1
|
Achberger AM, Jones R, Jamieson J, Holmes CP, Schubotz F, Meyer NR, Dekas AE, Moriarty S, Reeves EP, Manthey A, Brünjes J, Fornari DJ, Tivey MK, Toner BM, Sylvan JB. Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity. Nat Microbiol 2024; 9:657-668. [PMID: 38287146 DOI: 10.1038/s41564-024-01599-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
Active hydrothermal vents are oases for productivity in the deep ocean, but the flow of dissolved substrates that fuel such abundant life ultimately ceases, leaving behind inactive mineral deposits. The rates of microbial activity on these deposits are largely unconstrained. Here we show primary production occurs on inactive hydrothermal deposits and quantify its contribution to new organic carbon production in the deep ocean. Measured incorporation of 14C-bicarbonate shows that microbial communities on inactive deposits fix inorganic carbon at rates comparable to those on actively venting deposits. Single-cell uptake experiments and nanoscale secondary ion mass spectrometry showed chemoautotrophs comprise a large fraction (>30%) of the active microbial cells. Metagenomic and lipidomic surveys of inactive deposits further revealed that the microbial communities are dominated by Alphaproteobacteria and Gammaproteobacteria using the Calvin-Benson-Bassham pathway for carbon fixation. These findings establish inactive vent deposits as important sites for microbial activity and organic carbon production on the seafloor.
Collapse
Affiliation(s)
- Amanda M Achberger
- Department of Oceanography, Texas A&M University, College Station, Texas, USA.
| | - Rose Jones
- Department of Soil, Water and Climate, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - John Jamieson
- Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Charles P Holmes
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Nicolette R Meyer
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Sarah Moriarty
- Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Eoghan P Reeves
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Alex Manthey
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Jonas Brünjes
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Fornari
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Margaret K Tivey
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Brandy M Toner
- Department of Soil, Water and Climate, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
2
|
Takamiya H, Kouduka M, Kato S, Suga H, Oura M, Yokoyama T, Suzuki M, Mori M, Kanai A, Suzuki Y. Genome-resolved metaproteogenomic and nanosolid characterization of an inactive vent chimney densely colonized by enigmatic DPANN archaea. THE ISME JOURNAL 2024; 18:wrae207. [PMID: 39499858 PMCID: PMC11537232 DOI: 10.1093/ismejo/wrae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
Recent successes in the cultivation of DPANN archaea with their hosts have demonstrated an episymbiotic lifestyle, whereas the lifestyle of DPANN archaea in natural habitats is largely unknown. A free-living lifestyle is speculated in oxygen-deprived fluids circulated through rock media, where apparent hosts of DPANN archaea are lacking. Alternatively, DPANN archaea may be detached from their hosts and/or rock surfaces. To understand the ecology of rock-hosted DPANN archaea, rocks rather than fluids should be directly characterized. Here, we investigated a deep-sea hydrothermal vent chimney without fluid venting where our previous study revealed the high proportion of Pacearchaeota, one of the widespread and enigmatic lineages of DPANN archaea. Using spectroscopic methods with submicron soft X-ray and infrared beams, the microbial habitat was specified to be silica-filled pores in the inner chimney wall comprising chalcopyrite. Metagenomic analysis of the inner wall revealed the lack of biosynthetic genes for nucleotides, amino acids, cofactors, and lipids in the Pacearchaeota genomes. Genome-resolved metaproteomic analysis clarified the co-occurrence of a novel thermophilic lineage actively fixing carbon and nitrogen and thermophilic archaea in the inner chimney wall. We infer that the shift in metabolically active microbial populations from the thermophiles to the mesophilic DPANN archaea occurs after the termination of fluid venting. The infilling of mineral pores by hydrothermal silica deposition might be a preferred environmental factor for the colonization of free-living Pacearchaeota with ultrasmall cells depending on metabolites synthesized by the co-occurring thermophiles during fluid venting.
Collapse
Affiliation(s)
- Hinako Takamiya
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa 237-0061, Japan
| | - Hiroki Suga
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Masaki Oura
- Soft X-ray Spectroscopy Instrumentation Team, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Tadashi Yokoyama
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka, Yamagata, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka, Yamagata, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Masuda N, Kato S, Ohkuma M, Endo K. Metagenomic Insights into Ecophysiology of Zetaproteobacteria and Gammaproteobacteria in Shallow Zones within Deep-sea Massive Sulfide Deposits. Microbes Environ 2024; 39:ME23104. [PMID: 39343535 PMCID: PMC11427306 DOI: 10.1264/jsme2.me23104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Deep-sea massive sulfide deposits serve as energy sources for chemosynthetic ecosystems in dark, cold environments even after hydrothermal activity ceases. However, the vertical distribution of microbial communities within sulfide deposits along their depth from the seafloor as well as their ecological roles remain unclear. We herein conducted a culture-independent metagenomic ana-lysis of a core sample of massive sulfide deposits collected in a hydrothermally inactive field of the Southern Mariana Trough, Western Pacific, by drilling (sample depth: 0.52 m below the seafloor). Based on the gene context of the metagenome-assembled genomes (MAGs) obtained, we showed the metabolic potential of as-yet-uncultivated microorganisms, particularly those unique to the shallow zone rich in iron hydroxides. Some members of Gammaproteobacteria have potential for the oxidation of reduced sulfur species (such as sulfide and thiosulfate) to sulfate coupled to nitrate reduction to ammonia and carbon fixation via the Calvin-Benson-Bassham (CBB) cycle, as the primary producers. The Zetaproteobacteria member has potential for iron oxidation coupled with microaerobic respiration. A comparative ana-lysis with previously reported metagenomes from deeper zones (~2 m below the seafloor) of massive sulfide deposits revealed a difference in the relative abundance of each putative primary producer between the shallow and deep zones. Our results expand knowledge on the ecological potential of uncultivated microorganisms in deep-sea massive sulfide deposits and provide insights into the vertical distribution patterns of chemosynthetic ecosystems.
Collapse
Affiliation(s)
- Nao Masuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan
- Submarine Resources Research Center (SRRC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan
| | - Kazuyoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| |
Collapse
|
4
|
Marimuthu J, Rangamaran VR, Subramanian SHS, Balachandran KRS, Thenmozhi Kulasekaran N, Vasudevan D, Lee JK, Ramalingam K, Gopal D. Deep-sea sediment metagenome from Bay of Bengal reveals distinct microbial diversity and functional significance. Genomics 2022; 114:110524. [PMID: 36423774 DOI: 10.1016/j.ygeno.2022.110524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Bay of Bengal (BoB) has immense significance with respect to ecological diversity and natural resources. Studies on microbial profiling and their functional significance at sediment level of BoB remain poorly represented. Herein, we describe the microbial diversity and metabolic potentials of BOB deep-sea sediment samples by subjecting the metagenomes to Nanopore sequencing. Taxonomic diversity ascertained at various levels revealed that bacteria belonging to phylum Proteobacteria predominantly represented in sediment samples NIOT_S7 and NIOT_S9. A comparative study with 16S datasets from similar ecological sites revealed depth as a crucial factor in determining taxonomic diversity. KEGG annotation indicated that bacterial communities possess sequence reads corresponding to carbon dioxide fixation, sulfur, nitrogen metabolism, but at varying levels. Additionally, gene sequences related to bioremediation of dyes, plastics, hydrocarbon, antibiotic resistance, secondary metabolite synthesis and metal resistance from both the samples as studied indicate BoB to represent a highly diverse environmental niche for further exploration.
Collapse
Affiliation(s)
- Jeya Marimuthu
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India.
| | | | | | | | | | - Dinakaran Vasudevan
- KMCH Research Foundation, Coimbatore Medical Center and Hospital, Coimbatore 641014, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 143 701, Republic of Korea
| | - Kirubagaran Ramalingam
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India
| | - Dharani Gopal
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India.
| |
Collapse
|
5
|
Takamiya H, Kouduka M, Furutani H, Mukai H, Nakagawa K, Yamamoto T, Kato S, Kodama Y, Tomioka N, Ito M, Suzuki Y. Copper-Nanocoated Ultra-Small Cells in Grain Boundaries Inside an Extinct Vent Chimney. Front Microbiol 2022; 13:864205. [PMID: 35747369 PMCID: PMC9209642 DOI: 10.3389/fmicb.2022.864205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chemosynthetic organisms flourish around deep-sea hydrothermal vents where energy-rich fluids are emitted from metal sulfide chimneys. However, microbial life hosted in mineral assemblages in extinct chimneys lacking fluid venting remains largely unknown. The interior of extinct chimneys remains anoxic where the percolation of oxygenated seawater is limited within tightly packed metal sulfide grains. Given the scarcity of photosynthetic organics in deep seawater, anaerobic microbes might inhabit the grain boundaries energetically depending on substrates derived from rock-water interactions. In this study, we reported ultra-small cells directly visualized in grain boundaries of CuFeS2 inside an extinct metal sulfide chimney from the southern Mariana Trough. Nanoscale solid analyses reveal that ultra-small cells are coated with Cu2O nanocrystals in grain boundaries enriched with C, N, and P. In situ spectroscopic and spectrometric characterizations demonstrate the distribution of organics with amide groups and a large molecular organic compound in the grain boundaries. We inferred that the ultra-small cells are anaerobes because of the fast dissolution of Cu2O nanocrystals in oxygenated solution. This Cu2O property also excludes the possibility of microbial contamination from ambient seawater during sampling. It is shown by 16S rRNA gene sequence analysis that the chimney interior is dominated by Pacearchaeota known to have anaerobic metabolisms and ultra-small cells. Our results support the potential existence of photosynthesis-independent microbial ecosystems in grain boundaries in submarine metal sulfides deposits on the early Earth.
Collapse
Affiliation(s)
- Hinako Takamiya
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| | - Hitoshi Furutani
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| | - Hiroki Mukai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Nakagawa
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Takushi Yamamoto
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Japan
| | | | - Naotaka Tomioka
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| |
Collapse
|
6
|
Leng H, Zhao W, Xiao X. Cultivation and metabolic insights of an uncultured clade, Bacteroidetes VC2.1 Bac22 (Candidatus Sulfidibacteriales ord. nov.), from deep-sea hydrothermal vents. Environ Microbiol 2022; 24:2484-2501. [PMID: 35165999 DOI: 10.1111/1462-2920.15931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 01/28/2023]
Abstract
Bacteroidetes VC2.1 Bac22 (referred to as VC2.1) is an uncultured clade that is widely distributed in marine ecosystems, including hydrothermal vents, oxygen-minimum zones and other anoxic, sulfide-rich environments. However, the lack of cultured representatives and sequenced genomes of VC2.1 limit our understanding of its physiology, metabolism and ecological functions. Here, we obtained a stable co-culture of VC2.1 with autotrophic microbes by establishing an autotrophy-based enrichment from a hydrothermal vent chimney sample. We recovered a high-quality metagenome-assembled genome (MAG) that belonged to VC2.1. Phylogenetic analyses of both 16S rRNA genes and conserved protein markers suggested that VC2.1 belongs to a novel order in the Bacteroidetes phylum, which we named Candidatus Sulfidibacteriales. The metabolic reconstruction of this MAG indicated that VC2.1 could utilize polysaccharides, protein polymers and fatty acids as well as flexibly obtain energy via NO/N2 O reduction and polysulfide reduction. Our results reveal the ecological potential of this novel Bacteroidetes for complex organic carbons mineralization and N2 O sinks in deep-sea hydrothermal vents. Furthermore, guided by the genome information, we designed a new culture medium in which starch, ammonium and polysulfide were used as the carbon source, nitrogen source and electron acceptor respectively, to isolate VC2.1 successfully.
Collapse
Affiliation(s)
- Hao Leng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
7
|
Mitsunobu S, Ohashi Y, Makita H, Suzuki Y, Nozaki T, Ohigashi T, Ina T, Takaki Y. One-Year In Situ Incubation of Pyrite at the Deep Seafloor and Its Microbiological and Biogeochemical Characterizations. Appl Environ Microbiol 2021; 87:e0097721. [PMID: 34550782 PMCID: PMC8592575 DOI: 10.1128/aem.00977-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022] Open
Abstract
In this study, we performed a year-long in situ incubation experiment on a common ferrous sulfide (Fe-S) mineral, pyrite, at the oxidative deep seafloor in the hydrothermal vent field in the Izu-Bonin arc, Japan, and characterized its microbiological and biogeochemical properties to understand the microbial alteration processes of the pyrite, focusing on Fe(II) oxidation. The microbial community analysis of the incubated pyrite showed that the domain Bacteria heavily dominated over Archaea compared with that of the ambient seawater, and Alphaproteobacteria and Gammaproteobacteria distinctively codominated at the class level. The mineralogical characterization by surface-sensitive Fe X-ray absorption near-edge structure (XANES) analysis revealed that specific Fe(III) hydroxides (schwertmannite and ferrihydrite) were locally formed at the pyrite surface as the pyrite alteration products. Based on the Fe(III) hydroxide species and proportion, we thermodynamically calculated the pH value at the pyrite surface to be pH 4.9 to 5.7, indicating that the acidic condition derived from pyrite alteration was locally formed at the surface against neutral ambient seawater. This acidic microenvironment at the pyrite surface might explain the distinct microbial communities found in our pyrite samples. Also, the acidity at the pyrite surface indicates that the abiotic Fe(II) oxidation rate was much limited at the pyrite surface kinetically, 3.9 × 103- to 1.6 × 105-fold lower than that in the ambient seawater. Moreover, nanoscale characterization of microbial biomolecules using carbon near-edge X-ray absorption fine-structure (NEXAFS) analysis showed that the sessile cells attached to pyrite excreted the acidic polysaccharide-rich extracellular polymeric substances at the pyrite surface, which can lead to the promotion of biogenic Fe(II) oxidation and pyrite alteration. IMPORTANCE Pyrite is one of the most common Fe-S minerals found in submarine hydrothermal environments. Previous studies demonstrated that the Fe-S mineral can be a suitable host for Fe(II)-oxidizing microbes in hydrothermal environments; however, the details of microbial Fe(II) oxidation processes with Fe-S mineral alteration are not well known. The spectroscopic and thermodynamic examination in the present study suggests that a moderately acidic pH condition was locally formed at the pyrite surface during pyrite alteration at the seafloor due to proton releases with Fe(II) and sulfidic S oxidations. Following previous studies, the abiotic Fe(II) oxidation rate significantly decreases with a decrease in pH, but the biotic (microbial) Fe(II) oxidation rate is not sensitive to the pH decrease. Thus, our findings clearly suggest that the pyrite surface is a unique microenvironment where abiotic Fe(II) oxidation is limited and biotic Fe(II) oxidation is more prominent than that in neutral ambient seawater.
Collapse
Affiliation(s)
- S. Mitsunobu
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Y. Ohashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - H. Makita
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Tokyo, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Y. Suzuki
- Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - T. Nozaki
- Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo, Tokyo, Tokyo, Japan
- Department of Planetology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
- Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, Narashino, Chiba, Japan
| | - T. Ohigashi
- UVSOR Facility, Institute for Molecular Science, Myodaiji, Okazaki, Japan
| | - T. Ina
- SPring-8, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo, Japan
| | - Y. Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
8
|
Mullin SW, Wanger G, Kruger BR, Sackett JD, Hamilton-Brehm SD, Bhartia R, Amend JP, Moser DP, Orphan VJ. Patterns of in situ Mineral Colonization by Microorganisms in a ~60°C Deep Continental Subsurface Aquifer. Front Microbiol 2020; 11:536535. [PMID: 33329414 PMCID: PMC7711152 DOI: 10.3389/fmicb.2020.536535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The microbial ecology of the deep biosphere is difficult to characterize, owing in part to sampling challenges and poorly understood response mechanisms to environmental change. Pre-drilled wells, including oil wells or boreholes, offer convenient access, but sampling is frequently limited to the water alone, which may provide only a partial view of the native diversity. Mineral heterogeneity demonstrably affects colonization by deep biosphere microorganisms, but the connections between the mineral-associated and planktonic communities remain unclear. To understand the substrate effects on microbial colonization and the community response to changes in organic carbon, we conducted an 18-month series of in situ experiments in a warm (57°C), anoxic, fractured carbonate aquifer at 752 m depth using replicate open, screened cartridges containing different solid substrates, with a proteinaceous organic matter perturbation halfway through this series. Samples from these cartridges were analyzed microscopically and by Illumina (iTag) 16S rRNA gene libraries to characterize changes in mineralogy and the diversity of the colonizing microbial community. The substrate-attached and planktonic communities were significantly different in our data, with some taxa (e.g., Candidate Division KB-1) rare or undetectable in the first fraction and abundant in the other. The substrate-attached community composition also varied significantly with mineralogy, such as with two Rhodocyclaceae OTUs, one of which was abundant on carbonate minerals and the other on silicic substrates. Secondary sulfide mineral formation, including iron sulfide framboids, was observed on two sets of incubated carbonates. Notably, microorganisms were attached to the framboids, which were correlated with abundant Sulfurovum and Desulfotomaculum sp. sequences in our analysis. Upon organic matter perturbation, mineral-associated microbial diversity differences were temporarily masked by the dominance of putative heterotrophic taxa in all samples, including OTUs identified as Caulobacter, Methyloversatilis, and Pseudomonas. Subsequent experimental deployments included a methanogen-dominated stage (Methanobacteriales and Methanomicrobiales) 6 months after the perturbation and a return to an assemblage similar to the pre-perturbation community after 9 months. Substrate-associated community differences were again significant within these subsequent phases, however, demonstrating the value of in situ time course experiments to capture a fraction of the microbial assemblage that is frequently difficult to observe in pre-drilled wells.
Collapse
Affiliation(s)
- Sean W Mullin
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Greg Wanger
- Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Brittany R Kruger
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Joshua D Sackett
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, United States
| | - Scott D Hamilton-Brehm
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Rohit Bhartia
- Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Duane P Moser
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, United States
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
9
|
Ramírez GA, Garber AI, Lecoeuvre A, D’Angelo T, Wheat CG, Orcutt BN. Ecology of Subseafloor Crustal Biofilms. Front Microbiol 2019; 10:1983. [PMID: 31551949 PMCID: PMC6736579 DOI: 10.3389/fmicb.2019.01983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/13/2019] [Indexed: 11/26/2022] Open
Abstract
The crustal subseafloor is the least explored and largest biome on Earth. Interrogating crustal life is difficult due to habitat inaccessibility, low-biomass and contamination challenges. Subseafloor observatories have facilitated the study of planktonic life in crustal aquifers, however, studies of life in crust-attached biofilms are rare. Here, we investigate biofilms grown on various minerals at different temperatures over 1-6 years at subseafloor observatories in the Eastern Pacific. To mitigate potential sequence contamination, we developed a new bioinformatics tool - TaxonSluice. We explore ecological factors driving community structure and potential function of biofilms by comparing our sequence data to previous amplicon and metagenomic surveys of this habitat. We reveal that biofilm community structure is driven by temperature rather than minerology, and that rare planktonic lineages colonize the crustal biofilms. Based on 16S rRNA gene overlap, we partition metagenome assembled genomes into planktonic and biofilm fractions and suggest that there are functional differences between these community types, emphasizing the need to separately examine each to accurately describe subseafloor microbe-rock-fluid processes. Lastly, we report that some rare lineages present in our warm and anoxic study site are also found in cold and oxic crustal fluids in the Mid-Atlantic Ridge, suggesting global crustal biogeography patterns.
Collapse
Affiliation(s)
- Gustavo A. Ramírez
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States
| | - Arkadiy I. Garber
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Aurélien Lecoeuvre
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Université de Bretagne Occidentale, UFR Sciences et Techniques, Brest, France
| | - Timothy D’Angelo
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - C. Geoffrey Wheat
- Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
10
|
Active subseafloor microbial communities from Mariana back-arc venting fluids share metabolic strategies across different thermal niches and taxa. ISME JOURNAL 2019; 13:2264-2279. [PMID: 31073213 PMCID: PMC6775965 DOI: 10.1038/s41396-019-0431-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
There are many unknowns regarding the distribution, activity, community composition, and metabolic repertoire of microbial communities in the subseafloor of deep-sea hydrothermal vents. Here we provide the first characterization of subseafloor microbial communities from venting fluids along the central Mariana back-arc basin (15.5–18°N), where the slow-spreading rate, depth, and variable geochemistry along the back-arc distinguish it from other spreading centers. Results indicated that diverse Epsilonbacteraeota were abundant across all sites, with a population of high temperature Aquificae restricted to the northern segment. This suggests that differences in subseafloor populations along the back-arc are associated with local geologic setting and resultant geochemistry. Metatranscriptomics coupled to stable isotope probing revealed bacterial carbon fixation linked to hydrogen oxidation, denitrification, and sulfide or thiosulfate oxidation at all sites, regardless of community composition. NanoSIMS (nanoscale secondary ion mass spectrometry) incubations at 80 °C show only a small portion of the microbial community took up bicarbonate, but those autotrophs had the highest overall rates of activity detected across all experiments. By comparison, acetate was more universally utilized to sustain growth, but within a smaller range of activity. Together, results indicate that microbial communities in venting fluids from the Mariana back-arc contain active subseafloor communities reflective of their local conditions with metabolisms commonly shared across geologically disparate spreading centers throughout the ocean.
Collapse
|
11
|
Meier DV, Pjevac P, Bach W, Markert S, Schweder T, Jamieson J, Petersen S, Amann R, Meyerdierks A. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Environ Microbiol 2019; 21:682-701. [PMID: 30585382 PMCID: PMC6850669 DOI: 10.1111/1462-2920.14514] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023]
Abstract
Metal-sulfides are wide-spread in marine benthic habitats. At deep-sea hydrothermal vents, they occur as massive sulfide chimneys formed by mineral precipitation upon mixing of reduced vent fluids with cold oxygenated sea water. Although microorganisms inhabiting actively venting chimneys and utilizing compounds supplied by the venting fluids are well studied, only little is known about microorganisms inhabiting inactive chimneys. In this study, we combined 16S rRNA gene-based community profiling of sulfide chimneys from the Manus Basin (SW Pacific) with radiometric dating, metagenome (n = 4) and metaproteome (n = 1) analyses. Our results shed light on potential lifestyles of yet poorly characterized bacterial clades colonizing inactive chimneys. These include sulfate-reducing Nitrospirae and sulfide-oxidizing Gammaproteobacteria dominating most of the inactive chimney communities. Our phylogenetic analysis attributed the gammaproteobacterial clades to the recently described Woeseiaceae family and the SSr-clade found in marine sediments around the world. Metaproteomic data identified these Gammaproteobacteria as autotrophic sulfide-oxidizers potentially facilitating metal-sulfide dissolution via extracellular electron transfer. Considering the wide distribution of these gammaproteobacterial clades in marine environments such as hydrothermal vents and sediments, microbially accelerated neutrophilic mineral oxidation might be a globally relevant process in benthic element cycling and a considerable energy source for carbon fixation in marine benthic habitats.
Collapse
Affiliation(s)
- Dimitri V. Meier
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| | - Petra Pjevac
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| | - Wolfgang Bach
- MARUM – Center for Marine Environmental Sciences, Petrology of the Ocean Crust groupUniversity of BremenLeobener Str., 28359, BremenGermany
| | - Stephanie Markert
- Institute of PharmacyErnst‐Moritz‐Arndt‐UniversityFriedrich‐Ludwig‐Jahn‐Straße 17, 17489, GreifswaldGermany
| | - Thomas Schweder
- Institute of PharmacyErnst‐Moritz‐Arndt‐UniversityFriedrich‐Ludwig‐Jahn‐Straße 17, 17489, GreifswaldGermany
| | - John Jamieson
- Department of Earth SciencesMemorial University of Newfoundland40 Arctic Ave, Saint John'sNL, A1B 3X7Canada
| | - Sven Petersen
- GEOMAR Helmholtz Centre for Ocean ResearchWischhofstraße 1‐3, 24148, KielGermany
| | - Rudolf Amann
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| | - Anke Meyerdierks
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| |
Collapse
|
12
|
Kato S, Okumura T, Uematsu K, Hirai M, Iijima K, Usui A, Suzuki K. Heterogeneity of Microbial Communities on Deep-Sea Ferromanganese Crusts in the Takuyo-Daigo Seamount. Microbes Environ 2018; 33:366-377. [PMID: 30381615 PMCID: PMC6307992 DOI: 10.1264/jsme2.me18090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rock outcrops of aged deep-sea seamounts are generally covered with Fe and Mn oxides, known as ferromanganese (Fe-Mn) crusts. Although the presence of microorganisms in Fe-Mn crusts has been reported, limited information is currently available on intra- and inter-variations in crust microbial communities. Therefore, we collected several Fe-Mn crusts in bathyal and abyssal zones (water depths of 1,150-5,520 m) in the Takuyo-Daigo Seamount in the northwestern Pacific, and examined microbial communities on the crusts using culture-independent molecular and microscopic analyses. Quantitative PCR showed that microbial cells were abundant (106-108 cells g-1) on Fe-Mn crust surfaces through the water depths. A comparative 16S rRNA gene analysis revealed community differences among Fe-Mn crusts through the water depths, which may have been caused by changes in dissolved oxygen concentrations. Moreover, community differences were observed among positions within each Fe-Mn crust, and potentially depended on the availability of sinking particulate organic matter. Microscopic and elemental analyses of thin Fe-Mn crust sections revealed the accumulation of microbial cells accompanied by the depletion of Mn in valleys of bumpy crust surfaces. Our results suggest that heterogeneous and abundant microbial communities play a role in the biogeochemical cycling of Mn, in addition to C and N, on crusts and contribute to the extremely slow growth of Fe-Mn crusts.
Collapse
Affiliation(s)
- Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Research and Development Center for Submarine Resources, JAMSTEC
| | - Tomoyo Okumura
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC.,Center for Advanced Marine Core Research, Kochi University
| | | | - Miho Hirai
- Research and Development Center for Marine Biosciences, JAMSTEC
| | - Koichi Iijima
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Research and Development Center for Submarine Resources, JAMSTEC
| | - Akira Usui
- Center for Advanced Marine Core Research, Kochi University
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Research and Development Center for Submarine Resources, JAMSTEC
| |
Collapse
|
13
|
Türke A, Ménez B, Bach W. Comparing biosignatures in aged basalt glass from North Pond, Mid-Atlantic Ridge and the Louisville Seamount Trail, off New Zealand. PLoS One 2018; 13:e0190053. [PMID: 29466353 PMCID: PMC5821312 DOI: 10.1371/journal.pone.0190053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/07/2017] [Indexed: 11/18/2022] Open
Abstract
Microbial life can leave various traces (or biosignatures) in rocks, including biotic alteration textures, biominerals, enrichments of certain elements, organic molecules, or remnants of DNA. In basalt glass from the ocean floor, microbial alteration textures as well as chemical and isotopic biosignatures have been used to trace microbial activity. However, little is known about the relationship between the physical and chemical nature of the habitat and the prevalent types of biosignatures. Here, we report and compare strongly variable biosignatures from two different oceanic study sites. We analyzed rock samples for their textural biosignatures and associated organic molecules. The biosignatures from the 8 Ma North Pond Region, which represents young, well-oxygenated, and hydrologically active crust, are characterized by little textural diversity. The organic matter associated with those textures shows evidence for the occurrence of remnants of complex biomolecules like proteins. Comparably the biosignatures from the older Louisville Seamount Trail (~70 Ma) are more texturally diverse, but associated with organic molecules that are more degraded. The Louisville Seamount has less fresh glass left and decreased permeability, which metabolic pathways may dominate that only leave molecular biosignatures without textural evidence of glass alteration. We propose that diverse biosignatures in oceanic crust may form during different stages of crustal evolution.
Collapse
Affiliation(s)
- Andreas Türke
- Department of Geosciences and MARUM, University of Bremen, Klagenfurter Str. GEO, Bremen, Germany
- * E-mail:
| | - Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, CNRS, France
| | - Wolfgang Bach
- Department of Geosciences and MARUM, University of Bremen, Klagenfurter Str. GEO, Bremen, Germany
- Centre of Excellence in Geobiology and the Department of Earth Sciences, Realfagbygget, University of Bergen, Allegaten 41, Bergen, Norway
| |
Collapse
|
14
|
Kato S, Shibuya T, Takaki Y, Hirai M, Nunoura T, Suzuki K. Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits. Environ Microbiol 2018; 20:862-877. [DOI: 10.1111/1462-2920.14032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/08/2017] [Accepted: 12/13/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Takazo Shibuya
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Department of Subsurface Geobiological Analysis and Research; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Takuro Nunoura
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| |
Collapse
|
15
|
Callac N, Posth NR, Rattray JE, Yamoah KKY, Wiech A, Ivarsson M, Hemmingsson C, Kilias SP, Argyraki A, Broman C, Skogby H, Smittenberg RH, Fru EC. Modes of carbon fixation in an arsenic and CO 2-rich shallow hydrothermal ecosystem. Sci Rep 2017; 7:14708. [PMID: 29089625 PMCID: PMC5665909 DOI: 10.1038/s41598-017-13910-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023] Open
Abstract
The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO2-rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of RuBisCO Form II with a highly prevalent Zetaproteobacteria 16S rRNA gene density infers that iron-oxidizing bacteria contribute significantly to the sediment CBB cycle gene content. Three clusters form from different microbial guilds, each one encompassing one gene involved in CO2 fixation, aside from sulfate reduction. Our study suggests that the microbially mediated CBB cycle drives carbon fixation in the Spathi Bay sediments that are characterized by diffuse hydrothermal activity, high CO2, As emissions and chemically reduced fluids. This study highlights the breadth of conditions influencing the biogeochemistry in shallow CO2-rich hydrothermal systems and the importance of coupling highly specific process indicators to elucidate the complexity of carbon cycling in these ecosystems.
Collapse
Affiliation(s)
- Nolwenn Callac
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden.
| | - Nicole R Posth
- Nordcee, Department of Biology-University of Southern Denmark Campusvej 55, 5230, Odense M, Denmark.,Department of Geosciences and Natural Resource Management - IGN University of Copenhagen, Øster Voldgade, 10 1350, København K, Denmark
| | - Jayne E Rattray
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Kweku K Y Yamoah
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Alan Wiech
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Magnus Ivarsson
- Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History, Stockholm, Sweden
| | - Christoffer Hemmingsson
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Stephanos P Kilias
- Department of Geology and Geoenvironment, Section of Economic Geology and Geochemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 157 84, Athens, Greece
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment, Section of Economic Geology and Geochemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 157 84, Athens, Greece
| | - Curt Broman
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Henrik Skogby
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Rienk H Smittenberg
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Ernest Chi Fru
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden. .,School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom.
| |
Collapse
|
16
|
Microbial community differentiation between active and inactive sulfide chimneys of the Kolumbo submarine volcano, Hellenic Volcanic Arc. Extremophiles 2017; 22:13-27. [DOI: 10.1007/s00792-017-0971-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 01/28/2023]
|
17
|
Methane fluxes from coastal sediments are enhanced by macrofauna. Sci Rep 2017; 7:13145. [PMID: 29030563 PMCID: PMC5640653 DOI: 10.1038/s41598-017-13263-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/22/2017] [Indexed: 11/08/2022] Open
Abstract
Methane and nitrous oxide are potent greenhouse gases (GHGs) that contribute to climate change. Coastal sediments are important GHG producers, but the contribution of macrofauna (benthic invertebrates larger than 1 mm) inhabiting them is currently unknown. Through a combination of trace gas, isotope, and molecular analyses, we studied the direct and indirect contribution of two macrofaunal groups, polychaetes and bivalves, to methane and nitrous oxide fluxes from coastal sediments. Our results indicate that macrofauna increases benthic methane efflux by a factor of up to eight, potentially accounting for an estimated 9.5% of total emissions from the Baltic Sea. Polychaetes indirectly enhance methane efflux through bioturbation, while bivalves have a direct effect on methane release. Bivalves host archaeal methanogenic symbionts carrying out preferentially hydrogenotrophic methanogenesis, as suggested by analysis of methane isotopes. Low temperatures (8 °C) also stimulate production of nitrous oxide, which is consumed by benthic denitrifying bacteria before it reaches the water column. We show that macrofauna contributes to GHG production and that the extent is dependent on lineage. Thus, macrofauna may play an important, but overlooked role in regulating GHG production and exchange in coastal sediment ecosystems.
Collapse
|
18
|
Bortoluzzi G, Romeo T, La Cono V, La Spada G, Smedile F, Esposito V, Sabatino G, Di Bella M, Canese S, Scotti G, Bo M, Giuliano L, Jones D, Golyshin PN, Yakimov MM, Andaloro F. Ferrous iron- and ammonium-rich diffuse vents support habitat-specific communities in a shallow hydrothermal field off the Basiluzzo Islet (Aeolian Volcanic Archipelago). GEOBIOLOGY 2017; 15:664-677. [PMID: 28383164 DOI: 10.1111/gbi.12237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Ammonium- and Fe(II)-rich fluid flows, known from deep-sea hydrothermal systems, have been extensively studied in the last decades and are considered as sites with high microbial diversity and activity. Their shallow-submarine counterparts, despite their easier accessibility, have so far been under-investigated, and as a consequence, much less is known about microbial communities inhabiting these ecosystems. A field of shallow expulsion of hydrothermal fluids has been discovered at depths of 170-400 meters off the base of the Basiluzzo Islet (Aeolian Volcanic Archipelago, Southern Tyrrhenian Sea). This area consists predominantly of both actively diffusing and inactive 1-3 meters-high structures in the form of vertical pinnacles, steeples and mounds covered by a thick orange to brown crust deposits hosting rich benthic fauna. Integrated morphological, mineralogical, and geochemical analyses revealed that, above all, these crusts are formed by ferrihydrite-type Fe3+ oxyhydroxides. Two cruises in 2013 allowed us to monitor and sampled this novel ecosystem, certainly interesting in terms of shallow-water iron-rich site. The main objective of this work was to characterize the composition of extant communities of iron microbial mats in relation to the environmental setting and the observed patterns of macrofaunal colonization. We demonstrated that iron-rich deposits contain complex and stratified microbial communities with a high proportion of prokaryotes akin to ammonium- and iron-oxidizing chemoautotrophs, belonging to Thaumarchaeota, Nitrospira, and Zetaproteobacteria. Colonizers of iron-rich mounds, while composed of the common macrobenthic grazers, predators, filter-feeders, and tube-dwellers with no representatives of vent endemic fauna, differed from the surrounding populations. Thus, it is very likely that reduced electron donors (Fe2+ and NH4+ ) are important energy sources in supporting primary production in microbial mats, which form a habitat-specific trophic base of the whole Basiluzzo hydrothermal ecosystem, including macrobenthic fauna.
Collapse
Affiliation(s)
- G Bortoluzzi
- Institute for Marine Sciences, ISMAR-CNR, Bologna, Italy
| | - T Romeo
- Institute for Environmental Protection and Research, ISPRA, Milazzo, Italy
| | - V La Cono
- Institute for Coastal Marine Environment, IAMC-CNR, Messina, Italy
| | - G La Spada
- Institute for Coastal Marine Environment, IAMC-CNR, Messina, Italy
| | - F Smedile
- Institute for Coastal Marine Environment, IAMC-CNR, Messina, Italy
| | - V Esposito
- Institute for Environmental Protection and Research, ISPRA, Milazzo, Italy
| | - G Sabatino
- Department of Physics and Earth Sciences, University of Messina, Messina, Italy
| | - M Di Bella
- National Institute of Geophysics and Volcanology, Palermo, Italy
| | - S Canese
- Institute for Environmental Protection and Research, ISPRA, Milazzo, Italy
| | - G Scotti
- Institute for Environmental Protection and Research, ISPRA, Milazzo, Italy
| | - M Bo
- DISTAV, University of Genoa, Genoa, Italy
| | - L Giuliano
- Institute for Coastal Marine Environment, IAMC-CNR, Messina, Italy
| | - D Jones
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, UK
| | - P N Golyshin
- School of Biological Sciences, Bangor University, Bangor, UK
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - M M Yakimov
- Institute for Coastal Marine Environment, IAMC-CNR, Messina, Italy
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - F Andaloro
- Institute for Environmental Protection and Research, ISPRA, Palermo, Italy
| |
Collapse
|
19
|
Li J, Cui J, Yang Q, Cui G, Wei B, Wu Z, Wang Y, Zhou H. Oxidative Weathering and Microbial Diversity of an Inactive Seafloor Hydrothermal Sulfide Chimney. Front Microbiol 2017; 8:1378. [PMID: 28785251 PMCID: PMC5519607 DOI: 10.3389/fmicb.2017.01378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022] Open
Abstract
When its hydrothermal supply ceases, hydrothermal sulfide chimneys become inactive and commonly experience oxidative weathering on the seafloor. However, little is known about the oxidative weathering of inactive sulfide chimneys, nor about associated microbial community structures and their succession during this weathering process. In this work, an inactive sulfide chimney and a young chimney in the early sulfate stage of formation were collected from the Main Endeavor Field of the Juan de Fuca Ridge. To assess oxidative weathering, the ultrastructures of secondary alteration products accumulating on the chimney surface were examined and the presence of possible Fe-oxidizing bacteria (FeOB) was investigated. The results of ultrastructure observation revealed that FeOB-associated ultrastructures with indicative morphologies were abundantly present. Iron oxidizers primarily consisted of members closely related to Gallionella spp. and Mariprofundus spp., indicating Fe-oxidizing species likely promote the oxidative weathering of inactive sulfide chimneys. Abiotic accumulation of Fe-rich substances further indicates that oxidative weathering is a complex, dynamic process, alternately controlled by FeOB and by abiotic oxidization. Although hydrothermal fluid flow had ceased, inactive chimneys still accommodate an abundant and diverse microbiome whose microbial composition and metabolic potential dramatically differ from their counterparts at active vents. Bacterial lineages within current inactive chimney are dominated by members of α-, δ-, and γ-Proteobacteria and they are deduced to be closely involved in a diverse set of geochemical processes including iron oxidation, nitrogen fixation, ammonia oxidation and denitrification. At last, by examining microbial communities within hydrothermal chimneys at different formation stages, a general microbial community succession can be deduced from early formation stages of a sulfate chimney to actively mature sulfide structures, and then to the final inactive altered sulfide chimney. Our findings provide valuable insights into the microbe-involved oxidative weathering process and into microbial succession occurring at inactive hydrothermal sulfide chimney after high-temperature hydrothermal fluids have ceased venting.
Collapse
Affiliation(s)
- Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| | - Jiamei Cui
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| | - Qunhui Yang
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| | - Guojie Cui
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanya, China
| | - Bingbing Wei
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| | - Zijun Wu
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanya, China
| | - Huaiyang Zhou
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| |
Collapse
|
20
|
Barco RA, Hoffman CL, Ramírez GA, Toner BM, Edwards KJ, Sylvan JB. In-situincubation of iron-sulfur mineral reveals a diverse chemolithoautotrophic community and a new biogeochemical role forThiomicrospira. Environ Microbiol 2017; 19:1322-1337. [DOI: 10.1111/1462-2920.13666] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/15/2016] [Accepted: 01/06/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Roman A. Barco
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Colleen L. Hoffman
- Department of Earth Sciences; University of Minnesota-Twin Cities; St. Paul MN USA
| | - Gustavo A. Ramírez
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Brandy M. Toner
- Department of Earth Sciences; University of Minnesota-Twin Cities; St. Paul MN USA
- Department of Soil; Water, and Climate, University of Minnesota-Twin Cities; St. Paul MN USA
| | - Katrina J. Edwards
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Jason B. Sylvan
- Department of Oceanography; Texas A&M University; College Station TX USA
| |
Collapse
|
21
|
Miranda PJ, McLain NK, Hatzenpichler R, Orphan VJ, Dillon JG. Characterization of Chemosynthetic Microbial Mats Associated with Intertidal Hydrothermal Sulfur Vents in White Point, San Pedro, CA, USA. Front Microbiol 2016; 7:1163. [PMID: 27512390 PMCID: PMC4961709 DOI: 10.3389/fmicb.2016.01163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
The shallow-sea hydrothermal vents at White Point (WP) in Palos Verdes on the southern California coast support microbial mats and provide easily accessed settings in which to study chemolithoautotrophic sulfur cycling. Previous studies have cultured sulfur-oxidizing bacteria from the WP mats; however, almost nothing is known about the in situ diversity and activity of the microorganisms in these habitats. We studied the diversity, micron-scale spatial associations and metabolic activity of the mat community via sequence analysis of 16S rRNA and aprA genes, fluorescence in situ hybridization (FISH) microscopy and sulfate reduction rate (SRR) measurements. Sequence analysis revealed a diverse group of bacteria, dominated by sulfur cycling gamma-, epsilon-, and deltaproteobacterial lineages such as Marithrix, Sulfurovum, and Desulfuromusa. FISH microscopy suggests a close physical association between sulfur-oxidizing and sulfur-reducing genotypes, while radiotracer studies showed low, but detectable, SRR. Comparative 16S rRNA gene sequence analyses indicate the WP sulfur vent microbial mat community is similar, but distinct from other hydrothermal vent communities representing a range of biotopes and lithologic settings. These findings suggest a complete biological sulfur cycle is operating in the WP mat ecosystem mediated by diverse bacterial lineages, with some similarity with deep-sea hydrothermal vent communities.
Collapse
Affiliation(s)
- Priscilla J. Miranda
- Department of Geological Sciences, California State University, Long Beach, Long BeachCA, USA
| | - Nathan K. McLain
- Department of Biological Sciences, California State University, Long Beach, Long BeachCA, USA
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, PasadenaCA, USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, PasadenaCA, USA
| | - Jesse G. Dillon
- Department of Biological Sciences, California State University, Long Beach, Long BeachCA, USA
| |
Collapse
|
22
|
Skennerton CT, Ward LM, Michel A, Metcalfe K, Valiente C, Mullin S, Chan KY, Gradinaru V, Orphan VJ. Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation. Front Microbiol 2015; 6:1425. [PMID: 26779119 PMCID: PMC4688376 DOI: 10.3389/fmicb.2015.01425] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Hydrothermal vents are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of hydrothermal vent fluid and is frequently consumed at vent sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured hydrothermal vent-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x–12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic vent environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane activation.
Collapse
Affiliation(s)
- Connor T Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Lewis M Ward
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Alice Michel
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Kyle Metcalfe
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Chanel Valiente
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Sean Mullin
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Ken Y Chan
- Division of Biology and Bioengineering, California Institute of Technology Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Bioengineering, California Institute of Technology Pasadena, CA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
23
|
Lee MD, Walworth NG, Sylvan JB, Edwards KJ, Orcutt BN. Microbial Communities on Seafloor Basalts at Dorado Outcrop Reflect Level of Alteration and Highlight Global Lithic Clades. Front Microbiol 2015; 6:1470. [PMID: 26779122 PMCID: PMC4688349 DOI: 10.3389/fmicb.2015.01470] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
Areas of exposed basalt along mid-ocean ridges and at seafloor outcrops serve as conduits of fluid flux into and out of a subsurface ocean, and microbe–mineral interactions can influence alteration reactions at the rock–water interface. Located on the eastern flank of the East Pacific Rise, Dorado Outcrop is a site of low-temperature (<20°C) hydrothermal venting and represents a new end-member in the current survey of seafloor basalt biomes. Consistent with prior studies, a survey of 16S rRNA gene sequence diversity using universal primers targeting the V4 hypervariable region revealed much greater richness and diversity on the seafloor rocks than in surrounding seawater. Overall, Gamma-, Alpha-, and Deltaproteobacteria, and Thaumarchaeota dominated the sequenced communities, together making up over half of the observed diversity, though bacterial sequences were more abundant than archaeal in all samples. The most abundant bacterial reads were closely related to the obligate chemolithoautotrophic, sulfur-oxidizing Thioprofundum lithotrophicum, suggesting carbon and sulfur cycling as dominant metabolic pathways in this system. Representatives of Thaumarchaeota were detected in relatively high abundance on the basalts in comparison to bottom water, possibly indicating ammonia oxidation. In comparison to other sequence datasets from globally distributed seafloor basalts, this study reveals many overlapping and cosmopolitan phylogenetic groups and also suggests that substrate age correlates with community structure.
Collapse
Affiliation(s)
- Michael D Lee
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Nathan G Walworth
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Jason B Sylvan
- Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA; Department of Oceanography, Texas A&M UniversityCollege Station, TX, USA
| | - Katrina J Edwards
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| |
Collapse
|
24
|
He Y, Feng X, Fang J, Zhang Y, Xiao X. Metagenome and Metatranscriptome Revealed a Highly Active and Intensive Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin. Front Microbiol 2015; 6:1236. [PMID: 26617579 PMCID: PMC4639633 DOI: 10.3389/fmicb.2015.01236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well-recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an integrated metagenomic and metatranscriptomic analysis on a chimney sample from Guaymas Basin to achieve a comprehensive study of each sulfur metabolic pathway and its hosting microorganisms and constructed the microbial sulfur cycle that occurs in the site. Our results clearly illustrated the stratified sulfur oxidation and sulfate reduction at the chimney wall. Besides, sulfur metabolizing is closely interacting with carbon cycles, especially the hydrocarbon degradation process in Guaymas Basin. This work supports that the internal sulfur cycling is intensive and the net sulfur budget is low in the hydrothermal ecosystem.
Collapse
Affiliation(s)
- Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China ; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Xiaoyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Jing Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Yu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China ; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University Shanghai, China ; Institute of Oceanology, Shanghai Jiao Tong University Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China ; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University Shanghai, China ; Institute of Oceanology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
25
|
Teske A, Reysenbach AL. Editorial: Hydrothermal microbial ecosystems. Front Microbiol 2015; 6:884. [PMID: 26388842 PMCID: PMC4555087 DOI: 10.3389/fmicb.2015.00884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/12/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andreas Teske
- Department of Marine Sciences, University of North Carolina Chapel Hill, NC, USA
| | | |
Collapse
|
26
|
Orcutt BN, Sylvan JB, Rogers DR, Delaney J, Lee RW, Girguis PR. Carbon fixation by basalt-hosted microbial communities. Front Microbiol 2015; 6:904. [PMID: 26441854 PMCID: PMC4561358 DOI: 10.3389/fmicb.2015.00904] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/19/2015] [Indexed: 11/13/2022] Open
Abstract
Oceanic crust is a massive potential habitat for microbial life on Earth, yet our understanding of this ecosystem is limited due to difficulty in access. In particular, measurements of rates of microbial activity are sparse. We used stable carbon isotope incubations of crustal samples, coupled with functional gene analyses, to examine the potential for carbon fixation on oceanic crust. Both seafloor-exposed and subseafloor basalts were recovered from different mid-ocean ridge and hot spot environments (i.e., the Juan de Fuca Ridge, the Mid-Atlantic Ridge, and the Loihi Seamount) and incubated with (13)C-labeled bicarbonate. Seafloor-exposed basalts revealed incorporation of (13)C-label into organic matter over time, though the degree of incorporation was heterogeneous. The incorporation of (13)C into biomass was inconclusive in subseafloor basalts. Translating these measurements into potential rates of carbon fixation indicated that 0.1-10 nmol C g(-1) rock d(-1) could be fixed by seafloor-exposed rocks. When scaled to the global production of oceanic crust, this suggests carbon fixation rates of 10(9)-10(12) g C year(-1), which matches earlier predictions based on thermodynamic calculations. Functional gene analyses indicate that the Calvin cycle is likely the dominant biochemical mechanism for carbon fixation in basalt-hosted biofilms, although the reductive acetyl-CoA pathway and reverse TCA cycle likely play some role in net carbon fixation. These results provide empirical evidence for autotrophy in oceanic crust, suggesting that basalt-hosted autotrophy could be a significant contributor of organic matter in this remote and vast environment.
Collapse
Affiliation(s)
- Beth N. Orcutt
- Bigelow Laboratory for Ocean SciencesEast Boothbay, ME, USA
- University of Southern CaliforniaLos Angeles, CA, USA
| | | | - Daniel R. Rogers
- Biological Laboratories, Harvard UniversityCambridge, MA, USA
- Stonehill CollegeNorth Easton, MA, USA
| | | | - Raymond W. Lee
- School of Biological Sciences, Washington State UniversityPullman, WA, USA
| | | |
Collapse
|
27
|
Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. ISME JOURNAL 2015; 10:225-39. [PMID: 26046257 DOI: 10.1038/ismej.2015.81] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/05/2015] [Accepted: 04/09/2015] [Indexed: 11/08/2022]
Abstract
Microbial processes within deep-sea hydrothermal plumes affect ocean biogeochemistry on global scales. In rising hydrothermal plumes, a combination of microbial metabolism and particle formation processes initiate the transformation of reduced chemicals like hydrogen sulfide, hydrogen, methane, iron, manganese and ammonia that are abundant in hydrothermal vent fluids. Despite the biogeochemical importance of this rising portion of plumes, it is understudied in comparison to neutrally buoyant plumes. Here we use metagenomics and bioenergetic modeling to describe the abundance and genetic potential of microorganisms in relation to available electron donors in five different hydrothermal plumes and three associated background deep-sea waters from the Eastern Lau Spreading Center located in the Western Pacific Ocean. Three hundred and thirty one distinct genomic 'bins' were identified, comprising an estimated 951 genomes of archaea, bacteria, eukarya and viruses. A significant proportion of these genomes is from novel microorganisms and thus reveals insights into the energy metabolism of heretofore unknown microbial groups. Community-wide analyses of genes encoding enzymes that oxidize inorganic energy sources showed that sulfur oxidation was the most abundant and diverse chemolithotrophic microbial metabolism in the community. Genes for sulfur oxidation were commonly present in genomic bins that also contained genes for oxidation of hydrogen and methane, suggesting metabolic versatility in these microbial groups. The relative diversity and abundance of genes encoding hydrogen oxidation was moderate, whereas that of genes for methane and ammonia oxidation was low in comparison to sulfur oxidation. Bioenergetic-thermodynamic modeling supports the metagenomic analyses, showing that oxidation of elemental sulfur with oxygen is the most dominant catabolic reaction in the hydrothermal plumes. We conclude that the energy metabolism of microbial communities inhabiting rising hydrothermal plumes is dictated by the underlying plume chemistry, with a dominant role for sulfur-based chemolithoautotrophy.
Collapse
|
28
|
Kato S, Ikehata K, Shibuya T, Urabe T, Ohkuma M, Yamagishi A. Potential for biogeochemical cycling of sulfur, iron and carbon within massive sulfide deposits below the seafloor. Environ Microbiol 2014; 17:1817-35. [DOI: 10.1111/1462-2920.12648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/13/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Shingo Kato
- Department of Molecular Biology; Tokyo University of Pharmacy and Life Science; 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
- Japan Collection of Microorganisms; RIKEN BioResource Center; 3-1-1 Koyadai Tsukuba Ibaraki 305-0074 Japan
| | - Kei Ikehata
- Faculty of Life and Environmental Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8572 Japan
| | - Takazo Shibuya
- Submarine Resources Research Project (SRRP) & Precambrian Ecosystem Laboratory (PEL); Japan Agency for Marine-Earth Science and Technology (JAMSTEC); 2-15 Natsushima Yokosuka Kanagawa 237-0061 Japan
| | - Tetsuro Urabe
- Department of Earth and Planetary Science; University of Tokyo; Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms; RIKEN BioResource Center; 3-1-1 Koyadai Tsukuba Ibaraki 305-0074 Japan
| | - Akihiko Yamagishi
- Department of Molecular Biology; Tokyo University of Pharmacy and Life Science; 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
29
|
Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin. ISME JOURNAL 2014; 9:1434-45. [PMID: 25489728 DOI: 10.1038/ismej.2014.228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 11/09/2022]
Abstract
Within hydrothermal plumes, chemosynthetic processes and microbe-mineral interactions drive primary productivity in deep-ocean food webs and may influence transport of elements such as iron. However, the source of microorganisms in plumes and the factors governing how these communities assemble are poorly understood, in part due to lack of data from early stages of plume formation. In this study, we examined microbial community composition of rising hydrothermal plumes from five vent fields along the Eastern Lau Spreading Center. Seafloor and plume microbial communities were significantly dissimilar and shared few phylotypes. Plume communities were highly similar to each other with significant differences in community membership only between Kilo Moana and Mariner, two vents that are separated by extremes in depth, latitude and geochemistry. Systematic sampling of waters surrounding the vents revealed that species richness and phylogenetic diversity was typically highest near the vent orifice, implying mixing of microbial communities from the surrounding habitats. Above-plume background communities were primarily dominated by SAR11, SAR324 and MG-I Archaea, while SUP05, Sulfurovum, Sulfurimonas, SAR324 and Alteromonas were abundant in plume and near-bottom background communities. These results show that the ubiquitous water-column microorganisms populate plume communities, and that the composition of background seawater exerts primary influence on plume community composition, with secondary influence from geochemical and/or physical properties of vents. Many of these pervasive deep-ocean organisms are capable of lithotrophy, suggesting that they are poised to use inorganic electron donors encountered in hydrothermal plumes.
Collapse
|
30
|
Ferrera I, Banta AB, Reysenbach AL. Spatial patterns of Aquificales in deep-sea vents along the Eastern Lau Spreading Center (SW Pacific). Syst Appl Microbiol 2014; 37:442-8. [DOI: 10.1016/j.syapm.2014.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/28/2022]
|
31
|
Reeves EP, Yoshinaga MY, Pjevac P, Goldenstein NI, Peplies J, Meyerdierks A, Amann R, Bach W, Hinrichs KU. Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys. Environ Microbiol 2014; 16:3515-32. [DOI: 10.1111/1462-2920.12525] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/25/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Eoghan P. Reeves
- MARUM Center for Marine Environmental Sciences & Department of Geosciences; University of Bremen; Bremen D-28359 Germany
| | - Marcos Y. Yoshinaga
- MARUM Center for Marine Environmental Sciences & Department of Geosciences; University of Bremen; Bremen D-28359 Germany
| | - Petra Pjevac
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen D-28359 Germany
| | - Nadine I. Goldenstein
- MARUM Center for Marine Environmental Sciences & Department of Geosciences; University of Bremen; Bremen D-28359 Germany
| | - Jörg Peplies
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen D-28359 Germany
- Ribocon GmbH; Fahrenheitstrasse 1 Bremen D-28359 Germany
| | - Anke Meyerdierks
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen D-28359 Germany
| | - Rudolf Amann
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen D-28359 Germany
| | - Wolfgang Bach
- MARUM Center for Marine Environmental Sciences & Department of Geosciences; University of Bremen; Bremen D-28359 Germany
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences & Department of Geosciences; University of Bremen; Bremen D-28359 Germany
| |
Collapse
|
32
|
Extracellular enzyme activity and microbial diversity measured on seafloor exposed basalts from Loihi seamount indicate the importance of basalts to global biogeochemical cycling. Appl Environ Microbiol 2014; 80:4854-64. [PMID: 24907315 DOI: 10.1128/aem.01038-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Seafloor basalts are widely distributed and host diverse prokaryotic communities, but no data exist concerning the metabolic rates of the resident microbial communities. We present here potential extracellular enzyme activities of leucine aminopeptidase (LAP) and alkaline phosphatase (AP) measured on basalt samples from different locations on Loihi Seamount, HI, coupled with analysis of prokaryotic biomass and pyrosequencing of the bacterial 16S rRNA gene. The community maximum potential enzyme activity (Vmax) of LAP ranged from 0.47 to 0.90 nmol (g rock)(-1) h(-1); the Vmax for AP was 28 to 60 nmol (g rock)(-1) h(-1). The Km of LAP ranged from 26 to 33 μM, while the Km for AP was 2 to 7 μM. Bacterial communities on Loihi basalts were comprised primarily of Alpha-, Delta-, andGammaproteobacteria, Bacteroidetes, and Planctomycetes. The putative ability to produce LAP is evenly distributed across the most commonly detected bacterial orders, but the ability to produce AP is likely dominated by bacteria in the orders Xanthomonadales, Flavobacteriales, and Planctomycetales. The enzyme activities on Loihi basalts were compared to those of other marine environments that have been studied and were found to be similar in magnitude to those from continental shelf sediments and orders of magnitude higher than any measured in the water column, demonstrating that the potential for exposed basalts to transform organic matter is substantial. We propose that microbial communities on basaltic rock play a significant, quantifiable role in benthic biogeochemical processes.
Collapse
|
33
|
Abstract
Sulfur is an important element in sustaining microbial communities present in hydrothermal vents. Sulfur oxidation has been extensively studied due to its importance in chemosynthetic pathways in hydrothermal fields; however, less is known about sulfate reduction. Here, the metagenomes of hydrothermal chimneys located on the ultraslow-spreading Southwest Indian Ridge (SWIR) were pyrosequenced to elucidate the associated microbial sulfur cycle. A taxonomic summary of known genes revealed a few dominant bacteria that participated in the microbial sulfur cycle, particularly sulfate-reducing Deltaproteobacteria. The metagenomes studied contained highly abundant genes related to sulfur oxidation and reduction. Several carbon metabolic pathways, in particular the Calvin-Benson-Bassham pathway and the reductive tricarboxylic acid cycles for CO2 fixation, were identified in sulfur-oxidizing autotrophic bacteria. In contrast, highly abundant genes related to the oxidation of short-chain alkanes were grouped with sulfate-reducing bacteria, suggesting an important role for short-chain alkanes in the sulfur cycle. Furthermore, sulfur-oxidizing bacteria were associated with enrichment for genes involved in the denitrification pathway, while sulfate-reducing bacteria displayed enrichment for genes responsible for hydrogen utilization. In conclusion, this study provides insights regarding major microbial metabolic activities that are driven by the sulfur cycle in low-temperature hydrothermal chimneys present on an ultraslow midocean ridge. There have been limited studies on chimney sulfides located at ultraslow-spreading ridges. The analysis of metagenomes of hydrothermal chimneys on the ultraslow-spreading Southwest Indian Ridge suggests the presence of a microbial sulfur cycle. The sulfur cycle should be centralized within a microbial community that displays enrichment for sulfur metabolism-related genes. The present study elucidated a significant role of the microbial sulfur cycle in sustaining an entire microbial community in low-temperature hydrothermal chimneys on an ultraslow spreading midocean ridge, which has characteristics distinct from those of other types of hydrothermal fields.
Collapse
|