctly different, all isolates tested produced one or more of the following enzymes: lipase, protease, amylase, β-galactosidase, cellulase, and/or lignin modifying enzyme. This indicates that the snow pack microbes have the capacity to degrade organic compounds found in Antarctic snow (proteins, lipids, carbohydrates, lignin), thus highlighting their potential to be involved in snow chemistry.
Collapse
|
14
|
Kammerlander B, Breiner HW, Filker S, Sommaruga R, Sonntag B, Stoeck T. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains. FEMS Microbiol Ecol 2015; 91:fiv010. [PMID: 25764458 PMCID: PMC4399440 DOI: 10.1093/femsec/fiv010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 11/13/2022] Open
Abstract
We analyzed the genetic diversity (V4 region of the 18S rRNA) of planktonic microbial eukaryotes in four high mountain lakes including two remote biogeographic regions (the Himalayan mountains and the European Alps) and distinct habitat types (clear and glacier-fed turbid lakes). The recorded high genetic diversity in these lakes was far beyond of what is described from high mountain lake plankton. In total, we detected representatives from 66 families with the main taxon groups being Alveolata (55.0% OTUs 97%, operational taxonomic units), Stramenopiles (34.0% OTUs 97%), Cryptophyta (4.0% OTUs 97%), Chloroplastida (3.6% OTUs 97%) and Fungi (1.7% OTUs 97%). Centrohelida, Choanomonada, Rhizaria, Katablepharidae and Telonema were represented by <1% OTUs 97%. Himalayan lakes harbored a higher plankton diversity compared to the Alpine lakes (Shannon index). Community structures were significantly different between lake types and biogeographic regions (Fisher exact test, P < 0.01). Network analysis revealed that more families of the Chloroplastida (10 vs 5) and the Stramenopiles (14 vs 8) were found in the Himalayan lakes than in the Alpine lakes and none of the fungal families was shared between them. Biogeographic aspects as well as ecological factors such as water turbidity may structure the microbial eukaryote plankton communities in such remote lakes.
Collapse
Affiliation(s)
- Barbara Kammerlander
- University of Innsbruck, Institute of Ecology, Lake and Glacier Research Group, Technikerstrasse 25, 6020 Innsbruck, Austria University of Innsbruck, Research Institute for Limnology, Mondsee, Ciliate Ecology and Taxonomy Group, Mondseestrasse 9, 5310 Mondsee, Austria
| | - Hans-Werner Breiner
- University of Kaiserslautern, Department of Ecology, Gottlieb-Daimler-Strasse Building 14, 67663 Kaiserslautern, Germany
| | - Sabine Filker
- University of Kaiserslautern, Department of Ecology, Gottlieb-Daimler-Strasse Building 14, 67663 Kaiserslautern, Germany
| | - Ruben Sommaruga
- University of Innsbruck, Institute of Ecology, Lake and Glacier Research Group, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Bettina Sonntag
- University of Innsbruck, Research Institute for Limnology, Mondsee, Ciliate Ecology and Taxonomy Group, Mondseestrasse 9, 5310 Mondsee, Austria
| | - Thorsten Stoeck
- University of Kaiserslautern, Department of Ecology, Gottlieb-Daimler-Strasse Building 14, 67663 Kaiserslautern, Germany
| |
Collapse
|