1
|
Dahiya D, Mackin C, Nigam PS. Studies on bioactivities of Manuka and regional varieties of honey for their potential use as natural antibiotic agents for infection control related to wound healing and in pharmaceutical formulations. AIMS Microbiol 2024; 10:288-310. [PMID: 38919717 PMCID: PMC11194624 DOI: 10.3934/microbiol.2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Presently, most of the reported infections are of a bacterial origin; however, this leads to a limit within the literature and research around infections caused by fungal pathogens, which are now developing resistance to antibiotic medicines. Of the natural antimicrobial agents, honey has been observed with demonstrable and highly exploitable antimicrobial and infection control related to wound healing properties; therefore, it has been incorporated into many standard pharmaceutical formulations. Generally, these products utilize a pure sample of honey as a bioactive ingredient in a product which has been purposely designed for the convenience of application. This article aims to review information available from published reports on various bioactivities of a variety of medical-grade honey products, including manuka and other conventional non-manuka types sourced from different floral types and geographical regions. Additionally, this review highlights the antibiotic activities of various types of honey products tested against pathogenic strains of bacteria, yeast and fungi, and their applications in the formulation of healthcare products.
Collapse
Affiliation(s)
- Divakar Dahiya
- Wexham Park Hospital, Wexham Street, Slough SL2 4HL, England, UK
- current address: Haematology and Blood Transfusion, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Caoimhin Mackin
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
2
|
Garai S, Bhowal B, Gupta M, Sopory SK, Singla-Pareek SL, Pareek A, Kaur C. Role of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111922. [PMID: 37952767 DOI: 10.1016/j.plantsci.2023.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
3
|
Ito T, Hashimoto W, Ohoka N, Misawa T, Inoue T, Kawano R, Demizu Y. Structure-Activity Relationship Study of Helix-Stabilized Antimicrobial Peptides Containing Nonproteinogenic Amino Acids. ACS Biomater Sci Eng 2023; 9:4654-4661. [PMID: 37486982 DOI: 10.1021/acsbiomaterials.3c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Helical amphipathic peptides containing cationic and hydrophobic amino acid residues can possess potent antimicrobial activity against both Gram-positive and Gram-negative bacteria. In this study, several amphipathic peptides with enhanced helical structures containing nonproteinogenic amino acids were designed, and the relationships between the antimicrobial activity, hemolytic activity, and cytotoxicity were evaluated. In particular, the effect on the antimicrobial activity and cytotoxicity of the number and position of stapling structures introduced into the sequence was investigated. Peptide stp1 containing α,α-disubstituted amino acids showed potent antimicrobial activity against multidrug-resistant bacteria (MDRP, SP45, and Staphylococcus aureus) without causing appreciable hemolytic activity or cytotoxicity. The cytotoxicity was found to be somewhat correlated to the hydrophobicity of the peptides.
Collapse
Affiliation(s)
- Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
| | - Wakana Hashimoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1 Tsushimanaka, Kita 700-8530, Japan
| |
Collapse
|
4
|
Mackin C, Dahiya D, Nigam PS. Honey as a Natural Nutraceutical: Its Combinational Therapeutic Strategies Applicable to Blood Infections-Septicemia, HIV, SARS-CoV-2, Malaria. Pharmaceuticals (Basel) 2023; 16:1154. [PMID: 37631069 PMCID: PMC10459786 DOI: 10.3390/ph16081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Honey is a natural substance that has existed alongside humanity since the time of antiquity, acting then as a source of nutrition, as well as a source of medicinal aid for people. Ancient civilizations from multiple nations of the world, from ancient China to ancient Greece and Egypt, utilized the supposed healing properties of honey to treat lacerations and wounds, as well as for internal pathologies such as intestinal disease. At present, honey has entered the modern scientific research program in search of novel antibiotics. In recent research, honey has demonstrated its potential use for static and/or cidal effects on microbial strains which are becoming resistant to chemical antibiotics. Additionally, the use of honey as an agent of treatment for more severe infections, namely blood infections pertaining to septicemia, HIV, and SARS-CoV-2, as well as parasitic infections such as malaria, have also been investigated in recent years. In this article, the literature has been reviewed on some of the therapeutic properties of natural nutraceutical honey, where it has been observed to act as a potential ameliorating agent; reducing the severity of such conditions that may amplify a disease, as well as reducing the progression of the disease and its symptoms.
Collapse
Affiliation(s)
- Caoimhin Mackin
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | | | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
5
|
Matharu RK, Ahmed J, Seo J, Karu K, Golshan MA, Edirisinghe M, Ciric L. Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers (Basel) 2022; 14:polym14235155. [PMID: 36501550 PMCID: PMC9740266 DOI: 10.3390/polym14235155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Natural substances are increasingly being developed for use in health-related applications. Honey has attracted significant interest, not only for its physical and chemical properties, but also for its antibacterial activity. For the first time, suspensions of Black Forest honeydew honey and manuka honey UMF 20+ were examined for their antibacterial properties against Escherichia coli and Staphylococcus epidermidis using flow cytometry. The inhibitory effect of honey on bacterial growth was evident at concentrations of 10, 20 and 30 v/v%. The minimum inhibitory effects of both honey types against each bacterium were also investigated and reported. Electrospray ionisation (ESI) mass spectrometry was performed on both Black Forest honeydew honey and manuka honey UMF 20+. Manuka honey had a gluconic concentration of 2519 mg/kg, whilst Black Forest honeydew honey had a concentration of 2195 mg/kg. Manuka honey demonstrated the strongest potency when compared to Black Forest honeydew honey; therefore, it was incorporated into nanofiber scaffolds using pressurised gyration and 10, 20 and 30 v/v% manuka honey-polycaprolactone solutions. Composite fibres were analysed for their morphology and topography using scanning electron microscopy. The average fibre diameter of the manuka honey-polycaprolactone scaffolds was found to range from 437 to 815 nm. The antibacterial activity of the 30 v/v% scaffolds was studied using S. epidermidis. Strong antibacterial activity was observed with a bacterial reduction rate of over 90%. The results show that honey composite fibres formed using pressurised gyration can be considered a natural therapeutic agent for various medicinal purposes, including wound-healing applications.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
- Correspondence:
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Jegak Seo
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Mitra Ashrafi Golshan
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
6
|
Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods 2022; 11:foods11172670. [PMID: 36076855 PMCID: PMC9455747 DOI: 10.3390/foods11172670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022] Open
Abstract
The successful application of honey in wound care management has been achieved due to honey’s potent antibacterial effects, characterised by its multifactorial action. Impressive clinical efficacy has ignited its further use in diverse clinical disciplines, including stomatology. Indeed, there is increasing usage of honey in dental medicine as a preventive or therapeutic remedy for some periodontal diseases mainly associated with bacteria, such as dental caries, gingivitis and mucositides. Dental caries is undoubtedly a major oral health problem worldwide, with an increasing tendency of incidence. The purpose of this perspective review is to describe the recent progress in the laboratory and clinical use of honey in the prevention of dental caries, with emphasis on the antibacterial and antibiofilm effects of honey. The role of honey in the cariogenic process is also discussed. In addition, the quality of honey and the urgent in vitro evaluation of its antibacterial/antibiofilm properties before clinical use are highlighted. Findings based on data extracted from laboratory studies demonstrate the pronounced antibacterial effect of different honeys against a number of periodontal pathogens, including Streptococcus mutans. Although the promising antibiofilm effects of honey have been reported mainly against S. mutans, these results are limited to very few studies. From a clinical point of view, honey significantly reduces dental plaque; however, it is not superior to the conventional agent. Despite the positive in vitro results, the clinical effectiveness of honey in the prevention of dental caries remains inconclusive since further robust clinical studies are needed.
Collapse
|
7
|
Green KJ, Lawag IL, Locher C, Hammer KA. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics. PLoS One 2022; 17:e0272376. [PMID: 35901185 PMCID: PMC9333225 DOI: 10.1371/journal.pone.0272376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 01/22/2023] Open
Abstract
Variation in the antibacterial potency of manuka honey has been reported in several published studies. However, many of these studies examine only a few honey samples, or test activity against only a few bacterial isolates. To address this deficit, a collection of 29 manuka/Leptospermum honeys was obtained, comprising commercial manuka honeys from Australia and New Zealand and several Western Australian Leptospermum honeys obtained directly from beekeepers. The antibacterial activity of honeys was quantified using several methods, including the broth microdilution method to determine minimum inhibitory concentrations (MICs) against four species of test bacteria, the phenol equivalence method, determination of antibacterial activity values from optical density, and time kill assays. Several physicochemical parameters or components were also quantified, including methylglyoxal (MGO), dihydroxyacetone (DHA), hydroxymethylfurfural (HMF) and total phenolics content as well as pH, colour and refractive index. Total antioxidant activity was also determined using the DPPH* (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing–antioxidant power) assays. Levels of MGO quantified in each honey were compared to the levels stated on the product labels, which revealed mostly minor differences. Antibacterial activity studies showed that MICs varied between different honey samples and between bacterial species. Correlation of the MGO content of honey with antibacterial activity showed differing relationships for each test organism, with Pseudomonas aeruginosa showing no relationship, Staphylococcus aureus showing a moderate relationship and both Enterococcus faecalis and Escherichia coli showing strong positive correlations. The association between MGO content and antibacterial activity was further investigated by adding known concentrations of MGO to a multifloral honey and quantifying activity, and by also conducting checkerboard assays. These investigations showed that interactions were largely additive in nature, and that synergistic interactions between MGO and the honey matrix did not occur.
Collapse
Affiliation(s)
- Kathryn J. Green
- School of Biomedical Sciences, The University of Western Australia (UWA), Crawley, Western Australia, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
| | - Ivan L. Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
- Division of Pharmacy, School of Allied Health, UWA, Crawley, WA, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
- Division of Pharmacy, School of Allied Health, UWA, Crawley, WA, Australia
| | - Katherine A. Hammer
- School of Biomedical Sciences, The University of Western Australia (UWA), Crawley, Western Australia, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, UWA, Crawley, WA, Australia
- * E-mail:
| |
Collapse
|
8
|
Majumder S, Ghosh A, Chakraborty S, Bhattacharya M. Brewing and biochemical characterization of Camellia japonica petal wine with comprehensive discussion on metabolomics. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022; 4:29. [PMCID: PMC9673215 DOI: 10.1186/s43014-022-00109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel wine has been developed from Camellia japonica’s petal by fermenting the decoction with Saccharomyces cerevisiae or brewer’s yeast. pH, brix, specific gravity and alcohol percentage were tested to study the physicochemical properties of the wine. Qualitative tests indicated presence of phenols such as flavonoids, coumarins; protein; glycosides; glycerin; terpenoids; steroids; and fatty acids in the wine. Total phenol content was found high in the decoction and in its fermented form as well. In vitro biological activities such as antioxidant activity, antidiabetic activity and lipid peroxidation inhibition power were assessed in samples. Furthermore, GC-MS analysis helped to detect volatiles present in the unfermented decoction and understand the effect of fermentation on its changing metabolome while column chromatography assisted the separation of solvent-based fractions. Notable outcomes from this study were detection of bioactive compound quinic acid in the decoction and a proposed pathway of its metabolic breakdown after fermentation. Results of this research revealed biochemical and physicochemical acceptability of this wine prepared from an underutilized flower.
Collapse
Affiliation(s)
- Soumya Majumder
- grid.412222.50000 0001 1188 5260Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, Darjeeling, West Bengal 734013 India
| | - Arindam Ghosh
- grid.412222.50000 0001 1188 5260Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, Darjeeling, West Bengal 734013 India
| | - Sourav Chakraborty
- grid.412222.50000 0001 1188 5260Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, Darjeeling, West Bengal 734013 India ,Postgraduate Department of Botany, Darjeeling Government College, Darjeeling, West Bengal 734101 India
| | - Malay Bhattacharya
- grid.412222.50000 0001 1188 5260Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, Darjeeling, West Bengal 734013 India
| |
Collapse
|
9
|
Cincotta F, Brighina S, Condurso C, Arena E, Verzera A, Fallico B. Sugars Replacement as a Strategy to Control the Formation of α-Dicarbonyl and Furanic Compounds during Cookie Processing. Foods 2021; 10:2101. [PMID: 34574211 PMCID: PMC8466310 DOI: 10.3390/foods10092101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 01/29/2023] Open
Abstract
In the last decade, several preventive strategies were considered to mitigate the chemical hazard accumulation in food products. This work aimed to study the effect of different sugars on the development of the main chemical hazard in cookies. For this purpose, model biscuits prepared using sucrose, fructose, and glucose were baked at different temperatures (150, 170, and 190 °C) and for different times (from 5 to 45 min), and the levels of α-dicarbonyl compounds, such as 3-deoxyglucosone (3-DG), glyoxal (GO) and methylglyoxal (MGO), 5-hydroxymethylfurfural (HMF), and furanic aromatic compounds were monitored. The replacement of sucrose in the cookie recipes with monosaccharides had as a consequence the highest accumulation of 3-DG (200-600 times higher), MGO, HMF, and furanic volatile compounds, while the use of sucrose allowed for maintaining the 3-DG, MGO, and HMF levels at less than 10 mg/kg dry matter in cookies for the estimated optimal baking time. Moreover, cookies with sucrose were characterised in terms of volatile compounds, mainly in terms of lipid oxidation products, while cookies with fructose or glucose baked at the highest temperature were characterised almost exclusively by Maillard reaction products, confirming a faster development of this reaction during baking at the studied temperatures.
Collapse
Affiliation(s)
- Fabrizio Cincotta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.C.); (C.C.); (A.V.)
| | - Selina Brighina
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy; (S.B.); (B.F.)
| | - Concetta Condurso
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.C.); (C.C.); (A.V.)
| | - Elena Arena
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy; (S.B.); (B.F.)
| | - Antonella Verzera
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.C.); (C.C.); (A.V.)
| | - Biagio Fallico
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy; (S.B.); (B.F.)
| |
Collapse
|
10
|
Kaur C, Gupta M, Garai S, Mishra SK, Chauhan PS, Sopory S, Singla-Pareek SL, Adlakha N, Pareek A. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environ Microbiol 2021; 24:2817-2836. [PMID: 34435423 DOI: 10.1111/1462-2920.15743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Plant growth promotion by microbes is a cumulative phenomenon involving multiple traits, many of which are not explored yet. Hence, to unravel microbial mechanisms underlying growth promotion, we have analysed the genomes of two potential growth-promoting microbes, viz., Pseudomonas sp. CK-NBRI-02 (P2) and Bacillus marisflavi CK-NBRI-03 (P3) for the presence of plant-beneficial traits. Besides known traits, we found that microbes differ in their ability to metabolize methylglyoxal (MG), a ubiquitous cytotoxin regarded as general consequence of stress in plants. P2 exhibited greater tolerance to MG and possessed better ability to sustain plant growth under dicarbonyl stress. However, under salinity, only P3 showed a dose-dependent induction in MG detoxification activity in accordance with concomitant increase in MG levels, contributing to enhanced salt tolerance. Furthermore, salt-stressed transcriptomes of both the strains showed differences with respect to MG, ion and osmolyte homeostasis, with P3 being more responsive to stress. Importantly, application of either strain altered MG levels and subsequently MG detoxification machinery in Arabidopsis, probably to strengthen plant defence response and growth. We therefore, suggest a crucial role of microbial MG resistance in plant growth promotion and that it should be considered as a beneficial trait while screening microbes for stress mitigation in plants.
Collapse
Affiliation(s)
- Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shashank K Mishra
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Sudhir Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Adlakha
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
11
|
Cooper B, Beard HS, Yang R, Garrett WM, Campbell KB. Bacterial Immobilization and Toxicity Induced by a Bean Plant Immune System. J Proteome Res 2021; 20:3664-3677. [PMID: 34097416 DOI: 10.1021/acs.jproteome.1c00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas savastanoi pv. phaseolicola causes halo blight disease in the common bean Phaseolus vulgaris. The bacterium invades the leaf apoplast and uses a type III secretion system to inject effector proteins into a bean cell to interfere with the bean immune system. Beans counter with resistance proteins that can detect effectors and coordinate effector-triggered immunity responses transduced by salicylic acid, the primary defense hormone. Effector-triggered immunity halts bacterial spread, but its direct effect on the bacterium is not known. In this study, mass spectrometry of bacterial infections from immune and susceptible beans revealed that immune beans inhibited the accumulation of bacterial proteins required for virulence, secretion, motility, chemotaxis, quorum sensing, and alginate production. Sets of genes encoding these proteins appeared to function in operons, which implies that immunity altered the coregulated genes in the bacterium. Immunity also reduced amounts of bacterial methylglyoxal detoxification enzymes and their transcripts. Treatment of bacteria with salicylic acid, the plant hormone produced during immunity, reduced bacterial growth, decreased gene expression for methylglyoxal detoxification enzymes, and increased bacterial methylglyoxal concentrations in vitro. Increased methylglyoxal concentrations reduced bacterial reproduction. These findings support the hypothesis that plant immunity involves the chemical induction of adverse changes to the bacterial proteome to reduce pathogenicity and to cause bacterial self-toxicity.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville 20705, Maryland, United States
| | - Hunter S Beard
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville 20705, Maryland, United States
| | - Ronghui Yang
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville 20705, Maryland, United States
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville 20705, Maryland, United States
| | - Kimberly B Campbell
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville 20705, Maryland, United States
| |
Collapse
|
12
|
Basit MA, Kadir AA, Loh TC, Abdul Aziz S, Salleh A, Zakaria ZA, Banke Idris S. Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens. Animals (Basel) 2020; 10:ani10112150. [PMID: 33227911 PMCID: PMC7699210 DOI: 10.3390/ani10112150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Antimicrobial growth promoters (AGPs) are banned in Europe but still used in many countries including Asia. However, their indiscriminate use resulted in antibiotic-resistant bacterial strains that possibly transfer the resistant genes to the microorganisms pertinent to human health. Hence, it is essential to find alternatives that can improve the production performance in broiler chickens. In this scenario, phytobiotics or phytogenic feed additives (PFAs) are widely investigated to evaluate their influence on improving gut health, increasing digestibility, and thereby the growth performance. The present study is a continuity of our experiments on dietary inclusion of Piper betle and Persicaria odorata leaf meal and the first of its kind to evaluate the comparative efficacy of phytobiotics (Piper betle and Persicaria odorata leaf meal), with halquinol and tetracycline in broiler chickens. The current experiment findings indicated that, in comparison with the control group, either of the dietary treatments positively modulated the gut morphology, improved ileal digestibility, maintained the intestinal population of Lactobacillus and reduced the pathogenic bacteria such as Staphylococcus aureus, Salmonella, Escherichia coli, and Clostridium spp., thus improved the growth performance in broiler chickens. Abstract The current experiment was designed to estimate the comparative efficacy of selected phytobiotics Persicaria odorata leaf meal (POLM) and Piper betle leaf meal (PBLM) with halquinol, and tetracycline in broiler chickens. The 150-day-old broiler chickens were randomly assigned to five dietary groups. The dietary supplementation groups were the basal diet (BD), which served as the negative control (NC), and BD + 0.2 g/kg tetracycline, which served as the positive control (PC); BD + 0.03 g/kg halquinol (HAL), BD + 8 g/kg POLM (Po8), and BD + 4 g/kg PBLM (Pb4) were the treatment groups. Growth performance, gut morphology, ileal digestibility, and cecal microbiota composition were measured. On day 21, the body weight gain (BWG) was enhanced (p < 0.05) in the broiler chickens fed on phytobiotics (Po8 and Pb4) relative to the NC group, however, on day 42 and in terms of overall growth performance, BWG was enhanced (p < 0.05 in diets (Po8, Pb4, HAL and PC) in comparison with the NC group. Conversely, feed conversion ratio (FCR) was recorded reduced (p < 0.05) in Pb4, Po8, HAL, and PC group in comparison with the NC group. Supplementation of phytobiotics (Po8 and Pb4), HAL and PC, positively improved the gut morphology compared to the NC group. Furthermore, the maximum (p < 0.05) villus height (VH) in duodenum and jejunum was observed in broilers fed on diet Pb4. Supplementation of phytobiotics, HAL and PC, improved (p < 0.05) the digestibility of dry matter (DM) (except for HAL), organic matter (OM), crude protein (CP), ether extract (EE), and ash compared to the NC group. Dietary supplementation of phytobiotics (Po8 and Pb4), HAL and PC, significantly reduced the E. coli, Salmonella, and Staphylococcus aureus (except for HAL) counts compared to the NC group. However, supplementation of Pb4 resulted in significantly decreased total anaerobic bacteria and Clostridium spp. counts compared to the NC group. In addition, supplementation of phytobiotics significantly increased the Lactobacillus count compared to HAL, PC, and NC groups. In conclusion, dietary supplementation of phytobiotics improved the gut morphology, positively modulated and maintained the dynamics of cecal microbiota with enhanced nutrient digestibility, thus, increased the growth performance. Based on current results, phytobiotics could be used as an alternative to AGPs for sustainable broiler chicken production.
Collapse
Affiliation(s)
- Muhammad Abdul Basit
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60000, Punjab, Pakistan
- Correspondence: (M.A.B.); (A.A.K.); Tel.: +60-3-9769-3403 (A.A.K.)
| | - Arifah Abdul Kadir
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (M.A.B.); (A.A.K.); Tel.: +60-3-9769-3403 (A.A.K.)
| | - Teck Chwen Loh
- Department of Animal Sciences, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Saleha Abdul Aziz
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Sherifat Banke Idris
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine Usmanu Danfodiyo University, Skoto 2346, Nigeria
| |
Collapse
|
13
|
Detrimental effect on the gut microbiota of 1,2-dicarbonyl compounds after in vitro gastro-intestinal and fermentative digestion. Food Chem 2020; 341:128237. [PMID: 33091666 DOI: 10.1016/j.foodchem.2020.128237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
This study investigated the stability of dicarbonyl compounds (DCs), 3-deoxyglucosone (3-DG), glyoxal (GO) and methylglyoxal (MGO) during simulated gastrointestinal digestion processes and the impact these compounds have on the gut microbiota. DCs pass almost unaltered through the in-vitro gastrointestinal digestion phases (concentration loss: 11% for 3-DG, 24% for GO and MGO) and have an effect on the fermentative digestion process, reducing the total gut bacterial population up to 6 Log10 units. Previous studies have shown no antimicrobial activity for 3-DG, however, for the first time it has been shown that when incubated with faecal bacteria 3-DG strongly depressed this microbial community. The influence of dicarbonyl compounds on the anaerobic fermentation processes was confirmed by the reduced production of short-chain fatty acids. Considering the modern Western diet, characterised by high consumption of ultra-processed foods rich in dicarbonyl compounds, this could lead to a reduction of bacteria important for the microbiome.
Collapse
|
14
|
Characterizing the Mechanism of Action of an Ancient Antimicrobial, Manuka Honey, against Pseudomonas aeruginosa Using Modern Transcriptomics. mSystems 2020; 5:5/3/e00106-20. [PMID: 32606022 PMCID: PMC7329319 DOI: 10.1128/msystems.00106-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance.IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria.
Collapse
|
15
|
Baral B, Mozafari MR. Strategic Moves of "Superbugs" Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges. ACS Pharmacol Transl Sci 2020; 3:373-400. [PMID: 32566906 PMCID: PMC7296549 DOI: 10.1021/acsptsci.0c00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Superbugs' resistivity against available natural products has become an alarming global threat, causing a rapid deterioration in public health and claiming tens of thousands of lives yearly. Although the rapid discovery of small molecules from plant and microbial origin with enhanced bioactivity has provided us with some hope, a rapid hike in the resistivity of superbugs has proven to be the biggest therapeutic hurdle of all times. Moreover, several distinct mechanisms endowed by these notorious superbugs make them immune to these antibiotics subsequently causing our antibiotic wardrobe to be obsolete. In this unfortunate situation, though the time frame for discovering novel "hit molecules" down the line remains largely unknown, our small hope and untiring efforts injected in hunting novel chemical scaffolds with unique molecular targets using high-throughput technologies may safeguard us against these life-threatening challenges to some extent. Amid this crisis, the current comprehensive review highlights the present status of knowledge, our search for bacteria Achilles' heel, distinct molecular signaling that an opportunistic pathogen bestows to trespass the toxicity of antibiotics, and facile strategies and appealing therapeutic targets of novel drugs. Herein, we also discuss multidimensional strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bikash Baral
- Department
of Biochemistry, University of Turku, Tykistökatu 6, Turku, Finland
| | - M. R. Mozafari
- Australasian
Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia
| |
Collapse
|
16
|
A current perspective on hydrogen peroxide production in honey. A review. Food Chem 2020; 332:127229. [PMID: 32688187 DOI: 10.1016/j.foodchem.2020.127229] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Hydrogen peroxide plays a key role in honey antibacterial activity. The production of H2O2 in honey requires glucose oxidase (GOx) that oxidizes glucose to gluconolactone and reduces molecular oxygen to hydrogen peroxide. The content of GOx of honeybee origin was believed to be the main predictor of H2O2 concentration in honey. The observed variations in H2O2 levels among honeys questioned however the direct GOx-H2O2 relationship and left its absence opened for exploration. Here, we evaluated principal causes underlying the imbalance in the quantitative enzyme-product relationship with respect to: (a) enzyme and the product inactivation or destruction by honey compounds; (b) non-enzymatic pathway of H2O2 formation, and (c) a potential contribution of enzymes with GOx activity originating from nectars and microorganisms inhabiting honey. We also bring new facts on the relationship between honey colloidal structure and H2O2 production that change our traditional understanding of honey function as antimicrobial agent.
Collapse
|
17
|
Brighina S, Restuccia C, Arena E, Palmeri R, Fallico B. Antibacterial activity of 1,2-dicarbonyl compounds and the influence of the in vitro assay system. Food Chem 2020; 311:125905. [DOI: 10.1016/j.foodchem.2019.125905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
18
|
Paderog MJV, Suarez AFL, Sabido EM, Low ZJ, Saludes JP, Dalisay DS. Anthracycline Shunt Metabolites From Philippine Marine Sediment-Derived Streptomyces Destroy Cell Membrane Integrity of Multidrug-Resistant Staphylococcus aureus. Front Microbiol 2020; 11:743. [PMID: 32390983 PMCID: PMC7193051 DOI: 10.3389/fmicb.2020.00743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
The rise of antibiotic resistance (ABR) and the drying up of the pipeline for the development of new antibiotics demands an urgent search for new antibiotic leads. While the majority of clinically available antibiotics were discovered from terrestrial Streptomyces, related species from marine sediments as a source of antibiotics remain underexplored. Here, we utilized culture-dependent isolation of thirty-five marine sediment-derived actinobacterial isolates followed by a screening of their antibacterial activity against multidrug-resistant S. aureus ATCC BAA-44. Our results revealed that the crude extract of Streptomyces griseorubens strain DSD069 isolated from marine sediments collected in Romblon, Philippines displays the highest antibacterial activity, with 96.4% growth inhibition. The S. aureus ATCC BAA-44 cells treated with crude extract of Streptomyces griseorubens strain DSD069 showed cell membrane damage as demonstrated by (a) leakage and loss of vital cell constituents, including DNA and proteins, (b) irregular shrinkage of cells, and (c) increase membrane permeability. The antibiotic compounds were identified as Bisanhydroaklavinone and 1-Hydroxybisanhydroaklavinone with MIC value of 6.25 μg/mL and 50.00 μg/mL, respectively. Bisanhydroaklavinone and 1-Hydroxybisanhydroaklavinone are shunt metabolites in the biosynthesis of anticancer anthracycline derivatives namely doxorubicin, daunorubicin, and cinerubins. It is rare, however, that shunt metabolites are accumulated during fermentation of marine sediment-derived Streptomyces strain without genetic modification. Thus, our study provides evidence that natural bacterial strain can produce Bisanhydroaklavinone and 1-Hydroxybisanhydroaklavinone as antibiotic leads to combat ABR.
Collapse
Affiliation(s)
- Melissa June V Paderog
- Department of Pharmacy, College of Health and Allied Medical Professions, University of San Agustin, Iloilo City, Philippines.,Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City, Philippines
| | - Angelica Faith L Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines
| | - Edna M Sabido
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines
| | | | - Jonel P Saludes
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines.,Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines.,Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Doralyn S Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City, Philippines.,Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines.,Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
| |
Collapse
|
19
|
Abstract
The work is focused on the antibacterial effect of four types of blossom honey, one honeydew and two Mānuka honey (MAN100+ and MAN400+) on selected pathogenic microorganisms isolated from cow’s milk (Staphylococcus aureus 51 and S. aureus 428), sheep’s milk (S. aureus 627), and from the Czech Collection of Microorganisms (Streptococcus uberis CCM 4617, Streptococcus agalactiae CCM 6187, Enterococcus faecalis CCM 4224 and Escherichia coli CCM 4787). The concentrations of honey samples were 20% and 30%. The obtained results showed a 100% inhibitory effect of MAN400+ on all tested bacterial strains even at a concentration of 20% and also a comparable inhibitory effect of Mānuka honey with Czech honeydew. The results indicate that honey had an inhibitory effect against the tested bacterial species which may cause mastitis.
Collapse
|
20
|
Wang S, Yao J, Zhou B, Yang J, Chaudry MT, Wang M, Xiao F, Li Y, Yin W. Bacteriostatic Effect of Quercetin as an Antibiotic Alternative In Vivo and Its Antibacterial Mechanism In Vitro. J Food Prot 2018; 81:68-78. [PMID: 29271686 DOI: 10.4315/0362-028x.jfp-17-214] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Quercetin, a ubiquitous flavonoid, is known to have antibacterial effects. The purpose of this study was to investigate the effect of quercetin on cecal microbiota of Arbor Acre (AA) broiler chickens in vivo and the bacteriostatic effect and antibacterial mechanism of quercetin in vitro. In vivo, 480 AA broilers (1 day old) were randomly allotted to four treatments (negative control and 0.2, 0.4, or 0.6 g of quercetin per kg of diet) for 42 days. Cecal microbial population and distribution were measured at the end of the experiment. The cecal microflora in these broilers included Proteobacteria, Fimicutes, Bacteroidetes, and Deferribacteres. Compared with the negative control, quercetin significantly decreased the copies of Pseudomonas aeruginosa ( P < 0.05), Salmonella enterica serotype Typhimurium ( P < 0.01), Staphylococcus aureus ( P < 0.01), and Escherichia coli ( P < 0.01) but significantly increased the copies of Lactobacillus ( P < 0.01), Bifidobacterium ( P < 0.01), and total bacteria ( P < 0.01). In vitro, we investigated the bacteriostatic effect of quercetin on four kinds of bacteria ( E. coli, P. aeruginosa, S. enterica Typhimurium, and S. aureus) and the antibacterial mechanism of quercetin in E. coli and S. aureus. The bacteriostatic effect of quercetin was stronger on gram-positive bacteria than on gram-negative bacteria. Quercetin damaged the cell walls and membranes of E. coli (at 50 × MIC) and S. aureus (at 10 × MIC). Compared with the control, the activity of the extracellular alkaline phosphatase and β-galactosidase and concentrations of soluble protein in E. coli and S. aureus were significantly increased (all P < 0.01), and the activity of ATP in S. aureus was significantly increased ( P < 0.01); however, no significant change in ATP activity in E. coli was observed ( P > 0.05). These results suggest that quercetin has potential as an alternative antibiotic feed additive in animal production.
Collapse
Affiliation(s)
- Shengan Wang
- 1 Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China
| | - Jiaying Yao
- 1 Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China
| | - Bo Zhou
- 1 Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China
| | - Jiaxin Yang
- 1 Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China
| | - Maria T Chaudry
- 1 Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China
| | - Mi Wang
- 1 Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China
| | - Fenglin Xiao
- 1 Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China
| | - Yao Li
- 1 Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China
| | - Wenzhe Yin
- 2 Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province 150086, People's Republic of China
| |
Collapse
|
21
|
Bulman SEL, Tronci G, Goswami P, Carr C, Russell SJ. Antibacterial Properties of Nonwoven Wound Dressings Coated with Manuka Honey or Methylglyoxal. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E954. [PMID: 28813014 PMCID: PMC5578320 DOI: 10.3390/ma10080954] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/19/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023]
Abstract
Manuka honey (MH) is used as an antibacterial agent in bioactive wound dressings via direct impregnation onto a suitable substrate. MH provides unique antibacterial activity when compared with conventional honeys, owing partly to one of its constituents, methylglyoxal (MGO). Aiming to investigate an antibiotic-free antimicrobial strategy, we studied the antibacterial activity of both MH and MGO (at equivalent MGO concentrations) when applied as a physical coating to a nonwoven fabric wound dressing. When physically coated on to a cellulosic hydroentangled nonwoven fabric, it was found that concentrations of 0.0054 mg cm-2 of MGO in the form of MH and MGO were sufficient to achieve a 100 colony forming unit % bacteria reduction against gram-positive Staphylococcus aureus and gram-negative Klebsiella pneumoniae, based on BS EN ISO 20743:2007. A 3- to 20-fold increase in MGO concentration (0.0170-0.1 mg cm-2) was required to facilitate a good antibacterial effect (based on BS EN ISO 20645:2004) in terms of zone of inhibition and lack of growth under the sample. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was also assessed for MGO in liquid form against three prevalent wound and healthcare-associated pathogens, i.e., Staphylococcus aureus, gram-negative Pseudomonas aeruginosa and gram-positive Enterococcus faecalis. Other than the case of MGO-containing fabrics, solutions with much higher MGO concentrations (128 mg L-1-1024 mg L-1) were required to provide either a bacteriostatic or bactericidal effect. The results presented in this study therefore demonstrate the relevance of an MGO-based coating as an environmentally friendly strategy for the design of functional dressings with antibiotic-free antimicrobial chemistries.
Collapse
Affiliation(s)
- Sophie E L Bulman
- Clothworkers' Centre for Textile Materials Innovation for Healthcare (CCTMIH), School of Design, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK.
| | - Giuseppe Tronci
- Clothworkers' Centre for Textile Materials Innovation for Healthcare (CCTMIH), School of Design, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK.
| | - Parikshit Goswami
- Clothworkers' Centre for Textile Materials Innovation for Healthcare (CCTMIH), School of Design, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK.
| | - Chris Carr
- Clothworkers' Centre for Textile Materials Innovation for Healthcare (CCTMIH), School of Design, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK.
| | - Stephen J Russell
- Clothworkers' Centre for Textile Materials Innovation for Healthcare (CCTMIH), School of Design, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK.
| |
Collapse
|
22
|
Selvarajan R, Sibanda T, Tekere M, Nyoni H, Meddows-Taylor S. Diversity Analysis and Bioresource Characterization of Halophilic Bacteria Isolated from a South African Saltpan. Molecules 2017; 22:E657. [PMID: 28425950 PMCID: PMC6154464 DOI: 10.3390/molecules22040657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022] Open
Abstract
Though intensive research has been channeled towards the biotechnological applications of halophiles and other extremophilic microbes, these studies have not been, by any means, exhaustive. Saline environments still offer a vast diversity of microbes with potential to produce an array of natural products which can only be unlocked by concerted research efforts. In this study, a combination of culture and molecular approaches were employed to characterize halophilic bacteria from saltpan water samples and profile their potential biotechnological applications. Physicochemical analysis of the water samples showed that pH was alkaline (pH 8.8), with a salinity of 12.8%. 16S rRNA gene targeted amplicon analysis produced 10 bacterial phyla constituting of Bacteroidetes (30.57%), Proteobacteria (15.27%), Actinobacteria (9.05%), Planctomycetes (5.52%) and Cyanobacteria (3.18%). Eighteen strains were identified using sequencing analysis of the culturable bacterial strains. From these, the strains SP7 and SP9 were positive for cellulase production while the strains SP4, SP8 and SP22 were positive for lipase production. Quantitative enzyme assays showed moderate extracellular cellulase activity (1.95 U/mL) and lipase activity (3.71 U/mL) by the isolate SP9 and SP4 respectively. Further, of the six isolates, the isolate SP9 exhibited exploitable potential in the bioremediation of hydrocarbon pollution as demonstrated by its fairly high activity against benzanthracene (70% DCPIP reduction). Elucidation of the isolates secondary metabolites showed the production of the molecules 2,3-butanediol, hexahydro-3-(2-methylpropyl)pyrrole[1,2a]pyrazine-1,4-dione, aziridine, dimethylamine and ethyl acetate (GC-MS) and oxypurinol and 5-hydroxydecanoic acid (LC-MS), particularly by the isolate Salinivibrio sp. SP9. Overall, the study showed that the isolated halophiles can produce secondary metabolites with potential industrial and pharmaceutical application.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Timothy Sibanda
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Hlengilizwe Nyoni
- Department of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Stephen Meddows-Taylor
- College of Agriculture and Environmental Sciences Laboratories, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| |
Collapse
|
23
|
Amábile-Cuevas CF. Selection of Amikacin Hyper-Resistant Pseudomonas aeruginosa After Stepwise Exposure to High Amikacin Concentrations. Microb Drug Resist 2017; 23:32-36. [DOI: 10.1089/mdr.2015.0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Galvão SDSL, Monteiro ADS, Siqueira EP, Bomfim MRQ, Dias-Souza MV, Ferreira GF, Denadai AML, Santos ÁRC, Lúcia Dos Santos V, de Souza-Fagundes EM, Fernandes ES, Monteiro-Neto V. Annona glabra Flavonoids Act As Antimicrobials by Binding to Pseudomonas aeruginosa Cell Walls. Front Microbiol 2016; 7:2053. [PMID: 28066374 PMCID: PMC5174114 DOI: 10.3389/fmicb.2016.02053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/07/2016] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa is an important pathogen in opportunistic infections in humans. The increased incidence of antimicrobial-resistant P. aeruginosa isolates has highlighted the need for novel and more potent therapies against this microorganism. Annona glabra is known for presenting different compounds with diverse biological activities, such as anti-tumor and immunomodulatory activities. Although other species of the family display antimicrobial actions, this has not yet been reported for A. glabra. Here, we investigated the antimicrobial activity of the ethyl acetate fraction (EAF) obtained from the leaf hydroalcoholic extract of A. glabra. EAF was bactericidal against different strains of P. aeruginosa. EAF also presented with a time- and concentration-dependent effect on P. aeruginosa viability. Testing of different EAF sub-fractions showed that the sub-fraction 32-33 (SF32-33) was the most effective against P. aeruginosa. Analysis of the chemical constituents of SF32-33 demonstrated a high content of flavonoids. Incubation of this active sub-fraction with P. aeruginosa ATCC 27983 triggered an endothermic reaction, which was accompanied by an increased electric charge, suggesting a high binding of SF32-33 compounds to bacterial cell walls. Collectively, our results suggest that A. glabra-derived compounds, especially flavonoids, may be useful for treating infections caused by P. aeruginosa.
Collapse
Affiliation(s)
| | | | - Ezequias P Siqueira
- Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz-FIOCRUZ Belo Horizonte, Brazil
| | | | | | - Gabriella F Ferreira
- Departamento de Fármacia, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares Brazil
| | - Angelo Márcio L Denadai
- Departamento de Fármacia, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares Brazil
| | - Áquila R C Santos
- Departamento de Fármacia, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares Brazil
| | - Vera Lúcia Dos Santos
- Departamento de Microbiologia, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | | | | | - Valério Monteiro-Neto
- Centro de Ciências da Saúde, Universidade CEUMASão Luís, Brazil; Departamento de Patologia, Universidade Federal do Maranhão, São LuísBrazil
| |
Collapse
|
25
|
Bolognese F, Bistoletti M, Barbieri P, Orlandi VT. Honey-sensitive Pseudomonas aeruginosa mutants are impaired in catalase A. MICROBIOLOGY-SGM 2016; 162:1554-1562. [PMID: 27516083 DOI: 10.1099/mic.0.000351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The antimicrobial power of honey seems to be ascribable to several factors, including oxidative and osmotic stress. The aim of this study was to find genetic determinants involved in the response to honey stress in the opportunistic pathogen Pseudomonas aeruginosa, chosen as model micro-organism. A library of transposon mutants of P. aeruginosa PAO1 was constructed and only four mutants unable to grow in presence of fir honeydew honey were selected. All four mutants were impaired in the major H2O2-scavenging enzyme catalase A (KatA). The knockout of katA gene caused sensitivity, as expected, not only to hydrogen peroxide but also to different types of honey including Manuka GMO 220 honey. Genetic complementation, as well as the addition of PAO1 supernatant containing extracellular catalase, restored tolerance to honey stress in all the mutants. As P. aeruginosa PAO1 catalase KatA copes with H2O2 stress, it is conceivable that the antimicrobial activity of honey is, at least partially, due to the presence of hydrogen peroxide in honey or the ability of honey to induce production of hydrogen peroxide. The katA-deficient mutants could be used as tester micro-organisms to compare the power of different types of natural and curative honeys in eliciting oxidative stress mediated by hydrogen peroxide.
Collapse
Affiliation(s)
- Fabrizio Bolognese
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Michela Bistoletti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Paola Barbieri
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Viviana Teresa Orlandi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
26
|
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol 2015; 6:660. [PMID: 26217310 PMCID: PMC4495556 DOI: 10.3389/fmicb.2015.00660] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Cell Division (RND)-type multidrug efflux pumps (e.g., MexAB-OprM), chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA) is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes. Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity. The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa.
Collapse
Affiliation(s)
- Jürg Dreier
- Basilea Pharmaceutica International Ltd.,Basel, Switzerland
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università di Cagliari – Cittadella UniversitariaMonserrato, Italy
| |
Collapse
|