1
|
Wawszczak A, Kocki J, Kołodyńska D. Alginate as a Sustainable and Biodegradable Material for Medical and Environmental Applications-The Case Studies. J Biomed Mater Res B Appl Biomater 2024; 112:1-23. [PMID: 39269132 DOI: 10.1002/jbm.b.35475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Alginates are salts of alginic acid derived mainly from sea algae of the genus brown algae. They are also synthesized by some bacteria. They belong to negatively charged polysaccharides exhibiting some rheological properties. High plasticity and the ability to modify the structure are the reasons for their application in numerous industries. Moreover, when in contact with the living tissue, they do not trigger an immune response, and for this reason they are the most often tested materials for medical applications. The paper discusses the latest applications, including 3D bioprinting, drug delivery systems, and sorptive properties. Recognizing alginates as biomaterials, it emphasizes the necessity for precise processing and modification to industrialize them for specific uses. This review aims to provide a thorough understanding of the advancements in alginate research, underscoring their potential for innovative applications.
Collapse
Affiliation(s)
- Alicja Wawszczak
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
2
|
Kapsetaki SE, Cisneros LH, Maley CC. Cell-in-cell phenomena across the tree of life. Sci Rep 2024; 14:7535. [PMID: 38553457 PMCID: PMC10980697 DOI: 10.1038/s41598-024-57528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Cells in obligately multicellular organisms by definition have aligned fitness interests, minimum conflict, and cannot reproduce independently. However, some cells eat other cells within the same body, sometimes called cell cannibalism. Such cell-in-cell events have not been thoroughly discussed in the framework of major transitions to multicellularity. We performed a systematic screening of 508 articles, from which we chose 115 relevant articles in a search for cell-in-cell events across the tree of life, the age of cell-in-cell-related genes, and whether cell-in-cell events are associated with normal multicellular development or cancer. Cell-in-cell events are found across the tree of life, from some unicellular to many multicellular organisms, including non-neoplastic and neoplastic tissue. Additionally, out of the 38 cell-in-cell-related genes found in the literature, 14 genes were over 2.2 billion years old, i.e., older than the common ancestor of some facultatively multicellular taxa. All of this suggests that cell-in-cell events may have originated before the origins of obligate multicellularity. Thus, our results show that cell-in-cell events exist in obligate multicellular organisms, but are not a defining feature of them. The idea of eradicating cell-in-cell events from obligate multicellular organisms as a way of treating cancer, without considering that cell-in-cell events are also part of normal development, should be abandoned.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, USA.
| | - Luis H Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
3
|
Sparviero S, Dicke MD, Rosch TM, Castillo T, Salgado-Lugo H, Galindo E, Peña C, Büchs J. Yeast extracts from different manufacturers and supplementation of amino acids and micro elements reveal a remarkable impact on alginate production by A. vinelandii ATCC9046. Microb Cell Fact 2023; 22:99. [PMID: 37170263 PMCID: PMC10176783 DOI: 10.1186/s12934-023-02112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND In research and production, reproducibility is a key factor, to meet high quality and safety standards and maintain productivity. For microbial fermentations, complex substrates and media components are often used. The complex media components can vary in composition, depending on the lot and manufacturing process. These variations can have an immense impact on the results of biological cultivations. The aim of this work was to investigate and characterize the influence of the complex media component yeast extract on cultivations of Azotobacter vinelandii under microaerobic conditions. Under these conditions, the organism produces the biopolymer alginate. The focus of the investigation was on the respiration activity, cell growth and alginate production. RESULTS Yeast extracts from 6 different manufacturers and 2 different lots from one manufacturer were evaluated. Significant differences on respiratory activity, growth and production were observed. Concentration variations of three different yeast extracts showed that the performance of poorly performing yeast extracts can be improved by simply increasing their concentration. On the other hand, the results with well-performing yeast extracts seem to reach a saturation, when their concentration is increased. Cultivations with poorly performing yeast extract were supplemented with grouped amino acids, single amino acids and micro elements. Beneficial results were obtained with the supplementation of copper sulphate, cysteine or a combination of both. Furthermore, a correlation between the accumulated oxygen transfer and the final viscosity (as a key performance indicator), was established. CONCLUSION The choice of yeast extract is crucial for A. vinelandii cultivations, to maintain reproducibility and comparability between cultivations. The proper use of specific yeast extracts allows the cultivation results to be specifically optimised. In addition, supplements can be applied to modify and improve the properties of the alginate. The results only scratch the surface of the underlying mechanisms, as they are not providing explanations on a molecular level. However, the findings show the potential of optimising media containing yeast extract for alginate production with A. vinelandii, as well as the potential of targeted supplementation of the media.
Collapse
Affiliation(s)
- Sarah Sparviero
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Max Daniel Dicke
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Tobias M Rosch
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Tania Castillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Holjes Salgado-Lugo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
- Programa Investigadoras e Investigadores por México del CONACyT, Consejo Nacional de Ciencia y Tecnología, 03940, Mexico City, México
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Jochen Büchs
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria. THE ISME JOURNAL 2023; 17:703-711. [PMID: 36813911 PMCID: PMC10119383 DOI: 10.1038/s41396-023-01385-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Polysaccharide breakdown by bacteria requires the activity of enzymes that degrade polymers either intra- or extra-cellularly. The latter mechanism generates a localized pool of breakdown products that are accessible to the enzyme producers themselves as well as to other organisms. Marine bacterial taxa often show marked differences in the production and secretion of degradative enzymes that break down polysaccharides. These differences can have profound effects on the pool of diffusible breakdown products and hence on the ecological dynamics. However, the consequences of differences in enzymatic secretions on cellular growth dynamics and interactions are unclear. Here we study growth dynamics of single cells within populations of marine Vibrionaceae strains that grow on the abundant marine polymer alginate, using microfluidics coupled to quantitative single-cell analysis and mathematical modelling. We find that strains that have low extracellular secretions of alginate lyases aggregate more strongly than strains that secrete high levels of enzymes. One plausible reason for this observation is that low secretors require a higher cellular density to achieve maximal growth rates in comparison with high secretors. Our findings indicate that increased aggregation increases intercellular synergy amongst cells of low-secreting strains. By mathematically modelling the impact of the level of degradative enzyme secretion on the rate of diffusive oligomer loss, we find that enzymatic secretion capability modulates the propensity of cells within clonal populations to cooperate or compete with each other. Our experiments and models demonstrate that enzymatic secretion capabilities can be linked with the propensity of cell aggregation in marine bacteria that extracellularly catabolize polysaccharides.
Collapse
|
5
|
Characterization of Multiple Alginate Lyases in a Highly Efficient Alginate-Degrading Vibrio Strain and Its Degradation Strategy. Appl Environ Microbiol 2022; 88:e0138922. [PMID: 36409133 PMCID: PMC9746302 DOI: 10.1128/aem.01389-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alginate is an important polysaccharide in the ocean that supports the growth of marine microorganisms. Many widespread Vibrio species possess alginate lyases and can utilize alginate as a carbon source, but the detailed alginate degradation mechanism in Vibrio remains to be further explored. In this study, we obtained a highly efficient alginate-degrading strain, Vibrio pelagius WXL662, with 11 alginate lyases (VpAly-I to -XI) and further elucidated its molecular mechanism of alginate degradation. Three alginate utilization loci (AUL) were identified in different parts of WXL662's genome, comprising six alginate lyases (VpAly-I, -II, -VIII, -IX, -X, and -XI) and other genes related to alginate degradation. Most of the alginate-degrading genes are strongly induced when alginate is provided as the sole carbon source. Ten alginate lyases (VpAly-I to -X) had been purified and characterized, including six from polysaccharide lyase family 7 (PL7), three from PL17, and one from PL6. These recombinant alginate lyases existing in different cellular locations were active at a wide temperature (10 to 50°C) and pH (4.0 to 9.0) range, with different substrate preferences and diverse degradation products, enabling WXL662 to efficiently utilize alginate in a changing marine environment. Importantly, outer membrane vesicles (OMVs) can act as vectors for alginate lyases (VpAly-II, -V, and -VI) in WXL662. Further investigations of public Vibrio genomes revealed that most alginate-degrading vibrios possess one AUL instead of previously reported "scattered" system. These results emphasize the specific alginate degradation strategy in Vibrio pelagius WXL662, which can be used as a model strain to study the ecological importance of effective alginate-degrading vibrios in the ocean. IMPORTANCE Alginate is an important carbon source in the marine environment, and vibrios are major alginate utilizers. Previous studies focused only on the characteristics of individual alginate lyases in vibrios, but few of them discussed the comprehensive alginate-degrading strategy. Here, we depicted the alginate utilization mechanism and its ecological implications of a highly efficient alginate-degrading Vibrio strain, WXL662, which contained 11 alginate lyases with distinct enzymatic characteristics. Importantly, unlike other vibrios with only one alginate utilization locus (AUL) or the previously reported "scattered" system, three AUL were identified in WXL662. Additionally, the involvement of outer membrane vesicles (OMVs) in the secretion of alginate lyases is proposed for the first time.
Collapse
|
6
|
Synergy of the Two Alginate Lyase Domains of a Novel Alginate Lyase from Vibrio sp. NC2 in Alginate Degradation. Appl Environ Microbiol 2022; 88:e0155922. [PMID: 36394323 PMCID: PMC9746311 DOI: 10.1128/aem.01559-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alginate lyases play a vital role in the degradation of alginate, an important marine carbon source. Alginate is a complex macromolecular substrate, and the synergy of alginate lyases is important for the alginate utilization by microbes and the application of alginate lyases in biotechnology. Although many studies have focused on the synergy between different alginate lyases, the synergy between two alginate lyase domains of one alginate lyase has not been reported. Here, we report the synergism between the two catalytic domains of a novel alginate lyase, AlyC6', from the marine alginate-degrading bacterium Vibrio sp. NC2. AlyC6' contains two PL7 catalytic domains (CD1 and CD2) that have no sequence similarity. While both CD1 and CD2 are endo-lyases with the highest activity at 30°C, pH 8.0, and 1.0 M NaCl, they also displayed some different properties. CD1 was PM-specific, but CD2 was PG-specific. Compared with CD2, CD1 had higher catalytic efficiency, but lower substrate affinity. In addition, CD1 had a smaller minimal substrate than CD2, and the products from CD2 could be further degraded by CD1. These distinctions between the two domains enable them to synergize intramolecularly in alginate degradation, resulting in efficient and complete degradation of various alginate substrates. The bioinformatics analysis revealed that diverse alginate lyases have multiple catalytic domains, which are widespread, especially abundant in Flavobacteriaceae and Alteromonadales, which may secret multimodular alginate lyases for alginate degradation. This study provides new insight into bacterial alginate lyases and alginate degradation and is helpful for designing multimodular enzymes for efficient alginate depolymerization. IMPORTANCE Alginate is a major component in the cell walls of brown algae. Alginate degradation is carried out by alginate lyases. Until now, while most characterized alginate lyases contain one single catalytic domain, only a few have been shown to contain two catalytic domains. Furthermore, the synergy of alginate lyases has attracted increasing attention since it plays important roles in microbial alginate utilization and biotechnological applications. Although many studies have focused on the synergy between different alginate lyases, the synergy between two catalytic domains of one alginate lyase has not been reported. Here, a novel alginate lyase, AlyC6', with two functional alginate lyase domains was biochemically characterized. Moreover, the synergism between the two domains of AlyC6' was revealed. Additionally, the distribution of the alginate lyases with multiple alginate lyase domains was investigated based on the bioinformatics analysis. This study provides new insight into bacterial alginate lyases and alginate degradation.
Collapse
|
7
|
Guillaume O, Butnarasu C, Visentin S, Reimhult E. Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 2022; 4:100089. [PMID: 36324525 PMCID: PMC9618985 DOI: 10.1016/j.bioflm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a highly, if not the most, versatile microorganism capable of colonizing diverse environments. One of the niches in which PA is able to thrive is the lung of cystic fibrosis (CF) patients. Due to a genetic aberration, the lungs of CF-affected patients exhibit impaired functions, rendering them highly susceptible to bacterial colonization. Once PA attaches to the epithelial surface and transitions to a mucoid phenotype, the infection becomes chronic, and antibiotic treatments become inefficient. Due to the high number of affected people and the severity of this infection, CF-chronic infection is a well-documented disease. Still, numerous aspects of PA CF infection remain unclear. The scientific reports published over the last decades have stressed how PA can adapt to CF microenvironmental conditions and how its surrounding matrix of extracellular polymeric substances (EPS) plays a key role in its pathogenicity. In this context, it is of paramount interest to present the nature of the EPS together with the local CF-biofilm microenvironment. We review how the PA biofilm microenvironment interacts with drugs to contribute to the pathogenicity of CF-lung infection. Understanding why so many drugs are inefficient in treating CF chronic infection while effectively treating planktonic PA is essential to devising better therapeutic targets and drug formulations.
Collapse
Affiliation(s)
- Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria,Austrian Cluster for Tissue Regeneration, Austria,Corresponding author. 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria.
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Erik Reimhult
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
8
|
Dobruchowska JM, Bjornsdottir B, Fridjonsson OH, Altenbuchner J, Watzlawick H, Gerwig GJ, Dijkhuizen L, Kamerling JP, Hreggvidsson GO. Enzymatic depolymerization of alginate by two novel thermostable alginate lyases from Rhodothermus marinus. FRONTIERS IN PLANT SCIENCE 2022; 13:981602. [PMID: 36204061 PMCID: PMC9530828 DOI: 10.3389/fpls.2022.981602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Alginate (alginic acid) is a linear polysaccharide, wherein (1→4)-linked β-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1→4) glycosidic linkages between the monomers by a β-elimination mechanism, to yield unsaturated 4-deoxy-L-erythro-hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L-erythro configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers. In this study, two alginate lyase genes, designated alyRm3 and alyRm4, from the marine thermophilic bacterium Rhodothermus marinus (strain MAT378), were cloned and expressed in Escherichia coli. The recombinant enzymes were characterized, and their substrate specificity and product structures determined. AlyRm3 (PL39) and AlyRm4 (PL17) are among the most thermophilic and thermostable alginate lyases described to date with temperature optimum of activity at ∼75 and 81°C, respectively. The pH optimum of activity of AlyRm3 is ∼5.5 and AlyRm4 at pH 6.5. Detailed NMR analysis of the incubation products demonstrated that AlyRm3 is an endolytic lyase, while AlyRm4 is an exolytic lyase, cleaving monomers from the non-reducing end of oligo/poly-alginates.
Collapse
Affiliation(s)
- Justyna M. Dobruchowska
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | | | | | - Josef Altenbuchner
- Institute for Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | | | - Gerrit J. Gerwig
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Johannis P. Kamerling
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Gudmundur O. Hreggvidsson
- Matís Ltd., Reykjavík, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
9
|
Núñez C, López-Pliego L, Ahumada-Manuel CL, Castañeda M. Genetic Regulation of Alginate Production in Azotobacter vinelandii a Bacterium of Biotechnological Interest: A Mini-Review. Front Microbiol 2022; 13:845473. [PMID: 35401471 PMCID: PMC8988225 DOI: 10.3389/fmicb.2022.845473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Alginates are a family of polymers composed of guluronate and mannuronate monomers joined by β (1–4) links. The different types of alginates have variations in their monomer content and molecular weight, which determine the rheological properties and their applications. In industry, alginates are commonly used as additives capable of viscosifying, stabilizing, emulsifying, and gelling aqueous solutions. Recently, additional specialized biomedical uses have been reported for this polymer. Currently, the production of alginates is based on the harvesting of seaweeds; however, the composition and structure of the extracts are highly variable. The production of alginates for specialized applications requires a precise composition of monomers and molecular weight, which could be achieved using bacterial production systems such as those based on Azotobacter vinelandii, a free-living, non-pathogenic bacterium. In this mini-review, we analyze the latest advances in the regulation of alginate synthesis in this model.
Collapse
Affiliation(s)
- Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carlos Leonel Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel Castañeda,
| |
Collapse
|
10
|
Tang L, Guo E, Zhang L, Wang Y, Gao S, Bao M, Han F, Yu W. The Function of CBM32 in Alginate Lyase VxAly7B on the Activity on Both Soluble Sodium Alginate and Alginate Gel. Front Microbiol 2022; 12:798819. [PMID: 35069502 PMCID: PMC8776709 DOI: 10.3389/fmicb.2021.798819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Carbohydrate-binding modules (CBMs), as an important auxiliary module, play a key role in degrading soluble alginate by alginate lyase, but the function on alginate gel has not been elucidated. Recently, we reported alginate lyase VxAly7B containing a CBM32 and a polysaccharide lyase family 7 (PL7). To investigate the specific function of CBM32, we characterized the full-length alginate lyase VxAly7B (VxAly7B-FL) and truncated mutants VxAly7B-CM (PL7) and VxAly7B-CBM (CBM32). Both VxAly7B-FL and native VxAly7B can spontaneously cleavage between CBM32 and PL7. The substrate-binding capacity and activity of VxAly7B-CM to soluble alginate were 0.86- and 1.97-fold those of VxAly7B-FL, respectively. Moreover, CBM32 could accelerate the expansion and cleavage of alginate gel beads, and the degradation rate of VxAly7B-FL to alginate gel beads was threefold that of VxAly7B-CM. Results showed that CBM32 is not conducive to the degradation of soluble alginate by VxAly7B but is helpful for binding and degradation of insoluble alginate gel. This study provides new insights into the function of CBM32 on alginate gel, which may inspire the application strategy of CBMs in insoluble substrates.
Collapse
Affiliation(s)
- Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Enwen Guo
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Bao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Rosiak P, Latanska I, Paul P, Sujka W, Kolesinska B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 2021; 26:7264. [PMID: 34885846 PMCID: PMC8659150 DOI: 10.3390/molecules26237264] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Modified alginates have a wide range of applications, including in the manufacture of dressings and scaffolds used for regenerative medicine, in systems for selective drug delivery, and as hydrogel materials. This literature review discusses the methods used to modify alginates and obtain materials with new or improved functional properties. It discusses the diverse biological and functional activity of alginates. It presents methods of modification that utilize both natural and synthetic peptides, and describes their influence on the biological properties of the alginates. The success of functionalization depends on the reaction conditions being sufficient to guarantee the desired transformations and provide modified alginates with new desirable properties, but mild enough to prevent degradation of the alginates. This review is a literature description of efficient methods of alginate functionalization using biologically active ligands. Particular attention was paid to methods of alginate functionalization with peptides, because the combination of the properties of alginates and peptides leads to the obtaining of conjugates with properties resulting from both components as well as a completely new, different functionality.
Collapse
Affiliation(s)
- Piotr Rosiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Ilona Latanska
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Paulina Paul
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Witold Sujka
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| |
Collapse
|
12
|
Tan AX, Michalski E, Ilavsky J, Jun YS. Engineering Calcium-bearing Mineral/Hydrogel Composites for Effective Phosphate Recovery. ACS ES&T ENGINEERING 2021; 1:1553-1564. [PMID: 34977881 PMCID: PMC8717683 DOI: 10.1021/acsestengg.1c00204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Effectively recovering phosphate from wastewater streams and reutilizing it as a nutrient will critically support sustainability. Here, to capture aqueous phosphate, we developed novel mineral-hydrogel composites composed of calcium alginate, calcium phosphate (CaP), and calcium silicate (CSH) (CaP + CSH/Ca-Alg). The CaP + CSH/Ca-Alg composites were synthesized by dripping a sodium alginate (Na-Alg) solution with ionic precursors into a calcium chloride bath. To change the mineral seed's properties, we varied the calcium bath concentrations and the ionic precursor (sodium dibasic phosphate (NaH2PO4) and/or sodium silicate (Na2SiO3)) amounts and their ratios. The added CSH in the mineral-hydrogel composites resulted in the release of calcium and silicate ions in phosphate-rich solutions, increasing the saturation ratio with respect to calcium phosphate within the mineral-hydrogel composites. The CSH addition to the mineral-hydrogel composites doubled the phosphate removal rate while requiring lesser initial amounts of Ca and P materials for synthesis. By incorporating both CSH and CaP mineral seeds in composites, we achieved a final concentration of 0.25 mg-P/L from an initial 6.20 mg-P/L. Moreover, the mineral-hydrogel composites can remove phosphate even under CaP undersaturated conditions. This suggests their potential to be a widely applicable and environmentally-sustainable treatment and recovery method for nutrient-rich wastewater.
Collapse
Affiliation(s)
- Albern X. Tan
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Elizabeth Michalski
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Jan Ilavsky
- X-ray Science Division, Argonne National Labs, 9700 S Cass Ave, Lemont, IL 60439
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
13
|
Bacterial Extracellular Polymers: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prokaryotic microbial cells especially bacteria are highly emphases for their exopolysaccharides (EPS) production. EPS are the higher molecular weight natural extracellular compounds observe at the surface of the bacterial cells. Nowadays bacterial EPS represent rapidly emerging as new and industrially important biomaterials because it having tremendous physical and chemical properties with novel functionality. Due to its industrial demand as well as research studies the different extraction processes have been discovered to remove the EPS from the microbial biofilm. The novelties of EPS are also based on the microbial habitat conditions such as higher temperature, lower temperature, acidic, alkaliphilic, saline, etc. Based on its chemical structure they can be homopolysaccharide or heteropolysaccharide. EPSs have a wide range of applications in various industries such as food, textile, pharmaceutical, heavy metal recovery, agriculture, etc. So, this review focus on the understanding of the structure, different extraction processes, biosynthesis and genetic engineering of EPS as well as their desirable biotechnological applications.
Collapse
|
14
|
Liu L, Wang Z, Zheng Z, Li Z, Ji X, Cong H, Wang H. Secretory Expression of an Alkaline Alginate Lyase With Heat Recovery Property in Yarrowia lipolytica. Front Microbiol 2021; 12:710533. [PMID: 34434178 PMCID: PMC8381381 DOI: 10.3389/fmicb.2021.710533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022] Open
Abstract
Alginate lyase possesses wide application prospects for the degradation of brown algae and preparation of alginate oligosaccharides, and its degradation products display a variety of biological activities. Although many enzymes of this type have been reported, alginate lyases with unique properties are still relatively rare. In the present work, an alginate lyase abbreviated as Alyw203 has been cloned from Vibrio sp. W2 and expressed in food-grade Yarrowia lipolytica. The Alyw203 gene consists of an open reading frame (ORF) of 1,566 bp containing 521 amino acids, of which the first 17 amino acids are considered signal peptides, corresponding to secretory features. The peak activity of the current enzyme appears at 45°C with a molecular weight of approximately 57.0 kDa. Interestingly, Alyw203 exhibits unique heat recovery performance, returning above 90% of its initial activity in the subsequent incubation for 20 min at 10°C, which is conducive to the recovery of current enzymes at low-temperature conditions. Meanwhile, the highest activity is obtained under alkaline conditions of pH 10.0, showing outstanding pH stability. Additionally, as an alginate lyase independent of NaCl and resistant to metal ions, Alyw203 is highly active in various ionic environments. Moreover, the hydrolyzates of present enzymes are mainly concentrated in the oligosaccharides of DP1–DP2, displaying perfect product specificity. The alkali suitability, heat recovery performance, and high oligosaccharide yield of Alyw203 make it a potential candidate for industrial production of the monosaccharide and disaccharide.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhipeng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhihong Zheng
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Ze Li
- College of Advanced Agricultural Sciences, Linyi Vocational University of Science and Technology, Linyi, China
| | - Xiaofeng Ji
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haihua Cong
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Haiying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
15
|
Xu F, Cha QQ, Zhang YZ, Chen XL. Degradation and Utilization of Alginate by Marine Pseudoalteromonas: a Review. Appl Environ Microbiol 2021; 87:e0036821. [PMID: 34160244 PMCID: PMC8357284 DOI: 10.1128/aem.00368-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alginate, which is mainly produced by brown algae and decomposed by heterotrophic bacteria, is an important marine organic carbon source. The genus Pseudoalteromonas contains diverse forms of heterotrophic bacteria that are widely distributed in marine environments and are an important group in alginate degradation. In this review, the diversity of alginate-degrading Pseudoalteromonas is introduced, and the characteristics of Pseudoalteromonas alginate lyases, including their sequences, enzymatic properties, structures, and catalytic mechanisms, and the synergistic effect of Pseudoalteromonas alginate lyases on alginate degradation are introduced. The acquisition of the alginate degradation capacity and the alginate utilization pathways of Pseudoalteromonas are also introduced. This paper provides a comprehensive overview of alginate degradation by Pseudoalteromonas, which will contribute to the understanding of the degradation and recycling of marine algal polysaccharides driven by marine bacteria.
Collapse
Affiliation(s)
- Fei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Zhang L, Li X, Zhang X, Li Y, Wang L. Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:158. [PMID: 34275475 PMCID: PMC8286568 DOI: 10.1186/s13068-021-02007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Brown macroalgae have attracted great attention as an alternative feedstock for biorefining. Although direct conversion of ethanol from alginates (major components of brown macroalgae cell walls) is not amenable for industrial production, significant progress has been made not only on enzymes involved in alginate degradation, but also on metabolic pathways for biorefining at the laboratory level. In this article, we summarise recent advances on four aspects: alginate, alginate lyases, different alginate-degrading systems, and application of alginate lyases and associated pathways. This knowledge will likely inspire sustainable solutions for further application of both alginate lyases and their associated pathways.
Collapse
Affiliation(s)
- Lanzeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
17
|
Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective. Genes (Basel) 2021; 12:genes12071059. [PMID: 34356075 PMCID: PMC8307928 DOI: 10.3390/genes12071059] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Multicellular eukaryotes are characterized by an expanded extracellular matrix (ECM) with a diversified composition. The ECM is involved in determining tissue texture, screening cells from the outside medium, development, and innate immunity, all of which are essential features in the biology of multicellular eukaryotes. This review addresses the origin and evolution of the ECM, with a focus on multicellular marine algae. We show that in these lineages the expansion of extracellular matrix played a major role in the acquisition of complex multicellularity through its capacity to connect, position, shield, and defend the cells. Multiple innovations were necessary during these evolutionary processes, leading to striking convergences in the structures and functions of the ECMs of algae, animals, and plants.
Collapse
|
18
|
Dimitriou E, Miller GJ. Chemical synthesis of C6-tetrazole ᴅ-mannose building blocks and access to a bioisostere of mannuronic acid 1-phosphate. Beilstein J Org Chem 2021; 17:1527-1532. [PMID: 34290835 PMCID: PMC8275867 DOI: 10.3762/bjoc.17.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Alginate is a biocompatible and industrially relevant polysaccharide that derives many of its important properties from the charged carboxylate groups within its polyuronic acid backbone. The design and inclusion of isosteric replacements for these carboxylates would underpin provision of new oligo-/polysaccharide materials with alternate physicochemical properties. Presented herein is our synthesis of mannuronic acid building blocks, appropriately modified at the carboxylate C6 position with a bioisosteric tetrazole. Thioglycosides containing a protected C6-tetrazole are accessed from a C6-nitrile, through dipolar cycloaddition using NaN3 with n-Bu2SnO. We also demonstrate access to orthogonally C4-protected donors, suitable for iterative oligosaccharide synthesis. The development of these building blocks is showcased to access anomeric 3-aminopropyl- and 1-phosphate free sugars containing this non-native motif.
Collapse
Affiliation(s)
- Eleni Dimitriou
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, U. K
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, U. K
| |
Collapse
|
19
|
Bäumgen M, Dutschei T, Bornscheuer UT. Marine Polysaccharides: Occurrence, Enzymatic Degradation and Utilization. Chembiochem 2021; 22:2247-2256. [PMID: 33890358 PMCID: PMC8360166 DOI: 10.1002/cbic.202100078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Macroalgae species are fast growing and their polysaccharides are already used as food ingredient due to their properties as hydrocolloids or they have potential high value bioactivity. The degradation of these valuable polysaccharides to access the sugar components has remained mostly unexplored so far. One reason is the high structural complexity of algal polysaccharides, but also the need for suitable enzyme cocktails to obtain oligo- and monosaccharides. Among them, there are several rare sugars with high value. Recently, considerable progress was made in the discovery of highly specific carbohydrate-active enzymes able to decompose complex marine carbohydrates such as carrageenan, laminarin, agar, porphyran and ulvan. This minireview summarizes these achievements and highlights potential applications of the now accessible abundant renewable resource of marine polysaccharides.
Collapse
Affiliation(s)
- Marcus Bäumgen
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Theresa Dutschei
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| |
Collapse
|
20
|
Díaz-Barrera A, Sanchez-Rosales F, Padilla-Córdova C, Andler R, Peña C. Molecular weight and guluronic/mannuronic ratio of alginate produced by Azotobacter vinelandii at two bioreactor scales under diazotrophic conditions. Bioprocess Biosyst Eng 2021; 44:1275-1287. [PMID: 33635396 DOI: 10.1007/s00449-021-02532-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/07/2021] [Indexed: 11/24/2022]
Abstract
Alginates can be used to elaborate hydrogels, and their properties depend on the molecular weight (MW) and the guluronic (G) and mannuronic (M) composition. In this study, the MW and G/M ratio were evaluated in cultures of Azotobacter vinelandii to 3 and 30 L scales at different oxygen transfer rates (OTRs) under diazotrophic conditions. An increase in the maximum OTR (OTRmax) improved the alginate production, reaching 3.3 ± 0.2 g L-1. In the cultures conducted to an OTR of 10.4 mmol L-1 h-1 (500 rpm), the G/M increased during the cell growth phase and decreased during the stationary phase; whereas, in the cultures at 19.2 mmol L-1 h-1 was constant throughout the cultivation. A higher alginate MW (520 ± 43 kDa) and G/M ratio (0.86 ± 0.01) were obtained in the cultures conducted at 10.4 mmol L-1 h-1. The OTR as a criterion to scale up alginate production allowed to replicate the concentration and the alginate production rate; however, it was not possible reproduce the MW and G/M ratio. Under a similar specific oxygen uptake rate (qO2) (approximately 65 mmol g-1 h-1) the alginate MW was similar (approximately 365 kDa) in both scales. The evidences revealed that the qO2 can be a parameter adequate to produce alginate MW similar in two bioreactor scales. Overall, the results have shown that the alginate composition could be affected by cellular respiration, and from a technological perspective the evidences contribute to the design process based on oxygen consumption to produce alginates defined.
Collapse
Affiliation(s)
- Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, 4059, Casilla, Valparaíso, Chile.
| | - Francisco Sanchez-Rosales
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, 4059, Casilla, Valparaíso, Chile.,Facultad de Ciencias Tecnológicas, Universidad Nacional de Agricultura, Carretera a Dulce Nombre de Culmí, km 212, Barrio El Espino, Catacamas, Honduras
| | - Claudio Padilla-Córdova
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, 4059, Casilla, Valparaíso, Chile
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Universidad Católica del Maule, Talca, Chile
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
21
|
Alginate Degradation: Insights Obtained through Characterization of a Thermophilic Exolytic Alginate Lyase. Appl Environ Microbiol 2021; 87:AEM.02399-20. [PMID: 33397696 DOI: 10.1128/aem.02399-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. Herein, we describe a thermostable alginate lyase that belongs to polysaccharide lyase family 17 (PL17) and was derived from an Arctic Mid-Ocean Ridge (AMOR) metagenomics data set. This enzyme, AMOR_PL17A, is a thermostable exolytic oligoalginate lyase (EC 4.2.2.26), which can degrade alginate, poly-β-d-mannuronate, and poly-α-l-guluronate within a broad range of pHs, temperatures, and salinity conditions. Site-directed mutagenesis showed that tyrosine Y251, previously suggested to act as a catalytic acid, indeed is essential for catalysis, whereas mutation of tyrosine Y446, previously proposed to act as a catalytic base, did not affect enzyme activity. The observed reaction products are protonated and deprotonated forms of the 4,5-unsaturated uronic acid monomer, Δ, two hydrates of DEH (4-deoxy-l-erythro-5-hexulosuronate), which are formed after ring opening, and, finally, two epimers of a 5-member hemiketal called 4-deoxy-d-manno-hexulofuranosidonate (DHF), formed through intramolecular cyclization of hydrated DEH. The detection and nuclear magnetic resonance (NMR) assignment of these hemiketals refine our current understanding of alginate degradation.IMPORTANCE The potential markets for seaweed-derived products and seaweed processing technologies are growing, yet commercial enzyme cocktails for complete conversion of seaweed to fermentable sugars are not available. Such an enzyme cocktail would require the catalytic properties of a variety of different enzymes, where fucoidanases, laminarinases, and cellulases together with endo- and exo-acting alginate lyases would be the key enzymes. Here, we present an exo-acting alginate lyase that efficiently produces monomeric sugars from alginate. Since it is only the second characterized exo-acting alginate lyase capable of degrading alginate at a high industrially relevant temperature (≥60°C), this enzyme may be of great biotechnological and industrial interest. In addition, in-depth NMR-based structural elucidation revealed previously undescribed rearrangement products of the unsaturated monomeric sugars generated from exo-acting lyases. The insight provided by the NMR assignment of these products facilitates future assessment of product formation by alginate lyases.
Collapse
|
22
|
Cyclic di-GMP-Mediated Regulation of Extracellular Mannuronan C-5 Epimerases Is Essential for Cyst Formation in Azotobacter vinelandii. J Bacteriol 2020; 202:JB.00135-20. [PMID: 32989089 DOI: 10.1128/jb.00135-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
The genus Azotobacter, belonging to the Pseudomonadaceae family, is characterized by the formation of cysts, which are metabolically dormant cells produced under adverse conditions and able to resist desiccation. Although this developmental process has served as a model for the study of cell differentiation in Gram-negative bacteria, the molecular basis of its regulation is still poorly understood. Here, we report that the ubiquitous second messenger cyclic dimeric GMP (c-di-GMP) is critical for the formation of cysts in Azotobacter vinelandii Upon encystment induction, the levels of c-di-GMP increased, reaching a peak within the first 6 h. In the absence of the diguanylate cyclase MucR, however, the levels of this second messenger remained low throughout the developmental process. A. vinelandii cysts are surrounded by two alginate layers with variable proportions of guluronic residues, which are introduced into the final alginate chain by extracellular mannuronic C-5 epimerases of the AlgE1 to AlgE7 family. Unlike in Pseudomonas aeruginosa, MucR was not required for alginate polymerization in A. vinelandii Conversely, MucR was necessary for the expression of extracellular alginate C-5 epimerases; therefore, the MucR-deficient strain produced cyst-like structures devoid of the alginate capsule and unable to resist desiccation. Expression of mucR was partially dependent on the response regulator AlgR, which binds to two sites in the mucR promoter, enhancing mucR transcription. Together, these results indicate that the developmental process of A. vinelandii is controlled through a signaling module that involves activation by the response regulator AlgR and c-di-GMP accumulation that depends on MucR.IMPORTANCE A. vinelandii has served as an experimental model for the study of the differentiation processes to form metabolically dormant cells in Gram-negative bacteria. This work identifies c-di-GMP as a critical regulator for the production of alginates with specific contents of guluronic residues that are able to structure the rigid laminated layers of the cyst envelope. Although allosteric activation of the alginate polymerase complex Alg8-Alg44 by c-di-GMP has long been recognized, our results show a previously unidentified role during the polymer modification step, controlling the expression of extracellular alginate epimerases. Our results also highlight the importance of c-di-GMP in the control of the physical properties of alginate, which ultimately determine the desiccation resistance of the differentiated cell.
Collapse
|
23
|
Increased c-di-GMP Levels Lead to the Production of Alginates of High Molecular Mass in Azotobacter vinelandii. J Bacteriol 2020; 202:JB.00134-20. [PMID: 32989088 DOI: 10.1128/jb.00134-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Azotobacter vinelandii produces the linear exopolysaccharide alginate, a compound of significant biotechnological importance. The biosynthesis of alginate in A. vinelandii and Pseudomonas aeruginosa has several similarities but is regulated somewhat differently in the two microbes. Here, we show that the second messenger cyclic dimeric GMP (c-di-GMP) regulates the production and the molecular mass of alginate in A. vinelandii The hybrid protein MucG, containing conserved GGDEF and EAL domains and N-terminal HAMP and PAS domains, behaved as a c-di-GMP phosphodiesterase (PDE). This activity was found to negatively affect the amount and molecular mass of the polysaccharide formed. On the other hand, among the diguanylate cyclases (DGCs) present in A. vinelandii, AvGReg, a globin-coupled sensor (GCS) DGC that directly binds to oxygen, was identified as the main c-di-GMP-synthesizing contributor to alginate production. Overproduction of AvGReg in the parental strain phenocopied a ΔmucG strain with regard to alginate production and the molecular mass of the polymer. MucG was previously shown to prevent the synthesis of high-molecular-mass alginates in response to reduced oxygen transfer rates (OTRs). In this work, we show that cultures exposed to reduced OTRs accumulated higher levels of c-di-GMP; this finding strongly suggests that at least one of the molecular mechanisms involved in modulation of alginate production and molecular mass by oxygen depends on a c-di-GMP signaling module that includes the PAS domain-containing PDE MucG and the GCS DGC AvGReg.IMPORTANCE c-di-GMP has been widely recognized for its essential role in the production of exopolysaccharides in bacteria, such as alginate produced by Pseudomonas and Azotobacter spp. This study reveals that the levels of c-di-GMP also affect the physical properties of alginate, favoring the production of high-molecular-mass alginates in response to lower OTRs. This finding opens up new alternatives for the design of tailor-made alginates for biotechnological applications.
Collapse
|
24
|
Mori M, Asahi R, Yamamoto Y, Mashiko T, Yoshizumi K, Saito N, Shirado T, Wu Y, Yoshimura K. Sodium Alginate as a Potential Therapeutic Filler: An In Vivo Study in Rats. Mar Drugs 2020; 18:md18100520. [PMID: 33086478 PMCID: PMC7589138 DOI: 10.3390/md18100520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023] Open
Abstract
Filler injection demand is increasing worldwide, but no ideal filler with safety and longevity currently exists. Sodium alginate (SA) is the sodium salt of alginic acid, which is a polymeric polysaccharide obtained by linear polymerization of two types of uronic acid, d-mannuronic acid (M) and l-guluronic acid (G). This study aimed to evaluate the therapeutic value of SA. Nine SA types with different M/G ratios and viscosities were tested and compared with a commercially available sodium hyaluronate (SH) filler. Three injection modes (onto the periosteum, intradermally, or subcutaneously) were used in six rats for each substance, and the animals were sacrificed at 4 or 24 weeks. Changes in the diameter and volume were measured macroscopically and by computed tomography, and histopathological evaluations were performed. SA with a low M/G ratio generally maintained skin uplift. The bulge gradually decreased over time but slightly increased at 4 weeks in some samples. No capsule formation was observed around SA. However, granulomatous reactions, including macrophage recruitment, were observed 4 weeks after SA implantation, although fewer macrophages and granulomatous reactions were observed at 24 weeks. The long-term volumizing effects and degree of granulomatous reactions differed depending on the M/G ratio and viscosity. By contrast, SH showed capsule formation but with minimal granulomatous reactions. The beneficial and adverse effects of SA as a filler differed according to the viscosity or M/G ratio, suggesting a better long-term volumizing effect than SH with relatively low immunogenicity
Collapse
|
25
|
Characterization of a New Intracellular Alginate Lyase with Metal Ions-Tolerant and pH-Stable Properties. Mar Drugs 2020; 18:md18080416. [PMID: 32784864 PMCID: PMC7460510 DOI: 10.3390/md18080416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022] Open
Abstract
Alginate lyases play an important role in alginate oligosaccharides (AOS) preparation and brown seaweed processing. Many extracellular alginate lyases have been characterized to develop efficient degradation tools needed for industrial applications. However, few studies focusing on intracellular alginate lyases have been conducted. In this work, a novel intracellular alkaline alginate lyase Alyw202 from Vibrio sp. W2 was cloned, expressed and characterized. Secretory expression was performed in a food-grade host, Yarrowia lipolytica. Recombinant Alyw202 with a molecular weight of approximately 38.3 kDa exhibited the highest activity at 45 °C and more than 60% of the activity in a broad pH range of 3.0 to 10.0. Furthermore, Alyw202 showed remarkable metal ion-tolerance, NaCl independence and the capacity of degrading alginate into oligosaccharides of DP2-DP4. Due to the unique pH-stable and high salt-tolerant properties, Alyw202 has potential applications in the food and pharmaceutical industries.
Collapse
|
26
|
Gawin A, Tietze L, Aarstad OA, Aachmann FL, Brautaset T, Ertesvåg H. Functional characterization of three Azotobacter chroococcum alginate-modifying enzymes related to the Azotobacter vinelandii AlgE mannuronan C-5-epimerase family. Sci Rep 2020; 10:12470. [PMID: 32719381 PMCID: PMC7385640 DOI: 10.1038/s41598-020-68789-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022] Open
Abstract
Bacterial alginate initially consists of 1–4-linked β-D-mannuronic acid residues (M) which can be later epimerized to α-L-guluronic acid (G). The family of AlgE mannuronan C-5-epimerases from Azotobacter vinelandii has been extensively studied, and three genes putatively encoding AlgE-type epimerases have recently been identified in the genome of Azotobacter chroococcum. The three A. chroococcum genes, here designated AcalgE1, AcalgE2 and AcalgE3, were recombinantly expressed in Escherichia coli and the gene products were partially purified. The catalytic activities of the enzymes were stimulated by the addition of calcium ions in vitro. AcAlgE1 displayed epimerase activity and was able to introduce long G-blocks in the alginate substrate, preferentially by attacking M residues next to pre-existing G residues. AcAlgE2 and AcAlgE3 were found to display lyase activities with a substrate preference toward M-alginate. AcAlgE2 solely accepted M residues in the positions − 1 and + 2 relative to the cleavage site, while AcAlgE3 could accept either M or G residues in these two positions. Both AcAlgE2 and AcAlgE3 were bifunctional and could also catalyze epimerization of M to G. Together, we demonstrate that A. chroococcum encodes three different AlgE-like alginate-modifying enzymes and the biotechnological and biological impact of these findings are discussed.
Collapse
Affiliation(s)
- Agnieszka Gawin
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway
| | - Lisa Tietze
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway
| | - Olav A Aarstad
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway.
| |
Collapse
|
27
|
Dharani SR, Srinivasan R, Sarath R, Ramya M. Recent progress on engineering microbial alginate lyases towards their versatile role in biotechnological applications. Folia Microbiol (Praha) 2020; 65:937-954. [DOI: 10.1007/s12223-020-00802-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
|
28
|
Abasalizadeh F, Moghaddam SV, Alizadeh E, akbari E, Kashani E, Fazljou SMB, Torbati M, Akbarzadeh A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 2020; 14:8. [PMID: 32190110 PMCID: PMC7069202 DOI: 10.1186/s13036-020-0227-7] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Hydrogels are a three-dimensional and crosslinked network of hydrophilic polymers. They can absorb a large amount of water or biological fluids, which leads to their swelling while maintaining their 3D structure without dissolving (Zhu and Marchant, Expert Rev Med Devices 8:607-626, 2011). Among the numerous polymers which have been utilized for the preparation of the hydrogels, polysaccharides have gained more attention in the area of pharmaceutics; Sodium alginate is a non-toxic, biocompatible, and biodegradable polysaccharide with several unique physicochemical properties for which has used as delivery vehicles for drugs (Kumar Giri et al., Curr Drug Deliv 9:539-555, 2012). Owing to their high-water content and resembling the natural soft tissue, hydrogels were studied a lot as a scaffold. The formation of hydrogels can occur by interactions of the anionic alginates with multivalent inorganic cations through a typical ionotropic gelation method. However, those applications require the control of some properties such as mechanical stiffness, swelling, degradation, cell attachment, and binding or release of bioactive molecules by using the chemical or physical modifications of the alginate hydrogel. In the current review, an overview of alginate hydrogels and their properties will be presented as well as the methods of producing alginate hydrogels. In the next section of the present review paper, the application of the alginate hydrogels will be defined as drug delivery vehicles for chemotherapeutic agents. The recent advances in the application of the alginate-based hydrogels will be describe later as a wound dressing and bioink in 3D bioprinting.
Collapse
Affiliation(s)
- Farhad Abasalizadeh
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe akbari
- Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mohammad Bagher Fazljou
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz, 5154853431 Iran
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| |
Collapse
|
29
|
Belik A, Silchenko A, Malyarenko O, Rasin A, Kiseleva M, Kusaykin M, Ermakova S. Two New Alginate Lyases of PL7 and PL6 Families from Polysaccharide-Degrading Bacterium Formosa algae KMM 3553 T: Structure, Properties, and Products Analysis. Mar Drugs 2020; 18:md18020130. [PMID: 32102373 PMCID: PMC7074159 DOI: 10.3390/md18020130] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
A bifunctional alginate lyase (ALFA3) and mannuronate-specific alginate lyase (ALFA4) genes were found in the genome of polysaccharide-degrading marine bacterium Formosa algae KMM 3553T. They were classified to PL7 and PL6 polysaccharide lyases families and expressed in E. coli. The recombinant ALFA3 appeared to be active both on mannuronate- and guluronate-enriched alginates, as well as pure sodium mannuronate. For all substrates, optimum conditions were pH 6.0 and 35 °C; Km was 0.12 ± 0.01 mg/ml, and half-inactivation time was 30 min at 42 °C. Recombinant ALFA4 was active predominately on pure sodium mannuronate, with optimum pH 8.0 and temperature 30 °C, Km was 3.01 ± 0.05 mg/ml. It was stable up to 30 °C; half-inactivation time was 1h 40 min at 37 °C. 1H NMR analysis showed that ALFA3 degraded mannuronate and mannuronate-guluronate blocks, while ALFA4 degraded only mannuronate blocks, producing mainly disaccharides. Products of digestion of pure sodium mannuronate by ALFA3 at 200 µg/ml inhibited anchorage-independent colony formation of human melanoma cells SK-MEL-5, SK-MEL-28, and RPMI-7951 up to 17% stronger compared to native polymannuronate. This fact supports previous data and suggests that mannuronate oligosaccharides may be useful for synergic tumor therapy.
Collapse
|
30
|
Jönsson M, Allahgholi L, Sardari RR, Hreggviðsson GO, Nordberg Karlsson E. Extraction and Modification of Macroalgal Polysaccharides for Current and Next-Generation Applications. Molecules 2020; 25:E930. [PMID: 32093097 PMCID: PMC7070867 DOI: 10.3390/molecules25040930] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022] Open
Abstract
Marine macroalgal (seaweed) polysaccharides are highly promising for next-generation applications in several industries. However, despite the reported comprehensive potential of these polysaccharides, commercial products are scarce on the market. Seaweed cultivations are increasing in number and production quantity, owing to an elevated global trend of utilization interest in seaweed. The extraction of polysaccharides from seaweed generally generates low yields, but novel methods are being developed to facilitate and improve the extraction processes. Current areas of applications for seaweed polysaccharides mainly take advantage of the physicochemical properties of certain polysaccharides, such as gelling, thickening and emulsifying. However, many of the numerous bioactivities reported are still only at research level and lack clinical evidence for commercialization. It has been suggested the construction of smaller units may generate better defined molecules that are more suitable for biomedical applications. Enzymatic modification is a promising tool for the generation of more defined, targeted biomolecules. This review covers; structural differences between the most predominant marine algal polysaccharides, extraction processes, modification alternatives, as well as a summary of current and potential next-generation application areas.
Collapse
Affiliation(s)
- Madeleine Jönsson
- Biotechnology, Department of Chemistry, Lund University, Post Office Box 124, 221 00 Lund, Sweden; (M.J.); (L.A.)
| | - Leila Allahgholi
- Biotechnology, Department of Chemistry, Lund University, Post Office Box 124, 221 00 Lund, Sweden; (M.J.); (L.A.)
| | - Roya R.R. Sardari
- Biotechnology, Department of Chemistry, Lund University, Post Office Box 124, 221 00 Lund, Sweden; (M.J.); (L.A.)
| | - Guðmundur O. Hreggviðsson
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, IS-101 Reykjavík, Iceland;
- Matis Ohf, Vinlandsleid 12, IS-113 Reykjavik, Iceland
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry, Lund University, Post Office Box 124, 221 00 Lund, Sweden; (M.J.); (L.A.)
| |
Collapse
|
31
|
Mærk M, Jakobsen ØM, Sletta H, Klinkenberg G, Tøndervik A, Ellingsen TE, Valla S, Ertesvåg H. Identification of Regulatory Genes and Metabolic Processes Important for Alginate Biosynthesis in Azotobacter vinelandii by Screening of a Transposon Insertion Mutant Library. Front Bioeng Biotechnol 2020; 7:475. [PMID: 32010681 PMCID: PMC6979010 DOI: 10.3389/fbioe.2019.00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Azotobacter vinelandii produces the biopolymer alginate, which has a wide range of industrial and pharmaceutical applications. A random transposon insertion mutant library was constructed from A. vinelandii ATCC12518Tc in order to identify genes and pathways affecting alginate biosynthesis, and about 4,000 mutant strains were screened for altered alginate production. One mutant, containing a mucA disruption, displayed an elevated alginate production level, and several mutants with decreased or abolished alginate production were identified. The regulatory proteins AlgW and AmrZ seem to be required for alginate production in A. vinelandii, similarly to Pseudomonas aeruginosa. An algB mutation did however not affect alginate yield in A. vinelandii although its P. aeruginosa homolog is needed for full alginate production. Inactivation of the fructose phosphoenolpyruvate phosphotransferase system protein FruA resulted in a mutant that did not produce alginate when cultivated in media containing various carbon sources, indicating that this system could have a role in regulation of alginate biosynthesis. Furthermore, impaired or abolished alginate production was observed for strains with disruptions of genes involved in peptidoglycan biosynthesis/recycling and biosynthesis of purines, isoprenoids, TCA cycle intermediates, and various vitamins, suggesting that sufficient access to some of these compounds is important for alginate production. This hypothesis was verified by showing that addition of thiamine, succinate or a mixture of lysine, methionine and diaminopimelate increases alginate yield in the non-mutagenized strain. These results might be used in development of optimized alginate production media or in genetic engineering of A. vinelandii strains for alginate bioproduction.
Collapse
Affiliation(s)
- Mali Mærk
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | - Svein Valla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
32
|
Fraczyk J, Wasko J, Walczak M, Kaminski ZJ, Puchowicz D, Kaminska I, Bogun M, Kolasa M, Stodolak-Zych E, Scislowska-Czarnecka A, Kolesinska B. Conjugates of Copper Alginate with Arginine-Glycine-Aspartic Acid (RGD) for Potential Use in Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E337. [PMID: 31940765 PMCID: PMC7013949 DOI: 10.3390/ma13020337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/02/2023]
Abstract
Current restrictions on the use of antibiotics, associated with increases in bacterial resistance, require new solutions, including materials with antibacterial properties. In this study, copper alginate fibers obtained using the classic wet method were used to make nonwovens which were modified with arginine-glycine-aspartic acid (RGD) derivatives. Stable polysaccharide-peptide conjugates formed by coupling with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TosO-), and materials with physically embedded RGD derivatives, were obtained. The materials were found to be characterized by very high antibacterial activity against S. aureus and K. pneumoniae. Cytotoxicity studies confirmed that the materials are not cytotoxic. Copper alginate conjugates with RGD peptides have strong potential for use in regenerative medicine, due to their biocompatibility and innate antibacterial activity.
Collapse
Affiliation(s)
- Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Malgorzata Walczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Zbigniew J. Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Dorota Puchowicz
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.B.)
| | - Irena Kaminska
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.B.)
| | - Maciej Bogun
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.B.)
| | - Marcin Kolasa
- Military Institute of Hygiene and Epidemiology Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland;
| | - Ewa Stodolak-Zych
- Department of Biomaterials, AGH‐University of Science and Technology, A. Mickiewicz 30, 30-059 Krakow, Poland;
| | - Anna Scislowska-Czarnecka
- Academy of Physical Education, Department of Physiotherapy, Section of Anatomy, 31-008 Krakow, Poland;
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| |
Collapse
|
33
|
Rabillé H, Torode TA, Tesson B, Le Bail A, Billoud B, Rolland E, Le Panse S, Jam M, Charrier B. Alginates along the filament of the brown alga Ectocarpus help cells cope with stress. Sci Rep 2019; 9:12956. [PMID: 31506545 PMCID: PMC6736953 DOI: 10.1038/s41598-019-49427-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022] Open
Abstract
Ectocarpus is a filamentous brown alga, which cell wall is composed mainly of alginates and fucans (80%), two non-crystalline polysaccharide classes. Alginates are linear chains of epimers of 1,4-linked uronic acids, β-D-mannuronic acid (M) and α-L-guluronic acid (G). Previous physico-chemical studies showed that G-rich alginate gels are stiffer than M-rich alginate gels when prepared in vitro with calcium. In order to assess the possible role of alginates in Ectocarpus, we first immunolocalised M-rich or G-rich alginates using specific monoclonal antibodies along the filament. As a second step, we calculated the tensile stress experienced by the cell wall along the filament, and varied it with hypertonic or hypotonic solutions. As a third step, we measured the stiffness of the cell along the filament, using cell deformation measurements and atomic force microscopy. Overlapping of the three sets of data allowed to show that alginates co-localise with the stiffest and most stressed areas of the filament, namely the dome of the apical cell and the shanks of the central round cells. In addition, no major distinction between M-rich and G-rich alginate spatial patterns could be observed. Altogether, these results support that both M-rich and G-rich alginates play similar roles in stiffening the cell wall where the tensile stress is high and exposes cells to bursting, and that these roles are independent from cell growth and differentiation.
Collapse
Affiliation(s)
- Hervé Rabillé
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
| | - Thomas A Torode
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, United Kingdom
| | - Benoit Tesson
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Aude Le Bail
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
- Department of Cell Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Bernard Billoud
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
| | - Elodie Rolland
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
| | - Sophie Le Panse
- Platform Merimage, FR 2424, CNRS, Station Biologique, Roscoff, France
| | - Murielle Jam
- Marine Glycobiology team, UMR8227, CNRS-UPMC, Station Biologique, Roscoff, France
| | - Bénédicte Charrier
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France.
| |
Collapse
|
34
|
Fischer A, Wefers D. Chromatographic analysis of alginate degradation by five recombinant alginate lyases from Cellulophaga algicola DSM 14237. Food Chem 2019; 299:125142. [PMID: 31325715 DOI: 10.1016/j.foodchem.2019.125142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022]
Abstract
Alginate lyases can be used for alginate oligosaccharide production and for structural characterization or modification of alginates. For these applications it is important to obtain detailed information on mode of action and substrate specificities of alginate lyases. In this study, five alginate lyase genes were cloned from Cellulophaga algicola DSM 14237 genomic DNA, heterologously expressed, and characterized by using HPSEC-RI and HPAEC-PAD/MS. It was demonstrated that these analytical approaches can provide detailed information on preferred substrates, extent of hydrolysis, and the liberated products. The recombinant enzymes cleaved alginates endolytically (CaAly1, CaAly2, CaAly3) or exolytically (CaAly4, CaAly5). The three endolytic alginate lyases predominantly hydrolyzed guluronic acid-rich alginates, only CaAly1 also showed activity on mannuronic acid-rich alginates. The oligosaccharide profiles further demonstrated that the endolytic enzymes have rather narrow but slightly different substrate specificities and that the two exolytic alginate lyases mainly cleaved unsaturated guluronic acid oligosaccharides to monomers.
Collapse
Affiliation(s)
- Anja Fischer
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany.
| |
Collapse
|
35
|
Wang Y, Chen X, Bi X, Ren Y, Han Q, Zhou Y, Han Y, Yao R, Li S. Characterization of an Alkaline Alginate Lyase with pH-Stable and Thermo-Tolerance Property. Mar Drugs 2019; 17:md17050308. [PMID: 31137685 PMCID: PMC6562718 DOI: 10.3390/md17050308] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023] Open
Abstract
Alginate oligosaccharides (AOS) show versatile bioactivities. Although various alginate lyases have been characterized, enzymes with special characteristics are still rare. In this study, a polysaccharide lyase family 7 (PL7) alginate lyase-encoding gene, aly08, was cloned from the marine bacterium Vibrio sp. SY01 and expressed in Escherichia coli. The purified alginate lyase Aly08, with a molecular weight of 35 kDa, showed a specific activity of 841 U/mg at its optimal pH (pH 8.35) and temperature (45 °C). Aly08 showed good pH-stability, as it remained more than 80% of its initial activity in a wide pH range (4.0–10.0). Aly08 was also a thermo-tolerant enzyme that recovered 70.8% of its initial activity following heat shock treatment for 5 min. This study also demonstrated that Aly08 is a polyG-preferred enzyme. Furthermore, Aly08 degraded alginates into disaccharides and trisaccharides in an endo-manner. Its thermo-tolerance and pH-stable properties make Aly08 a good candidate for further applications.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Xuehong Chen
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Xiaolin Bi
- Department of Rehabilitation Medicine, Qingdao University, Qingdao 266071, China.
| | - Yining Ren
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Qi Han
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Yu Zhou
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Yantao Han
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Ruyong Yao
- Central Laboratory of Medicine, Qingdao University, Qingdao 266071, China.
| | - Shangyong Li
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
36
|
Marine Bacteria, A Source for Alginolytic Enzyme to Disrupt Pseudomonas aeruginosa Biofilms. Mar Drugs 2019; 17:md17050307. [PMID: 31137680 PMCID: PMC6562671 DOI: 10.3390/md17050307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa biofilms are typically associated with the chronic lung infection of cystic fibrosis (CF) patients and represent a major challenge for treatment. This opportunistic bacterial pathogen secretes alginate, a polysaccharide that is one of the main components of its biofilm. Targeting this major biofilm component has emerged as a tempting therapeutic strategy for tackling biofilm-associated bacterial infections. The enormous potential in genetic diversity of the marine microbial community make it a valuable resource for mining activities responsible for a broad range of metabolic processes, including the alginolytic activity responsible for degrading alginate. A collection of 36 bacterial isolates were purified from marine water based on their alginolytic activity. These isolates were identified based on their 16S rRNA gene sequences. Pseudoalteromonas sp. 1400 showed the highest alginolytic activity and was further confirmed to produce the enzyme alginate lyase. The purified alginate lyase (AlyP1400) produced by Pseudoalteromonas sp. 1400 showed a band of 23 KDa on a protein electrophoresis gel and exhibited a bifunctional lyase activity for both poly-mannuronic acid and poly-glucuronic acid degradation. A tryptic digestion of this gel band analyzed by liquid chromatography-tandem mass spectrometry confirmed high similarity to the alginate lyases in polysaccharide lyase family 18. The purified alginate lyase showed a maximum relative activity at 30 °C at a slightly acidic condition. It decreased the sodium alginate viscosity by over 90% and reduced the P. aeruginosa (strain PA14) biofilms by 69% after 24 h of incubation. The combined activity of AlyP1400 with carbenicillin or ciprofloxacin reduced the P. aeruginosa biofilm thickness, biovolume and surface area in a flow cell system. The present data revealed that AlyP1400 combined with conventional antibiotics helped to disrupt the biofilms produced by P. aeruginosa and can be used as a promising combinational therapeutic strategy.
Collapse
|
37
|
Inoue A, Ojima T. Functional identification of alginate lyase from the brown alga Saccharina japonica. Sci Rep 2019; 9:4937. [PMID: 30894645 PMCID: PMC6426991 DOI: 10.1038/s41598-019-41351-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/07/2019] [Indexed: 11/26/2022] Open
Abstract
Despite the progress in massive gene analysis of brown algal species, no alginate-degrading enzyme from brown alga has been identified, impeding the understanding of alginate metabolism in brown alga. In the current study, we identified and characterized alginate lyase from Saccharina japonica using a protein-based approach. First, cDNA library was prepared from the S. japonica sporophyte. Expression screening was then performed; the encoding gene was identified and cloned; and the recombinant enzyme was purified and characterized. Alginate lyase production in algal tissues was evaluated by western blotting. The identified alginate lyase, SjAly (359 amino acids, with a predicted N-terminal secretion signal of 27 residues), is encoded by an open reading frame comprising seven exons. Recombinant SjAly exhibited endolytic alginate lyase activity, specifically toward stretches of consecutive β-D-mannuronic acid units. The optimum temperature, pH, and NaCl concentration were 30 °C, pH 8.0, and 100 mM, respectively. SjAly exhibited pronounced activity below 20 °C, the S. japonica growth temperature. SjAly was highly expressed in the blade but not the stipe and rhizoid. The data indicate that S. japonica possesses at least one active alginate lyase. This is the first report of a functional alginate lyase from brown alga, the major natural alginate producer.
Collapse
Affiliation(s)
- Akira Inoue
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, Japan.
| | - Takao Ojima
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, Japan
| |
Collapse
|
38
|
Vuoristo KS, Fredriksen L, Oftebro M, Arntzen MØ, Aarstad OA, Stokke R, Steen IH, Hansen LD, Schüller RB, Aachmann FL, Horn SJ, Eijsink VGH. Production, Characterization, and Application of an Alginate Lyase, AMOR_PL7A, from Hot Vents in the Arctic Mid-Ocean Ridge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2936-2945. [PMID: 30781951 DOI: 10.1021/acs.jafc.8b07190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. We describe a thermostable alginate lyase belonging to Polysaccharide Lyase family 7 (PL7), which can be used to degrade brown seaweed, Saccharina latissima, at conditions also suitable for a commercial cellulase cocktail (Cellic CTec2). This enzyme, AMOR_PL7A, is a β-d-mannuronate specific (EC 4.2.2.3) endoacting alginate lyase, which degrades alginate and poly mannuronate within a broad range of pH, temperature and salinity. At 65 °C and pH 6.0, its Km and kcat values for sodium alginate are 0.51 ± 0.09 mg/mL and 7.8 ± 0.3 s-1 respectively. Degradation of seaweed with blends of Cellic CTec2 and AMOR_PL7A at 55 °C in seawater showed that the lyase efficiently reduces viscosity and increases glucose solublization. Thus, AMOR_PL7A may be useful in development of efficient protocols for enzymatic seaweed processing.
Collapse
Affiliation(s)
| | - Lasse Fredriksen
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | - Maren Oftebro
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | - Olav A Aarstad
- Department of Biotechnology and Food Science , NTNU Norwegian University of Science and Technology , Sem Sælands vei 6/8 , N-7491 Trondheim , Norway
| | - Runar Stokke
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research , University of Bergen , N-5020 Bergen , Norway
| | - Ida H Steen
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research , University of Bergen , N-5020 Bergen , Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | - Reidar B Schüller
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science , NTNU Norwegian University of Science and Technology , Sem Sælands vei 6/8 , N-7491 Trondheim , Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | | |
Collapse
|
39
|
Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann JH, Dittmar T, Freese HM, Becher D, Simon M, Wietz M. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. THE ISME JOURNAL 2019; 13:92-103. [PMID: 30116038 PMCID: PMC6298977 DOI: 10.1038/s41396-018-0252-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 11/08/2022]
Abstract
Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium Alteromonas macleodii 83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of A. macleodii 83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular Saccharina and Fucus, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among Alteromonas spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct 'carbohydrate utilization types' with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria-algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Alexandra Dürwald
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Beatriz Noriega-Ortega
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Silvia Vidal-Melgosa
- MARUM-MPI Bridge Group for Marine Glycobiology, University of Bremen, Bremen, Germany
| | - Jan-Hendrik Hehemann
- MARUM-MPI Bridge Group for Marine Glycobiology, University of Bremen, Bremen, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Heike M Freese
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dörte Becher
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
40
|
Zhuang J, Zhang K, Liu X, Liu W, Lyu Q, Ji A. Characterization of a Novel PolyM-Preferred Alginate Lyase from Marine Vibrio splendidus OU02. Mar Drugs 2018; 16:md16090295. [PMID: 30135412 PMCID: PMC6165035 DOI: 10.3390/md16090295] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Alginate lyases are enzymes that degrade alginate into oligosaccharides which possess a variety of biological activities. Discovering and characterizing novel alginate lyases has great significance for industrial and medical applications. In this study, we reported a novel alginate lyase, AlyA-OU02, derived from the marine Vibrio splendidus OU02. The BLASTP searches showed that AlyA-OU02 belonged to polysaccharide lyase family 7 (PL7) and contained two consecutive PL7 domains, which was rare among the alginate lyases in PL7 family. Both the two domains, AlyAa and AlyAb, had lyase activities, while AlyAa exhibited polyM preference, and AlyAb was polyG-preferred. In addition, the enzyme activity of AlyAa was much higher than AlyAb at 25 °C. The full-length enzyme of AlyA-OU02 showed polyM preference, which was the same as AlyAa. AlyAa degraded alginate into di-, tri-, and tetra-alginate oligosaccharides, while AlyAb degraded alginate into tri-, tetra-, and penta-alginate oligosaccharides. The degraded products of AlyA-OU02 were similar to AlyAa. Our work provided a potential candidate in the application of alginate oligosaccharide production and the characterization of the two domains might provide insights into the use of alginate of this organism.
Collapse
Affiliation(s)
| | - Keke Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiaohua Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Weizhi Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Qianqian Lyu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
41
|
Peng C, Wang Q, Lu D, Han W, Li F. A Novel Bifunctional Endolytic Alginate Lyase with Variable Alginate-Degrading Modes and Versatile Monosaccharide-Producing Properties. Front Microbiol 2018; 9:167. [PMID: 29472911 PMCID: PMC5809466 DOI: 10.3389/fmicb.2018.00167] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Endo-type alginate lyases usually degrade alginate completely into various size-defined unsaturated oligosaccharide products (≥disaccharides), while exoenzymes primarily produce monosaccharide products including saturated mannuronate (M) and guluronate (G) units and particularly unsaturated Δ units. Recently, two bifunctional alginate lyases have been identified as endolytic but M- and G-producing with variable action modes. However, endolytic Δ-producing alginate lyases remain undiscovered. Herein, a new Flammeovirga protein, Aly2, was classified into the polysaccharide lyase 7 superfamily. The recombinant enzyme and its truncated protein showed similar stable biochemical characteristics. Using different sugar chains as testing substrates, we demonstrated that the two enzymes are bifunctional while G-preferring, endolytic whereas monosaccharide-producing. Furthermore, the catalytic module of Aly2 can vary the action modes depending on the terminus type, molecular size, and M/G content of the substrate, thereby yielding different levels of M, G, and Δ units. Notably, the enzymes preferentially produce Δ units when digesting small size-defined oligosaccharide substrates, particularly the smallest substrate (unsaturated tetrasaccharide fractions). Deletion of the non-catalytic region of Aly2 caused weak changes in the action modes and biochemical characteristics. This study provided extended insights into alginate lyase groups with variable action modes for accurate enzyme use.
Collapse
Affiliation(s)
- Chune Peng
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingbin Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Danrong Lu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Wenjun Han
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
42
|
Xu F, Wang P, Zhang YZ, Chen XL. Diversity of Three-Dimensional Structures and Catalytic Mechanisms of Alginate Lyases. Appl Environ Microbiol 2018; 84:e02040-17. [PMID: 29150496 PMCID: PMC5772247 DOI: 10.1128/aem.02040-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alginate is a linear polysaccharide produced mainly by brown algae in marine environments. Alginate consists of a linear block copolymer made up of two monomeric units, β-d-mannuronate (M) and its C-5 epimer α-l-guluronate (G). Alginate lyases are polysaccharide lyases (PL) that degrade alginate via a β-elimination reaction. These enzymes play an important role in marine carbon recycling and also have widespread industrial applications. So far, more than 1,774 alginate lyase sequences have been identified and are distributed into 7 PL families. In this review, the folds, conformational changes during catalysis, and catalytic mechanisms of alginate lyases are described. Thus far, structures for 15 alginate lyases have been solved and are divided into 3 fold classes: the β-jelly roll class (PL7, -14, and -18), the (α/α)n toroid class (PL5, -15, and -17), and the β-helix fold (PL6). These enzymes adopt two different mechanisms for catalysis, and three kinds of conformational changes occur during this process. Moreover, common features in the structures, conformational changes, and catalytic mechanisms are summarized, providing a comprehensive understanding on alginate lyases.
Collapse
Affiliation(s)
- Fei Xu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Peng Wang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
43
|
Li S, Wang L, Chen X, Zhao W, Sun M, Han Y. Cloning, Expression, and Biochemical Characterization of Two New Oligoalginate Lyases with Synergistic Degradation Capability. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:75-86. [PMID: 29362921 DOI: 10.1007/s10126-017-9788-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Alginate, the most abundant carbohydrate presents in brown macroalgae, has recently gained increasing attention as an alternative biomass for the production of biofuel. Oligoalginate lyases catalyze the degradation of alginate oligomers into monomers, a prerequisite for bioethanol production. In this study, two new oligoalginate lyase genes, oalC6 and oalC17, were cloned from Cellulophaga sp. SY116, and expressed them in Escherichia coli. The deduced oligoalginate lyases, OalC6 and OalC17, belonged to the polysaccharide lyase (PL) family 6 and 17, respectively. Both showed less than 50% amino acid identity with all of the characterized oligoalginate lyases. Moreover, OalC6 and OalC17 could degrade both alginate polymers and oligomers into monomers in an exolytic mode. Substrate specificity studies demonstrated that OalC6 preferred α-L-guluronate (polyG) blocks, while OalC17 preferred poly β-D-mannuronate (polyM) blocks. The combination of OalC6 and OalC17 showed synergistic degradation ability toward both alginate polymers and oligomers. Finally, an efficient process for the production of alginate monomers was established by combining the new-isolated exotype alginate lyases (i.e., OalC6 and OalC17) and the endotype alginate lyase AlySY08. Overall, our work provides new insights for the development of novel biotechnologies for biofuel production from seaweed.
Collapse
Affiliation(s)
- Shangyong Li
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Linna Wang
- Yellow Sea Fisheries Research Institute, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xuehong Chen
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Wenwen Zhao
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mi Sun
- Yellow Sea Fisheries Research Institute, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yantao Han
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
44
|
Arlov Ø, Skjåk-Bræk G. Sulfated Alginates as Heparin Analogues: A Review of Chemical and Functional Properties. Molecules 2017; 22:E778. [PMID: 28492485 PMCID: PMC6154561 DOI: 10.3390/molecules22050778] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 01/22/2023] Open
Abstract
Heparin is widely recognized for its potent anticoagulating effects, but has an additional wide range of biological properties due to its high negative charge and heterogeneous molecular structure. This heterogeneity has been one of the factors in motivating the exploration of functional analogues with a more predictable modification pattern and monosaccharide sequence, that can aid in elucidating structure-function relationships and further be structurally customized to fine-tune physical and biological properties toward novel therapeutic applications and biomaterials. Alginates have been of great interest in biomedicine due to their inherent biocompatibility, gentle gelling conditions, and structural versatility from chemo-enzymatic engineering, but display limited interactions with cells and biomolecules that are characteristic of heparin and the other glycosaminoglycans (GAGs) of the extracellular environment. Here, we review the chemistry and physical and biological properties of sulfated alginates as structural and functional heparin analogues, and discuss how they may be utilized in applications where the use of heparin and other sulfated GAGs is challenging and limited.
Collapse
Affiliation(s)
- Øystein Arlov
- Department of Biotechnology and Nanomedicine, SINTEF Materials and Chemistry, Richard Birkelands vei 3B, 7034 Trondheim, Norway.
| | - Gudmund Skjåk-Bræk
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7034 Trondheim, Norway.
| |
Collapse
|
45
|
Patil PP, Mali S, Midha S, Gautam V, Dash L, Kumar S, Shastri J, Singhal L, Patil PB. Genomics Reveals a Unique Clone of Burkholderia cenocepacia Harboring an Actively Excising Novel Genomic Island. Front Microbiol 2017; 8:590. [PMID: 28428775 PMCID: PMC5382208 DOI: 10.3389/fmicb.2017.00590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/22/2017] [Indexed: 11/18/2022] Open
Abstract
Burkholderia cenocepacia is a clinically dominant form among the other virulent species of Burkholderia cepacia complex (Bcc). In the present study, we sequenced and analyzed the genomes of seven nosocomial Bcc isolates, five of which were isolated from the bloodstream infections and two isolates were recovered from the hospital setting during the surveillance. Genome-based species identification of the Bcc isolates using a type strain explicitly identified the species as B. cenocepacia. Moreover, single nucleotide polymorphism analysis revealed that the six isolates were clonal and phylogenetically distinct from the other B. cenocepacia. Comparative genomics distinctly revealed the larger genome size of six clonal isolates as well as the presence of a novel 107 kb genomic island named as BcenGI15, which encodes putative pathogenicity-associated genes. We have shown that the BcenGI15 has an ability to actively excise from the genome and forming an extrachromosomal circular form suggesting its mobile nature. Surprisingly, a homolog of BcenGI15 was also present in the genome of a clinical isolate named Burkholderia pseudomallei strain EY1. This novel genetic element is present only in the variants of B. cenocepacia and B. pseudomallei isolates suggesting its interspecies existence in the main pathogenic species of the genus Burkholderia. In conclusion, the whole genome analysis of the genomically distinct B. cenocepacia clinical isolates has advanced our understanding of the epidemiology and evolution of this important nosocomial pathogen as well as its relatives.
Collapse
Affiliation(s)
- Prashant P Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial TechnologyChandigarh, India
| | - Swapna Mali
- Department of Microbiology, Topiwala National Medical College & BYL Nair Charitable HospitalMumbai, India
| | - Samriti Midha
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial TechnologyChandigarh, India
| | - Vikas Gautam
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Lona Dash
- Department of Microbiology, Topiwala National Medical College & BYL Nair Charitable HospitalMumbai, India
| | - Sunil Kumar
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Jayanthi Shastri
- Department of Microbiology, Topiwala National Medical College & BYL Nair Charitable HospitalMumbai, India
| | - Lipika Singhal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial TechnologyChandigarh, India
| |
Collapse
|
46
|
Díaz-Barrera A, Maturana N, Pacheco-Leyva I, Martínez I, Altamirano C. Different responses in the expression of alginases, alginate polymerase and acetylation genes during alginate production by Azotobacter vinelandii under oxygen-controlled conditions. J Ind Microbiol Biotechnol 2017; 44:1041-1051. [PMID: 28246966 DOI: 10.1007/s10295-017-1929-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Alginate production and gene expression of genes involved in alginate biosynthesis were evaluated in continuous cultures under dissolved oxygen tension (DOT) controlled conditions. Chemostat at 8% DOT showed an increase in the specific oxygen uptake rate [Formula: see text] from 10.9 to 45.3 mmol g-1 h-1 by changes in the dilution rate (D) from 0.06 to 0.10 h-1, whereas under 1% DOT the [Formula: see text] was not affected. Alginate molecular weight was not affected by DOT. However, chemostat at 1% DOT showed a downregulation up to 20-fold in genes encoding both the alginate polymerase (alg8, alg44), alginate acetylases (algV, algI) and alginate lyase AlgL. alyA1 and algE7 lyases gene expressions presented an opposite behavior by changing the DOT, suggesting that A. vinelandii can use specific depolymerases depending on the oxygen level. Overall, the DOT level have a differential effect on genes involved in alginate synthesis, thus a gene expression equilibrium determines the production of alginates of similar molecular weight under DOT controlled.
Collapse
Affiliation(s)
- Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Casilla, 4059, Valparaíso, Chile.
| | - Nataly Maturana
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Casilla, 4059, Valparaíso, Chile
| | - Ivette Pacheco-Leyva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Irene Martínez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Casilla, 4059, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Casilla, 4059, Valparaíso, Chile.,CREAS CONICYT Regional GORE Valparaíso R0GI1004, Av. Universidad, Curauma, Chile
| |
Collapse
|
47
|
Bai S, Chen H, Zhu L, Liu W, Yu HD, Wang X, Yin Y. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota. PLoS One 2017; 12:e0171576. [PMID: 28170428 PMCID: PMC5295698 DOI: 10.1371/journal.pone.0171576] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/22/2017] [Indexed: 02/06/2023] Open
Abstract
Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.
Collapse
Affiliation(s)
- Shaofeng Bai
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest, and Key laboratory for Food Microbial Technology of Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, P. R. China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Huahai Chen
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest, and Key laboratory for Food Microbial Technology of Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, P. R. China
| | - Liying Zhu
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest, and Key laboratory for Food Microbial Technology of Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, P. R. China
| | - Wei Liu
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest, and Key laboratory for Food Microbial Technology of Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, P. R. China
| | - Hongwei D. Yu
- Departments of Biomedical Sciences, Pediatrics, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, United States of America
- Progenesis Technologies, LLC, One John Marshall Drive, Robert C. Byrd Biotechnology Science Center, Huntington, West Virginia, United States of America
| | - Xin Wang
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest, and Key laboratory for Food Microbial Technology of Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, P. R. China
| | - Yeshi Yin
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest, and Key laboratory for Food Microbial Technology of Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
48
|
Xu F, Dong F, Wang P, Cao HY, Li CY, Li PY, Pang XH, Zhang YZ, Chen XL. Novel Molecular Insights into the Catalytic Mechanism of Marine Bacterial Alginate Lyase AlyGC from Polysaccharide Lyase Family 6. J Biol Chem 2017; 292:4457-4468. [PMID: 28154171 DOI: 10.1074/jbc.m116.766030] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/15/2017] [Indexed: 01/27/2023] Open
Abstract
Alginate lyases that degrade alginate via a β-elimination reaction fall into seven polysaccharide lyase (PL) families. Although the structures and catalytic mechanisms of alginate lyases in the other PL families have been clarified, those in family PL6 have yet to be revealed. Here, the crystal structure of AlyGC, a PL6 alginate lyase from marine bacterium Glaciecola chathamensis S18K6T, was solved, and its catalytic mechanism was illustrated. AlyGC is a homodimeric enzyme and adopts a structure distinct from other alginate lyases. Each monomer contains a catalytic N-terminal domain and a functionally unknown C-terminal domain. A combined structural and mutational analysis using the structures of AlyGC and of an inactive mutant R241A in complex with an alginate tetrasaccharide indicates that conformational changes occur in AlyGC when a substrate is bound and that the two active centers in AlyGC may not bind substrates simultaneously. The C-terminal domain is shown to be essential for the dimerization and the catalytic activity of AlyGC. Residues Tyr130, Arg187, His242, Arg265, and Tyr304 in the active center are also important for the activity of AlyGC. In catalysis, Lys220 and Arg241 function as the Brønsted base and acid, respectively, and a Ca2+ in the active center neutralizes the negative charge of the C5 carboxyl group of the substrate. Finally, based on our data, we propose a metal ion-assisted catalytic mechanism of AlyGC for alginate cleavage with a state change mode, which provides a better understanding for polysaccharide lyases and alginate degradation.
Collapse
Affiliation(s)
- Fei Xu
- From the State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100 and
| | - Fang Dong
- From the State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100 and
| | - Peng Wang
- From the State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100 and
| | - Hai-Yan Cao
- From the State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100 and
| | - Chun-Yang Li
- From the State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100 and
| | - Ping-Yi Li
- From the State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100 and
| | - Xiu-Hua Pang
- From the State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100 and
| | - Yu-Zhong Zhang
- From the State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100 and.,the Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Xiu-Lan Chen
- From the State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100 and
| |
Collapse
|
49
|
Li S, Wang L, Hao J, Xing M, Sun J, Sun M. Purification and Characterization of a New Alginate Lyase from Marine Bacterium Vibrio sp. SY08. Mar Drugs 2016; 15:md15010001. [PMID: 28025527 PMCID: PMC5295221 DOI: 10.3390/md15010001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Unsaturated alginate disaccharides (UADs), enzymatically derived from the degradation of alginate polymers, are considered powerful antioxidants. In this study, a new high UAD-producing alginate lyase, AlySY08, has been purified from the marine bacterium Vibrio sp. SY08. AlySY08, with a molecular weight of about 33 kDa and a specific activity of 1070.2 U/mg, showed the highest activity at 40 °C in phosphate buffer at pH 7.6. The enzyme was stable over a broad pH range (6.0–9.0) and retained about 75% activity after incubation at 40 °C for 2 h. Moreover, the enzyme was active in the absence of salt ions and its activity was enhanced by the addition of NaCl and KCl. AlySY08 resulted in an endo-type alginate lyase that degrades both polyM and polyG blocks, yielding UADs as the main product (81.4% of total products). All these features made AlySY08 a promising candidate for industrial applications in the production of antioxidants from alginate polysaccharides.
Collapse
Affiliation(s)
- Shangyong Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Linna Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Mengxin Xing
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Jingjing Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Mi Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
50
|
Alginate Production from Alternative Carbon Sources and Use of Polymer Based Adsorbent in Heavy Metal Removal. INT J POLYM SCI 2016. [DOI: 10.1155/2016/7109825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely,AzotobacterandPseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.
Collapse
|