1
|
Ramatla T, Motlhaping T, Ndlovu N, Mileng K, Howard J, Khasapane G, Ramaili T, Mokgokong P, Nkhebenyane J, Ndou R, Lekota K, Thekisoe O. Molecular Detection of Shiga Toxin-Producing Escherichia coli O177 Isolates, Their Antibiotic Resistance, and Virulence Profiles From Broiler Chickens. Int J Microbiol 2024; 2024:9778058. [PMID: 39665069 PMCID: PMC11634401 DOI: 10.1155/ijm/9778058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
The World Health Organization (WHO) describes Shiga toxin-producing Escherichia coli (STEC) as a bacterium that can cause severe food-borne diseases. Common sources of infection include undercooked meat products and faecal contamination in vegetables. This study aimed to isolate, identify and assess the virulence and antibiotic resistance profiles of STEC isolates from broiler chicken faeces. Faecal samples were cultured, and polymerase chain reaction (PCR) was utilized to identify the isolates. Subsequently, the confirmed isolates were screened for seven virulence markers using PCR. The antibiotic susceptibility of the isolates to 13 different antibiotics was determined using the disk diffusion method. PCR was also employed to screen for antibiotic resistance genes. The uidA gene, which encodes the beta-glucuronidase enzyme, was detected in 62 (64.6%) of the 91 presumptively identified E. coli isolates. Of these, 23 isolates (37.1%) were confirmed to be E. coli O177 serogroup through amplification of wzy gene. All E. coli O177 isolates possessed the virulence stx2 gene, while 65% carried the stx1 gene. Among the E. coli O177 isolates, three harboured a combination of vir + stx2 + stx1 + hlyA genes, while one isolate contained a combination of eaeA + stx2 + stx1 + hlyA genes. All E. coli O177 isolates carried one or more antimicrobial resistance (AMR) genes, with 17 isolates (73.7%) identified as multidrug resistance (MDR). This is the first study to report the presence of E. coli O177 serotype from broiler chickens in South Africa. The findings reveal that broiler chicken faeces are a significant reservoir for MDR E. coli O177 and a potential source of AMR genes. These results underscore the importance of continuous surveillance and monitoring of the spread of AMR infectious bacteria in food-producing animals and their environments. The study also emphasizes that monitoring and control of poultry meat should be considered a major public health concern.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Tshepang Motlhaping
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Nkanyezenhle Ndlovu
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Kealeboga Mileng
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Jody Howard
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - George Khasapane
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Taole Ramaili
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho 2735, South Africa
| | - Prudent Mokgokong
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Jane Nkhebenyane
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Rendani Ndou
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho 2735, South Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
2
|
Alali WQ, Scheuerman P, McClure C, Ghimire A, Owusu-Mensah P, Schultz J, Joyner TA. Prevalence of Antimicrobial Resistant Escherichia coli from Sinking Creek in Northeast Tennessee. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1285. [PMID: 39457258 PMCID: PMC11508131 DOI: 10.3390/ijerph21101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Antibiotic resistance (AR) is a critical global health threat exacerbated by complex human-animal-environment interactions. Aquatic environments, particularly surface water systems, can serve as reservoirs and transmission routes for AR bacteria. This study investigated the prevalence of AR E. coli in Sinking Creek, a pathogen-impacted creek in Northeast Tennessee. Water samples were collected monthly from four sites along the creek over a 6-month period. E. coli isolates were cultured, identified, and tested for susceptibility to eight antibiotics using the Kirby-Bauer disk diffusion method and broth disk elution method for colistin. Data were analyzed to determine the prevalence of AR and multidrug resistance (MDR) among isolates. Of the 122 water samples, 89.3% contained E. coli. Among the 177 isolates tested, resistance was highest to ciprofloxacin (64.2%) and nitrofurantoin (62.7%), and lowest to fosfomycin (14.1%) and colistin (6.0%). Significant differences in resistance to ceftriaxone and amoxicillin/clavulanic acid were observed between sampling sites. MDR was prevalent in 47.5% of isolates, with 5.1% resistant to seven antibiotics. The most frequent MDR patterns (6.8%) included three antibiotics: ceftriaxone, ciprofloxacin, and nitrofurantoin. The high prevalence of AR E. coli in Sinking Creek poses a significant public health risk, highlighting the need for ongoing surveillance and intervention strategies to prevent the spread of AR bacteria.
Collapse
Affiliation(s)
- Walid Q. Alali
- Department of Biostatistics & Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Phillip Scheuerman
- Department of Environmental and Occupational Health and Safety Sciences, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA; (P.S.); (C.M.); (P.O.-M.); (J.S.)
| | - Clara McClure
- Department of Environmental and Occupational Health and Safety Sciences, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA; (P.S.); (C.M.); (P.O.-M.); (J.S.)
| | - Achala Ghimire
- Department of Biostatistics & Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Priscilla Owusu-Mensah
- Department of Environmental and Occupational Health and Safety Sciences, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA; (P.S.); (C.M.); (P.O.-M.); (J.S.)
| | - Jacob Schultz
- Department of Environmental and Occupational Health and Safety Sciences, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA; (P.S.); (C.M.); (P.O.-M.); (J.S.)
| | - Timothy Andrew Joyner
- Department of Geosciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN 37614, USA;
| |
Collapse
|
3
|
Tettey R, Egyir B, Tettey P, Arko-Mensah J, Addo SO, Owusu-Nyantakyi C, Boateng W, Fobil J. Genomic analysis of multidrug-resistant Escherichia coli from Urban Environmental water sources in Accra, Ghana, Provides Insights into public health implications. PLoS One 2024; 19:e0301531. [PMID: 38787855 PMCID: PMC11125565 DOI: 10.1371/journal.pone.0301531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 05/26/2024] Open
Abstract
Wastewater discharge into the environment in resource-poor countries poses a threat to public health. Studies in this area within these countries are limited, and the use of high-throughput whole-genome sequencing technologies is lacking. Therefore, understanding of environmental impacts is inadequate. The present study investigated the antibiotic resistance profiles and diversity of beta-lactamases in Escherichia coli strains isolated from environmental water sources in Accra, Ghana. Microbiological analyses were conducted on wastewater samples from three hospitals, a sewage and wastewater treatment plant, and water samples from two urban surface water bodies. Confirmed isolates (N = 57) were selected for phenotypic antibiotic resistance profiles. Multi-drug-resistant isolates (n = 25) were genome sequenced using Illumina MiSeq sequencing technology and screened for sequence types, antibiotic resistance, virulence and beta-lactamase genes, and mobile genetic elements. Isolates were frequently resistant to ampicillin (63%), meropenem (47%), azithromycin (46%), and sulfamethoxazole-trimethoprim (42%). Twenty different sequence types (STs) were identified, including clinically relevant ones such as ST167 and ST21. Five isolates were assigned to novel STs: ST14531 (n = 2), ST14536, ST14537, and ST14538. The isolates belonged to phylogroups A (52%), B1 (44%), and B2 (4%) and carried β-lactamase (TEM-1B, TEM-1C, CTX-M-15, and blaDHA-1) and carbapenemase (OXA-1, OXA-181) resistance genes. Dominant plasmid replicons included Col440I (10.2%) and IncFIB (AP001918) (6.8%). Polluted urban environments in Accra are reservoirs for antibiotic-resistant bacteria, posing a substantial public health risk. The findings underscore the need for targeted public health interventions to mitigate the spread of antibiotic-resistant bacteria and protect public health.
Collapse
Affiliation(s)
- Rebecca Tettey
- Department of Biological, Environmental, and Occupational Health Science, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Beverly Egyir
- West African Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Prudence Tettey
- Department of Biological, Environmental, and Occupational Health Science, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental, and Occupational Health Science, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel Ofori Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Christian Owusu-Nyantakyi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - William Boateng
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Julius Fobil
- West African Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
5
|
Saini P, Bandsode V, Singh A, Mendem SK, Semmler T, Alam M, Ahmed N. Genomic insights into virulence, antimicrobial resistance, and adaptation acumen of Escherichia coli isolated from an urban environment. mBio 2024; 15:e0354523. [PMID: 38376265 PMCID: PMC10936179 DOI: 10.1128/mbio.03545-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Populations of common commensal bacteria such as Escherichia coli undergo genetic changes by the acquisition of certain virulence and antimicrobial resistance (AMR) encoding genetic elements leading to the emergence of pathogenic strains capable of surviving in the previously uninhabited or protected niches. These bacteria are also reported to be prevalent in the environment where they survive by adopting various recombination strategies to counter microflora of the soil and water, under constant selection pressure(s). In this study, we performed molecular characterization, phenotypic AMR analysis, and whole genome sequencing (WGS) of E. coli (n = 37) isolated from soil and surface water representing the urban and peri-urban areas. The primary aim of this study was to understand the genetic architecture and pathogenic acumen exhibited by environmental E. coli. WGS-based analysis entailing resistome and virulome profiling indicated the presence of various virulence (adherence, iron uptake, and toxins) and AMR encoding genes, including blaNDM-5 in the environmental isolates. A majority of our isolates belonged to phylogroup B1 (73%). A few isolates in our collection were of sequence type(s) (ST) 58 and 224 that could have emerged recently as clonal lineages and might pose risk of infection/transmission. Mobile genetic elements (MGEs) such as plasmids (predominantly) of the IncF family, prophages, pipolins, and insertion elements such as IS1 and IS5 were also observed to exist, which may presumably aid in the propagation of genes encoding resistance against antimicrobial drugs. The observed high prevalence of MGEs associated with multidrug resistance in pathogenic E. coli isolates belonging to the phylogroup B1 underscores the need for extended surveillance to keep track of and prevent the transmission of the bacterium to certain vulnerable human and animal populations. IMPORTANCE Evolutionary patterns of E. coli bacteria convey that they evolve into highly pathogenic forms by acquiring fitness advantages, such as AMR, and various virulence factors through the horizontal gene transfer (HGT)-mediated acquisition of MGEs. However, limited research on the genetic profiles of environmental E. coli, particularly from India, hinders our understanding of their transition to pathogenic forms and impedes the adoption of a comprehensive approach to address the connection between environmentally dwelling E. coli populations and human and veterinary public health. This study focuses on high-resolution genomic analysis of the environmental E. coli isolates aiming to understand the genetic similarities and differences among isolates from different environmental niches and uncover the survival strategies employed by these bacteria to thrive in their surroundings. Our approach involved molecular characterization of environmental samples using PCR-based DNA fingerprinting and subsequent WGS analysis. This multidisciplinary approach is likely to provide valuable insights into the understanding of any potential spill-over to human and animal populations and locales. Investigating these environmental isolates has significant potential for developing epidemiological strategies against transmission and understanding niche-specific evolutionary patterns.
Collapse
Affiliation(s)
- Poorvi Saini
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | - Viraj Bandsode
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | - Anuradha Singh
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | - Suresh Kumar Mendem
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | | | - Munirul Alam
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| |
Collapse
|
6
|
Shields KE, Ranava D, Tan Y, Zhang D, Yap MNF. Epitranscriptional m6A modification of rRNA negatively impacts translation and host colonization in Staphylococcus aureus. PLoS Pathog 2024; 20:e1011968. [PMID: 38252661 PMCID: PMC10833563 DOI: 10.1371/journal.ppat.1011968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Macrolides, lincosamides, and streptogramin B (MLS) are structurally distinct molecules that are among the safest antibiotics for prophylactic use and for the treatment of bacterial infections. The family of erythromycin resistance methyltransferases (Erm) invariantly install either one or two methyl groups onto the N6,6-adenosine of 2058 nucleotide (m6A2058) of the bacterial 23S rRNA, leading to bacterial cross-resistance to all MLS antibiotics. Despite extensive structural studies on the mechanism of Erm-mediated MLS resistance, how the m6A epitranscriptomic mark affects ribosome function and bacterial physiology is not well understood. Here, we show that Staphylococcus aureus cells harboring m6A2058 ribosomes are outcompeted by cells carrying unmodified ribosomes during infections and are severely impaired in colonization in the absence of an unmodified counterpart. The competitive advantage of m6A2058 ribosomes is manifested only upon antibiotic challenge. Using ribosome profiling (Ribo-Seq) and a dual-fluorescence reporter to measure ribosome occupancy and translational fidelity, we found that specific genes involved in host interactions, metabolism, and information processing are disproportionally deregulated in mRNA translation. This dysregulation is linked to a substantial reduction in translational capacity and fidelity in m6A2058 ribosomes. These findings point to a general "inefficient translation" mechanism of trade-offs associated with multidrug-resistant ribosomes.
Collapse
Affiliation(s)
- Kathryn E. Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, St. Louis, Missouri, United States of America
| | - Mee-Ngan F. Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
7
|
Kimbell LK, LaMartina EL, Kohls S, Wang Y, Newton RJ, McNamara PJ. Impact of corrosion inhibitors on antibiotic resistance, metal resistance, and microbial communities in drinking water. mSphere 2023; 8:e0030723. [PMID: 37681947 PMCID: PMC10597465 DOI: 10.1128/msphere.00307-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023] Open
Abstract
Corrosion inhibitors, including zinc orthophosphate, sodium orthophosphate, and sodium silicate, are commonly used to prevent the corrosion of drinking water infrastructure. Metals such as zinc are known stressors for antibiotic resistance selection, and phosphates can increase microbial growth in drinking water distribution systems (DWDS). Yet, the influence of corrosion inhibitor type on antimicrobial resistance in DWDS is unknown. Here, we show that sodium silicates can decrease antibiotic resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), while zinc orthophosphate increases ARB and ARGs in source water microbial communities. Based on controlled bench-scale studies, zinc orthophosphate addition significantly increased the abundance of ARB resistant to ciprofloxacin, sulfonamides, trimethoprim, and vancomycin, as well as the genes sul1, qacEΔ1, an indication of resistance to quaternary ammonium compounds, and the integron-integrase gene intI1. In contrast, sodium silicate dosage at 10 mg/L resulted in decreased bacterial growth and antibiotic resistance selection compared to the other corrosion inhibitor additions. Source water collected from the drinking water treatment plant intake pipe resulted in less significant changes in ARB and ARG abundance due to corrosion inhibitor addition compared to source water collected from the pier at the recreational beach. In tandem with the antibiotic resistance shifts, significant microbial community composition changes also occurred. Overall, the corrosion inhibitor sodium silicate resulted in the least selection for antibiotic resistance, which suggests it is the preferred corrosion inhibitor option for minimizing antibiotic resistance proliferation in DWDS. However, the selection of an appropriate corrosion inhibitor must also be appropriate for the water chemistry of the system (e.g., pH, alkalinity) to minimize metal leaching first and foremost and to adhere to the lead and copper rule. IMPORTANCE Antibiotic resistance is a growing public health concern across the globe and was recently labeled the silent pandemic. Scientists aim to identify the source of antibiotic resistance and control points to mitigate the spread of antibiotic resistance. Drinking water is a direct exposure route to humans and contains antibiotic-resistant bacteria and associated resistance genes. Corrosion inhibitors are added to prevent metallic pipes in distribution systems from corroding, and the type of corrosion inhibitor selected could also have implications on antibiotic resistance. Indeed, we found that sodium silicate can minimize selection of antibiotic resistance while phosphate-based corrosion inhibitors can promote antibiotic resistance. These findings indicate that sodium silicate is a preferred corrosion inhibitor choice for mitigation of antibiotic resistance.
Collapse
Affiliation(s)
- Lee K. Kimbell
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Emily Lou LaMartina
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Stan Kohls
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Patrick J. McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Varandas S, Fernandes C, Cabecinha E, Gomes S, da Silva GJ, Saavedra MJ. Escherichia coli Phylogenetic and Antimicrobial Pattern as an Indicator of Anthropogenic Impact on Threatened Freshwater Mussels. Antibiotics (Basel) 2023; 12:1401. [PMID: 37760699 PMCID: PMC10525238 DOI: 10.3390/antibiotics12091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Freshwater bivalves are widely used as accumulation indicators and monitoring tools for assessing contaminant effects on different levels of biological integration. This pilot study aimed to explore the phylogenetic diversity of Escherichia coli isolated from freshwater mussels (Margaritifera margaritifera and Potomida littoralis) and characterize their phenotypes and antibiotic resistance profiles. Samples were collected in the Rabaçal and Tua Rivers, in the Douro basin, Portugal-two sites representing different levels of anthropogenic contamination. Antimicrobial susceptibility testing was performed via the disk diffusion method with 21 antibiotics. Results showed that 31% of isolates were multidrug-resistant (MDR). Thus, freshwater mussels provide an effective and time-integrated approach for identifying/quantifying fecal indicators, including MDR bacteria. PCR-based assays were designed for assessing phylogenetic E. coli groups. Among the E. coli isolates, the highest prevalence (44%) was observed in group D or E, followed by group E or Clade I (25%), group A (19%), and group B1 (13%). E. coli isolated from M. margaritifera predominantly exhibited a higher prevalence of phylogroups D or E, whereas E. coli from P. littoralis showed associations with phylogroups E or clade I, B1, A, and D or E. Our results provide new insights into the phylogenetic diversity of E. coli in freshwater bivalves. Additionally, the findings highlight the possible linkage of phylogroups with the host species, the geographical location in the water stream, and human activity. Using E. coli as a bioindicator isolated from freshwater mussels helps us grasp how human activities affect the environment. This study has important implications for those interested in safeguarding water resources, especially in tackling antibiotic resistance in aquatic ecosystems.
Collapse
Affiliation(s)
- Simone Varandas
- CITAB-Inov4Agro—Centre for the Research and Technology of Agro-Environmental and Biological Sciences—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.V.); (E.C.)
- CIBIO/InBIO/BIOPOLIS—Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Conceição Fernandes
- CIMO—Centro de Investigação de Montanha/SusTEC—Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha, IPB-Institute Polytechnique of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- A2BUnit—Antimicrobials, Biocides & Biofilms Unit, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Edna Cabecinha
- CITAB-Inov4Agro—Centre for the Research and Technology of Agro-Environmental and Biological Sciences—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.V.); (E.C.)
| | - Sónia Gomes
- A2BUnit—Antimicrobials, Biocides & Biofilms Unit, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CIIMAR/CIIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Gabriela Jorge da Silva
- Center for Neuroscience and Cell Biology (CNC), Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Maria José Saavedra
- CITAB-Inov4Agro—Centre for the Research and Technology of Agro-Environmental and Biological Sciences—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.V.); (E.C.)
- A2BUnit—Antimicrobials, Biocides & Biofilms Unit, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CIIMAR/CIIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- CECAV—Animal and Veterinary Research Center and AL4AnimalS, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
9
|
A Systematic Review on the Occurrence of Antimicrobial-Resistant Escherichia coli in Poultry and Poultry Environments in Bangladesh between 2010 and 2021. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2425564. [PMID: 36778056 PMCID: PMC9908353 DOI: 10.1155/2023/2425564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Antimicrobial resistance (AMR) is a significant public health issue in Bangladesh like many other developing countries where data on resistance trends are scarce. Moreover, the existence of multidrug-resistant (MDR) Escherichia coli exerts an ominous effect on the poultry sector. Therefore, the current systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was conducted to find out the AMR scenarios in E. coli isolates sourced from poultry and poultry environments in Bangladesh between 2010 and 2021. Following the PRISMA guidelines, a total of 17 published scientific articles were selected for this systematic review. This review revealed that 18 out of 64 districts in Bangladesh reported E. coli in poultry, having a higher prevalence (combined prevalence: 69.3%, 95% confidence interval, CI: 67.3-71%). Moreover, the prevalence ranged from 24.3% to 100%. This review found that E. coli isolates showed resistance to 14 antimicrobial classes and 45 different antimicrobial agents, including the last-line (reserve group) antibiotics and banned antimicrobial categories for the treatment of infections in agricultural animals. Phenotypic resistance of E. coli against penicillins and beta-lactamase inhibitors (20.2%-100%), cephalosporins (1.9%-100%), fluoroquinolones (5.98%-100%), aminoglycosides (6%-100%), tetracyclines (17.7%-100%), carbapenems (13.6%-72.7%), macrolides (11.8%-100%), polymyxins (7.9%-100%), phenicols (20%-97.2%), sulfa drugs (44.7%-100%), cephamycins (21.4%-48.8%), nitrofurans (21.4%-63.2%), monobactams (1.2%), and glycylcyclines (2.3%) was recorded in the last decades in Bangladesh. Also, 14 articles reported MDR E. coli in poultry, including a 100% MDR in nine articles and a 92.7% (95% CI: 91.2-94%) combined percentage of MDR E. coli isolates. Twenty-four different AMR genes encoding resistance to beta-lactams (bla TEM, bla CTX-M-1, bla CTX-M-2, bla CTX-M-9, bla OXA-1, bla OXA-47, bla SHV, and CITM), colistin (mcr1 and mcr3), fluoroquinolones (qnrB and qnrS), tetracyclines (tetA, tetB, and tetC), sulfonamides (sulI and sulII), trimethoprim (dfrA1), aminoglycosides (rmtB), streptomycin (aadA1), gentamicin (aac-3-IV), erythromycin (ereA), and chloramphenicol (catA1 and cmlA) were detected in E. coli isolates. The presence of MDR E. coli and their corresponding resistance genes in poultry and poultry environments is an alarming issue for all health communities in Bangladesh. We suggest a regular antimicrobial surveillance program with a strong One Health approach to lessen the hazardous effects of AMR E. coli in poultry industries in Bangladesh.
Collapse
|
10
|
Stenholm Å, Hedeland M, Pettersson CE. Investigation of neomycin biodegradation conditions using ericoid mycorrhizal and white rot fungal species. BMC Biotechnol 2022; 22:29. [PMID: 36221128 PMCID: PMC9554996 DOI: 10.1186/s12896-022-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the search for methods to biodegrade recalcitrant compounds, the use of saprotrophic fungi and white rot fungi, in particular belonging to the phylum Basidiomycota, has gained interest. This group of fungi possesses a battery of unspecific extracellular enzymes that can be utilized in the biodegradation of preferably phenolic compounds. In this work, it was investigated under which conditions the white rot fungus Trametes versicolor and the ericoid mycorrhizal fungus Rhizoscyphus ericae (belonging to the phylum Ascomycota) could be used to biodegrade the antibiotic aminoglycoside neomycin at co-metabolic conditions in which external nutrients were supplied. Furthermore, it was also investigated whether a biodegradation could be accomplished using neomycin as the sole nutrient. RESULTS The results show that both species can biodegrade neomycin 70% under co-metabolic conditions during a one-week time course and that Rhizoscyphus ericae is able to use neomycin as sole nutrient and to approximatively biodegrade it 60% under chosen non co-metabolic conditions. At selected conditions, the biodegradation of neomycin using Rhizoscyphus ericae was monitored by oxidation products of D-ribose which is a hydrolysis product of neomycin. CONCLUSION The results are of general interest in the search for fungal species that can biodegrade recalcitrant compounds without the need of external nutrients. The key future application area that will be investigated is purification of waste from recombinant protein production in which neomycin, nutrients and E. coli with neomycin resistance genes are present.
Collapse
Affiliation(s)
- Åke Stenholm
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, BMC Box 574, 751 23, Uppsala, Sweden.
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, BMC Box 574, 751 23, Uppsala, Sweden
| | - Curt E Pettersson
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, BMC Box 574, 751 23, Uppsala, Sweden
| |
Collapse
|
11
|
Similarities in Virulence and Extended Spectrum Beta-Lactamase Gene Profiles among Cefotaxime-Resistant Escherichia coli Wastewater and Clinical Isolates. Antibiotics (Basel) 2022; 11:antibiotics11020260. [PMID: 35203862 PMCID: PMC8868091 DOI: 10.3390/antibiotics11020260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
The World Health Organization has identified antibiotic resistance as one of the largest threats to human health and food security. In this study, we compared antibiotic resistance patterns between ESBL-producing Escherichia coli from human clinical diseases and cefotaxime-resistant environmental strains, as well as their potential to be pathogenic. Antibiotic susceptibility was tested amongst clinical isolates (n = 11), hospital wastewater (n = 22), and urban wastewater (n = 36, both influent and treated effluents). Multi-drug resistance predominated (>70%) among hospitalwastewater and urban wastewater influent isolates. Interestingly, isolates from clinical and urban treated effluents showed similar multi-drug resistance rates (~50%). Most hospital wastewater isolates were Phylogroup A, while clinical isolates were predominately B2, with a more diverse phylogroup population in urban wastewater. ESBL characterization of cefotaxime-resistant populations identified blaCTX-M-1 subgroup as the most common, whereby blaKPC was more associated with ceftazidime and ertapenem resistance. Whole-genome sequencing of a carbapenemase-producing hospital wastewater E. coli strain revealed plasmid-mediated blaKPC-2. Among cefotaxime-resistant populations, over 60% of clinical and 30% of treated effluent E. coli encoded three or more virulence genes exhibiting a pathogenic potential. Together, the similarity among treated effluent E. coli populations and clinical strains suggest effluents could serve as a reservoir for future multi-drug resistant E. coli clinical infections.
Collapse
|
12
|
Bojar B, Sheridan J, Beattie R, Cahak C, Liedhegner E, Munoz-Price LS, Hristova KR, Skwor T. Antibiotic resistance patterns of Escherichia coli isolates from the clinic through the wastewater pathway. Int J Hyg Environ Health 2021; 238:113863. [PMID: 34662851 DOI: 10.1016/j.ijheh.2021.113863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance (AMR) remains one of the leading global health threats. This study compared antimicrobial resistance patterns among E. coli isolates from clinical uropathogenic Escherichia coli (UPEC) to hospital wastewater populations and throughout an urban wastewater treatment facility - influent, pre- and post-chlorinated effluents. Antibiotic susceptibility of 201 isolates were analyzed against eleven different antibiotics, and the presence of twelve antibiotic resistant genes and type 1 integrase were identified. AMR exhibited the following pattern: UPEC (46.8%) > hospital wastewater (37.8%) > urban post-chlorinated effluent (27.6%) > pre-chlorinated effluent (21.4%) > urban influent wastewater (13.3%). However, multi-drug resistance against three or more antimicrobial classes was more prevalent among hospital wastewater populations (29.7%) compared to other sources. E. coli from wastewaters disinfected with chlorine were significantly correlated with increased trimethoprim-sulfamethoxazole resistance in E. coli compared to raw and treated wastewater populations. blaCTX-M-1 group was the most common extended spectrum beta-lactamase in E. coli from hospital wastewater (90%), although UPEC strains also encoded blaCTX-M-1 group (50%) and blaTEM (100%) genes. Among tetracycline-resistant populations, tetA and tetB were the only resistance genes identified throughout wastewater populations that were associated with increased phenotypic resistance. Further characterization of the E. coli populations identified phylogroup B2 predominating among clinical UPEC populations and correlated with the highest AMR, whereas the elevated rate of multi-drug resistance among hospital wastewater was mostly phylogroup A. Together, our findings highlight hospital wastewater as a rich source of AMR and multi-drug resistant bacterial populations.
Collapse
Affiliation(s)
- Brandon Bojar
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, 53211, USA
| | - Jennifer Sheridan
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, 53211, USA
| | - Rachelle Beattie
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Caitlin Cahak
- Wisconsin Diagnostic Laboratories, Milwaukee, WI, 53226, USA
| | - Elizabeth Liedhegner
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, 53211, USA
| | | | | | - Troy Skwor
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
13
|
Hesp A, ter Braak C, van der Goot J, Veldman K, van Schaik G, Mevius D. Antimicrobial resistance clusters in commensal Escherichia coli from livestock. Zoonoses Public Health 2021; 68:194-202. [PMID: 33455079 PMCID: PMC8048968 DOI: 10.1111/zph.12805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
To combat antimicrobial resistance (AMR), policymakers need an overview of evolution and trends of AMR in relevant animal reservoirs, and livestock is monitored by susceptibility testing of sentinel organisms such as commensal E. coli. Such monitoring data are often vast and complex and generates a need for outcome indicators that summarize AMR for multiple antimicrobial classes. Model-based clustering is a data-driven approach that can help to objectively summarize AMR in animal reservoirs. In this study, a model-based cluster analysis was carried out on a dataset of minimum inhibitory concentrations (MIC), recoded to binary variables, for 10 antimicrobials of commensal E. coli isolates (N = 12,986) derived from four animal species (broilers, pigs, veal calves and dairy cows) in Dutch AMR monitoring, 2007-2018. This analysis revealed four clusters in commensal E. coli in livestock containing 201 unique resistance combinations. The prevalence of these combinations and clusters differs between animal species. Our results indicate that to monitor different animal populations, more than one indicator for multidrug resistance seems necessary. We show how these clusters summarize multidrug resistance and have potential as monitoring outcome indicators to benchmark and prioritize AMR problems in livestock.
Collapse
Affiliation(s)
- Ayla Hesp
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
- Department of Infectious Diseases and ImmunologyFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Cajo ter Braak
- BiometrisWageningen University & ResearchWageningenThe Netherlands
| | - Jeanet van der Goot
- Department of Diagnostics and Crisis OrganisationWageningen Bioveterinary ResearchLelystadThe Netherlands
| | - Kees Veldman
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
| | - Gerdien van Schaik
- Royal GDDeventerThe Netherlands
- Department of Farm Animal HealthFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Dik Mevius
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
- Department of Infectious Diseases and ImmunologyFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
14
|
Elevated Incidences of Antimicrobial Resistance and Multidrug Resistance in the Maumee River (Ohio, USA), a Major Tributary of Lake Erie. Microorganisms 2021; 9:microorganisms9050911. [PMID: 33923266 PMCID: PMC8146589 DOI: 10.3390/microorganisms9050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Maumee River, the major tributary in the western basin of Lake Erie, serves as one of major sources of freshwater in the area, supplying potable, recreational, and industrial water. In this study we collected water samples from four sites in the Maumee River Bay between 2016–2017 and E. coli was isolated, enumerated, and analyzed for antimicrobial resistance (AMR) and multidrug resistance (MDR). Strikingly, 95% of the total isolates were found to be resistant to at least one antibiotic. A very high resistance to the drugs cephalothin (95.3%), ampicillin (38.3%), tetracycline (8.8%), gentamicin (8.2%), ciprofloxacin (4.2%), cefoperazone (4%), and sulfamethoxazole (1.5%) was observed within isolates from all four sampling sites. Percentages of AMR and MDR was consistently very high in the summer and fall months, whereas it was observed to be lowest in the winter. A remarkably high number of the isolates were detected to be MDR—95% resistant to ≥1 antibiotic, 43% resistant to ≥2 antibiotics, 15% resistant to ≥3 antibiotics, 4.9% resistant to ≥4 antibiotic and 1.2% resistant to ≥5 antibiotics. This data will serve in better understanding the environmental occurrence and dissemination of AMR/MDR in the area and assist in improving and establishing control measures.
Collapse
|
15
|
Virulence Characteristics and Antibiotic Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolates from Diverse Sources. Antibiotics (Basel) 2020; 9:antibiotics9090587. [PMID: 32911679 PMCID: PMC7559023 DOI: 10.3390/antibiotics9090587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen that causes several gastrointestinal ailments in humans across the world. STEC’s ability to cause ailment is attributed to the presence of a broad range of known and putative virulence factors (VFs) including those that encode Shiga toxins. A total of 51 E. coli strains belonging to serogroups O26, O45, O103, O104, O113, O121, O145, and O157 were tested for the presence of nine VFs via PCR and for their susceptibility to 17 frequently used antibiotics using the disc diffusion method. The isolates belonged to eight different serotypes, including eight O serogroups and 12 H types. The frequency of the presence of key VFs were stx1 (76.47%), stx2 (86.27%), eae (100%), ehxA (98.03%), nleA (100%), ureC (94.11%), iha (96.07%), subA (9.80%), and saa (94.11%) in the E. coli strains. All E. coli strains carried seven or more distinct VFs and, among these, four isolates harbored all tested VFs. In addition, all E. coli strains had a high degree of antibiotic resistance and were multidrug resistant (MDR). These results show a high incidence frequency of VFs and heterogeneity of VFs and MDR profiles of E. coli strains. Moreover, half of the E. coli isolates (74.5%) were resistant to > 9 classes of antibiotics (more than 50% of the tested antibiotics). Thus, our findings highlight the importance of appropriate epidemiological and microbiological surveillance and control measures to prevent STEC disease in humans worldwide.
Collapse
|
16
|
The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems. Appl Microbiol Biotechnol 2020; 104:7673-7688. [DOI: 10.1007/s00253-020-10777-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
|
17
|
Escherichia coli Antimicrobial Resistance Variability in Water Runoff and Soil from a Remnant Native Prairie, an Improved Pasture, and a Cultivated Agricultural Watershed. WATER 2020. [DOI: 10.3390/w12051251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although many previous studies have examined patterns of antimicrobial resistance (AMR) and multidrug resistance (MDR) from domestic animals and farm environments, comparatively little is known about the environmental sources and natural reservoirs of AMR and MDR. In this study, we collected stormwater runoff and soil samples from three watersheds in Texas. Escherichia coli (E. coli) were enumerated, isolated, and analyzed for resistance patterns. E. coli from all sites, irrespective of land use, displayed the presence of AMR/MDR. Higher levels of AMR/MDR were observed in water compared to soil. More isolates were resistant to cephalothin than other antibiotics. For water isolates, 94% was resistant to cephalothin, 27% to tetracycline, and 15% to ampicillin. Across all sites, a large percentage of water isolates demonstrated MDR with 34% resistant to ≥2 antibiotics and 11% to ≥3 antibiotics. All AMR soil isolates were resistant to cephalothin (87% of the total soil isolates), but only 8.9% were MDR. High cephalothin resistance observed in both soil and water suggests the presence of native, cephalothin-resistant E. coli. Higher MDR observed within water compared to the soil populations suggests that resistance sources other than soil, such as more recent fecal depositions as opposed to residual AMR in soil, could have contributed to higher antibiotic-resistant E. coli in runoff.
Collapse
|
18
|
Tian X, Zheng X, Sun Y, Fang R, Zhang S, Zhang X, Lin J, Cao J, Zhou T. Molecular Mechanisms and Epidemiology of Carbapenem-Resistant Escherichia coli Isolated from Chinese Patients During 2002-2017. Infect Drug Resist 2020; 13:501-512. [PMID: 32110061 PMCID: PMC7035005 DOI: 10.2147/idr.s232010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/30/2020] [Indexed: 01/04/2023] Open
Abstract
Background The emergence and spread of carbapenem-resistant Escherichia coli (E. coli) pose a serious threat to human health worldwide. This study aimed to investigate the molecular mechanisms underlying carbapenem resistance and their prevalence among E. coli in China. Methods A collection of 5796 E. coli clinical isolates were collected from the First Affiliated Hospital of Wenzhou Medical University from 2002 to 2017. Sensitivity to antibiotics was determined using the agar dilution method. The detection of carbapenemases production and the prevalence of resistance-associated genes were investigated through modified carbapenem inactivation method (mCIM), PCR and sequencing. The mutations in outer membrane porins genes (ompC and ompF) were also analyzed by PCR and sequencing assays. The effect of efflux pump mechanism on carbapenem resistance was also tested. E. coli were typed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Results A total of 58 strains (1.0%) of carbapenem-resistant E. coli were identified. The strains carrying blaKPC-2 and blaNDM accounted for 22.4% (13/58) and 51.7% (30/58), respectively. Among blaNDM- positive strains, 27 blaNDM genes were assigned to blaNDM-5, while the remaining three strains were blaNDM-1, whereas blaVIM, blaIMP, blaOXA-48, and blaSHV were not found. The CTX-M-type β-lactamase genes accounted for 96.6% (56/58). In addition, blaTEM-1 genes were identified in 58.6% of tested strains. In carbapenem-resistant isolates, mutations in OmpC (the majority of mutated sites were D192G and Q104_F141del, accounting for 54.5%) and OmpF (large deletions S75_V127del, W83_D135del and Q88_D135del) were detected. Of note, the antibiotic resistance was not associated with overexpression of efflux pump. Moreover, MLST categorized the 58 carbapenem-resistant isolates into 19 different sequence types. PFGE analysis revealed that homology among the carbapenem-resistant isolates was low and sporadic. Conclusion The blaNDM was the principal resistance mechanism of carbapenem-resistant E. coli in the hospital. blaNDM-5 is becoming a new threat to public health and the alteration of outer membrane porins might help further increase the MIC of carbapenem.
Collapse
Affiliation(s)
- Xuebin Tian
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yao Sun
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Renchi Fang
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Siqin Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiucai Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jie Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
19
|
Draft Genome Sequence of an Escherichia coli Strain Harboring bla CTX-M-115, bla CMY-2, Aminoglycoside, Tetracycline, and Sulfonamide Resistance Genes, Isolated from a Costa Rican Wastewater Treatment Plant. Microbiol Resour Announc 2020; 9:9/1/e01015-19. [PMID: 31896625 PMCID: PMC6940277 DOI: 10.1128/mra.01015-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report the draft genome sequence of the multidrug-resistant Escherichia coli strain PTA A1517-5, isolated from a wastewater treatment plant in Costa Rica. The genome consists of 4,927,375 bp with a GC content of 50.57% and a total of 4,853 genes. This strain harbors blaCTX-M-115, blaCMY-2, aminoglycoside, tetracycline, and sulfonamide resistance genes. We report the draft genome sequence of the multidrug-resistant Escherichia coli strain PTA A1517-5, isolated from a wastewater treatment plant in Costa Rica. The genome consists of 4,927,375 bp with a GC content of 50.57% and a total of 4,853 genes. This strain harbors blaCTX-M-115, blaCMY-2, aminoglycoside, tetracycline, and sulfonamide resistance genes.
Collapse
|
20
|
Antimicrobial-Resistant Escherichia coli from Environmental Waters in Northern Colorado. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2019; 2019:3862949. [PMID: 30906330 PMCID: PMC6397973 DOI: 10.1155/2019/3862949] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
Waterborne Escherichia coli are a major reservoir of antimicrobial resistance (AMR), including but not limited to extended-spectrum beta-lactamase (ESBL) and Klebsiella pneumoniae carbapenemase (KPC) mechanisms. This study quantified and described ESBL- and KPC-producing E. coli in Northern Colorado from sewer water, surface water, and influent and effluent wastewater treatment sources. Total detected bacteria and E. coli abundances, and the percentages that contain ESBL and/or KPC, were compared between water sources. Seventy E. coli isolates from the various waters had drug resistance validated with a panel of 17 antibiotics using a broth microdilution assay. The diverse drug resistance observed across E. coli isolates was further documented by polymerase chain reaction of common ESBL genes and functional relatedness by PhenePlate assay-generated dendrograms (n=70). The total E. coli abundance decreased through the water treatment process as expected, yet the percentages of E. coli harboring ESBL resistance were increased (1.70%) in surface water. Whole-genome sequencing analysis was completed for 185 AMR genes in wastewater E. coli isolates and confirmed the presence of diverse AMR gene classes (e.g., beta-lactams and efflux pumps) in isolate genomes. This study completed surveillance of AMR patterns in E. coli that reside in environmental water systems and suggests a role for integrating both phenotypic and genotypic profiling beyond ESBL and KPC mechanisms. AMR screening via multiple approaches may assist in the prevention of drug-resistant E. coli spread from waters to animals and humans.
Collapse
|
21
|
Hara H, Yusaimi YA, Zulkeflle SNM, Sugiura N, Iwamoto K, Goto M, Utsumi M, Othman NB, Zakaria Z. Molecular characterization of multi-drug resistant Escherichia coli isolates from tropical environments in Southeast Asia. J GEN APPL MICROBIOL 2019; 64:284-292. [PMID: 29877296 DOI: 10.2323/jgam.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The emergence of antibiotic resistance among multidrug-resistant (MDR) microbes is of growing concern, and threatens public health globally. A total of 129 Escherichia coli isolates were recovered from lowland aqueous environments near hospitals and medical service centers in the vicinity of Kuala Lumpur, Malaysia. Among the eleven antibacterial agents tested, the isolates were highly resistant to trimethoprim-sulfamethoxazole (83.7%) and nalidixic acid (71.3%) and moderately resistant to ampicillin and chloramphenicol (66.7%), tetracycline (65.1%), fosfomycin (57.4%), cefotaxime (57.4%), and ciprofloxacin (57.4%), while low resistance levels were found with aminoglycosides (kanamycin, 22.5%; gentamicin, 21.7%). The presence of relevant resistance determinants was evaluated, and the genotypic resistance determinants were as follows: sulfonamides (sulI, sulII, and sulIII), trimethoprim (dfrA1 and dfrA5), quinolones (qnrS), β-lactams (ampC and blaCTX-M), chloramphenicol (cmlA1 and cat2), tetracycline (tetA and tetM), fosfomycin (fosA and fosA3), and aminoglycosides (aphA1 and aacC2). Our data suggest that multidrug-resistant E. coli strains are ubiquitous in the aquatic systems of tropical countries and indicate that hospital wastewater may contribute to this phenomenon.
Collapse
Affiliation(s)
- Hirofumi Hara
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Yus Amira Yusaimi
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Siti Norayuni Mohd Zulkeflle
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Norio Sugiura
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia.,Graduate School of Life and Environmental Science, University of Tsukuba
| | - Koji Iwamoto
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia.,Graduate School of Life and Environmental Science, University of Tsukuba
| | - Masafumi Goto
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Motoo Utsumi
- Graduate School of Life and Environmental Science, University of Tsukuba
| | - Nor'azizi Bin Othman
- Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Zuriati Zakaria
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| |
Collapse
|
22
|
Mahfouz N, Caucci S, Achatz E, Semmler T, Guenther S, Berendonk TU, Schroeder M. High genomic diversity of multi-drug resistant wastewater Escherichia coli. Sci Rep 2018; 8:8928. [PMID: 29895899 PMCID: PMC5997705 DOI: 10.1038/s41598-018-27292-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Wastewater treatment plants play an important role in the emergence of antibiotic resistance. They provide a hot spot for exchange of resistance within and between species. Here, we analyse and quantify the genomic diversity of the indicator Escherichia coli in a German wastewater treatment plant and we relate it to isolates’ antibiotic resistance. Our results show a surprisingly large pan-genome, which mirrors how rich an environment a treatment plant is. We link the genomic analysis to a phenotypic resistance screen and pinpoint genomic hot spots, which correlate with a resistance phenotype. Besides well-known resistance genes, this forward genomics approach generates many novel genes, which correlated with resistance and which are partly completely unknown. A surprising overall finding of our analyses is that we do not see any difference in resistance and pan genome size between isolates taken from the inflow of the treatment plant and from the outflow. This means that while treatment plants reduce the amount of bacteria released into the environment, they do not reduce the potential for antibiotic resistance of these bacteria.
Collapse
Affiliation(s)
| | - Serena Caucci
- Institute for Hydrobiology, TU Dresden, Dresden, Germany.,United Nations University Institute for Integrated Management of Material Fluxes and of Resources, Dresden, Germany
| | | | - Torsten Semmler
- Institute of Microbiology und Epizootics, FU, Berlin, Germany
| | - Sebastian Guenther
- Institute of Microbiology und Epizootics, FU, Berlin, Germany.,Institut für Pharmazie Pharmazeutische Biologie, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
23
|
Maloo A, Fulke AB, Mulani N, Sukumaran S, Ram A. Pathogenic multiple antimicrobial resistant Escherichia coli serotypes in recreational waters of Mumbai, India: a potential public health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11504-11517. [PMID: 28316051 DOI: 10.1007/s11356-017-8760-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Globally, coastal waters have emerged into a pool of antibiotic resistance genes and multiple antibiotic resistant microorganisms, and pathogenicity of these resistant microorganisms in terms of serotypes and virulence genes has made the environment vulnerable. The current study underscores the presence of multiple antibiotic resistant pathogenic serotypes and pathotypes of Escherichia coli, the predominant faecal indicator bacteria (FIB), in surface water and sediment samples of famous recreational beaches (Juhu, Versova, Mahim, Dadar, and Girgaon) of Mumbai. Out of 65 faecal coliforms (FC) randomly selected, 38 isolates were biochemically characterized, serotyped (for 'O' antigen), antibiogram-phenotyped (for 22 antimicrobial agents), and genotyped by polymerase chain reaction (for virulence factors). These isolates belonged to 16 different serotypes (UT, O141, O2, O119, O120, O9, O35, O126, O91, O128, O87, O86, R, O101, O118, and O15) out of which UT (18.4%), O141 (15.7%), and O2 (13.1%) were predominant, indicating its remarkable diversity. Furthermore, the generated antibiogram profile revealed that 95% of these isolates were multiple antibiotic resistant. More than 60% of aminoglycoside-sensitive E. coli isolates exhibited resistance to penicillin, extended penicillin, quinolone, and cephalosporin classes of antibiotic while resistance to other antibiotics was comparatively less. Antibiotic resistance (AR) indexing indicated that these isolates may have rooted from a high-risk source of contamination. Preliminary findings revealed the presence of enterotoxin-encoding genes (stx1 and stx2 specific for enterohaemorrhagic E. coli and Shiga toxin-producing E. coli, heat-stable toxin enterotoxin specific for enterotoxigenic E. coli) in pathogenic serotypes. Thus, government authorities and environmental planners should create public awareness and adopt effective measures for coastal management to prevent serious health risks associated with these contaminated coastal waters.
Collapse
Affiliation(s)
- Aayushi Maloo
- Microbiology Division, CSIR-National Institute of Oceanography (NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai-400053, Maharashtra, India
| | - Abhay B Fulke
- Microbiology Division, CSIR-National Institute of Oceanography (NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai-400053, Maharashtra, India.
| | - Najmuddin Mulani
- Microbiology Division, CSIR-National Institute of Oceanography (NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai-400053, Maharashtra, India
| | - Soniya Sukumaran
- Microbiology Division, CSIR-National Institute of Oceanography (NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai-400053, Maharashtra, India
| | - Anirudh Ram
- Microbiology Division, CSIR-National Institute of Oceanography (NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai-400053, Maharashtra, India
| |
Collapse
|
24
|
Gomi R, Matsuda T, Matsumura Y, Yamamoto M, Tanaka M, Ichiyama S, Yoneda M. Whole-Genome Analysis of Antimicrobial-Resistant and Extraintestinal Pathogenic Escherichia coli in River Water. Appl Environ Microbiol 2017; 83:e02703-16. [PMID: 27986723 PMCID: PMC5311411 DOI: 10.1128/aem.02703-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022] Open
Abstract
Contamination of surface waters by antimicrobial-resistant bacteria and pathogenic bacteria is a great concern. In this study, 531 Escherichia coli isolates obtained from the Yamato River in Japan were evaluated phenotypically for resistance to 25 antimicrobials. Seventy-six isolates (14.3%) were multidrug resistant (MDR), 66 (12.4%) were nonsusceptible to one or two classes of agents, and 389 (73.3%) were susceptible. We performed whole-genome sequencing of selected strains by using Illumina technology. In total, the genome sequences of 155 strains were analyzed for antibiotic resistance determinants and phylogenetic characteristics. More than 50 different resistance determinants, including acquired resistance genes and chromosomal resistance mutations, were detected. Among the sequenced MDR strains (n = 66), sequence type 155 (ST155) complex (n = 9), ST10 complex (n = 9), and ST69 complex (n = 7) were prevalent. Among extraintestinal pathogenic E. coli (ExPEC) strains (n = 58), clinically important clonal groups, namely, ST95 complex (n = 18), ST127 complex (n = 8), ST12 complex (n = 6), ST14 complex (n = 6), and ST131 complex (n = 6), were prevalent, demonstrating the clonal distribution of environmental ExPEC strains. Typing of the fimH (type 1 fimbrial adhesin) gene revealed that ST131 complex strains carried fimH22 or fimH41, and no strains belonging to the fimH30 subgroup were detected. Fine-scale phylogenetic analysis and virulence gene content analysis of strains belonging to the ST95 complex (one of the major clonal ExPEC groups causing community-onset infections) revealed no significant differences between environmental and clinical strains. The results indicate contamination of surface waters by E. coli strains belonging to clinically important clonal groups.IMPORTANCE The prevalence of antimicrobial-resistant and pathogenic E. coli strains in surface waters is a concern because surface waters are used as sources for drinking water, irrigation, and recreational purposes. In this study, MDR and ExPEC strains in river water were characterized by genomic sequencing and analysis. We detected more than 50 resistance determinants and identified clonal groups specific to MDR and ExPEC strains. This study showed contamination of surface waters by E. coli strains belonging to clinically important clonal groups. Overall, this study advances our understanding of environmental MDR and ExPEC strains.
Collapse
Affiliation(s)
- Ryota Gomi
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michio Tanaka
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ichiyama
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Minoru Yoneda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
The Expression of Antibiotic Resistance Methyltransferase Correlates with mRNA Stability Independently of Ribosome Stalling. Antimicrob Agents Chemother 2016; 60:7178-7188. [PMID: 27645242 PMCID: PMC5118997 DOI: 10.1128/aac.01806-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 12/28/2022] Open
Abstract
Members of the Erm methyltransferase family modify 23S rRNA of the bacterial ribosome and render cross-resistance to macrolides and multiple distantly related antibiotics. Previous studies have shown that the expression of erm is activated when a macrolide-bound ribosome stalls the translation of the leader peptide preceding the cotranscribed erm. Ribosome stalling is thought to destabilize the inhibitory stem-loop mRNA structure and exposes the erm Shine-Dalgarno (SD) sequence for translational initiation. Paradoxically, mutations that abolish ribosome stalling are routinely found in hyper-resistant clinical isolates; however, the significance of the stalling-dead leader sequence is largely unknown. Here, we show that nonsense mutations in the Staphylococcus aureus ErmB leader peptide (ErmBL) lead to high basal and induced expression of downstream ErmB in the absence or presence of macrolide concomitantly with elevated ribosome methylation and resistance. The overexpression of ErmB is associated with the reduced turnover of the ermBL-ermB transcript, and the macrolide appears to mitigate mRNA cleavage at a site immediately downstream of the ermBL SD sequence. The stabilizing effect of antibiotics on mRNA is not limited to ermBL-ermB; cationic antibiotics representing a ribosome-stalling inducer and a noninducer increase the half-life of specific transcripts. These data unveil a new layer of ermB regulation and imply that ErmBL translation or ribosome stalling serves as a “tuner” to suppress aberrant production of ErmB because methylated ribosome may impose a fitness cost on the bacterium as a result of misregulated translation.
Collapse
|
26
|
Jongman M, Korsten L. Genetic Diversity and Antibiotic Resistance of Escherichia coli Isolates from Different Leafy Green Production Systems. J Food Prot 2016; 79:1846-1853. [PMID: 28221925 DOI: 10.4315/0362-028x.jfp-16-117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Foodborne disease outbreaks linked to contaminated irrigation water and fresh produce are a public health concern. The presence of Escherichia coli isolates from irrigation water and leafy green vegetables in different food production systems (large commercial farms, small-scale farms, and homestead gardens) was investigated. The prevalence of antibiotic resistance and virulence in these isolates was further assessed, and links between water source and irrigated crops were identified using antimicrobial and genotypic analyses. Presumptive E. coli isolates were identified by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, and identities were confirmed by PCR using the uidA gene. Antimicrobial susceptibility was evaluated with the Kirby Bauer disk diffusion test; the presence of virulence genes was determined with enterobacterial repetitive intergenic consensus PCR assays. Of the 130 E. coli isolates from water (n =60) and leafy green vegetables (n =70), 19 (14.6%) were resistant to one antibiotic (tetracycline) and 92 (70.7%) were resistant to various antibiotics (including ampicillin, cefoxitin, and nalidixic acid). All E. coli isolates were susceptible to ceftriaxone and gentamicin. The virulence gene stx2 was detected in E. coli isolates from irrigation water (8 [13.3%] of 60 isolates) and cabbages (3 [7.5%] of 40), but the virulence genes eae and stx1 were not detected in any tested isolates from irrigation water and fresh produce samples. The prevalence of multidrug-resistant E. coli was lower in isolates from GLOBALG.A.P.-certified farms than in isolates from noncertified commercial and small-scale farms and homestead gardens. A link between the E. coli isolates from irrigation water sources and leafy green vegetables was established with phenotypic (antimicrobial) and genotypic (DNA fingerprinting) analyses. However, a link between virulence genes and the prevalence of antimicrobial resistance could not be established.
Collapse
Affiliation(s)
- Mosimanegape Jongman
- Department of Plant Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0082, South Africa
| | - Lise Korsten
- Department of Plant Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0082, South Africa
| |
Collapse
|
27
|
von Wintersdorff CJH, Wolffs PFG, Savelkoul PHM, Nijsen RRR, Lau S, Gerhold K, Hamelmann E, Penders J. The gut resistome is highly dynamic during the first months of life. Future Microbiol 2016; 11:501-10. [PMID: 27064174 DOI: 10.2217/fmb.15.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM We investigated the longitudinal development of several antibiotic resistance genes (ARGs) of the infant gut resistome during the first months after birth. MATERIALS & METHODS Fecal samples from 120 infants collected at the ages of 5, 13 and 31 weeks were analyzed and subjected to qPCR for the detection of several ARGs. RESULTS The prevalence of ARGs significantly increased for ermB, tetM and tetQ, while it decreased for aac(6')-aph(2'). Birth mode and breastfeeding significantly affected tetQ prevalence. Correlations to bacterial taxa suggest that fluctuations in some ARGs are (partly) attributed to shifts in bacteroides colonization rates. CONCLUSION Acquisition of ARGs in the gut microbiota occurs shortly after birth and resistome composition fluctuates over the course of several months, reflecting changes in microbial community structure.
Collapse
Affiliation(s)
- Christian J H von Wintersdorff
- Department of Medical Microbiology, NUTRIM School for Nutrition & Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Petra F G Wolffs
- Department of Medical Microbiology, NUTRIM School for Nutrition & Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, Caphri School for Public Health & Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM School for Nutrition & Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, Caphri School for Public Health & Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam
| | - Rianne R R Nijsen
- Department of Medical Microbiology, NUTRIM School for Nutrition & Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Susanne Lau
- Department of Pediatrics, Pneumology & Immunology, Charité Medical University Berlin, Berlin, Germany
| | - Kerstin Gerhold
- Department of Pediatrics & Child Health, Section of Pediatric Rheumatology, Winnipeg, Manitoba, Canada
| | - Eckard Hamelmann
- Children's Hospital, Ev. Hospital Bielefeld (EvKB), Bielefeld, Germany
| | - John Penders
- Department of Medical Microbiology, NUTRIM School for Nutrition & Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, Caphri School for Public Health & Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
28
|
Bakour S, Sankar SA, Rathored J, Biagini P, Raoult D, Fournier PE. Identification of virulence factors and antibiotic resistance markers using bacterial genomics. Future Microbiol 2016; 11:455-66. [PMID: 26974504 DOI: 10.2217/fmb.15.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the number of multidrug-resistant bacteria has increased rapidly and several epidemics were signaled in different regions of the world. Faced with this situation that presents a major global public health concern, the development and the use of new and rapid technologies is more than urgent. The use of the next-generation sequencing platforms by microbiologists and infectious disease specialists has allowed great progress in the medical field. Here, we review the usefulness of whole-genome sequencing for the detection of virulence and antibiotic resistance associated genes.
Collapse
Affiliation(s)
- Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Senthil Alias Sankar
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Jaishriram Rathored
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Philippe Biagini
- UMR CNRS 7268 Equipe "Emergence et coévolution virale," Etablissement Français du Sang Alpes-Méditerranée et Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille
| | - Didier Raoult
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Pierre-Edouard Fournier
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| |
Collapse
|