1
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi MKK, Tavolara T, Gower A, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins KL, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. PLoS Pathog 2024; 20:e1011915. [PMID: 38861581 PMCID: PMC11195971 DOI: 10.1371/journal.ppat.1011915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/24/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Bulent Yener
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Deniz Koyuncu
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Metin N. Gurcan
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - MK Khalid Niazi
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Thomas Tavolara
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Adam Gower
- Clinical and Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | - Denise Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Emily McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Melanie L. Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Aubrey Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Anas Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Philipe A. Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
2
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi M, Tavolara T, Gower AC, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins K, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572738. [PMID: 38187647 PMCID: PMC10769337 DOI: 10.1101/2023.12.21.572738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- D M Gatti
- The Jackson Laboratory, Bar Harbor, ME
| | - A L Tyler
- The Jackson Laboratory, Bar Harbor, ME
| | | | | | - B Yener
- Rensselaer Polytechnic Institute, Troy, NY
| | - D Koyuncu
- Rensselaer Polytechnic Institute, Troy, NY
| | - M N Gurcan
- Wake Forest University School of Medicine, Winston Salem, NC
| | - Mkk Niazi
- Wake Forest University School of Medicine, Winston Salem, NC
| | - T Tavolara
- Wake Forest University School of Medicine, Winston Salem, NC
| | - A C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA
| | - D Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - E McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - M L Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, TX
| | - P A Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - S L Kurtz
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - K Elkins
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - I Kramnik
- NIEDL, Boston University, Boston, MA
| | - G Beamer
- Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
3
|
Ahmed M, Thirunavukkarasu S, Rosa BA, Thomas KA, Das S, Rangel-Moreno J, Lu L, Mehra S, Mbandi SK, Thackray LB, Diamond MS, Murphy KM, Means T, Martin J, Kaushal D, Scriba TJ, Mitreva M, Khader SA. Immune correlates of tuberculosis disease and risk translate across species. Sci Transl Med 2020; 12:eaay0233. [PMID: 31996462 PMCID: PMC7354419 DOI: 10.1126/scitranslmed.aay0233] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/29/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
One quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Although most infected individuals successfully control or clear the infection, some individuals will progress to TB disease. Immune correlates identified using animal models are not always effectively translated to human TB, thus resulting in a slow pace of translational discoveries from animal models to human TB for many platforms including vaccines, therapeutics, biomarkers, and diagnostic discovery. Therefore, it is critical to improve our poor understanding of immune correlates of disease and protection that are shared across animal TB models and human TB. In this study, we have provided an in-depth identification of the conserved and diversified gene/immune pathways in TB models of nonhuman primate and diversity outbred mouse and human TB. Our results show that prominent differentially expressed genes/pathways induced during TB disease progression are conserved in genetically diverse mice, macaques, and humans. In addition, using gene-deficient inbred mouse models, we have addressed the functional role of individual genes comprising the gene signature of disease progression seen in humans with Mtb infection. We show that genes representing specific immune pathways can be protective, detrimental, or redundant in controlling Mtb infection and translate into identifying immune pathways that mediate TB immunopathology in humans. Together, our cross-species findings provide insights into modeling TB disease and the immunological basis of TB disease progression.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Bruce A Rosa
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kimberly A Thomas
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14624, USA
| | - Lan Lu
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Smriti Mehra
- Department of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Larissa B Thackray
- Department of Medicine, Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Medicine, Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Terry Means
- Autoimmunity Cluster, Immunology & Inflammation Therapeutic Area, Sanofi, Cambridge, MA 02139, USA
| | - John Martin
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63110, USA.
- Department of Medicine, Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Gene expression models based on a reference laboratory strain are poor predictors of Mycobacterium tuberculosis complex transcriptional diversity. Sci Rep 2018; 8:3813. [PMID: 29491462 PMCID: PMC5830583 DOI: 10.1038/s41598-018-22237-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Every year, species of the Mycobacterium tuberculosis complex (MTBC) kill more people than any other infectious disease caused by a single agent. As a consequence of its global distribution and parallel evolution with the human host the bacteria is not genetically homogeneous. The observed genetic heterogeneity has relevance at different phenotypic levels, from gene expression to epidemiological dynamics. However, current systems biology datasets have focused on the laboratory reference strain H37Rv. By using large expression datasets testing the role of almost two hundred transcription factors, we have constructed computational models to grab the expression dynamics of Mycobacterium tuberculosis H37Rv genes. However, we have found that many of those transcription factors are deleted or likely dysfunctional across strains of the MTBC. As a result, we failed to predict expression changes in strains with a different genetic background when compared with experimental data. These results highlight the importance of designing systems biology approaches that take into account the genetic diversity of tubercle bacilli, or any other pathogen, if we want to identify universal targets for vaccines, diagnostics and treatments.
Collapse
|
5
|
Fonseca KL, Rodrigues PNS, Olsson IAS, Saraiva M. Experimental study of tuberculosis: From animal models to complex cell systems and organoids. PLoS Pathog 2017; 13:e1006421. [PMID: 28817682 PMCID: PMC5560521 DOI: 10.1371/journal.ppat.1006421] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is a devastating disease to mankind that has killed more people than any other infectious disease. Despite many efforts and successes from the scientific and health communities, the prospect of TB elimination remains distant. On the one hand, sustainable public health programs with affordable and broad implementation of anti-TB measures are needed. On the other hand, achieving TB elimination requires critical advances in three areas: vaccination, diagnosis, and treatment. It is also well accepted that succeeding in advancing these areas requires a deeper knowledge of host—pathogen interactions during infection, and for that, better experimental models are needed. Here, we review the potential and limitations of different experimental approaches used in TB research, focusing on animal and human-based cell culture models. We highlight the most recent advances in developing in vitro 3D models and introduce the potential of lung organoids as a new tool to study Mycobacterium tuberculosis infection. Tuberculosis (TB) is the number 1 killer in the world due to a bacterial infection. The study of this disease through clinical and epidemiological data and through the use of different experimental models has provided important knowledge on the role of the immune response generated during infection. This is critical for the development of novel vaccines and therapeutic strategies. However, in spite of the advances made, it is well accepted that better models are needed to study TB. This review discusses the different models used to study TB, highlighting the advantages and disadvantages of the available animal and cellular models and introducing recently developed state-of-the-art approaches based on human-based cell culture systems. These new advances are integrated in a road map for future study of TB, converging for the potential of lung organoids in TB research.
Collapse
Affiliation(s)
- Kaori L. Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pedro N. S. Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - I. Anna S. Olsson
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
6
|
Montané E, Barriocanal AM, Arellano AL, Valderrama A, Sanz Y, Perez-Alvarez N, Cardona P, Vilaplana C, Cardona PJ. Pilot, double-blind, randomized, placebo-controlled clinical trial of the supplement food Nyaditum resae® in adults with or without latent TB infection: Safety and immunogenicity. PLoS One 2017; 12:e0171294. [PMID: 28182700 PMCID: PMC5300153 DOI: 10.1371/journal.pone.0171294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Nyaditum resae® (NR) is a galenic preparation of heat-killed Mycobacterium manresensis, a new species of the fortuitum complex, that is found in drinkable water, and that has demonstrated to protect against the development of active TB in a murine experimental model that develop human-like lesions. METHODS Double-blind, randomized, placebo-controlled Clinical Trial (51 volunteers included). Two different doses of NR and a placebo were tested, the randomization was stratified by Latent Tuberculosis Infection (LTBI)-positive (n = 21) and LTBI-negative subjects (n = 30). Each subject received 14 drinkable daily doses for 2 weeks. RESULTS All patients completed the study. The 46.3% of the overall reported adverse events (AE) were considered related to the investigational treatment. None of them were severe (94% were mild and 6% moderate). No statistical differences were found when comparing the median number of AE between the placebo group and both treatment groups. The most common AE reported were gastrointestinal events, most frequently mild abdominal pain and increase in stool frequency. Regarding the immunogenic response, both LTBI-negative and LTBI-positive volunteers treated with NR experienced a global increase on the Treg response, showed both in the population of CD25+CD39-, mainly effector Treg cells, or CD25+CD39+ memory PPD-specific Treg cells. CONCLUSION This clinical trial demonstrates an excellent tolerability profile of NR linked to a significant increase in the population of specific effector and memory Tregs in the groups treated with NR in both LTBI-positive and negative subjects. NR shows a promising profile to be used to reduce the risk of active TB.
Collapse
Affiliation(s)
- Eva Montané
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Ana Maria Barriocanal
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Catalonia, Spain
- Fundació Institut Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Ana Lucía Arellano
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Angelica Valderrama
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Yolanda Sanz
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Nuria Perez-Alvarez
- Lluita Contra la Sida Foundation, Badalona, Catalonia, Spain
- Statistics and Operations Research Department, Universitat Politècnica de Catalunya- BarcelonaTech, Barcelona, Catalonia, Spain
| | - Paula Cardona
- Unitat de Tuberculosi Experimental, Universitat Autònoma de Barcelona, CIBERES, Fundació Institut Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Cristina Vilaplana
- Unitat de Tuberculosi Experimental, Universitat Autònoma de Barcelona, CIBERES, Fundació Institut Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Universitat Autònoma de Barcelona, CIBERES, Fundació Institut Germans Trias i Pujol, Badalona, Catalonia, Spain
| |
Collapse
|
7
|
Cardona PJ. The Progress of Therapeutic Vaccination with Regard to Tuberculosis. Front Microbiol 2016; 7:1536. [PMID: 27733848 PMCID: PMC5039189 DOI: 10.3389/fmicb.2016.01536] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
A major problem with tuberculosis (TB) control is the long duration of drug therapy-both for latent and for active TB. Therapeutic vaccination has been postulated to improve this situation, and to this end there are several candidates already in clinical phases of development. These candidates follow two main designs, namely bacilli-directed therapy based on inactivated -whole or -fragmented bacillus (Mycobacterium w and RUTI) or fusion proteins that integrate non-replicating bacilli -related antigens (H56 vaccine), and host-directed therapy to reduce the tissue destruction. The administration of inactivated Mycobacterium vaccae prevents the "Koch phenomenon" response, and oral administration of heat-killed Mycobacterium manresensis prevents excessive neutrophilic infiltration of the lesions. This review also tries to explain the success of Mycobacterium tuberculosis by reviewing its evolution from infection to disease, and highlights the lack of a definitive understanding of the natural history of TB pathology and the need to improve our knowledge on TB immunology and pathogenesis.
Collapse
Affiliation(s)
- Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Universitat Autònoma de Barcelona, CIBERES, Fundació Institut Germans Trias i Pujol Badalona, Spain
| |
Collapse
|
8
|
Prats C, Vilaplana C, Valls J, Marzo E, Cardona PJ, López D. Local Inflammation, Dissemination and Coalescence of Lesions Are Key for the Progression toward Active Tuberculosis: The Bubble Model. Front Microbiol 2016; 7:33. [PMID: 26870005 PMCID: PMC4736263 DOI: 10.3389/fmicb.2016.00033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/11/2016] [Indexed: 12/02/2022] Open
Abstract
The evolution of a tuberculosis (TB) infection toward active disease is driven by a combination of factors mostly related to the host response. The equilibrium between control of the bacillary load and the pathology generated is crucial as regards preventing the growth and proliferation of TB lesions. In addition, some experimental evidence suggests an important role of both local endogenous reinfection and the coalescence of neighboring lesions. Herein we propose a mathematical model that captures the essence of these factors by defining three hypotheses: (i) lesions grow logistically due to the inflammatory reaction; (ii) new lesions can appear as a result of extracellular bacilli or infected macrophages that escape from older lesions; and (iii) lesions can merge when they are close enough. This model was implemented in Matlab to simulate the dynamics of several lesions in a 3D space. It was also fitted to available microscopy data from infected C3HeB/FeJ mice, an animal model of active TB that reacts against Mycobacterium tuberculosis with an exaggerated inflammatory response. The results of the simulations show the dynamics observed experimentally, namely an initial increase in the number of lesions followed by fluctuations, and an exponential increase in the mean area of the lesions. In addition, further analysis of experimental and simulation results show a strong coincidence of the area distributions of lesions at day 21, thereby highlighting the consistency of the model. Three simulation series removing each one of the hypothesis corroborate their essential role in the dynamics observed. These results demonstrate that three local factors, namely an exaggerated inflammatory response, an endogenous reinfection, and a coalescence of lesions, are needed in order to progress toward active TB. The failure of one of these factors stops induction of the disease. This mathematical model may be used as a basis for developing strategies to stop the progression of infection toward disease in human lungs.
Collapse
Affiliation(s)
- Clara Prats
- Departament de Física i Enginyeria Nuclear, Escola Superior d'Agricultura de Barcelona, Universitat Politècnica de Catalunya - BarcelonaTech Castelldefels, Spain
| | - Cristina Vilaplana
- Unitat de Tuberculosi Experimental, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona Badalona, Spain
| | - Joaquim Valls
- Departament de Física i Enginyeria Nuclear, Escola Superior d'Agricultura de Barcelona, Universitat Politècnica de Catalunya - BarcelonaTech Castelldefels, Spain
| | - Elena Marzo
- Unitat de Tuberculosi Experimental, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona Badalona, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona Badalona, Spain
| | - Daniel López
- Departament de Física i Enginyeria Nuclear, Escola Superior d'Agricultura de Barcelona, Universitat Politècnica de Catalunya - BarcelonaTech Castelldefels, Spain
| |
Collapse
|
9
|
Cardona P, Marzo-Escartín E, Tapia G, Díaz J, García V, Varela I, Vilaplana C, Cardona PJ. Oral Administration of Heat-Killed Mycobacterium manresensis Delays Progression toward Active Tuberculosis in C3HeB/FeJ Mice. Front Microbiol 2016; 6:1482. [PMID: 26779140 PMCID: PMC4700139 DOI: 10.3389/fmicb.2015.01482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022] Open
Abstract
Low-dose tolerance using heat-killed mycobacteria has been tested as a means of stopping progression toward active tuberculosis (TB) lesions in a human-like murine model using C3HeB/FeJ mice. In the present study, we studied the effect of different treatment schedules with heat-killed non-tuberculous-mycobacteria (NTM) species when given orally, based on the hypothesis of generating oral tolerance. This study included M. manresensis, a new species belonging to the fortuitum group, present in drinking water. Oral treatment with M. manresensis for 2 weeks was able to induce a PPD-specific Tregs population, which has been related to a decrease in the neutrophilic infiltration found in TB lesions. Further mechanistic analysis using PPD-stimulated splenocytes links this 2-week treatment with heat-killed M. manresensis to IL-10 production and memory PPD-specific Tregs, and also to a weak PPD-specific global immune response stimulation, increasing IL-6, TNF, and IFN-γ production. In lungs, this treatment decreased the bacillary load, granulomatous infiltration and pro-inflammatory cytokines (TNF, IFN-γ, IL-6, and IL-17). Oral administration of M. manresensis during standard treatment for TB also significantly reduced the relapse of active TB after ending the treatment. Overall the data suggest that the use of heat-killed M. manresensis could be a new and promising tool for avoiding active TB induction and as adjunctive to TB treatment. This supports the usefulness of generating a new kind of protection based on a complex balanced immune response focused on both destroying the bacilli and including control of an excessive inflammatory response.
Collapse
Affiliation(s)
- Paula Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Elena Marzo-Escartín
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Gustavo Tapia
- Pathology Department, Universitat Autònoma de Barcelona, Hospital Germans Trias I Pujol Badalona, Spain
| | - Jorge Díaz
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Vanessa García
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Ismael Varela
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Cristina Vilaplana
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| |
Collapse
|
10
|
Niazi MKK, Dhulekar N, Schmidt D, Major S, Cooper R, Abeijon C, Gatti DM, Kramnik I, Yener B, Gurcan M, Beamer G. Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune-competent mice. Dis Model Mech 2015. [PMID: 26204894 PMCID: PMC4582107 DOI: 10.1242/dmm.020867] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary tuberculosis (TB) is caused by Mycobacterium tuberculosis in susceptible humans. Here, we infected Diversity Outbred (DO) mice with ∼100 bacilli by aerosol to model responses in a highly heterogeneous population. Following infection, ‘supersusceptible’, ‘susceptible’ and ‘resistant’ phenotypes emerged. TB disease (reduced survival, weight loss, high bacterial load) correlated strongly with neutrophils, neutrophil chemokines, tumor necrosis factor (TNF) and cell death. By contrast, immune cytokines were weak correlates of disease. We next applied statistical and machine learning approaches to our dataset of cytokines and chemokines from lungs and blood. Six molecules from the lung: TNF, CXCL1, CXCL2, CXCL5, interferon-γ (IFN-γ), interleukin 12 (IL-12); and two molecules from blood – IL-2 and TNF – were identified as being important by applying both statistical and machine learning methods. Using molecular features to generate tree classifiers, CXCL1, CXCL2 and CXCL5 distinguished four classes (supersusceptible, susceptible, resistant and non-infected) from each other with approximately 77% accuracy using completely independent experimental data. By contrast, models based on other molecules were less accurate. Low to no IFN-γ, IL-12, IL-2 and IL-10 successfully discriminated non-infected mice from infected mice but failed to discriminate disease status amongst supersusceptible, susceptible and resistant M.-tuberculosis-infected DO mice. Additional analyses identified CXCL1 as a promising peripheral biomarker of disease and of CXCL1 production in the lungs. From these results, we conclude that: (1) DO mice respond variably to M. tuberculosis infection and will be useful to identify pathways involving necrosis and neutrophils; (2) data from DO mice is suited for machine learning methods to build, validate and test models with independent data based solely on molecular biomarkers; (3) low levels of immunological cytokines best indicate a lack of exposure to M. tuberculosis but cannot distinguish infection from disease. Summary: Molecular biomarkers of tuberculosis are identified and used to classify disease status of Diversity Outbred mice that have been infected with Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Muhammad K K Niazi
- Department of Biomedical Informatics, The Ohio State University, Columbus, 43210 OH, USA
| | - Nimit Dhulekar
- Department of Computer Science and Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, 12810 NY, USA
| | - Diane Schmidt
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, 01536 MA, USA
| | - Samuel Major
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, 01536 MA, USA
| | - Rachel Cooper
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, 01536 MA, USA
| | - Claudia Abeijon
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, 01536 MA, USA
| | | | - Igor Kramnik
- Department of Medicine, Boston University School of Medicine, Boston, 02215 MA, USA
| | - Bulent Yener
- Department of Computer Science and Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, 12810 NY, USA
| | - Metin Gurcan
- Department of Biomedical Informatics, The Ohio State University, Columbus, 43210 OH, USA
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, 01536 MA, USA
| |
Collapse
|
11
|
Agusti A, Gea J, Faner R. Biomarkers, the control panel and personalized COPD medicine. Respirology 2015; 21:24-33. [DOI: 10.1111/resp.12585] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/04/2015] [Accepted: 05/23/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Alvar Agusti
- Thorax Institute; Hospital Clinic; University of Barcelona; Barcelona Spain
- Ciber Enfermedades Respiratorias (CIBERES); Barcelona Spain
- Thorax Institute; IDIBAPS; Barcelona Spain
| | - Joaquim Gea
- Ciber Enfermedades Respiratorias (CIBERES); Barcelona Spain
- Respiratory Department; Hospital del Mar-IMIM. DCEXS; University Pompeu Fabra; Barcelona Spain
| | - Rosa Faner
- Ciber Enfermedades Respiratorias (CIBERES); Barcelona Spain
- Thorax Institute; IDIBAPS; Barcelona Spain
| |
Collapse
|
12
|
Cardona PJ. The key role of exudative lesions and their encapsulation: lessons learned from the pathology of human pulmonary tuberculosis. Front Microbiol 2015; 6:612. [PMID: 26136741 PMCID: PMC4468931 DOI: 10.3389/fmicb.2015.00612] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022] Open
Abstract
A review of the pathology of human pulmonary TB cases at different stages of evolution in the pre-antibiotic era suggests that neutrophils play an instrumental role in the progression toward active TB. This progression is determined by the type of lesion generated. Thus, exudative lesions, in which neutrophils are the major cell type, are both triggered by and induce local high bacillary load, and tend to enlarge and progress toward liquefaction and cavitation. In contrast, proliferative lesions are triggered by low bacillary loads, mainly comprise epithelioid cells and fibroblasts and tend to fibrose, encapsulate and calcify, thus controlling the infection. Infection of the upper lobes is key to the progression toward active TB for two main reasons, namely poor breathing amplitude, which allows local bacillary accumulation, and the high mechanical stress to which the interlobular septae (which enclose secondary lobes) are submitted, which hampers their ability to encapsulate lesions. Overall, progressing factors can be defined as internal (exudative lesion, local bronchogenous dissemination, coalescence of lesions), with lympho-hematological dissemination playing a very limited role, or external (exogenous reinfection). Abrogating factors include control of the bacillary load and the local encapsulation process, as directed by interlobular septae. The age and extent of disease depend on the quality and speed with which lesions liquefy and disseminate bronchially, the volume of the slough, and the amount and distribution of the sloughing debris dispersed.
Collapse
Affiliation(s)
- Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias Badalona, Spain
| |
Collapse
|
13
|
López Hernández Y, Yero D, Pinos-Rodríguez JM, Gibert I. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens. Front Microbiol 2015; 6:38. [PMID: 25699030 PMCID: PMC4316775 DOI: 10.3389/fmicb.2015.00038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.
Collapse
Affiliation(s)
- Yamilé López Hernández
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Juan M Pinos-Rodríguez
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
14
|
Vilaplana C, Prats C, Marzo E, Barril C, Vegué M, Diaz J, Valls J, López D, Cardona PJ. To achieve an earlier IFN-γ response is not sufficient to control Mycobacterium tuberculosis infection in mice. PLoS One 2014; 9:e100830. [PMID: 24959669 PMCID: PMC4069189 DOI: 10.1371/journal.pone.0100830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/29/2014] [Indexed: 01/23/2023] Open
Abstract
The temporo-spatial relationship between the three organs (lung, spleen and lymph node) involved during the initial stages of Mycobacterium tuberculosis infection has been poorly studied. As such, we performed an experimental study to evaluate the bacillary load in each organ after aerosol or intravenous infection and developed a mathematical approach using the data obtained in order to extract conclusions. The results showed that higher bacillary doses result in an earlier IFN-γ response, that a certain bacillary load (BL) needs to be reached to trigger the IFN-γ response, and that control of the BL is not immediate after onset of the IFN-γ response, which might be a consequence of the spatial dimension. This study may have an important impact when it comes to designing new vaccine candidates as it suggests that triggering an earlier IFN-γ response might not guarantee good infection control, and therefore that additional properties should be considered for these candidates.
Collapse
Affiliation(s)
- Cristina Vilaplana
- Unitat de Tuberculosi Experimental (UTE), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERES, Badalona, Catalonia, Spain
| | - Clara Prats
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, C/Esteve Terradas, Castelldefels, Catalonia, Spain
| | - Elena Marzo
- Unitat de Tuberculosi Experimental (UTE), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERES, Badalona, Catalonia, Spain
| | - Carles Barril
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, C/Esteve Terradas, Castelldefels, Catalonia, Spain
| | - Marina Vegué
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, C/Esteve Terradas, Castelldefels, Catalonia, Spain
| | - Jorge Diaz
- Unitat de Tuberculosi Experimental (UTE), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERES, Badalona, Catalonia, Spain
| | - Joaquim Valls
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, C/Esteve Terradas, Castelldefels, Catalonia, Spain
| | - Daniel López
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, C/Esteve Terradas, Castelldefels, Catalonia, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental (UTE), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERES, Badalona, Catalonia, Spain
- * E-mail:
| |
Collapse
|