1
|
Liu Z, Shen Y, Jiang Y, Zhu H, Hu H, Kang Y, Chen M, Li Z. Variation and evolution analysis of SARS-CoV-2 using self-game sequence optimization. Front Microbiol 2024; 15:1485748. [PMID: 39588108 PMCID: PMC11586374 DOI: 10.3389/fmicb.2024.1485748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction The evolution of SARS-CoV-2 has precipitated the emergence of new mutant strains, some exhibiting enhanced transmissibility and immune evasion capabilities, thus escalating the infection risk and diminishing vaccine efficacy. Given the continuous impact of SARS-CoV-2 mutations on global public health, the economy, and society, a profound comprehension of potential variations is crucial to effectively mitigate the impact of viral evolution. Yet, this task still faces considerable challenges. Methods This study introduces DARSEP, a method based on Deep learning Associates with Reinforcement learning for SARS-CoV-2 Evolution Prediction, combined with self-game sequence optimization and RetNet-based model. Results DARSEP accurately predicts evolutionary sequences and investigates the virus's evolutionary trajectory. It filters spike protein sequences with optimal fitness values from an extensive mutation space, selectively identifies those with a higher likelihood of evading immune detection, and devises a superior evolutionary analysis model for SARS-CoV-2 spike protein sequences. Comprehensive downstream task evaluations corroborate the model's efficacy in predicting potential mutation sites, elucidating SARS-CoV-2's evolutionary direction, and analyzing the development trends of Omicron variant strains through semantic changes. Conclusion Overall, DARSEP enriches our understanding of the dynamic evolution of SARS-CoV-2 and provides robust support for addressing present and future epidemic challenges.
Collapse
Affiliation(s)
- Ziyu Liu
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang, China
| | - Yi Shen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunliang Jiang
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hancan Zhu
- School of Mathematics, Physics and Information, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hailong Hu
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang, China
| | - Yanlei Kang
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong Li
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Amábile-Cuevas CF, Lund-Zaina S. Non-Canonical Aspects of Antibiotics and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:565. [PMID: 38927231 PMCID: PMC11200725 DOI: 10.3390/antibiotics13060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The understanding of antibiotic resistance, one of the major health threats of our time, is mostly based on dated and incomplete notions, especially in clinical contexts. The "canonical" mechanisms of action and pharmacodynamics of antibiotics, as well as the methods used to assess their activity upon bacteria, have not changed in decades; the same applies to the definition, acquisition, selective pressures, and drivers of resistance. As a consequence, the strategies to improve antibiotic usage and overcome resistance have ultimately failed. This review gathers most of the "non-canonical" notions on antibiotics and resistance: from the alternative mechanisms of action of antibiotics and the limitations of susceptibility testing to the wide variety of selective pressures, lateral gene transfer mechanisms, ubiquity, and societal factors maintaining resistance. Only by having a "big picture" view of the problem can adequate strategies to harness resistance be devised. These strategies must be global, addressing the many aspects that drive the increasing prevalence of resistant bacteria aside from the clinical use of antibiotics.
Collapse
Affiliation(s)
| | - Sofia Lund-Zaina
- Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
3
|
Rosenberg E. Rapid acquisition of microorganisms and microbial genes can help explain punctuated evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.957708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The punctuated mode of evolution posits that evolution occurs in rare bursts of rapid evolutionary change followed by long periods of genetic stability (stasis). The accepted cause for the rapid changes in punctuated evolution is special ecological circumstances – selection forces brought about by changes in the environment. This article presents a complementary explanation for punctuated evolution by the rapid formation of genetic variants in animals and plants by the acquisition of microorganisms from the environment into microbiomes and microbial genes into host genomes by horizontal gene transfer. Several examples of major evolutionary events driven by microorganisms are discussed, including the formation of the first eukaryotic cell, the ability of some animals to digest cellulose and other plant cell-wall complex polysaccharides, dynamics of root system architecture, and the formation of placental mammals. These changes by cooperation were quantum leaps in the evolutionary development of complex bilolgical systems and can contribute to an understanding of the mechanisms underlying punctuated evolution.
Collapse
|
4
|
Ong KJ, Johnston J, Datar I, Sewalt V, Holmes D, Shatkin JA. Food safety considerations and research priorities for the cultured meat and seafood industry. Compr Rev Food Sci Food Saf 2021; 20:5421-5448. [PMID: 34633147 DOI: 10.1111/1541-4337.12853] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Cell-cultured meat and seafood offer a sustainable opportunity to meet the world's increasing demand for protein in a climate-changed world. A responsible, data-driven approach to assess and demonstrate safety of cell-cultured meat and seafood can support consumer acceptance and help fully realize the potential of these products. As an initial step toward a thorough demonstration of safety, this review identifies hazards that could be introduced during manufacturing, evaluates applicability of existing safety assessment approaches, and highlights research priorities that could support safe commercialization. Input was gathered from members of the cultured meat and seafood industry, researchers, regulators, and food safety experts. A series of workshops were held with 87 industry representatives and researchers to create a modular manufacturing process diagram, which served as a framework to identify potential chemical and biological hazards along the steps of the manufacturing process that could affect the safety of a final food product. Interviews and feedback on draft documents validated the process diagram and supported hazard identification and evaluation of applicable safety methods. Most hazards are not expected to be novel; therefore, safety assessment methods from a range of fields, such as conventional and novel foods, foods produced from biotechnology, pharmaceuticals, and so forth, are likely to be applicable. However, additional assessment of novel inputs or products with significant differences from existing foods may be necessary. Further research on the safety of the inputs and associated residues, potential for contamination, and development of standardized safety assessment approaches (particularly animal-free methods) is recommended.
Collapse
Affiliation(s)
| | | | - Isha Datar
- New Harvest Inc., Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
5
|
Manoharan-Basil SS, Laumen JGE, Van Dijck C, De Block T, De Baetselier I, Kenyon C. Evidence of Horizontal Gene Transfer of 50S Ribosomal Genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front Microbiol 2021; 12:683901. [PMID: 34177869 PMCID: PMC8222677 DOI: 10.3389/fmicb.2021.683901] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Horizontal gene transfer (HGT) in the penA and multidrug efflux pump genes has been shown to play a key role in the genesis of antimicrobial resistance in Neisseria gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes coding for the ribosomal proteins in the Neisseria genus. We did this in a collection of 11,659 isolates of Neisseria, including N. gonorrhoeae and commensal Neisseria species (N. cinerea, N. elongata, N. flavescens, N. mucosa, N. polysaccharea, and N. subflava). Comparative genomic analyses identified HGT events in three genes: rplB, rplD, and rplY coding for ribosomal proteins L2, L4 and L25, respectively. Recombination events were predicted in N. gonorrhoeae and N. cinerea, N. subflava, and N. lactamica were identified as likely progenitors. In total, 2,337, 2,355, and 1,127 isolates possessed L2, L4, and L25 HGT events. Strong associations were found between HGT in L2/L4 and the C2597T 23S rRNA mutation that confers reduced susceptibility to macrolides. Whilst previous studies have found evidence of HGT of entire genes coding for ribosomal proteins in other bacterial species, this is the first study to find evidence of HGT-mediated chimerization of ribosomal proteins.
Collapse
Affiliation(s)
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tessa De Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Kang Y, Yuan L, Shi X, Chu Y, He Z, Jia X, Lin Q, Ma Q, Wang J, Xiao J, Hu S, Gao Z, Chen F, Yu J. A fine-scale map of genome-wide recombination in divergent Escherichia coli population. Brief Bioinform 2020; 22:6034796. [PMID: 33319232 DOI: 10.1093/bib/bbaa335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
Recombination is one of the most important molecular mechanisms of prokaryotic genome evolution, but its exact roles are still in debate. Here we try to infer genome-wide recombination within a species, utilizing a dataset of 149 complete genomes of Escherichia coli from diverse animal hosts and geographic origins, including 45 in-house sequenced with the single-molecular real-time platform. Two major clades identified based on physiological, clinical and ecological characteristics form distinct genetic lineages based on scarcity of interclade gene exchanges. By defining gene-based syntenies for genomic segments within and between the two clades, we build a fine-scale recombination map for this representative global E. coli population. The map suggests extensive within-clade recombination that often breaks physical linkages among individual genes but seldom interrupts the structure of genome organizational frameworks as well as primary metabolic portfolios supported by the framework integrity, possibly due to strong natural selection for both physiological compatibility and ecological fitness. In contrast, the between-clade recombination declines drastically when phylogenetic distance increases to the extent where a 10-fold reduction can be observed, establishing a firm genetic barrier between clades. Our empirical data suggest a critical role for such recombination events in the early stage of speciation where recombination rate is associated with phylogenetic distance in addition to sequence and gene variations. The extensive intraclade recombination binds sister strains into a quasisexual group and optimizes genes or alleles to streamline physiological activities, whereas the sharply declined interclade recombination split the population into clades adaptive to divergent ecological niches.
Collapse
Affiliation(s)
- Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Shi
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, PR China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zilong He
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, 100191, PR China
| | - Xinmiao Jia
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qin Ma
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songnian Hu
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Zhancheng Gao
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, PR China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zou Y, Tu W, Wang H, Fang T. Anaerobic digestion reduces extracellular antibiotic resistance genes in waste activated sludge: The effects of temperature and degradation mechanisms. ENVIRONMENT INTERNATIONAL 2020; 143:105980. [PMID: 32711333 DOI: 10.1016/j.envint.2020.105980] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The fate of extracellular antibiotic resistance genes (eARGs) in waste activated sludge during anaerobic digestion (AD) remained unclear. The current study investigated the changes in seven eARGs (sulI, sulII, tet(A), tet(O), tet(X), blaTEM, and blaSHV) and intI1 during sludge AD at 35 °C and 55 °C. First, the extracellular DNA (eDNA) extraction method from sludge was optimized by adding sodium dodecyl sulfonate, and the eDNA recovery nearly doubled. Second, analysis via qPCR showed that eARGs ranged from 1.5% to 85.1% of the total ARGs, stressing the importance of eARGs in sludge. Besides, the abundances of all detected eARGs decreased following AD, where removal rates ranged from 22.8% to 93.9% at 35 °C and 52.7% to 96.6% at 55 °C. Further analysis showed that the removal rates of eARGs were negatively correlated with their initial abundances (P < 0.05). Last, the degradation characteristics of eARGs under AD conditions were determined. The first-order degradation rate constants for different eARGs did not vary significantly, indicating that gene sequences did not cause a removal distinction, and fitted Michaelis-Menten equation confirmed the higher eARGs degradation ability at the higher temperature. Overall, this study firstly uncovered the decrease of eARGs in sludge during AD treatment, and advanced the understanding of the positive effect of AD on eARGs dissemination control.
Collapse
Affiliation(s)
- Yina Zou
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Weiming Tu
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Sharma V, Mobeen F, Prakash T. In silico functional and evolutionary analyses of rubber oxygenases (RoxA and RoxB). 3 Biotech 2020; 10:376. [PMID: 32802718 PMCID: PMC7406594 DOI: 10.1007/s13205-020-02371-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/28/2020] [Indexed: 12/01/2022] Open
Abstract
The study presents an in silico identification of poly (cis-1,4-isoprene) cleaving enzymes, viz., RoxA and RoxB in bacteria, followed by their functional and evolutionary exploration using comparative genomics. The orthologs of these proteins were found to be restricted to Gram-negative beta-, gamma-, and delta-proteobacteria. Toward the evolutionary propagation, the RoxA and RoxB genes were predicted to have evolved via a common interclass route of horizontal gene transfer in the phylum Proteobacteria (delta → gamma → beta). Besides, recombination, mutation, and gene conversion were also detected in both the genes leading to their diversification. Further, the differential selective pressure is predicted to be operating on entire RoxA and RoxB genes such that the former is diversifying further, whereas the latter is evolving to reduce its genetic diversity. However, the structurally and functionally important sites/residues of these genes were found to be preventing changes implying their evolutionary conservation. Further, the phylogenetic analysis demonstrated a sharp split between the RoxA and RoxB orthologs and indicated the emergence of their variant as another type of putative rubber oxygenase (RoxC) in the class Gammaproteobacteria. A detailed in silico analysis of the signature motifs and residues of Rox sequences exhibited important differences as well as similarities among the RoxA, RoxB, and putative RoxC sequences. Although RoxC appears to be a hybrid of RoxA and RoxB, the signature motifs and residues of RoxC are more similar to RoxB.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| | - Fauzul Mobeen
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| |
Collapse
|
9
|
Woegerbauer M, Bellanger X, Merlin C. Cell-Free DNA: An Underestimated Source of Antibiotic Resistance Gene Dissemination at the Interface Between Human Activities and Downstream Environments in the Context of Wastewater Reuse. Front Microbiol 2020; 11:671. [PMID: 32390973 PMCID: PMC7192050 DOI: 10.3389/fmicb.2020.00671] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
The dissemination of antimicrobial resistance (AMR) is one of the biggest challenges faced by mankind in the public health domains. It is currently favored by a lack of confinement between waste disposal and food production in the environmental compartment. To date, much effort has been devoted into the elucidation and control of cell-associated propagation of AMR. However, substantial knowledge gaps remain on the contribution of cell-free DNA to promote horizontal transfers of resistance genes in wastewater and downstream environments. Cell free DNA, which covers free extracellular DNA (exDNA) as well as DNA encapsulated in vesicles or bacteriophages, can persist after disinfection and promote gene transfer in the absence of physical and temporal contact between a donor and recipient bacteria. The increasing water scarcity associated to climatic change requires developing innovative wastewater reuse practices and, concomitantly, a robust evaluation of AMR occurrence by implementing treatment technologies able to exert a stringent control on AMR propagation in downstream environments exposed to treated or non-treated wastewater. This necessarily implies understanding the fate of ARGs on various forms of cell-free DNA, especially during treatment processes that are permissive to their formation. We propose that comprehensive approaches, investigating both the occurrence of ARGs and their compartmentalization in different forms of cellular or cell-free associated DNA should be established for each treatment technology. This should then allow selecting and tuning technologies for their capacity to limit the propagation of ARGs in any of their forms.
Collapse
Affiliation(s)
- Markus Woegerbauer
- Department for Integrative Risk Assessment, Division for Risk Assessment, Data and Statistics, AGES – Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | | |
Collapse
|
10
|
Jung CM, Carr M, Blakeney GA, Indest KJ. Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain Gordonia sp. KTR9. J Ind Microbiol Biotechnol 2019; 46:1273-1281. [PMID: 31119503 DOI: 10.1007/s10295-019-02185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
Horizontal gene transfer (HGT) is the lateral movement of genetic material between organisms. The RDX explosive-degrading bacterium Gordonia sp. KTR9 has been shown previously to transfer the pGKT2 plasmid containing the RDX degradative genes (xplAB) by HGT. Overall, fitness costs to the transconjugants to maintain pGKT2 was determined through growth and survivability assessments. Rhodococcus jostii RHA1 transconjugants demonstrated a fitness cost while other strains showed minimal cost. Biogeochemical parameters that stimulate HGT of pGKT2 were evaluated in soil slurry mating experiments and the absence of nitrogen was found to increase HGT events three orders of magnitude. Experiments evaluating RDX degradation in flow-through soil columns containing mating pairs showed 20% greater degradation than columns with only the donor KTR9 strain. Understanding the factors governing HGT will benefit bioaugmentation efforts where beneficial bacteria with transferrable traits could be used to more efficiently degrade contaminants through gene transfer to native populations.
Collapse
Affiliation(s)
- Carina M Jung
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| | - Matthew Carr
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - G Alon Blakeney
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Karl J Indest
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| |
Collapse
|
11
|
Molina-Márquez A, Vila M, Vigara J, Borrero A, León R. The Bacterial Phytoene Desaturase-Encoding Gene ( CRTI) is an Efficient Selectable Marker for the Genetic Transformation of Eukaryotic Microalgae. Metabolites 2019; 9:E49. [PMID: 30871061 PMCID: PMC6468381 DOI: 10.3390/metabo9030049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022] Open
Abstract
Genetic manipulation shows great promise to further boost the productivity of microalgae-based compounds. However, selection of microalgal transformants depends mainly on the use of antibiotics, which have raised concerns about their potential impacts on human health and the environment. We propose the use of a synthetic phytoene desaturase-encoding gene (CRTIop) as a selectable marker and the bleaching herbicide norflurazon as a selective agent for the genetic transformation of microalgae. Bacterial phytoene desaturase (CRTI), which, unlike plant and algae phytoene desaturase (PDS), is not sensitive to norflurazon, catalyzes the conversion of the colorless carotenoid phytoene into lycopene. Although the expression of CRTI has been described to increase the carotenoid content in plant cells, its use as a selectable marker has never been testedin algae or in plants. In this study, a version of the CRTI gene adapted to the codon usage of Chlamydomonas has been synthesized, and its suitability to be used as selectable marker has been shown. The microalgae were transformed by the glass bead agitation method and selected in the presence of norflurazon. Average transformation efficiencies of 550 colonies µg-1 DNA were obtained. All the transformants tested had incorporated the CRTIop gene in their genomes and were able to synthesize colored carotenoids.
Collapse
Affiliation(s)
- Ana Molina-Márquez
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110 Huelva, Spain.
| | - Marta Vila
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110 Huelva, Spain.
- PhycoGenetics SL, C/Joan Miró Nº6, Aljaraque, 21110 Huelva, Spain.
| | - Javier Vigara
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110 Huelva, Spain.
| | - Ana Borrero
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110 Huelva, Spain.
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110 Huelva, Spain.
| |
Collapse
|
12
|
Collateral effects of microplastic pollution on aquatic microorganisms: An ecological perspective. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Addressing concerns over the fate of DNA derived from genetically modified food in the human body: A review. Food Chem Toxicol 2018; 124:423-430. [PMID: 30580028 DOI: 10.1016/j.fct.2018.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
Global commercialization of GM food and feed has stimulated much debate over the fate of GM food-derived DNA in the body of the consumer and as to whether it poses any health risks. We reviewed the fate of DNA derived from GM food in the human body. During mechanical/chemical processing, integrity of DNA is compromised. Food-DNA can survive harsh processing and digestive conditions with fragments up to a few hundred bp detectable in the gastrointestinal tract. Compelling evidence supported the presence of food (also GM food) derived DNA in the blood and tissues of human/animal. There is limited evidence of food-born DNA integrating into the genome of the consumer and of horizontal transfer of GM crop DNA into gut-bacteria. We find no evidence that transgenes in GM crop-derived foods have a greater propensity for uptake and integration than the host DNA of the plant-food. We found no evidence of plant-food DNA function/expression following transfer to either the gut-bacteria or somatic cells. Strong evidence suggested that plant-food-miRNAs can survive digestion, enter the body and affect gene expression patterns. We envisage that this multi-dimensional review will address questions regarding the fate of GM food-derived DNA and gene-regulatory-RNA in the human body.
Collapse
|
14
|
Yazdankhah S, Skjerve E, Wasteson Y. Antimicrobial resistance due to the content of potentially toxic metals in soil and fertilizing products. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2018; 29:1548248. [PMID: 32547355 PMCID: PMC7273308 DOI: 10.1080/16512235.2018.1548248] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022]
Abstract
Potentially toxic metals (PTM), along with PTM-resistant bacteria and PTM-resistance genes, may be introduced into soil and water through sewage systems, direct excretion, land application of biosolids (organic matter recycled from sewage, especially for use in agriculture) or animal manures as fertilizers, and irrigation with wastewater or treated effluents. In this review article, we have evaluated whether the content of arsenic (As), cadmium (Cd), chromium (CrIII + CrVI), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), and zinc (Zn) in soil and fertilizing products play a role in the development, spreading, and persistence of bacterial resistance to these elements, as well as cross- or co-resistance to antimicrobial agents. Several of the articles included in this review reported the development of resistance against PTM in both sewage and manure. Although PTM like As, Hg, Co, Cd, Pb, and Ni may be present in the fertilizing products, the concentration may be low since they occur due to pollution. In contrast, trace metals like Cu and Zn are actively added to animal feed in many countries. In several studies, several different bacterial species were shown to have a reduced susceptibility towards several PTM, simultaneously. However, neither the source of resistant bacteria nor the minimum co-selective concentration (MCC) for resistance induction are known. Co- or cross-resistance against highly important antimicrobials and critically important antimicrobials were identified in some of the bacterial isolates. This suggest that there is a genetic linkage or direct genetic causality between genetic determinants to these widely divergent antimicrobials, and metal resistance. Data regarding the routes and frequencies of transmission of AMR from bacteria of environmental origin to bacteria of animal and human origin were sparse. Due to the lack of such data, it is difficult to estimate the probability of development, transmission, and persistence of PTM resistance. Abbreviations: PTM: potentially toxic metals; AMR: antimicrobial resistance; ARG: antimicrobial resistance gene; MCC: minimum co-selective concentration; MDR: multidrug resistance; ARB: antimicrobial resistant bacteria; HGT: horizontal gene transfer; MIC: minimum inhibitory concentration.
Collapse
Affiliation(s)
- Siamak Yazdankhah
- Norwegian Institute of Public Health (NIPH), Norwegian Scientific Committee for Food and Environment, Oslo, Norway
| | - Eystein Skjerve
- Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Yngvild Wasteson
- Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
15
|
Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, Fick J, Flach CF, Gaze WH, Kuroda M, Kvint K, Laxminarayan R, Manaia CM, Nielsen KM, Plant L, Ploy MC, Segovia C, Simonet P, Smalla K, Snape J, Topp E, van Hengel AJ, Verner-Jeffreys DW, Virta MPJ, Wellington EM, Wernersson AS. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. ENVIRONMENT INTERNATIONAL 2018; 117:132-138. [PMID: 29747082 DOI: 10.1016/j.envint.2018.04.041] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/30/2018] [Accepted: 04/21/2018] [Indexed: 05/24/2023]
Abstract
There is growing understanding that the environment plays an important role both in the transmission of antibiotic resistant pathogens and in their evolution. Accordingly, researchers and stakeholders world-wide seek to further explore the mechanisms and drivers involved, quantify risks and identify suitable interventions. There is a clear value in establishing research needs and coordinating efforts within and across nations in order to best tackle this global challenge. At an international workshop in late September 2017, scientists from 14 countries with expertise on the environmental dimensions of antibiotic resistance gathered to define critical knowledge gaps. Four key areas were identified where research is urgently needed: 1) the relative contributions of different sources of antibiotics and antibiotic resistant bacteria into the environment; 2) the role of the environment, and particularly anthropogenic inputs, in the evolution of resistance; 3) the overall human and animal health impacts caused by exposure to environmental resistant bacteria; and 4) the efficacy and feasibility of different technological, social, economic and behavioral interventions to mitigate environmental antibiotic resistance.1.
Collapse
Affiliation(s)
- D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Guldhedsdsgatan 10A, SE-413 46, Sweden.
| | - Antoine Andremont
- INSERM, IAME, UMR 1137, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Johan Bengtsson-Palme
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Guldhedsdsgatan 10A, SE-413 46, Sweden.
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Ana Maria de Roda Husman
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80175, 3508 TD Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden.
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Guldhedsdsgatan 10A, SE-413 46, Sweden.
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK.
| | - Makoto Kuroda
- National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| | - Kristian Kvint
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Guldhedsdsgatan 10A, SE-413 46, Sweden.
| | | | - Celia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Kaare Magne Nielsen
- Department of Life Sciences and Health, Oslo and Akershus University College of Applied Sciences, 0130 Oslo, Norway.
| | - Laura Plant
- Swedish Research Council, Box 1035, SE-101 38 Stockholm, Sweden.
| | | | - Carlos Segovia
- Unidad funcional de Acreditación de Institutos de Investigación Sanitaria, Instituto de Salud Carlos III, Spain.
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Laboratory Ampère, UMR CNRS 5005, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Écully Cedex, France.
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany.
| | - Jason Snape
- Global Environment, AstraZeneca, Cheshire SK10 4TF, UK; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Edward Topp
- London Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Department of Biology, University of Western Ontario, London, ON N5V 4T3, Canada.
| | - Arjon J van Hengel
- Directorate Health, Directorate-General for Research and Innovation, European Commission, Brussels, Belgium.
| | - David W Verner-Jeffreys
- Cefas Weymouth Laboratory, Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset DT4 8UB, UK.
| | - Marko P J Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | | | - Ann-Sofie Wernersson
- Swedish Agency for Marine and Water Management, Box 11 930, SE-404 39 Gothenburg, Sweden.
| |
Collapse
|
16
|
Pepper IL, Brooks JP, Gerba CP. Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3949-3959. [PMID: 29505255 DOI: 10.1021/acs.est.7b04360] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recently, there has been increased concern about the presence of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG), in treated domestic wastewaters, animal manures and municipal biosolids. The concern is whether these additional sources of ARB contribute to antibiotic resistance levels in the environment, that is, "environmental antibiotic resistance." ARB and ARG occur naturally in soil and water, and it remains unclear whether the introduction of ARB in liquid and solid municipal and animal wastes via land application have any significant impact on the background levels of antibiotic resistance in the environment, and whether they affect human exposure to ARB. In this current review, we examine and re-evaluate the incidence of ARB and ARG resulting from land application activities, and offer a new perspective on the threat of antibiotic resistance to public health via exposure from nonclinical environmental sources. Based on inputs of ARBs and ARGs from land application, their fate in soil due to soil microbial ecology principles, and background indigenous levels of ARBs and ARGs already present in soil, we conclude that while antibiotic resistance levels in soil are increased temporally by land application of wastes, their persistence is not guaranteed and is in fact variable, and often contradictory based on application site. Furthermore, the application of wastes may not produce the most direct impact of ARGs and ARB on public health. Further investigation is still warranted in agriculture and public health, including continued scrutiny of antibiotic use in both sectors.
Collapse
Affiliation(s)
- Ian L Pepper
- Water and Energy Sustainable Technology Center (WEST) , The University of Arizona , 2959 W. Calle Agua Nueva , Tucson , Arizona 85745 , United States
| | - John P Brooks
- Genetics and Sustainable Agriculture Research Unit, USDA ARS , Mississippi State , Mississippi , 39762 , United States
| | - Charles P Gerba
- Water and Energy Sustainable Technology Center (WEST) , The University of Arizona , 2959 W. Calle Agua Nueva , Tucson , Arizona 85745 , United States
| |
Collapse
|
17
|
Abstract
Bacteria can overcome environmental challenges by killing nearby bacteria and incorporating their DNA.
Collapse
|
18
|
Bolotin E, Hershberg R. Horizontally Acquired Genes Are Often Shared between Closely Related Bacterial Species. Front Microbiol 2017; 8:1536. [PMID: 28890711 PMCID: PMC5575156 DOI: 10.3389/fmicb.2017.01536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 01/11/2023] Open
Abstract
Horizontal gene transfer (HGT) serves as an important source of innovation for bacterial species. We used a pangenome-based approach to identify genes that were horizontally acquired by four closely related bacterial species, belonging to the Enterobacteriaceae family. This enabled us to examine the extent to which such closely related species tend to share horizontally acquired genes. We find that a high percent of horizontally acquired genes are shared among these closely related species. Furthermore, we demonstrate that the extent of sharing of horizontally acquired genes among these four closely related species is predictive of the extent to which these genes will be found in additional bacterial species. Finally, we show that acquired genes shared by more species tend to be better optimized for expression within the genomes of their new hosts. Combined, our results demonstrate the existence of a large pool of frequently horizontally acquired genes that have distinct characteristics from horizontally acquired genes that are less frequently shared between species.
Collapse
Affiliation(s)
- Evgeni Bolotin
- Rachel and Menachem Mendelovitch Evolutionary Processes of Mutation and Natural Selection Research Laboratory, The Rappaport Family Institute for Research in the Medical Sciences, Department of Genetics and Developmental Biology, Technion-Israel Institute of TechnologyHaifa, Israel
| | - Ruth Hershberg
- Rachel and Menachem Mendelovitch Evolutionary Processes of Mutation and Natural Selection Research Laboratory, The Rappaport Family Institute for Research in the Medical Sciences, Department of Genetics and Developmental Biology, Technion-Israel Institute of TechnologyHaifa, Israel
| |
Collapse
|
19
|
Gennaro A, Gomes A, Herman L, Nogue F, Papadopoulou N, Tebbe C. Explanatory note on DNA sequence similarity searches in the context of the assessment of horizontal gene transfer from plants to microorganisms. ACTA ACUST UNITED AC 2017. [DOI: 10.2903/sp.efsa.2017.en-1273] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Venter HJ, Bøhn T. Interactions between Bt crops and aquatic ecosystems: A review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2891-2902. [PMID: 27530353 DOI: 10.1002/etc.3583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/13/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
The term Bt crops collectively refers to crops that have been genetically modified to include a gene (or genes) sourced from Bacillus thuringiensis (Bt) bacteria. These genes confer the ability to produce proteins toxic to certain insect pests. The interaction between Bt crops and adjacent aquatic ecosystems has received limited attention in research and risk assessment, despite the fact that some Bt crops have been in commercial use for 20 yr. Reports of effects on aquatic organisms such as Daphnia magna, Elliptio complanata, and Chironomus dilutus suggest that some aquatic species may be negatively affected, whereas other reports suggest that the decreased use of insecticides precipitated by Bt crops may benefit aquatic communities. The present study reviews the literature regarding entry routes and exposure pathways by which aquatic organisms may be exposed to Bt crop material, as well as feeding trials and field surveys that have investigated the effects of Bt-expressing plant material on such organisms. The present review also discusses how Bt crop development has moved past single-gene events, toward multigene stacked varieties that often contain herbicide resistance genes in addition to multiple Bt genes, and how their use (in conjunction with co-technology such as glyphosate/Roundup) may impact and interact with aquatic ecosystems. Lastly, suggestions for further research in this field are provided. Environ Toxicol Chem 2016;35:2891-2902. © 2016 SETAC.
Collapse
Affiliation(s)
- Hermoine J Venter
- Unit for Environmental Sciences and Management, North-West University Potchefstroom Campus, North West Province, South Africa
| | - Thomas Bøhn
- GenØk-Center for Biosafety, Tromsø, Troms, Norway
| |
Collapse
|
21
|
Qiu H, Cai G, Luo J, Bhattacharya D, Zhang N. Extensive horizontal gene transfers between plant pathogenic fungi. BMC Biol 2016; 14:41. [PMID: 27215567 PMCID: PMC4876562 DOI: 10.1186/s12915-016-0264-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/10/2016] [Indexed: 12/03/2022] Open
Abstract
Background Horizontal gene transfer (HGT) plays an important role in the adaptation of lineages to changing environments. The extent of this process in eukaryotes, however, remains controversial. The most well-known and dramatic form of HGT represents intracellular gene transfer from endosymbionts to the host nuclear genome. Such episodes of transfer typically involve hundreds of genes and are thought to be possible only in the case of endosymbiosis. Results Using a conservative phylogenomic approach, we analyzed genomic data from the fungal pathogen Magnaporthiopsis incrustans in the order Magnaporthales and identified two instances of exclusive sharing of HGT-derived gene markers between Magnaporthales and another lineage of plant-pathogenic fungi in the genus Colletotrichum. Surprisingly, inspection of these data demonstrated that HGT is far more widespread than anticipated, with more than 90 genes (including 33 highly supported candidates) being putatively transferred between Magnaporthales and Colletotrichum. These gene transfers are often physically linked in the genome and show more than two-fold functional enrichment in carbohydrate activating enzymes associated with plant cell wall degradation. Conclusions Our work provides a novel perspective on the scale of HGT between eukaryotes. These results challenge the notion that recognized HGT plays a minor role in the evolution of fungal lineages, and in the case we describe, is likely implicated in the evolution of plant pathogenesis. More generally, we suggest that the expanding database of closely related eukaryotic genomes and the application of novel analytic methods will further underline the significant impact of foreign gene acquisition across the tree of life. Major lifestyle transitions such as those accompanying the origin of extremophily or pathogenesis are expected to be ideal candidates for studying the mode and tempo of HGT. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0264-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Qiu
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, Foran Hall, 59 Dudley Road, New Brunswick, New Jersey, 08901, USA.
| | - Guohong Cai
- National Animal Disease Center, USDA, 1920 Dayton Ave, PO Box 70, Ames, Iowa, 50010, USA
| | - Jing Luo
- Department of Plant Biology and Pathology, Rutgers University, Foran Hall 201, 59 Dudley Road, New Brunswick, New Jersey, 08901, USA
| | - Debashish Bhattacharya
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, Foran Hall, 59 Dudley Road, New Brunswick, New Jersey, 08901, USA
| | - Ning Zhang
- Department of Plant Biology and Pathology, Rutgers University, Foran Hall 201, 59 Dudley Road, New Brunswick, New Jersey, 08901, USA. .,Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, New Jersey, 08901, USA.
| |
Collapse
|
22
|
Vos M, Hesselman MC, Te Beek TA, van Passel MWJ, Eyre-Walker A. Rates of Lateral Gene Transfer in Prokaryotes: High but Why? Trends Microbiol 2016; 23:598-605. [PMID: 26433693 DOI: 10.1016/j.tim.2015.07.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/01/2015] [Accepted: 07/20/2015] [Indexed: 12/12/2022]
Abstract
Lateral gene transfer is of fundamental importance to the evolution of prokaryote genomes and has important practical consequences, as evidenced by the rapid dissemination of antibiotic resistance and virulence determinants. Relatively little effort has so far been devoted to explicitly quantifying the rate at which accessory genes are taken up and lost, but it is possible that the combined rate of lateral gene transfer and gene loss is higher than that of point mutation. What evolutionary forces underlie the rate of lateral gene transfer are not well understood. We here use theory developed to explain the evolution of mutation rates to address this question and explore its consequences for the study of prokaryote evolution.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Penryn, UK.
| | | | - Tim A Te Beek
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
| | - Mark W J van Passel
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands; Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
23
|
The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. Microbiol Spectr 2016; 3:PLAS-0039-2014. [PMID: 26104702 DOI: 10.1128/microbiolspec.plas-0039-2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Firmicutes is one of the most abundant groups of prokaryotes in the microbiota of humans and animals and includes genera of outstanding relevance in biomedicine, health care, and industry. Antimicrobial drug resistance is now considered a global health security challenge of the 21st century, and this heterogeneous group of microorganisms represents a significant part of this public health issue.The presence of the same resistant genes in unrelated bacterial genera indicates a complex history of genetic interactions. Plasmids have largely contributed to the spread of resistance genes among Staphylococcus, Enterococcus, and Streptococcus species, also influencing the selection and ecological variation of specific populations. However, this information is fragmented and often omits species outside these genera. To date, the antimicrobial resistance problem has been analyzed under a "single centric" perspective ("gene tracking" or "vehicle centric" in "single host-single pathogen" systems) that has greatly delayed the understanding of gene and plasmid dynamics and their role in the evolution of bacterial communities.This work analyzes the dynamics of antimicrobial resistance genes using gene exchange networks; the role of plasmids in the emergence, dissemination, and maintenance of genes encoding resistance to antimicrobials (antibiotics, heavy metals, and biocides); and their influence on the genomic diversity of the main Gram-positive opportunistic pathogens under the light of evolutionary ecology. A revision of the approaches to categorize plasmids in this group of microorganisms is given using the 1,326 fully sequenced plasmids of Gram-positive bacteria available in the GenBank database at the time the article was written.
Collapse
|
24
|
Mao J, Lu T. Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation. Biophys J 2016; 110:258-68. [PMID: 26745428 PMCID: PMC4806214 DOI: 10.1016/j.bpj.2015.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/07/2015] [Accepted: 11/24/2015] [Indexed: 11/18/2022] Open
Abstract
Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general.
Collapse
Affiliation(s)
- Junwen Mao
- Department of Physics, Huzhou University, Zhejiang, China; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
25
|
Emerging resistance to aminoglycosides in lactic acid bacteria of food origin—an impending menace. Appl Microbiol Biotechnol 2015; 100:1137-1151. [DOI: 10.1007/s00253-015-7184-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
|
26
|
Woegerbauer M, Zeinzinger J, Gottsberger RA, Pascher K, Hufnagl P, Indra A, Fuchs R, Hofrichter J, Kopacka I, Korschineck I, Schleicher C, Schwarz M, Steinwider J, Springer B, Allerberger F, Nielsen KM, Fuchs K. Antibiotic resistance marker genes as environmental pollutants in GMO-pristine agricultural soils in Austria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:342-351. [PMID: 26232739 DOI: 10.1016/j.envpol.2015.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 06/04/2023]
Abstract
Antibiotic resistance genes may be considered as environmental pollutants if anthropogenic emission and manipulations increase their prevalence above usually occurring background levels. The prevalence of aph(3')-IIa/nptII and aph(3')-IIIa/nptIII - frequent marker genes in plant biotechnology conferring resistance to certain aminoglycosides - was determined in Austrian soils from 100 maize and potato fields not yet exposed to but eligible for GMO crop cultivation. Total soil DNA extracts were analysed by nptII/nptIII-specific TaqMan real time PCR. Of all fields 6% were positive for nptII (median: 150 copies/g soil; range: 31-856) and 85% for nptIII (1190 copies/g soil; 13-61600). The copy-number deduced prevalence of nptIII carriers was 14-fold higher compared to nptII. Of the cultivable kanamycin-resistant soil bacteria 1.8% (95% confidence interval: 0-3.3%) were positive for nptIII, none for nptII (0-0.8%). The nptII-load of the studied soils was low rendering nptII a typical candidate as environmental pollutant upon anthropogenic release into these ecosystems.
Collapse
Affiliation(s)
- Markus Woegerbauer
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna and Graz, Austria.
| | - Josef Zeinzinger
- Division for Public Health, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Richard Alexander Gottsberger
- Division for Food Security, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Kathrin Pascher
- Department of Integrative Biology and Biodiversity Research (DIB), Institute of Zoology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Hufnagl
- Division for Public Health, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Alexander Indra
- Division for Public Health, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Reinhard Fuchs
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna and Graz, Austria
| | - Johannes Hofrichter
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna and Graz, Austria
| | - Ian Kopacka
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna and Graz, Austria
| | | | - Corina Schleicher
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna and Graz, Austria
| | - Michael Schwarz
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna and Graz, Austria
| | - Johann Steinwider
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna and Graz, Austria
| | - Burkhard Springer
- Division for Public Health, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Franz Allerberger
- Division for Public Health, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna, Austria
| | - Kaare M Nielsen
- GenØk - Centre for Biosafety and Department of Pharmacy, University of Tromsø, Norway
| | - Klemens Fuchs
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit), Vienna and Graz, Austria
| |
Collapse
|
27
|
Jaimee G, Halami PM. High level aminoglycoside resistance in Enterococcus, Pediococcus and Lactobacillus species from farm animals and commercial meat products. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1086-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Abstract
Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.
Collapse
|
29
|
Kuipers OP. Back to nature: a revival of natural strain improvement methodologies. Microb Biotechnol 2014; 8:17-8. [PMID: 25488414 PMCID: PMC4321361 DOI: 10.1111/1751-7915.12232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Oscar P Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| |
Collapse
|
30
|
Ho MW. Horizontal transfer of GM DNA - why is almost no one looking? Open letter to Kaare Nielsen in his capacity as a member of the European Food Safety Authority GMO panel. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2014; 25:25919. [PMID: 25317115 PMCID: PMC4176668 DOI: 10.3402/mehd.v25.25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A culture of denial over the horizontal spread of genetically modified nucleic acids prevails in the face of direct evidence that it has occurred widely when appropriate methods and molecular probes are used for detection.
Collapse
Affiliation(s)
- Mae-Wan Ho
- Institute of Science in Society, London, UK
| |
Collapse
|
31
|
Garcia JR, Gerardo NM. The symbiont side of symbiosis: do microbes really benefit? Front Microbiol 2014; 5:510. [PMID: 25309530 PMCID: PMC4176458 DOI: 10.3389/fmicb.2014.00510] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022] Open
Abstract
Microbial associations are integral to all eukaryotes. Mutualism, the interaction of two species for the benefit of both, is an important aspect of microbial associations, with evidence that multicellular organisms in particular benefit from microbes. However, the microbe’s perspective has largely been ignored, and it is unknown whether most microbial symbionts benefit from their associations with hosts. It has been presumed that microbial symbionts receive host-derived nutrients or a competition-free environment with reduced predation, but there have been few empirical tests, or even critical assessments, of these assumptions. We evaluate these hypotheses based on available evidence, which indicate reduced competition and predation are not universal benefits for symbionts. Some symbionts do receive nutrients from their host, but this has not always been linked to a corresponding increase in symbiont fitness. We recommend experiments to test symbiont fitness using current experimental systems of symbiosis and detail considerations for other systems. Incorporating symbiont fitness into symbiosis research will provide insight into the evolution of mutualistic interactions and cooperation in general.
Collapse
Affiliation(s)
- Justine R Garcia
- Gerardo Lab, Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA USA
| | - Nicole M Gerardo
- Gerardo Lab, Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA USA
| |
Collapse
|
32
|
Midtvedt T. Antibiotic resistance and genetically modified plants. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2014; 25:25918. [PMID: 25317116 PMCID: PMC4176670 DOI: 10.3402/mehd.v25.25918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
33
|
Overballe-Petersen S, Willerslev E. Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction. Bioessays 2014; 36:1005-10. [PMID: 25143190 PMCID: PMC4255686 DOI: 10.1002/bies.201400035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction.
Collapse
|
34
|
Why genetically modified food need reconsideration before consumption? J Family Med Prim Care 2014; 3:188-90. [PMID: 25374850 PMCID: PMC4209668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|