1
|
Romero-Olivares AL, Lopez A, Catalan-Dibene J, Ferrenberg S, Jordan SE, Osborne B. Effects of global change drivers on the expression of pathogenicity and stress genes in dryland soil fungi. mSphere 2024; 9:e0065824. [PMID: 39475318 PMCID: PMC11580470 DOI: 10.1128/msphere.00658-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
The impacts of global climate change on dryland fungi have been understudied even though fungi are extremely sensitive to changes in the environment. Considering that many fungi are pathogens of plants and animals, including humans, their responses to anthropogenic change could have important implications for public health and food security. In this study, we investigated the potential physiological responses (i.e., metatranscriptomics) of pathogenicity and stress in dryland fungi exposed to global change drivers, drought, and the physical disturbance associated with land use. Specifically, we wanted to assess if there was an increase in the transcription of genes associated to pathogenicity and stress in response to global change drivers. In addition, we wanted to investigate which pathogenicity and stress genes were consistently differentially expressed under the different global change conditions across the heterogeneous landscape (i.e., microsite) of the Chihuahuan desert. We observed increased transcription of pathogenicity and stress genes, with specific genes being most upregulated in response to global change drivers. Additionally, climatic conditions linked to different microsites, such as those found under patches of vegetation, may play a significant role. We provide evidence supporting the idea that environmental stress caused by global change could contribute to an increase of pathogenicity as global climate changes. Specifically, increases in the transcription of stress and virulence genes, coupled with variations in gene expression, could lead to the onset of pathogenicity. Our work underscores the importance of studying dryland fungi exposed to global climate change and increases in existing fungal pathogens, as well as the emergence of new fungal pathogens, and consequences to public health and food security. IMPORTANCE The effects of global climate change on dryland fungi and consequences to our society have been understudied despite evidence showing that pathogenic fungi increase in abundance under global climate change. Moreover, there is a growing concern that global climate change will contribute to the emergence of new fungal pathogens. Yet, we do not understand what mechanisms might be driving this increase in virulence and the onset of pathogenicity. In this study, we investigate how fungi respond to global change drivers, physical disturbance, and drought, in a dryland ecosystem in terms of pathogenicity and stress. We find that indeed, under global change drivers, there is an increase in the transcription and expression of genes associated to pathogenicity and stress, but that microclimatic conditions matter. Our study shows the importance of investigating dryland fungi exposed to global climate change and impacts on our society, which may include threats to public health and food security.
Collapse
Affiliation(s)
| | - Andrea Lopez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | | | - Scott Ferrenberg
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA
| | - Samuel E. Jordan
- Arizona State University, School of Life Sciences, Tempe, Arizona, USA
| | - Brooke Osborne
- Department of Environment and Society, Utah State University, Moab, Utah, USA
| |
Collapse
|
2
|
Dineshkumar K, Antony G. Computational identification of putative copper-binding proteins in pomegranate bacterial blight pathogen Xanthomonas citri pv. punicae. Arch Microbiol 2022; 204:362. [DOI: 10.1007/s00203-022-02982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
|
3
|
de Souza AF, Pigosso LL, Silva LOS, Galo IDC, Paccez JD, e Silva KSF, de Oliveira MAP, Pereira M, Soares CMDA. Iron Deprivation Modulates the Exoproteome in Paracoccidioides brasiliensis. Front Cell Infect Microbiol 2022; 12:903070. [PMID: 35719340 PMCID: PMC9205457 DOI: 10.3389/fcimb.2022.903070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Fungi of the Paracoccidioides genus are the etiological agents of the systemic mycosis paracoccidioidomycosis and, when in the host, they find a challenging environment that is scarce in nutrients and micronutrients, such as Fe, which is indispensable for the survival of the pathogen. Previous studies have shown that fungi of this genus, in response to Fe deprivation, are able to synthesize and capture siderophores (Fe3+ chelators), use Fe-containing host proteins as a source of the metal, and use a non-canonical reductive pathway for Fe3+ assimilation. Despite all of these findings, there are still gaps that need to be filled in the pathogen response to metal deprivation. To contribute to the knowledge related to this subject, we obtained the exoproteome of Paracoccidioides brasiliensis (Pb18) undergoing Fe deprivation and by nanoUPLC-MSE. One hundred forty-one proteins were identified, and out of these, 64 proteins were predicted to be secreted. We also identified the regulation of several virulence factors. Among the results, we highlight Cyb5 as a secreted molecule of Paracoccidioides in the exoproteome obtained during Fe deprivation. Cyb5 is described as necessary for the Fe deprivation response of Saccharomyces cerevisiae and Aspergillus fumigatus. Experimental data and molecular modeling indicated that Cyb5 can bind to Fe ions in vitro, suggesting that it can be relevant in the arsenal of molecules related to iron homeostasis in P. brasiliensis.
Collapse
Affiliation(s)
- Aparecido Ferreira de Souza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Laurine Lacerda Pigosso
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lana O’Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Italo Dany Cavalcante Galo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Kleber Santiago Freitas e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Brazil
- *Correspondence: Célia Maria de Almeida Soares,
| |
Collapse
|
4
|
Han H, Nakaoka HJ, Hofmann L, Zhou JJ, Yu C, Zeng L, Nan J, Seo G, Vargas RE, Yang B, Qi R, Bardwell L, Fishman DA, Cho KWY, Huang L, Luo R, Warrior R, Wang W. The Hippo pathway kinases LATS1 and LATS2 attenuate cellular responses to heavy metals through phosphorylating MTF1. Nat Cell Biol 2022; 24:74-87. [PMID: 35027733 PMCID: PMC9022944 DOI: 10.1038/s41556-021-00813-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Heavy metals are both integral parts of cells and environmental toxicants, and their deregulation is associated with severe cellular dysfunction and various diseases. Here we show that the Hippo pathway plays a critical role in regulating heavy metal homeostasis. Hippo signalling deficiency promotes the transcription of heavy metal response genes and protects cells from heavy metal-induced toxicity, a process independent of its classic downstream effectors YAP and TAZ. Mechanistically, the Hippo pathway kinase LATS phosphorylates and inhibits MTF1, an essential transcription factor in the heavy metal response, resulting in the loss of heavy metal response gene transcription and cellular protection. Moreover, LATS activity is inhibited following heavy metal treatment, where accumulated zinc directly binds and inhibits LATS. Together, our study reveals an interplay between the Hippo pathway and heavy metals, providing insights into this growth-related pathway in tissue homeostasis and stress response.
Collapse
Affiliation(s)
- Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Hiroki J Nakaoka
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Line Hofmann
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Jeff Jiajing Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Lisha Zeng
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Junyu Nan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | | | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Ruxi Qi
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Dmitry A Fishman
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Rahul Warrior
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
5
|
Prediction of Conserved Peptides of Paracoccidioides for Interferon-γ Release Assay: The First Step in the Development of a Lab-Based Approach for Immunological Assessment during Antifungal Therapy. J Fungi (Basel) 2020; 6:jof6040379. [PMID: 33352628 PMCID: PMC7766394 DOI: 10.3390/jof6040379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Impaired antigen-specific cell-mediated immunity (CMI) is a primary immunological disturbance observed in individuals that develop paracoccidioidomycosis (PCM) after exposure to Paracoccidioides spp. Restoration of Paracoccidioides-specific CMI is crucial to stop the antifungal treatment and avoid relapses. A convenient and specific laboratory tool to assess antigen specific CMI is required for the appropriate clinical treatment of fungal infections, in order to decrease the time of antifungal therapy. We used an interferon-γ release assay strategy, used in the diagnosis of latent tuberculosis infection, to address our aims in this study. Information on proteins secreted by two well-studied representative strains-Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb-01)-were explored using PubMed or MEDLINE. From 26 publications, 252 proteins were identified, of which 203 were similar according to the Basic Local Alignment Search Tool. This enabled a selection of conserved peptides using the MEGA software. The SignalP-5.0, TMHMM, IEDB, NetMHC II, and IFNepitope algorithms were used to identify appropriate epitopes. In our study, we predicted antigenic epitopes of Paracoccidioides that could bind to MHC class II and induce IFN-γ secretion. These T cell epitopes can be used in the development of a laboratory tool to monitor the CMI of patients with PCM.
Collapse
|
6
|
Assunção LDP, Moraes D, Soares LW, Silva-Bailão MG, de Siqueira JG, Baeza LC, Báo SN, Soares CMDA, Bailão AM. Insights Into Histoplasma capsulatum Behavior on Zinc Deprivation. Front Cell Infect Microbiol 2020; 10:573097. [PMID: 33330123 PMCID: PMC7734293 DOI: 10.3389/fcimb.2020.573097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Histoplasma capsulatum is a thermodimorphic fungus that causes histoplasmosis, a mycosis of global incidence. The disease is prevalent in temperate and tropical regions such as North America, South America, Europe, and Asia. It is known that during infection macrophages restrict Zn availability to H. capsulatum as a microbicidal mechanism. In this way the present work aimed to study the response of H. capsulatum to zinc deprivation. In silico analyses showed that H. capsulatum has eight genes related to zinc homeostasis ranging from transcription factors to CDF and ZIP family transporters. The transcriptional levels of ZAP1, ZRT1, and ZRT2 were induced under zinc-limiting conditions. The decrease in Zn availability increases fungicidal macrophage activity. Proteomics analysis during zinc deprivation at 24 and 48 h showed 265 proteins differentially expressed at 24 h and 68 at 48 h. Proteins related to energy production pathways, oxidative stress, and cell wall remodeling were regulated. The data also suggested that low metal availability increases the chitin and glycan content in fungal cell wall that results in smoother cell surface. Metal restriction also induces oxidative stress triggered, at least in part, by reduction in pyridoxin synthesis.
Collapse
Affiliation(s)
- Leandro do Prado Assunção
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Dayane Moraes
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Lucas Weba Soares
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Mirelle Garcia Silva-Bailão
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Janaina Gomes de Siqueira
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Lilian Cristiane Baeza
- Laboratory of Experimental Microbiology, State University of Western Paraná (Unioeste), Cascavel, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Institute of Biological Sciences, Brasília University (UnB), Brasilia, Brazil
| | - Célia Maria de Almeida Soares
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Alexandre Melo Bailão
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| |
Collapse
|
7
|
Soares LW, Bailão AM, Soares CMDA, Bailão MGS. Zinc at the Host-Fungus Interface: How to Uptake the Metal? J Fungi (Basel) 2020; 6:jof6040305. [PMID: 33233335 PMCID: PMC7711662 DOI: 10.3390/jof6040305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
Zinc is an essential nutrient for all living organisms. However, firm regulation must be maintained since micronutrients also can be toxic in high concentrations. This notion is reinforced when we look at mechanisms deployed by our immune system, such as the use of chelators or membrane transporters that capture zinc, when threatened with pathogens, like fungi. Pathogenic fungi, on the other hand, also make use of a variety of transporters and specialized zinc captors to survive these changes. In this review, we sought to explain the mechanisms, grounded in experimental analysis and described to date, utilized by pathogenic fungi to maintain optimal zinc levels.
Collapse
|
8
|
Santos LPA, Assunção LDP, Lima PDS, Tristão GB, Brock M, Borges CL, Silva-Bailão MG, Soares CMDA, Bailão AM. Propionate metabolism in a human pathogenic fungus: proteomic and biochemical analyses. IMA Fungus 2020; 11:9. [PMID: 32617258 PMCID: PMC7324963 DOI: 10.1186/s43008-020-00029-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
Fungi of the complex Paracoccidioides spp. are thermodimorphic organisms that cause Paracoccidioidomycosis, one of the most prevalent mycoses in Latin America. These fungi present metabolic mechanisms that contribute to the fungal survival in host tissues. Paracoccidioides lutzii activates glycolysis and fermentation while inactivates aerobic metabolism in iron deprivation, a condition found during infection. In lungs Paracoccidioides brasiliensis face a glucose poor environment and relies on the beta-oxidation to support energy requirement. During mycelium to yeast transition P. lutzii cells up-regulate transcripts related to lipid metabolism and cell wall remodeling in order to cope with the host body temperature. Paracoccidioides spp. cells also induce transcripts/enzymes of the methylcitrate cycle (MCC), a pathway responsible for propionyl-CoA metabolism. Propionyl-CoA is a toxic compound formed during the degradation of odd-chain fatty acids, branched chain amino acids and cholesterol. Therefore, fungi require a functional MCC for full virulence and the ability to metabolize propionyl-CoA is related to the virulence traits in Paracoccidioides spp. On this way we sought to characterize the propionate metabolism in Paracoccidioides spp. The data collected showed that P. lutzii grows in propionate and activates the MCC by accumulating transcripts and proteins of methylcitrate synthase (MCS), methylcitrate dehydratase (MCD) and methylisocitrate lyase (MCL). Biochemical characterization of MCS showed that the enzyme is regulated by phosphorylation, an event not yet described. Proteomic analyses further indicate that P. lutzii yeast cells degrades lipids and amino acids to support the carbon requirement for propionate metabolism. The induction of a putative propionate kinase suggests that fungal cells use propionyl-phosphate as an intermediate in the production of toxic propionyl-CoA. Concluding, the metabolism of propionate in P. lutzii is under regulation at transcriptional and phosphorylation levels and that survival on this carbon source requires additional mechanisms other than activation of MCC.
Collapse
Affiliation(s)
- Luiz Paulo Araújo Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Patrícia de Souza Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- Universidade Estadual de Goiás, Itapuranga, Brazil
| | - Gabriel Brum Tristão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Matthias Brock
- Fungal Biology and Genetics Group, University of Nottingham, Nottingham, UK
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
9
|
Jain KK, Kumar A, Shankar A, Pandey D, Chaudhary B, Sharma KK. De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidum MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways. Genomics 2020; 112:184-198. [DOI: 10.1016/j.ygeno.2019.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/07/2019] [Accepted: 01/20/2019] [Indexed: 12/23/2022]
|
10
|
Abstract
Abstract
Nickel-binding proteins play an important role in the biological processes and can also be utilized in several fields of biotechnology. This study was focused on analysing the nickel-binding proteins from the blood sera of humans (Homo sapiens), cattle (Bos taurus), sheep (Ovis aries), red deer (Cervus elaphus), mouflon (Ovis orientalis), fallow deer (Dama dama), horses (Equus ferus caballus), pigs (Sus scrofa domesticus), wildboars (Sus scrofa), brown bears (Ursus arctos) and pheasants (Phasianus colchicus). The presence of higher abundance proteins in the blood serum, such as albumins, may mask the detection of lower abundance proteins. The samples were depleted from these higher abundance proteins to facilitate the detection of those with lower abundance. For the characterization of these proteins, nickel cations bound to tetradentate ligand nitrilotriacetic acid(Ni-NTA)immobilized on agarose beads were incubated with animal sera to capture nickel-binding proteins and subsequently the proteins were eluted and fractionated on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The results showed a set of nickel-binding proteins with various molecular weights within different animal species. A unique ~42 kDa nickel-binding protein in the brown bear serum, which was not present in any of the other species, was further characterized and identified by matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS). This protein was identified as ahaptoglobin-like protein. This result may provide some valuable clue for the physiological difference in the metal binding proteins in the serum of Ursus arctos and other animals.
Collapse
|
11
|
McLauchlan CC, Murakami HA, Wallace CA, Crans DC. Coordination environment changes of the vanadium in vanadium-dependent haloperoxidase enzymes. J Inorg Biochem 2018; 186:267-279. [PMID: 29990751 DOI: 10.1016/j.jinorgbio.2018.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022]
Abstract
Vanadium-dependent haloperoxidases are a class of enzymes that catalyze oxidation reactions with halides to form halogenated organic products and water. These enzymes include chloroperoxidase and bromoperoxidase, which have very different protein sequences and sizes, but regardless the coordination environment of the active sites is surprisingly constant. In this manuscript, the comparison of the coordination chemistry of V-containing-haloperoxidases of the trigonal bipyramidal geometry was done by data mining. The catalytic cycle imposes changes in the coordination geometry of the vanadium to accommodate the peroxidovanadium(V) intermediate in an environment we describe as a distorted square pyramidal geometry. During the catalytic cycle, this intermediate converts to a trigonal bipyramidal intermediate before losing the halogen and forming a tetrahedral vanadium-protein intermediate. Importantly, the catalysis is facilitated by a proton-relay system supplied by the second sphere coordination environment and the changes in the coordination environment of the vanadium(V) making this process unique among protein catalyzed processes. The analysis of the coordination chemistry shows that the active site is very tightly regulated with only minor changes in the coordination geometry. The coordination geometry in the protein structures deviates from that found for both small molecules crystalized in the absence of protein and the reported functional small molecule model compounds. At this time there are no examples reported of a structurally similar small molecule with the geometry observed for the peroxidovanadium(V) in the active site of the vanadium-containing haloperoxidases.
Collapse
Affiliation(s)
- Craig C McLauchlan
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790, USA.
| | - Heide A Murakami
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig A Wallace
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790, USA
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
12
|
Ferrareze PAG, Streit RSA, Dos Santos FM, Schrank A, Kmetzsch L, Vainstein MH, Staats CC. sRNAs as possible regulators of retrotransposon activity in Cryptococcus gattii VGII. BMC Genomics 2017; 18:294. [PMID: 28403818 PMCID: PMC5389150 DOI: 10.1186/s12864-017-3688-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 01/31/2023] Open
Abstract
Background The absence of Argonaute genes in the fungal pathogen Cryptococcus gattii R265 and other VGII strains indicates that yeasts of this genotype cannot have a functional RNAi pathway, an evolutionarily conserved gene silencing mechanism performed by small RNAs. The success of the R265 strain as a pathogen that caused the Pacific Northwest and Vancouver Island outbreaks may imply that RNAi machinery loss could be beneficial under certain circumstances during evolution. As a result, a hypermutant phenotype would be created with high rates of genome retrotransposition, for instance. This study therefore aimed to evaluate in silicio the effect of retrotransposons and their control mechanisms by small RNAs on genomic stability and synteny loss of C. gattii R265 through retrotransposons sequence comparison and orthology analysis with other 16 C. gattii genomic sequences available. Results Retrotransposon mining identified a higher sequence count to VGI genotype compared to VGII, VGIII, and VGIV. However, despite the lower retrotransposon number, VGII exhibited increased synteny loss and genome rearrangement events. RNA-Seq analysis indicated highly expressed retrotransposons as well as sRNA production. Conclusions Genome rearrangement and synteny loss may suggest a greater retrotransposon mobilization caused by RNAi pathway absence, but the effective presence of sRNAs that matches retrotransposon sequences means that an alternative retrotransposon silencing mechanism could be active in genomic integrity maintenance of C. gattii VGII strains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3688-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil
| | - Rodrigo Silva Araujo Streit
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Francine Melise Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil
| | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Livia Kmetzsch
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Preparation of Cu2+-mediated magnetic imprinted polymers for the selective sorption of bovine hemoglobin. Talanta 2016; 150:46-53. [DOI: 10.1016/j.talanta.2015.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 11/23/2022]
|
14
|
Gonzalez A, Hernandez O. New insights into a complex fungal pathogen: the case of Paracoccidioides spp. Yeast 2016; 33:113-28. [PMID: 26683539 DOI: 10.1002/yea.3147] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 01/31/2023] Open
Abstract
Paracoccidioidomycosis is a systemic mycosis endemic to Latin America, with Paracoccidioides brasiliensis and P. lutzii being the causal agents of this disorder. Several issues have been raised in the 100 years since its discovery and in this article we discuss features of this fascinating fungal pathogen, including its biology, eco-epidemiology and aspects of its pathogenicity. We also consider some of its virulence determinants, the most recent advances in the study of its metabolic pathways and the molecular and genetic research tools developed for this research. We also review the animal models used to study host-fungal interactions and how the host defence mechanisms against this pathogen work.
Collapse
Affiliation(s)
- Angel Gonzalez
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Orville Hernandez
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
15
|
Lima PDS, Chung D, Bailão AM, Cramer RA, Soares CMDA. Characterization of the Paracoccidioides Hypoxia Response Reveals New Insights into Pathogenesis Mechanisms of This Important Human Pathogenic Fungus. PLoS Negl Trop Dis 2015; 9:e0004282. [PMID: 26659387 PMCID: PMC4686304 DOI: 10.1371/journal.pntd.0004282] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hypoxic microenvironments are generated during fungal infection. It has been described that to survive in the human host, fungi must also tolerate and overcome in vivo microenvironmental stress conditions including low oxygen tension; however nothing is known how Paracoccidioides species respond to hypoxia. The genus Paracoccidioides comprises human thermal dimorphic fungi and are causative agents of paracoccidioidomycosis (PCM), an important mycosis in Latin America. METHODOLOGY/PRINCIPAL FINDINGS In this work, a detailed hypoxia characterization was performed in Paracoccidioides. Using NanoUPLC-MSE proteomic approach, we obtained a total of 288 proteins differentially regulated in 12 and 24 h of hypoxia, providing a global view of metabolic changes during this stress. In addition, a functional characterization of the homologue to the most important molecule involved in hypoxia responses in other fungi, the SREBP (sterol regulatory element binding protein) was performed. We observed that Paracoccidioides species have a functional homologue of SREBP, named here as SrbA, detected by using a heterologous genetic approach in the srbA null mutant in Aspergillus fumigatus. Paracoccidioides srbA (PbsrbA), in addition to involvement in hypoxia, is probable involved in iron adaptation and azole drug resistance responses. CONCLUSIONS/SIGNIFICANCE In this study, the hypoxia was characterized in Paracoccidioides. The first results can be important for a better understanding of the fungal adaptation to the host and improve the arsenal of molecules for the development of alternative treatment options in future, since molecules related to fungal adaptation to low oxygen levels are important to virulence and pathogenesis in human pathogenic fungi.
Collapse
Affiliation(s)
- Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Dawoon Chung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
16
|
Scorzoni L, de Paula e Silva ACA, Singulani JDL, Leite FS, de Oliveira HC, Moraes da Silva RA, Fusco-Almeida AM, Mendes-Giannini MJS. Comparison of virulence between Paracoccidioides brasiliensis and Paracoccidioides lutzii using Galleria mellonella as a host model. Virulence 2015; 6:766-76. [PMID: 26552324 PMCID: PMC4826127 DOI: 10.1080/21505594.2015.1085277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 10/22/2022] Open
Abstract
Paracoccidioidomycosis is a systemic mycosis, endemic in Latin America. The etiologic agents of this mycosis are composed of 2 species: Paracoccidioides brasiliensis and P. lutzii. Murine animal models are the gold standard for in vivo studies; however, ethical, economical and logistical considerations limit their use. Galleria mellonella is a suitable model for in vivo studies of fungal infections. In this study, we compared the virulence of P. brasiliensis and P. lutzii in G. mellonella model. The deaths of larvae infected with P. brasiliensis or P. lutzii were similar, and both species were able to reduce the number of hemocytes, which were estimated by microscopy and flow cytometer. Additionally, the phagocytosis percentage was similar for both species, but when we analyze hemocyte-Paracoccidioides spp. interaction using flow cytometer, P. lutzii showed higher interactions with hemocytes. The gene expression of gp43 as well as this protein was higher for P. lutzii, and this expression may contribute to a greater adherence to hemocytes. These results helped us evaluate the behavior of Paracoccidioides spp in G. mellonella, which is a convenient model for investigating the host-Paracoccidioides spp. interaction.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Carolina Alves de Paula e Silva
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Fernanda Sangalli Leite
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Rosangela Aparecida Moraes da Silva
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| |
Collapse
|
17
|
Siqueira IM, Fraga CLF, Amaral AC, Souza ACO, Jerônimo MS, Correa JR, Magalhães KG, Inácio CA, Ribeiro AM, Burguel PH, Felipe MS, Tavares AH, Bocca AL. Distinct patterns of yeast cell morphology and host responses induced by representative strains of Paracoccidioides brasiliensis (Pb18) and Paracoccidioides lutzii (Pb01). Med Mycol 2015; 54:177-88. [PMID: 26384386 DOI: 10.1093/mmy/myv072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/07/2015] [Indexed: 11/14/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis, widespread in Latin America. PCM is a granulomatous disease characterized by a polymorphism of lesions depending on the pathogen's virulence, the immune status of the host and its genetic susceptibility. The thermodimorphic fungus Paracoccidioides brasiliensis was considered the only etiologic agent of PCM, yet recent works have shown significant genetic diversity among different strains of P. brasiliensis. Therefore, it has been proposed for a new species within the Paracoccidioides genus, named Paracoccidioides lutzii. To better understand the fungus-host interactions elicited by strains Pb01 and Pb18 as key representatives of P. lutzii and P. brasiliensis, respectively, we carried out studies to investigate differences in morphology, induced immune response, virulence and pathology between these two Paracoccidioides species. Our results demonstrate distinct patterns of host-parasite interaction and pathology caused by Pb18 and Pb01. These results open up new fronts for NEW: clinical studies, which may result in significant consequences for the diagnosis and treatment of PCM. Considering that our results cannot be extended to all strains of both species, more studies about the virulence among Paracoccioides must be explored in the future.
Collapse
Affiliation(s)
- Isaque Medeiros Siqueira
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | | | - André Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás
| | - Ana Camila Oliveira Souza
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | - Márcio Souza Jerônimo
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | | | | | - Carlos Antônio Inácio
- Biology Institute, Department of Entomology and Plant Pathology, Federal Rural University of Rio de Janeiro
| | | | - Pedro Henrique Burguel
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | - Maria Sueli Felipe
- Biology Institute, University of Brasília, D.F., Brazil Genomic Science and Biotechnology Post-Graduate Program, Catholic University of Brasília, D.F., Brazil
| | | | | |
Collapse
|
18
|
Bailão EFLC, Lima PDS, Silva-Bailão MG, Bailão AM, Fernandes GDR, Kosman DJ, Soares CMDA. Paracoccidioides spp. ferrous and ferric iron assimilation pathways. Front Microbiol 2015; 6:821. [PMID: 26441843 PMCID: PMC4585334 DOI: 10.3389/fmicb.2015.00821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
Iron is an essential micronutrient for almost all organisms, including fungi. Usually, fungi can uptake iron through receptor-mediated internalization of a siderophore or heme, and/or reductive iron assimilation (RIA). Traditionally, the RIA pathway consists of ferric reductases (Fres), ferroxidase (Fet3) and a high-affinity iron permease (Ftr1). Paracoccidioides spp. genomes do not present an Ftr1 homolog. However, this fungus expresses zinc regulated transporter homologs (Zrts), members of the ZIP family of membrane transporters that are able in some organisms to transport zinc and iron. A 2,3,5-triphenyltetrazolium chloride (TTC)-overlay assay indicates that both Pb01 and Pb18 express a ferric reductase activity; however, 59Fe uptake assays indicate that only in Pb18 is this activity coupled to a reductase-dependent iron uptake pathway. In addition, Zrts are up-regulated in iron deprivation, as indicated by RNAseq and qRT-PCR using Pb01 transcripts. RNAseq strategy also demonstrated that transcripts related to siderophore uptake and biosynthesis are up-regulated in iron-deprived condition. The data suggest that the fungus could use both a non-classical RIA, comprising ferric reductases and Fe/Zn permeases (Zrts), and siderophore uptake pathways under iron-limited conditions. The study of iron metabolism reveals novel surface molecules that could function as accessible targets for drugs to block iron uptake and, consequently, inhibit pathogen's proliferation.
Collapse
Affiliation(s)
- Elisa Flávia L C Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Mirelle G Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | | | - Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo Buffalo, NY, USA
| | | |
Collapse
|