1
|
Chege M, Ferretti P, Webb S, Macharia RW, Obiero G, Kamau J, Alberts SC, Tung J, Akinyi MY, Archie EA. Eukaryotic composition across seasons and social groups in the gut microbiota of wild baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628920. [PMID: 39763902 PMCID: PMC11702614 DOI: 10.1101/2024.12.17.628920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Background Animals coexist with complex microbiota, including bacteria, viruses, and eukaryotes (e.g., fungi, protists, and helminths). While the composition of bacterial and viral components of animal microbiota are increasingly well understood, eukaryotic composition remains neglected. Here we characterized eukaryotic diversity in the microbiomes in wild baboons and tested the degree to which eukaryotic community composition was predicted by host social group membership, sex, age, and season of sample collection. Results We analyzed a total of 75 fecal samples collected between 2012 and 2014 from 73 wild baboons in the Amboseli ecosystem in Kenya. DNA from these samples was subjected to shotgun metagenomic sequencing, revealing members of the kingdoms Protista, Chromista, and Fungi in 90.7%, 46.7%, and 20.3% of samples, respectively. Social group membership explained 11.2% of the global diversity in gut eukaryotic species composition, but we did not detect statistically significant effect of season, host age, and host sex. Across samples, the most prevalent protists were Entamoeba coli (74.66% of samples), Enteromonas hominis (53.33% of samples), and Blastocystis subtype 3 (38.66% of samples), while the most prevalent fungi included Pichia manshurica (14.66% of samples), and Ogataea naganishii (6.66% of samples). Conclusions Protista, Chromista, and Fungi are common members of the gut microbiome of wild baboons. More work on eukaryotic members of primate gut microbiota is essential for primate health monitoring and management strategies.
Collapse
Affiliation(s)
- Mary Chege
- One Health Centre, Kenya Institute of Primate Research, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Pamela Ferretti
- Department of Medicine, Genetic Medicine Section, University of Chicago, Chicago, USA
| | - Shasta Webb
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Joseph Kamau
- One Health Centre, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Susan C. Alberts
- Departments of Biology and Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Departments of Biology and Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Mercy Y. Akinyi
- One Health Centre, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Chen X, Kaiser CM. AP profiling resolves co-translational folding pathway and chaperone interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555749. [PMID: 37693575 PMCID: PMC10491307 DOI: 10.1101/2023.09.01.555749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural proteins have evolved to fold robustly along specific pathways. Folding begins during synthesis, guided by interactions of the nascent protein with the ribosome and molecular chaperones. However, the timing and progression of co-translational folding remain largely elusive, in part because the process is difficult to measure in the natural environment of the cytosol. We developed a high-throughput method to quantify co-translational folding in live cells that we term Arrest Peptide profiling (AP profiling). We employed AP profiling to delineate co-translational folding for a set of GTPase domains with very similar structures, defining how topology shapes folding pathways. Genetic ablation of major nascent chain-binding chaperones resulted in localized folding changes that suggest how functional redundancies among chaperones are achieved by distinct interactions with the nascent protein. Collectively, our studies provide a window into cellular folding pathways of complex proteins and pave the way for systematic studies on nascent protein folding at unprecedented resolution and throughput.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Present address: Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Carlson HK, Youngblut MD, Redford SA, Williamson AJ, Coates JD. Sulfate adenylyl transferase kinetics and mechanisms of metabolic inhibitors of microbial sulfate respiration. ISME COMMUNICATIONS 2021; 1:67. [PMID: 37938298 PMCID: PMC9723548 DOI: 10.1038/s43705-021-00069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2023]
Abstract
Sulfate analog oxyanions that function as selective metabolic inhibitors of dissimilatory sulfate reducing microorganisms (SRM) are widely used in ecological studies and industrial applications. As such, it is important to understand the mode of action and mechanisms of tolerance or adaptation to these compounds. Different oxyanions vary widely in their inhibitory potency and mechanism of inhibition, but current evidence suggests that the sulfate adenylyl transferase/ATP sulfurylase (Sat) enzyme is an important target. We heterologously expressed and purified the Sat from the model SRM, Desulfovibrio alaskensis G20. With this enzyme we determined the turnover kinetics (kcat, KM) for alternative substrates (molybdate, selenate, arsenate, monofluorophosphate, and chromate) and inhibition constants (KI) for competitive inhibitors (perchlorate, chlorate, and nitrate). These measurements enable the first quantitative comparisons of these compounds as substrates or inhibitors of a purified Sat from a respiratory sulfate reducer. We compare predicted half-maximal inhibitory concentrations (IC50) based on Sat kinetics with measured IC50 values against D. alaskensis G20 growth and discuss our results in light of known mechanisms of sensitivity or resistance to oxyanions. This analysis helps with the interpretation of recent adaptive laboratory evolution studies and illustrates the value of interpreting gene-microbe-environment interactions through the lens of enzyme kinetics.
Collapse
Affiliation(s)
- Hans K Carlson
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94704, USA.
| | - Matthew D Youngblut
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Twist Bioscience, 681 Gateway Blvd, South San Francisco, CA, 94080, USA
| | - Steven A Redford
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
| | - Adam J Williamson
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- CENBG, Université de Bordeaux, CNRS-IN2P3/, 19 Chemin du Solarium, CS10120, 33175, Gradignan, France
| | - John D Coates
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Sokolova DS, Semenova EM, Grouzdev DS, Bidzhieva SK, Babich TL, Loiko NG, Ershov AP, Kadnikov VV, Beletsky AV, Mardanov AV, Zhaparov NS, Nazina TN. Sulfidogenic Microbial Communities of the Uzen High-Temperature Oil Field in Kazakhstan. Microorganisms 2021; 9:1818. [PMID: 34576714 PMCID: PMC8467725 DOI: 10.3390/microorganisms9091818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Application of seawater for secondary oil recovery stimulates the development of sulfidogenic bacteria in the oil field leading to microbially influenced corrosion of steel equipment, oil souring, and environmental issues. The aim of this work was to investigate potential sulfide producers in the high-temperature Uzen oil field (Republic of Kazakhstan) exploited with seawater flooding and the possibility of suppressing growth of sulfidogens in both planktonic and biofilm forms. Approaches used in the study included 16S rRNA and dsrAB gene sequencing, scanning electron microscopy, and culture-based techniques. Thermophilic hydrogenotrophic methanogens of the genus Methanothermococcus (phylum Euryarchaeota) predominated in water from the zone not affected by seawater flooding. Methanogens were accompanied by fermentative bacteria of the genera Thermovirga, Defliviitoga, Geotoga, and Thermosipho (phylum Thermotogae), which are potential thiosulfate- or/and sulfur-reducers. In the sulfate- and sulfide-rich formation water, the share of Desulfonauticus sulfate-reducing bacteria (SRB) increased. Thermodesulforhabdus, Thermodesulfobacterium, Desulfotomaculum, Desulfovibrio, and Desulfoglaeba were also detected. Mesophilic denitrifying bacteria of the genera Marinobacter, Halomonas, and Pelobacter inhabited the near-bottom zone of injection wells. Nitrate did not suppress sulfidogenesis in mesophilic enrichments because denitrifiers reduced nitrate to dinitrogen; however, thermophilic denitrifiers produced nitrite, an inhibitor of SRB. Enrichments and a pure culture Desulfovibrio alaskensis Kaz19 formed biofilms highly resistant to biocides. Our results suggest that seawater injection and temperature of the environment determine the composition and functional activity of prokaryotes in the Uzen oil field.
Collapse
Affiliation(s)
- Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | - Ekaterina M. Semenova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | | | - Salimat K. Bidzhieva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | - Tamara L. Babich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | - Nataliya G. Loiko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | - Alexey P. Ershov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Nurlan S. Zhaparov
- Branch of the Limited Liability Partnership “KazMunaiGas Engineering”, Aktau 130000, Kazakhstan;
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| |
Collapse
|
5
|
Fiévet A, Merrouch M, Brasseur G, Eve D, Biondi EG, Valette O, Pauleta SR, Dolla A, Dermoun Z, Burlat B, Aubert C. OrpR is a σ 54 -dependent activator using an iron-sulfur cluster for redox sensing in Desulfovibrio vulgaris Hildenborough. Mol Microbiol 2021; 116:231-244. [PMID: 33595838 PMCID: PMC8359166 DOI: 10.1111/mmi.14705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/15/2023]
Abstract
Enhancer binding proteins (EBPs) are key players of σ54 -regulation that control transcription in response to environmental signals. In the anaerobic microorganism Desulfovibrio vulgaris Hildenborough (DvH), orp operons have been previously shown to be coregulated by σ54 -RNA polymerase, the integration host factor IHF and a cognate EBP, OrpR. In this study, ChIP-seq experiments indicated that the OrpR regulon consists of only the two divergent orp operons. In vivo data revealed that (i) OrpR is absolutely required for orp operons transcription, (ii) under anaerobic conditions, OrpR binds on the two dedicated DNA binding sites and leads to high expression levels of the orp operons, (iii) increasing the redox potential of the medium leads to a drastic down-regulation of the orp operons expression. Moreover, combining functional and biophysical studies on the anaerobically purified OrpR leads us to propose that OrpR senses redox potential variations via a redox-sensitive [4Fe-4S]2+ cluster in the sensory PAS domain. Overall, the study herein presents the first characterization of a new Fe-S redox regulator belonging to the σ54 -dependent transcriptional regulator family probably advantageously selected by cells adapted to the anaerobic lifestyle to monitor redox stress conditions.
Collapse
Affiliation(s)
| | | | | | - Danaé Eve
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | | | | | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Dept. Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alain Dolla
- Aix Marseille Univ, Toulon Univ, CNRS, IRD, MIO, Marseille, France
| | | | | | | |
Collapse
|
6
|
Williamson AJ, Engelbrektson AL, Liu Y, Huang LL, Kumar A, Menon AR, Thieme J, Carlson HK, Coates JD. Tungstate Control of Microbial Sulfidogenesis and Souring of the Engineered Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:16119-16127. [PMID: 33253556 DOI: 10.1021/acs.est.0c04682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulfide accumulation in oil reservoir fluids (souring) from the activity of sulfate-reducing microorganisms (SRM) is of grave concern because of the associated health and facility failure risks. Here, we present an assessment of tungstate as a selective and potent inhibitor of SRM. Dose-response inhibitor experiments were conducted with a number of SRM isolates and enrichments at 30-80 °C and an increase in the effectiveness of tungstate treatment at higher temperatures was observed. To explore mixed inhibitor treatment modes, we tested synergy or antagonism between several inhibitors with tungstate, and found synergism between WO42- and NO2-, while additive effects were observed with ClO4- and NO3-. We also evaluated SRM inhibition by tungstate in advective upflow oil-sand-packed columns. Although 2 mM tungstate was initially sufficient to inhibit sulfidogenesis, subsequent temporal CaWO4 precipitation resulted in loss of the bioavailable inhibitor from solution and a concurrent increase in effluent sulfide. Mixing 4 mM sodium carbonate with the 2 mM tungstate was enough to promote tungstate solubility to reach inhibitory concentrations, without precipitation, and completely inhibit SRM activity. Overall, we demonstrate the effectiveness of tungstate as a potent SRM inhibitor, particularly at higher temperatures, and propose a novel carbonate-tungstate formulation for application to soured oil reservoirs.
Collapse
Affiliation(s)
- Adam J Williamson
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Anna L Engelbrektson
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Yi Liu
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Leah L Huang
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Aarti Kumar
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Aruna R Menon
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Juergen Thieme
- NSLS-II Brookhaven National Laboratory, Brookhaven, New York 11973, United States
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John D Coates
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| |
Collapse
|
7
|
Smith DA, Fike DA, Johnston DT, Bradley AS. Isotopic Fractionation Associated With Sulfate Import and Activation by Desulfovibrio vulgaris str. Hildenborough. Front Microbiol 2020; 11:529317. [PMID: 33072004 PMCID: PMC7531388 DOI: 10.3389/fmicb.2020.529317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
The use of stable isotopes to trace biogeochemical sulfur cycling relies on an understanding of how isotopic fractionation is imposed by metabolic networks. We investigated the effects of the first two enzymatic steps in the dissimilatory sulfate reduction (DSR) network - sulfate permease and sulfate adenylyl transferase (Sat) - on the sulfur and oxygen isotopic composition of residual sulfate. Mutant strains of Desulfovibrio vulgaris str. Hildenborough (DvH) with perturbed expression of these enzymes were grown in batch culture, with a subset grown in continuous culture, to examine the impact of these enzymatic steps on growth rate, cell specific sulfate reduction rate and isotopic fractionations in comparison to the wild type strain. Deletion of several permease genes resulted in only small (∼1‰) changes in sulfur isotope fractionation, a difference that approaches the uncertainties of the measurement. Mutants that perturb Sat expression show higher fractionations than the wild type strain. This increase probably relates to an increased material flux between sulfate and APS, allowing an increase in the expressed fractionation of rate-limiting APS reductase. This work illustrates that flux through the initial steps of the DSR pathway can affect the fractionation imposed by the overall pathway, even though these steps are themselves likely to impose only small fractionations.
Collapse
Affiliation(s)
- Derek A Smith
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - David A Fike
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - David T Johnston
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Alexander S Bradley
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
8
|
Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris. ISME JOURNAL 2020; 14:2862-2876. [PMID: 32934357 DOI: 10.1038/s41396-020-00753-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 11/08/2022]
Abstract
Elevated nitrate in the environment inhibits sulfate reduction by important microorganisms of sulfate-reducing bacteria (SRB). Several SRB may respire nitrate to survive under elevated nitrate, but how SRB that lack nitrate reductase survive to elevated nitrate remains elusive. To understand nitrate adaptation mechanisms, we evolved 12 populations of a model SRB (i.e., Desulfovibrio vulgaris Hildenborough, DvH) under elevated NaNO3 for 1000 generations, analyzed growth and acquired mutations, and linked their genotypes with phenotypes. Nitrate-evolved (EN) populations significantly (p < 0.05) increased nitrate tolerance, and whole-genome resequencing identified 119 new mutations in 44 genes of 12 EN populations, among which six functional gene groups were discovered with high mutation frequencies at the population level. We observed a high frequency of nonsense or frameshift mutations in nitrosative stress response genes (NSR: DVU2543, DVU2547, and DVU2548), nitrogen regulatory protein C family genes (NRC: DVU2394-2396, DVU2402, and DVU2405), and nitrate cluster (DVU0246-0249 and DVU0251). Mutagenesis analysis confirmed that loss-of-functions of NRC and NSR increased nitrate tolerance. Also, functional gene groups involved in fatty acid synthesis, iron regulation, and two-component system (LytR/LytS) known to be responsive to multiple stresses, had a high frequency of missense mutations. Mutations in those gene groups could increase nitrate tolerance through regulating energy metabolism, barring entry of nitrate into cells, altering cell membrane characteristics, or conferring growth advantages at the stationary phase. This study advances our understanding of nitrate tolerance mechanisms and has important implications for linking genotypes with phenotypes in DvH.
Collapse
|
9
|
Fan F, Zhang B, Liu J, Cai Q, Lin W, Chen B. Towards sulfide removal and sulfate reducing bacteria inhibition: Function of biosurfactants produced by indigenous isolated nitrate reducing bacteria. CHEMOSPHERE 2020; 238:124655. [PMID: 31472344 DOI: 10.1016/j.chemosphere.2019.124655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
The effectiveness of nitrate-mediated souring control highly depends on the interactions of sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). Biosurfactants produced by natural NRB are promising bio-agents for enhancing NRB competence towards SRB. However, the function of NRB-produced biosurfactants in NRB-SRB interactions remains unexplored due to the rarely successful isolation of natural biosurfactant-producing NRB. Hereby, biosurfactant-aided inhibitory control of SRB strain Desulfomicrobium escambiense ATCC 51164 by biosurfactant-producing NRB strain Pseudomonas stutzeri CX3, reported in our previous work, was investigated. Under non-sour conditions, insufficient nitrate injection resulted in limited SRB inhibition. Phospholipid fatty acid (PLFA) biomarkers traced the overall bacterial responses. Compositional PLFA patterns revealed biosurfactant addition benefitted both SRB and NRB towards stressful conditions. Under sour conditions, nitrite oxidation of sulfide proved to be the primary mechanism for sulfide removal. The subsequent elevation of redox potential and pH inhibited SRB activities. NRB-produced biosurfactants significantly enhanced SRB inhibition by NRB through more efficient sulfide removal and effective duration of nitrate in the microcosms. Biosurfactants specially produced by the NRB strain are for the first time reported to significantly strengthen SRB inhibition by NRB via reduced nitrate usage and prolonged effective duration of nitrate, which has encouraging potential in nitrate-dependent souring control.
Collapse
Affiliation(s)
- Fuqiang Fan
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Jiabin Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Qinhong Cai
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Weiyun Lin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
10
|
Anion transport as a target of adaption to perchlorate in sulfate-reducing communities. ISME JOURNAL 2019; 14:450-462. [PMID: 31659234 DOI: 10.1038/s41396-019-0540-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 11/09/2022]
Abstract
Inhibitors can be used to control the functionality of microbial communities by targeting specific metabolisms. The targeted inhibition of dissimilatory sulfate reduction limits the generation of toxic and corrosive hydrogen sulfide across several industrial systems. Sulfate-reducing microorganisms (SRM) are specifically inhibited by sulfate analogs, such as perchlorate. Previously, we showed pure culture SRM adaptation to perchlorate stress through mutation of the sulfate adenylyltransferase, a central enzyme in the sulfate reduction pathway. Here, we explored adaptation to perchlorate across unconstrained SRM on a community scale. We followed natural and bio-augmented sulfidogenic communities through serial transfers in increasing concentrations of perchlorate. Our results demonstrated that perchlorate stress altered community structure by initially selecting for innately more resistant strains. Isolation, whole-genome sequencing, and molecular biology techniques allowed us to define subsequent genetic mechanisms of adaptation that arose across the dominant adapting SRM. Changes in the regulation of divalent anion:sodium symporter family transporters led to increased intracellular sulfate to perchlorate ratios, allowing SRM to escape the effects of competitive inhibition. Thus, in contrast to pure-culture results, SRM in communities cope with perchlorate stress via changes in anion transport and its regulation. This highlights the value of probing evolutionary questions in an ecological framework, bridging the gap between ecology, evolution, genomics, and physiology.
Collapse
|
11
|
Lírio J, Giraldo PC, Amaral RL, Sarmento ACA, Costa APF, Gonçalves AK. Antifungal (oral and vaginal) therapy for recurrent vulvovaginal candidiasis: a systematic review protocol. BMJ Open 2019; 9:e027489. [PMID: 31122991 PMCID: PMC6537984 DOI: 10.1136/bmjopen-2018-027489] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Vulvovaginal candidiasis (VVC) is frequent in women worldwide and usually responds rapidly to topical or oral antifungal therapy. However, some women develop recurrent vulvovaginal candidiasis (RVVC), which is arbitrarily defined as four or more episodes every year. RVVC is a debilitating, long-term condition that can severely affect the quality of life of women. Most VVC is diagnosed and treated empirically and women frequently self-treat with over-the-counter medications that could contribute to an increase in the antifungal resistance. The effective treatment of RVVC has been a challenge in daily clinical practice. This review aims to assess the efficacy of antifungal agents administered orally or intravaginally for the treatment of RVVC, in order to define clinical practices that will impact on the reduction of the morbidity and antifungal resistance. METHODS AND ANALYSIS A comprehensive search of the following databases will be carried out: PubMed, Embase, Scopus, Web of Science, Scientific Electronic Library Online (SciELO), the Cochrane Central Register of Controlled Trials (CENTRAL), Biblioteca Virtual em Saúde (Virtual Health Library)/Biblioteca Regional de Medicina (Regional Library of Medicine) (BVS/BIREME), Cumulative Index to Nursing and Allied Health Literature (CINAHL) and in the clinical trials databases (www.trialscentral.org; www.controlled-trials.com; www.clinicaltrials.gov). The risk of bias will be assessed according to the Cochrane Risk of Bias tool. We will perform data synthesis using the Review Manager (RevMan) software V.5.2.3. To assess heterogeneity, we will compute the I2 statistic. ETHICS AND DISSEMINATION This study will be a review of published data and it is not necessary to obtain ethical approval. Findings of this systematic review will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER CRD42018093817.
Collapse
Affiliation(s)
- Juliana Lírio
- Obstetrics and Gynecology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paulo Cesar Giraldo
- Obstetrics and Gynecology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rose Luce Amaral
- Obstetrics and Gynecology, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | | | |
Collapse
|
12
|
Stoeva MK, Nalula G, Garcia N, Cheng Y, Engelbrektson AL, Carlson HK, Coates JD. Resistance and Resilience of Sulfidogenic Communities in the Face of the Specific Inhibitor Perchlorate. Front Microbiol 2019; 10:654. [PMID: 31001230 PMCID: PMC6454106 DOI: 10.3389/fmicb.2019.00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Hydrogen sulfide is a toxic and corrosive gas, produced by the activity of sulfate-reducing microorganisms (SRM). Owing to the environmental, economic and human-health consequences of sulfide, there is interest in developing specific inhibitors of SRM. Recent studies have identified perchlorate as a promising emerging inhibitor. The aim of this work is to quantitatively dissect the inhibitory dynamics of perchlorate. Sulfidogenic mixed continuous-flow systems were treated with perchlorate. SRM number, sulfide production and community structure were monitored pre-, during and post-treatment. The data generated was compared to a simple mathematical model, where SRM growth slows as a result of inhibition. The experimental data supports the interpretation that perchlorate largely acts to suppress SRM growth rates, rendering planktonic SRM increasingly susceptible to wash-out. Surface-attachment was identified as an important parameter preventing SRM wash-out and thus governing inhibitory dynamics. Our study confirmed the lesser depletion of surface-attached SRM as compared to planktonic SRM during perchlorate treatment. Indirect effects of perchlorate (bio-competitive exclusion of SRM by dissimilatory perchlorate-reducing bacteria, DPRB) were also assayed by amending reactors with DPRB. Indeed, low concentrations of perchlorate coupled with DRPB amendment can drive sulfide concentrations to zero. Further, inhibition in a complex community was compared to that in a pure culture, highlighting similarities and differences between the two scenarios. Finally, we quantified susceptibility to perchlorate across SRM in various culture conditions, showing that prediction of complex behavior in continuous systems from batch results is possible. This study thus provides an overview of the sensitivity of sulfidogenic communities to perchlorate, as well as mechanisms underlying these patterns.
Collapse
Affiliation(s)
- Magdalena K Stoeva
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States
| | - Gilbert Nalula
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Nicholas Garcia
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yiwei Cheng
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna L Engelbrektson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States
| | - Hans K Carlson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States.,Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
13
|
Stoeva MK, Coates JD. Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. MICROBIOLOGY-SGM 2018; 165:254-269. [PMID: 30556806 DOI: 10.1099/mic.0.000750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis - and potentially assimilatory sulfate pathways - relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.
Collapse
Affiliation(s)
- Magdalena K Stoeva
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
| | - John D Coates
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
| |
Collapse
|
14
|
Kennedy M, Ramsheh MY, Williams CML, Auty J, Haldar K, Abdulwhhab M, Brightling CE, Barer MR. Face mask sampling reveals antimicrobial resistance genes in exhaled aerosols from patients with chronic obstructive pulmonary disease and healthy volunteers. BMJ Open Respir Res 2018; 5:e000321. [PMID: 30271606 PMCID: PMC6157532 DOI: 10.1136/bmjresp-2018-000321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/13/2018] [Indexed: 11/30/2022] Open
Abstract
Introduction The degree to which bacteria in the human respiratory tract are aerosolised by individuals is not established. Building on our experience sampling bacteria exhaled by individuals with pulmonary tuberculosis using face masks, we hypothesised that patients with conditions frequently treated with antimicrobials, such as chronic obstructive pulmonary disease (COPD), might exhale significant numbers of bacteria carrying antimicrobial resistance (AMR) genes and that this may constitute a previously undefined risk for the transmission of AMR. Methods Fifteen-minute mask samples were taken from 13 patients with COPD (five paired with contemporaneous sputum samples) and 10 healthy controls. DNA was extracted from cell pellets derived from gelatine filters mounted within the mask. Quantitative PCR analyses directed to the AMR encoding genes: blaTEM (β-lactamase), ErmB (target methylation), mefA (macrolide efflux pump) and tetM (tetracycline ribosomal protection protein) and six additional targets were investigated. Positive signals above control samples were obtained for all the listed genes; however, background signals from the gelatine precluded analysis of the additional targets. Results 9 patients with COPD (69%), aerosolised cells containing, in order of prevalence, mefA, tetM, ErmB and blaTEM, while three healthy controls (30%) gave weak positive signals including all targets except blaTEM. Maximum estimated copy numbers of AMR genes aerosolised per minute were mefA: 3010, tetM: 486, ErmB: 92 and blaTEM: 24. The profile of positive signals found in sputum was not concordant with that in aerosol in multiple instances. Discussion We identified aerosolised AMR genes in patients repeatedly exposed to antimicrobials and in healthy volunteers at lower frequencies and levels. The discrepancies between paired samples add weight to the view that sputum content does not define aerosol content. Mask sampling is a simple approach yielding samples from all subjects and information distinct from sputum analysis. Our results raise the possibility that patient-generated aerosols may be a significant means of AMR dissemination that should be assessed further and that consideration be given to related control measures.
Collapse
Affiliation(s)
- Matthew Kennedy
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.,Department of Clinical Microbiology, University Hospitals of Leicester, Leicester, UK
| | - Mohammadali Y Ramsheh
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Caroline M L Williams
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Joss Auty
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Koirobi Haldar
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Mohamad Abdulwhhab
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Christopher E Brightling
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.,Department of Clinical Microbiology, University Hospitals of Leicester, Leicester, UK
| | - Michael R Barer
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.,Department of Clinical Microbiology, University Hospitals of Leicester, Leicester, UK
| |
Collapse
|
15
|
Carlson HK, Mullan MR, Mosqueda LA, Chen S, Arkin MR, Coates JD. High-Throughput Screening To Identify Potent and Specific Inhibitors of Microbial Sulfate Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7278-7285. [PMID: 28492331 DOI: 10.1021/acs.est.7b00686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive, and corrosive. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to identify potent and selective inhibitors of SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Zinc pyrithione is the most potent inhibitor of sulfidogenesis that we identified, and is several orders of magnitude more potent than commonly used industrial biocides. Both zinc and copper pyrithione are also moderately selective against SRM. The high-throughput (HT) approach we present can be readily adapted to target SRM in diverse environments and similar strategies could be used to quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant to efforts to engineer environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.
Collapse
Affiliation(s)
- Hans K Carlson
- Energy Biosciences Institute, University of California, Berkeley , Berkeley, California 94720, United States
- Physical Biosciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Mark R Mullan
- Energy Biosciences Institute, University of California, Berkeley , Berkeley, California 94720, United States
| | - Lorraine A Mosqueda
- Energy Biosciences Institute, University of California, Berkeley , Berkeley, California 94720, United States
| | - Steven Chen
- Small Molecule Discovery Center, University of California, San Francisco , San Francisco, California 94143, United States
| | - Michelle R Arkin
- Small Molecule Discovery Center, University of California, San Francisco , San Francisco, California 94143, United States
| | - John D Coates
- Energy Biosciences Institute, University of California, Berkeley , Berkeley, California 94720, United States
- Earth Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
16
|
Kashinskaya EN, Andree KB, Simonov EP, Solovyev MM. DNA extraction protocols may influence biodiversity detected in the intestinal microbiome: a case study from wild Prussian carp,Carassius gibelio. FEMS Microbiol Ecol 2016; 93:fiw240. [DOI: 10.1093/femsec/fiw240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/21/2016] [Accepted: 12/01/2016] [Indexed: 11/12/2022] Open
|
17
|
Ávila MP, Staehr PA, Barbosa FAR, Chartone-Souza E, Nascimento AMA. Seasonality of freshwater bacterioplankton diversity in two tropical shallow lakes from the Brazilian Atlantic Forest. FEMS Microbiol Ecol 2016; 93:fiw218. [DOI: 10.1093/femsec/fiw218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/12/2022] Open
|
18
|
Souza DT, Genuário DB, Silva FSP, Pansa CC, Kavamura VN, Moraes FC, Taketani RG, Melo IS. Analysis of bacterial composition in marine sponges reveals the influence of host phylogeny and environment. FEMS Microbiol Ecol 2016; 93:fiw204. [PMID: 27702764 DOI: 10.1093/femsec/fiw204] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/14/2016] [Accepted: 10/02/2016] [Indexed: 01/10/2023] Open
Abstract
Bacterial communities associated with sponges are influenced by environmental factors; however, some degree of genetic influence of the host on the microbiome is also expected. In this work, 16S rRNA gene amplicon sequencing revealed diverse bacterial phylotypes based on the phylogenies of three tropical sponges (Aplysina fulva, Aiolochroia crassa and Chondrosia collectrix). Despite their sympatric occurrence, the studied sponges presented different bacterial compositions that differed from those observed in seawater. However, lower dissimilarities in bacterial communities were observed within sponges from the same phylogenetic group. The relationships between operational taxonomic units (OTUs) recovered from the sponges and database sequences revealed associations among sequences from unrelated sponge species and sequences retrieved from diverse environmental samples. In addition, one Proteobacteria OTU retrieved from A. fulva was identical to sequences previously reported from A. fulva specimens collected along the Brazilian coast. Based on these results, we conclude that bacterial communities associated with marine sponges are shaped by host identity, while environmental conditions seem to be less important in shaping symbiont communities. This is the first study to assess bacterial communities associated with marine sponges in the remote St. Peter and St. Paul Archipelago using amplicon sequencing of the 16S rRNA gene.
Collapse
Affiliation(s)
- Danilo T Souza
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
- College of Agriculture 'Luiz de Queiroz', University of São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Diego B Genuário
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
| | - Fabio Sérgio P Silva
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
- College of Agriculture 'Luiz de Queiroz', University of São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Camila C Pansa
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
- College of Agriculture 'Luiz de Queiroz', University of São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Vanessa N Kavamura
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
| | - Fernando C Moraes
- Rio de Janeiro Botanical Garden Research Institute, 22460-030, Rio de Janeiro, RJ, Brazil
- National Museum, Federal University of Rio de Janeiro, 20940-040, Rio de Janeiro, RJ, Brazil
| | - Rodrigo G Taketani
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
| | - Itamar S Melo
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
| |
Collapse
|
19
|
Johnston SR, Boddy L, Weightman AJ. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 2016; 92:fiw179. [PMID: 27559028 DOI: 10.1093/femsec/fiw179] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 01/02/2023] Open
Abstract
The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research.
Collapse
Affiliation(s)
- Sarah R Johnston
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Lynne Boddy
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Andrew J Weightman
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
20
|
Baumgart BR, Wang F, Kwagh J, Storck C, Euler C, Fuller M, Simic D, Sharma S, Arnold JJ, Cameron CE, Van Vleet TR, Flint O, Bunch RT, Davies MH, Graziano MJ, Sanderson TP. Effects of BMS-986094, a Guanosine Nucleotide Analogue, on Mitochondrial DNA Synthesis and Function. Toxicol Sci 2016; 153:396-408. [PMID: 27466212 DOI: 10.1093/toxsci/kfw135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BMS-986094, the prodrug of a guanosine nucleotide analogue (2'-C-methylguanosine), was withdrawn from clinical trials due to serious safety issues. Nonclinical investigative studies were conducted as a follow up to evaluate the potential for BMS-986094-related mitochondrial-toxicity. In vitro, BMS-986094 was applied to human hepatoma cells (HepG2 and Huh-7) or cardiomyocytes (hiPSCM) up to 19 days to assess mitochondrial DNA content and specific gene expression. There were no mitochondrial DNA changes at concentrations ≤10 µM. Transcriptional effects, such as reductions in Huh-7 MT-ND1 and MT-ND5 mRNA content and hiPSCM MT-ND1, MT-COXII, and POLRMT protein expression levels, occurred only at cytotoxic concentrations (≥10 µM) suggesting these transcriptional effects were a consequence of the observed toxicity. Additionally, BMS-986094 has a selective weak affinity for inhibition of RNA polymerases as opposed to DNA polymerases. In vivo, BMS-986094 was given orally to cynomolgus monkeys for 3 weeks or 1 month at doses of 15 or 30 mg/kg/day. Samples of heart and kidney were collected for assessment of mitochondrial respiration, mitochondrial DNA content, and levels of high energy substrates. Although pronounced cardiac and renal toxicities were observed in some monkeys at 30 mg/kg/day treated for 3-4 weeks, there were no changes in mitochondrial DNA content or ATP/GTP levels. Collectively, these data suggest that BMS-986094 is not a direct mitochondrial toxicant.
Collapse
Affiliation(s)
- Bethany R Baumgart
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Faye Wang
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Jae Kwagh
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Chris Storck
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Catherine Euler
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Megan Fuller
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Damir Simic
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Suresh Sharma
- The Pennsylvania State University, 201 Althouse Laboratory, University Park, Pennsylvania 16802
| | - Jamie J Arnold
- The Pennsylvania State University, 201 Althouse Laboratory, University Park, Pennsylvania 16802
| | - Craig E Cameron
- The Pennsylvania State University, 201 Althouse Laboratory, University Park, Pennsylvania 16802
| | - Terry R Van Vleet
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Oliver Flint
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Roderick T Bunch
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Marc H Davies
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Michael J Graziano
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| | - Thomas P Sanderson
- *Bristol-Myers Squibb, 777 Scudders Mill Road, Princeton, New Jersey 08536
| |
Collapse
|
21
|
Burggraaf AM, Punt PJ, Ram AFJ. The unconventional secretion of PepN is independent of a functional autophagy machinery in the filamentous fungusAspergillus niger. FEMS Microbiol Lett 2016; 363:fnw152. [DOI: 10.1093/femsle/fnw152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 12/12/2022] Open
|
22
|
Al-Emran HM, Eibach D, Krumkamp R, Ali M, Baker S, Biggs HM, Bjerregaard-Andersen M, Breiman RF, Clemens JD, Crump JA, Cruz Espinoza LM, Deerin J, Dekker DM, Gassama Sow A, Hertz JT, Im J, Ibrango S, von Kalckreuth V, Kabore LP, Konings F, Løfberg SV, Meyer CG, Mintz ED, Montgomery JM, Olack B, Pak GD, Panzner U, Park SE, Razafindrabe JLT, Rabezanahary H, Rakotondrainiarivelo JP, Rakotozandrindrainy R, Raminosoa TM, Schütt-Gerowitt H, Sampo E, Soura AB, Tall A, Warren M, Wierzba TF, May J, Marks F. A Multicountry Molecular Analysis of Salmonella enterica Serovar Typhi With Reduced Susceptibility to Ciprofloxacin in Sub-Saharan Africa. Clin Infect Dis 2016; 62 Suppl 1:S42-6. [PMID: 26933020 PMCID: PMC4772832 DOI: 10.1093/cid/civ788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Salmonella enterica serovar Typhi is a predominant cause of bloodstream infections in sub-Saharan Africa (SSA). Increasing numbers of S. Typhi with resistance to ciprofloxacin have been reported from different parts of the world. However, data from SSA are limited. In this study, we aimed to measure the ciprofloxacin susceptibility of S. Typhi isolated from patients with febrile illness in SSA. METHODS Febrile patients from 9 sites within 6 countries in SSA with a body temperature of ≥38.0°C were enrolled in this study. Blood samples were obtained for bacterial culture, and Salmonella isolates were identified biochemically and confirmed by multiplex polymerase chain reaction (PCR). Antimicrobial susceptibility of all Salmonella isolates was performed by disk diffusion test, and minimum inhibitory concentrations (MICs) against ciprofloxacin were measured by Etest. All Salmonella isolates with reduced susceptibility to ciprofloxacin (MIC > 0.06 µg/mL) were screened for mutations in quinolone resistance-determining regions in target genes, and the presence of plasmid-mediated quinolone resistance (PMQR) genes was assessed by PCR. RESULTS A total of 8161 blood cultures were performed, and 100 (1.2%) S. Typhi, 2 (<0.1%) Salmonella enterica serovar Paratyphi A, and 27 (0.3%) nontyphoid Salmonella (NTS) were isolated. Multidrug-resistant S. Typhi were isolated in Kenya (79% [n = 38]) and Tanzania (89% [n = 8]) only. Reduced ciprofloxacin-susceptible (22% [n = 11]) S. Typhi were isolated only in Kenya. Among those 11 isolates, all had a Glu133Gly mutation in the gyrA gene combined with either a gyrA (Ser83Phe) or gyrB mutation (Ser464Phe). One Salmonella Paratyphi A isolate with reduced susceptibility to ciprofloxacin was found in Senegal, with 1 mutation in gyrA (Ser83Phe) and a second mutation in parC (Ser57Phe). Mutations in the parE gene and PMQR genes were not detected in any isolate. CONCLUSIONS Salmonella Typhi with reduced susceptibility to ciprofloxacin was not distributed homogenously throughout SSA. Its prevalence was very high in Kenya, and was not observed in other study countries. Continuous monitoring of antimicrobial susceptibility is required to follow the potential spread of antimicrobial-resistant isolates throughout SSA.
Collapse
Affiliation(s)
- Hassan M Al-Emran
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, partner site Hamburg-Borstel-Lübeck, Hamburg, Germany
| | - Daniel Eibach
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, partner site Hamburg-Borstel-Lübeck, Hamburg, Germany
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, partner site Hamburg-Borstel-Lübeck, Hamburg, Germany
| | - Mohammad Ali
- International Vaccine Institute, Seoul, Republic of Korea Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Stephen Baker
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Holly M Biggs
- Division of Infectious Diseases and International Health, Duke University Medical Center Duke Global Health Institute, Duke University, Durham, North Carolina
| | | | - Robert F Breiman
- Kenya Medical Research Institute-Centers for Disease Control and Prevention Kenya Collaboration, Nairobi Global Health Institute, Emory University, Atlanta, Georgia
| | - John D Clemens
- International Vaccine Institute, Seoul, Republic of Korea International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - John A Crump
- Division of Infectious Diseases and International Health, Duke University Medical Center Duke Global Health Institute, Duke University, Durham, North Carolina Kilimanjaro Christian Medical Centre, Moshi, Tanzania Centre for International Health, University of Otago, Dunedin, New Zealand
| | | | - Jessica Deerin
- International Vaccine Institute, Seoul, Republic of Korea
| | - Denise Myriam Dekker
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, partner site Hamburg-Borstel-Lübeck, Hamburg, Germany
| | - Amy Gassama Sow
- Institut Pasteur de Dakar, Université Cheikh Anta Diop de Dakar, Senegal
| | - Julian T Hertz
- Division of Infectious Diseases and International Health, Duke University Medical Center Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Justin Im
- International Vaccine Institute, Seoul, Republic of Korea
| | | | | | | | - Frank Konings
- International Vaccine Institute, Seoul, Republic of Korea
| | - Sandra Valborg Løfberg
- Bandim Health Project, Bissau, Guinea-Bissau Research Center for Vitamins and Vaccines, Copenhagen, Denmark
| | - Christian G Meyer
- Bernhard Nocht Institute for Tropical Medicine Institute of Tropical Medicine, Eberhard-Karls University Tübingen, Germany
| | - Eric D Mintz
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel M Montgomery
- Kenya Medical Research Institute-Centers for Disease Control and Prevention Kenya Collaboration, Nairobi
| | - Beatrice Olack
- Kenya Medical Research Institute-Centers for Disease Control and Prevention Kenya Collaboration, Nairobi
| | - Gi Deok Pak
- International Vaccine Institute, Seoul, Republic of Korea
| | - Ursula Panzner
- International Vaccine Institute, Seoul, Republic of Korea
| | - Se Eun Park
- International Vaccine Institute, Seoul, Republic of Korea
| | | | | | | | | | | | - Heidi Schütt-Gerowitt
- International Vaccine Institute, Seoul, Republic of Korea Institute of Medical Microbiology, University of Cologne, Germany
| | - Emmanuel Sampo
- Institute of Medical Microbiology, University of Cologne, Germany
| | | | - Adama Tall
- Institut Pasteur de Dakar, Université Cheikh Anta Diop de Dakar, Senegal
| | | | | | - Jürgen May
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, partner site Hamburg-Borstel-Lübeck, Hamburg, Germany
| | - Florian Marks
- International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|
23
|
Postma A, Slabbert E, Postma F, Jacobs K. Soil bacterial communities associated with natural and commercialCyclopiaspp. FEMS Microbiol Ecol 2016; 92:fiw016. [DOI: 10.1093/femsec/fiw016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2016] [Indexed: 12/16/2022] Open
|
24
|
Park AJ, Krieger JR, Khursigara CM. Survival proteomes: the emerging proteotype of antimicrobial resistance. FEMS Microbiol Rev 2016; 40:323-42. [PMID: 26790948 DOI: 10.1093/femsre/fuv051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance is one of the greatest challenges in modern medicine. Infectious diseases that have historically been eliminated with routine antibiotic therapy are now re-emerging as life threatening illnesses. A better understanding of the specific mechanisms that contribute to resistance are required to optimize the treatment of infectious microorganisms and limit the survival of recalcitrant populations. This challenging area of research is made more problematic by the observation that multiple, overlapping, and/or compensatory resistance mechanism are often present within a single bacterial species. High-resolution proteomics has emerged as an effective tool to study antimicrobial resistance as it allows for the quantitative investigation of multiple systems concurrently. Furthermore, the ability to examine extracellular mechanisms of resistance and important post-translational modifications make this research tool well suited for the challenge. This review discusses how proteomics has contributed to the understanding of antimicrobial resistance and focuses on advances afforded by the more recent development of technologies that produce quantitative high-resolution proteomic information. We discuss current strategies for studying resistance, including comparative analysis of resistant and susceptible strains and protein-based responses to antimicrobial challenge. Lastly, we suggest specific experimental approaches aimed at advancing our understanding of protein-based resistance mechanisms and maximizing therapeutic outcomes in the future.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
25
|
Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 2016; 363:fnw002. [PMID: 26755501 DOI: 10.1093/femsle/fnw002] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2016] [Indexed: 01/21/2023] Open
Abstract
The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors.
Collapse
Affiliation(s)
- Juliano Bertozzi Silva
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Zachary Storms
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
26
|
Sander K, Wilson CM, Rodriguez M, Klingeman DM, Rydzak T, Davison BH, Brown SD. Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:211. [PMID: 26692898 PMCID: PMC4676874 DOI: 10.1186/s13068-015-0394-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/24/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities, and growth inhibitions are industrial deployment impediments for commodity fuel production by this bacterium. Redox imbalance under certain conditions and in engineered strains may contribute to incomplete substrate utilization and may direct fermentation products to undesirable overflow metabolites. Towards a better understanding of redox metabolism in C. thermocellum, we established continuous growth conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen and hydrogen peroxide) which changed the fermentation redox potential. RESULTS The addition of methyl viologen to C. thermocellum DSM 1313 chemostat cultures caused an increase in ethanol and lactate yields. A lower fermenter redox potential was observed in response to methyl viologen exposure, which correlated with a decrease in cell yield and significant differential expression of 123 genes (log2 > 1.5 or log2 < -1.5, with a 5 % false discovery rate). Expression levels decreased in four main redox-active systems during methyl viologen exposure; the [NiFe] hydrogenase, sulfate transport and metabolism, ammonia assimilation (GS-GOGAT), and porphyrin/siroheme biosynthesis. Genes encoding sulfate transport and reduction and porphyrin/siroheme biosynthesis are co-located immediately downstream of a putative iscR regulatory gene, which may be a cis-regulatory element controlling expression of these genes. Other genes showing differential expression during methyl viologen exposure included transporters and transposases. CONCLUSIONS The differential expression results from this study support a role for C. thermocellum genes for sulfate transport/reduction, glutamate synthase-glutamine synthetase (the GS-GOGAT system), and porphyrin biosynthesis being involved in redox metabolism and homeostasis. This global profiling study provides gene targets for future studies to elucidate the relative contributions of prospective pathways for co-factor pool re-oxidation and C. thermocellum redox homeostasis.
Collapse
Affiliation(s)
- Kyle Sander
- />Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Charlotte M. Wilson
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Miguel Rodriguez
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Dawn M. Klingeman
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Thomas Rydzak
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Brian H. Davison
- />Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Steven D. Brown
- />Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
27
|
Ballesté-Delpierre C, Fàbrega A, Ferrer-Navarro M, Mathur R, Ghosh S, Vila J. Attenuation of in vitro host-pathogen interactions in quinolone-resistant Salmonella Typhi mutants. J Antimicrob Chemother 2015; 71:111-22. [PMID: 26446080 DOI: 10.1093/jac/dkv299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/22/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The relationship between quinolone resistance acquisition and invasion impairment has been studied in some Salmonella enterica serovars. However, little information has been reported regarding the invasive human-restricted pathogen Salmonella Typhi. The aim of this study was to investigate the molecular mechanisms of quinolone resistance acquisition and its impact on virulence in this serovar. METHODS Two antibiotic-resistant mutants (Ty_c1 and Ty_c2) were generated from a Salmonella Typhi clinical isolate (Ty_wt). The three strains were compared in terms of antimicrobial susceptibility, molecular mechanisms of resistance, gene expression of virulence-related factors, ability to invade eukaryotic cells (human epithelial cells and macrophages) and cytokine production. RESULTS Multidrug resistance in Ty_c2 was attributed to AcrAB/TolC overproduction, decreased OmpF (both mediated by the mar regulon) and decreased OmpC. The two mutants showed a gradually reduced expression of virulence-related genes (invA, hilA, hilD, fliC and fimA), correlating with decreased motility, reduced infection of HeLa cells and impaired uptake by and intracellular survival in human macrophages. Moreover, Ty_c2 also showed reduced tviA expression. Additionally, we revealed a significant reduction in TNF-α and IL-1β production and decreased NF-κB activation. CONCLUSIONS In this study, we provide an in-depth characterization of the molecular mechanisms of antibiotic resistance in the Salmonella Typhi serovar and evidence that acquisition of antimicrobial resistance is concomitantly detected with a loss of virulence (epithelial cell invasion, macrophage phagocytosis and cytokine production). We suggest that the low prevalence of clinical isolates of Salmonella Typhi highly resistant to ciprofloxacin is due to poor immunogenicity and impaired dissemination ability of these isolates.
Collapse
Affiliation(s)
- Clara Ballesté-Delpierre
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Anna Fàbrega
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Mario Ferrer-Navarro
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Ramkumar Mathur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Jordi Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| |
Collapse
|
28
|
Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium. J Bacteriol 2015; 197:3400-8. [PMID: 26283774 DOI: 10.1128/jb.00319-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness at low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. We discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. IMPORTANCE The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.
Collapse
|
29
|
Storesund JE, Erga SR, Ray JL, Thingstad TF, Sandaa RA. Top-down and bottom-up control on bacterial diversity in a western Norwegian deep-silled fjord. FEMS Microbiol Ecol 2015; 91:fiv076. [DOI: 10.1093/femsec/fiv076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2015] [Indexed: 11/14/2022] Open
|
30
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
31
|
Bundhoo MAZ, Mohee R, Hassan MA. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 157:20-48. [PMID: 25881150 DOI: 10.1016/j.jenvman.2015.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 05/24/2023]
Abstract
Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale.
Collapse
Affiliation(s)
- M A Zumar Bundhoo
- Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Mauritius.
| | | | - M Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
32
|
Quivey RG, Grayhack EJ, Faustoferri RC, Hubbard CJ, Baldeck JD, Wolf AS, MacGilvray ME, Rosalen PL, Scott-Anne K, Santiago B, Gopal S, Payne J, Marquis RE. Functional profiling in Streptococcus mutans: construction and examination of a genomic collection of gene deletion mutants. Mol Oral Microbiol 2015; 30:474-95. [PMID: 25973955 DOI: 10.1111/omi.12107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 12/17/2022]
Abstract
A collection of tagged deletion mutant strains was created in Streptococcus mutans UA159 to facilitate investigation of the aciduric capability of this oral pathogen. Gene-specific barcoded deletions were attempted in 1432 open reading frames (representing 73% of the genome), and resulted in the isolation of 1112 strains (56% coverage) carrying deletions in distinct non-essential genes. As S. mutans virulence is predicated upon the ability of the organism to survive an acidic pH environment, form biofilms on tooth surfaces, and out-compete other oral microflora, we assayed individual mutant strains for the relative fitness of the deletion strain, compared with the parent strain, under acidic and oxidative stress conditions, as well as for their ability to form biofilms in glucose- or sucrose-containing medium. Our studies revealed a total of 51 deletion strains with defects in both aciduricity and biofilm formation. We have also identified 49 strains whose gene deletion confers sensitivity to oxidative damage and deficiencies in biofilm formation. We demonstrate the ability to examine competitive fitness of mutant organisms using the barcode tags incorporated into each deletion strain to examine the representation of a particular strain in a population. Co-cultures of deletion strains were grown either in vitro in a chemostat to steady-state values of pH 7 and pH 5 or in vivo in an animal model for oral infection. Taken together, these data represent a mechanism for assessing the virulence capacity of this pathogenic microorganism and a resource for identifying future targets for drug intervention to promote healthy oral microflora.
Collapse
Affiliation(s)
- R G Quivey
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.,Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - E J Grayhack
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - R C Faustoferri
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - C J Hubbard
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - J D Baldeck
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - A S Wolf
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - M E MacGilvray
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - P L Rosalen
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - K Scott-Anne
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - B Santiago
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - S Gopal
- Department of Biological Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - J Payne
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - R E Marquis
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
33
|
Carlson HK, Stoeva MK, Justice NB, Sczesnak A, Mullan MR, Mosqueda LA, Kuehl JV, Deutschbauer AM, Arkin AP, Coates JD. Monofluorophosphate is a selective inhibitor of respiratory sulfate-reducing microorganisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3727-3736. [PMID: 25698072 DOI: 10.1021/es505843z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Despite the environmental and economic cost of microbial sulfidogenesis in industrial operations, few compounds are known as selective inhibitors of respiratory sulfate reducing microorganisms (SRM), and no study has systematically and quantitatively evaluated the selectivity and potency of SRM inhibitors. Using general, high-throughput assays to quantitatively evaluate inhibitor potency and selectivity in a model sulfate-reducing microbial ecosystem as well as inhibitor specificity for the sulfate reduction pathway in a model SRM, we screened a panel of inorganic oxyanions. We identified several SRM selective inhibitors including selenate, selenite, tellurate, tellurite, nitrate, nitrite, perchlorate, chlorate, monofluorophosphate, vanadate, molydate, and tungstate. Monofluorophosphate (MFP) was not known previously as a selective SRM inhibitor, but has promising characteristics including low toxicity to eukaryotic organisms, high stability at circumneutral pH, utility as an abiotic corrosion inhibitor, and low cost. MFP remains a potent inhibitor of SRM growing by fermentation, and MFP is tolerated by nitrate and perchlorate reducing microorganisms. For SRM inhibition, MFP is synergistic with nitrite and chlorite, and could enhance the efficacy of nitrate or perchlorate treatments. Finally, MFP inhibition is multifaceted. Both inhibition of the central sulfate reduction pathway and release of cytoplasmic fluoride ion are implicated in the mechanism of MFP toxicity.
Collapse
Affiliation(s)
- Hans K Carlson
- †Energy Biosciences Institute, University of California-Berkeley, Berkeley, California 94720, United States
| | - Magdalena K Stoeva
- ∥Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, California 94720, United States
| | - Nicholas B Justice
- ‡Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Andrew Sczesnak
- ⊥Department of Bioengineering, University of California-Berkeley, Berkeley, California 94720, United States
| | - Mark R Mullan
- †Energy Biosciences Institute, University of California-Berkeley, Berkeley, California 94720, United States
| | - Lorraine A Mosqueda
- †Energy Biosciences Institute, University of California-Berkeley, Berkeley, California 94720, United States
| | - Jennifer V Kuehl
- ‡Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Adam M Deutschbauer
- ‡Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Adam P Arkin
- ‡Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
- ⊥Department of Bioengineering, University of California-Berkeley, Berkeley, California 94720, United States
| | - John D Coates
- †Energy Biosciences Institute, University of California-Berkeley, Berkeley, California 94720, United States
- §Earth Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
- ∥Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
34
|
Carlson HK, Kuehl JV, Hazra AB, Justice NB, Stoeva MK, Sczesnak A, Mullan MR, Iavarone AT, Engelbrektson A, Price MN, Deutschbauer AM, Arkin AP, Coates JD. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. ISME JOURNAL 2014; 9:1295-305. [PMID: 25405978 DOI: 10.1038/ismej.2014.216] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 12/26/2022]
Abstract
We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems.
Collapse
Affiliation(s)
- Hans K Carlson
- Energy Biosciences Institute, UC Berkeley, Berkeley, CA, USA
| | - Jennifer V Kuehl
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Amrita B Hazra
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Nicholas B Justice
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Magdalena K Stoeva
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Andrew Sczesnak
- Department of Bioengineering, UC Berkeley, Berkeley, CA, USA
| | - Mark R Mullan
- Energy Biosciences Institute, UC Berkeley, Berkeley, CA, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, UC Berkeley, Berkeley, CA, USA
| | - Anna Engelbrektson
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Morgan N Price
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Adam P Arkin
- 1] Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA [2] Department of Bioengineering, UC Berkeley, Berkeley, CA, USA
| | - John D Coates
- 1] Energy Biosciences Institute, UC Berkeley, Berkeley, CA, USA [2] Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
35
|
Rex (encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough is a repressor of sulfate adenylyl transferase and is regulated by NADH. J Bacteriol 2014; 197:29-39. [PMID: 25313388 DOI: 10.1128/jb.02083-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the enzymes for dissimilatory sulfate reduction by microbes have been studied, the mechanisms for transcriptional regulation of the encoding genes remain unknown. In a number of bacteria the transcriptional regulator Rex has been shown to play a key role as a repressor of genes producing proteins involved in energy conversion. In the model sulfate-reducing microbe Desulfovibrio vulgaris Hildenborough, the gene DVU_0916 was observed to resemble other known Rex proteins. Therefore, the DVU_0916 protein has been predicted to be a transcriptional repressor of genes encoding proteins that function in the process of sulfate reduction in D. vulgaris Hildenborough. Examination of the deduced DVU_0916 protein identified two domains, one a winged helix DNA-binding domain common for transcription factors, and the other a Rossman fold that could potentially interact with pyridine nucleotides. A deletion of the putative rex gene was made in D. vulgaris Hildenborough, and transcript expression studies of sat, encoding sulfate adenylyl transferase, showed increased levels in the D. vulgaris Hildenborough Rex (RexDvH) mutant relative to the parental strain. The RexDvH-binding site upstream of sat was identified, confirming RexDvH to be a repressor of sat. We established in vitro that the presence of elevated NADH disrupted the interaction between RexDvH and DNA. Examination of the 5' transcriptional start site for the sat mRNA revealed two unique start sites, one for respiring cells that correlated with the RexDvH-binding site and a second for fermenting cells. Collectively, these data support the role of RexDvH as a transcription repressor for sat that senses the redox status of the cell.
Collapse
|