1
|
De Castro O, Avino M, Carraturo F, Di Iorio E, Giovannelli D, Innangi M, Menale B, Mormile N, Troisi J, Guida M. Profiling microbial communities in an extremely acidic environment influenced by a cold natural carbon dioxide spring: A study of the Mefite in Ansanto Valley, Southern Italy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13241. [PMID: 38407001 PMCID: PMC10895555 DOI: 10.1111/1758-2229.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
The Ansanto Valley's Mefite, one of the Earth's largest non-volcanic CO2 gas emissions, is distinguished by its cold natural carbon dioxide springs. These emissions originate from the intricate tectonics and geodynamics of the southern Apennines in Italy. Known for over two millennia for its lethal concentration of CO2 and other harmful gases, the Mefite has a reputation for being toxic and dangerous. Despite its historical significance and unique geological features, there is a lack of information on the microbial diversity associated with the Mefite's gas emissions. This study presents an integrated exploration of the microbial diversity in the mud soil, using high-throughput sequencing of 16S rRNA (Prokaryotes) and ITS2 (Fungi), alongside a geochemical site characterisation. Our findings reveal that the Mefite's unique environment imposes a significant bottleneck on microbial diversity, favouring a select few microbial groups such as Actinobacteria and Firmicutes for Prokaryotes, and Basidiomycota for Fungi.
Collapse
Affiliation(s)
- Olga De Castro
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Botanical GardenNaplesItaly
| | - Mariano Avino
- Department of Biochemistry and Functional GenomicsSherbrooke UniversitySherbrookeQuebecCanada
| | | | | | - Donato Giovannelli
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- National Research CouncilInstitute of Marine Biological Resources and Biotechnologies—CNR‐IRBIMAnconaItaly
- Department of Marine and Coastal ScienceRutgers UniversityNew BrunswickNew JerseyUSA
- Marine Chemistry & Geochemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
- Earth‐Life Science InstituteTokyo Institute of TechnologyTokyoJapan
| | - Michele Innangi
- EnvixLab, Department of Biosciences and TerritoryUniversity of Molise Contrada Fonte LapponePesche (IS)Italy
| | - Bruno Menale
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Botanical GardenNaplesItaly
| | - Nicolina Mormile
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Jacopo Troisi
- European Biomedical Research Institute of Salerno (EBRIS)SalernoItaly
- Theoreo srlMontecorvino Pugliano (SA)Italy
| | - Marco Guida
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
2
|
Beaver RC, Neufeld JD. Microbial ecology of the deep terrestrial subsurface. THE ISME JOURNAL 2024; 18:wrae091. [PMID: 38780093 PMCID: PMC11170664 DOI: 10.1093/ismejo/wrae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The terrestrial subsurface hosts microbial communities that, collectively, are predicted to comprise as many microbial cells as global surface soils. Although initially thought to be associated with deposited organic matter, deep subsurface microbial communities are supported by chemolithoautotrophic primary production, with hydrogen serving as an important source of electrons. Despite recent progress, relatively little is known about the deep terrestrial subsurface compared to more commonly studied environments. Understanding the composition of deep terrestrial subsurface microbial communities and the factors that influence them is of importance because of human-associated activities including long-term storage of used nuclear fuel, carbon capture, and storage of hydrogen for use as an energy vector. In addition to identifying deep subsurface microorganisms, recent research focuses on identifying the roles of microorganisms in subsurface communities, as well as elucidating myriad interactions-syntrophic, episymbiotic, and viral-that occur among community members. In recent years, entirely new groups of microorganisms (i.e. candidate phyla radiation bacteria and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoloarchaeota, Nanoarchaeota archaea) have been discovered in deep terrestrial subsurface environments, suggesting that much remains unknown about this biosphere. This review explores the historical context for deep terrestrial subsurface microbial ecology and highlights recent discoveries that shape current ecological understanding of this poorly explored microbial habitat. Additionally, we highlight the need for multifaceted experimental approaches to observe phenomena such as cryptic cycles, complex interactions, and episymbiosis, which may not be apparent when using single approaches in isolation, but are nonetheless critical to advancing our understanding of this deep biosphere.
Collapse
Affiliation(s)
- Rachel C Beaver
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Douanla-Meli C, Moll J. Bark-inhabiting fungal communities of European chestnut undergo substantial alteration by canker formation following chestnut blight infection. Front Microbiol 2023; 14:1052031. [PMID: 36778875 PMCID: PMC9911167 DOI: 10.3389/fmicb.2023.1052031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Chestnut forests are severely threatened by chestnut blight caused by the fungal pathogen Cryphonectria parasitica and the infected trees exhibit bark canker in the later stage of the disease. European chestnut (Castanea sativa) is further infected by Gnomoniopsis smithogilvyi, another canker-causing fungal pathogen. We explored whether and how chestnut blight is reflected in bark-inhabiting fungal communities of European chestnut and also assessed the co-occurrence of C. parasitica and G. smithogilvyi. Materials and methods We initially investigated the fungal communities of European chestnut bark tissues and further monitored changes in these fungal communities with regard to disease progression from infection to canker formation by analyzing bark samples from asymptomatic trees, asymptomatic trees with latent C. parasitica infection, and infected trees with canker tissues, using amplicon sequencing of the ITS2 region of rDNA. Results The results showed that fungal community composition and diversity differed between the sample types. The fungal community composition was substantially reshaped by canker formation, whereas latent C. parasitica infection and more specifically pre-canker infection period per se had a weak effect. Fungal communities of canker samples was less diverse and more dissimilar to those of other sample types. C. parasitica dominated the mycobiome of canker samples, whereas G. smithogilvyi was found in only 9% of canker samples at very low abundances. However, G. smithogilvyi was a dominant fungus in the bark of healthy plants. Conclusion This study highlights that canker formation is the principal driver of decreasing diversity and altered composition of the mycobiome in bark tissues of European chestnut infected by C. parasitica infection. It additionally emphasizes the scarce co-occurrence of C. parasitica and G. smithogilvyi on European chestnut.
Collapse
Affiliation(s)
- Clovis Douanla-Meli
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Quedlinburg, Germany,*Correspondence: Clovis Douanla-Meli, ✉
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| |
Collapse
|
4
|
Liu X, Huang X, Chu C, Xu H, Wang L, Xue Y, Arifeen Muhammad ZU, Inagaki F, Liu C. Genome, genetic evolution, and environmental adaptation mechanisms of Schizophyllum commune in deep subseafloor coal-bearing sediments. iScience 2022; 25:104417. [PMID: 35663011 PMCID: PMC9156946 DOI: 10.1016/j.isci.2022.104417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
To understand the genomic evolution and adaptation strategies of fungi to subseafloor sedimentary environments, we de novo assembled the genome of Schizophyllum commune strain 20R-7-F01 isolated from ∼2.0 km-deep, ∼20-millionyearsago (Mya) coal-bearing sediments. Phylogenomics study revealed a differentiation time of 28-73 Mya between this strain and the terrestrial type-strain H4-8, in line with sediment age records. Comparative genome analyses showed that FunK1 protein kinase, NmrA family, and transposons in this strain are significantly expanded, possibly linking to the environmental adaptation and persistence in sediment for over millions of years. Re-sequencing study of 14 S. commune strains sampled from different habitats revealed that subseafloor strains have much lower nucleotide diversity, substitution rate, and homologous recombination rate than other strains, reflecting that the growth and/or reproduction of subseafloor strains are extremely slow. Our data provide new insights into the adaptation and long-term survival of the fungi in the subseafloor sedimentary biosphere.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Xin Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hui Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | | | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama 236-0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai 980-8574, Japan
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Weigand A, Bücs SL, Deleva S, Lukić Bilela L, Nyssen P, Paragamian K, Ssymank A, Weigand H, Zakšek V, Zagmajster M, Balázs G, Barjadze S, Bürger K, Burn W, Cailhol D, Decrolière A, Didonna F, Doli A, Drazina T, Dreybrodt J, Ðud L, Egri C, Erhard M, Finžgar S, Fröhlich D, Gartrell G, Gazaryan S, Georges M, Godeau JF, Grunewald R, Gunn J, Hajenga J, Hofmann P, Knight L, Köble H, Kuharic N, Lüthi C, Munteanu C, Novak R, Ozols D, Petkovic M, Stoch F, Vogel B, Vukovic I, Hall Weberg M, Zaenker C, Zaenker S, Feit U, Thies JC. Current cave monitoring practices, their variation and recommendations for future improvement in Europe: A synopsis from the 6th EuroSpeleo Protection Symposium. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e85859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This manuscript summarizes the outcomes of the 6th EuroSpeleo Protection Symposium. Special emphasis was laid on presenting and discussing monitoring activities under the umbrella of the Habitats Directive (EU Council Directive 92/43/EEC) for habitat type 8310 "Caves not open to the public" and the Emerald Network. The discussions revealed a high level of variation in the currently conducted underground monitoring activities: there is no uniform definition of what kind of underground environments the "cave" habitat should cover, how often a specific cave has to be monitored, and what parameters should be measured to evaluate the conservation status. The variation in spatial dimensions in national definitions of caves further affects the number of catalogued caves in a country and the number of caves to be monitored. Not always participants are aware of the complete national monitoring process and that data sets should be freely available or easily accessible. The discussions further showed an inherent dilemma between an anticipated uniform monitoring approach with a coherent assessment methodology and, on the contrary, the uniqueness of caves and subterranean biota to be assessed – combined with profound knowledge gaps and a lack of resources. Nevertheless, some good practices for future cave monitoring activities have been identified by the participants: (1) Cave monitoring should focus on bio- and geodiversity elements alike; (2) Local communities should be involved, and formal agreements envisaged; (3) Caves must be understood as windows into the subterranean realm; (4) Touristic caves should not be excluded ad-hoc from regular monitoring; (5) New digital tools and open FAIR data infrastructures should be implemented; (6) Cave biomonitoring should focus on a large(r) biological diversity; and (7) DNA-based tools should be integrated. Finally, the importance of the 'forgotten' Recommendation No. 36 from the Bern Convention as a guiding legal European document was highlighted.
Collapse
|
6
|
Ramírez GA, Mara P, Sehein T, Wegener G, Chambers CR, Joye SB, Peterson RN, Philippe A, Burgaud G, Edgcomb VP, Teske AP. Environmental factors shaping bacterial, archaeal and fungal community structure in hydrothermal sediments of Guaymas Basin, Gulf of California. PLoS One 2021; 16:e0256321. [PMID: 34495995 PMCID: PMC8425543 DOI: 10.1371/journal.pone.0256321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.
Collapse
Affiliation(s)
- Gustavo A. Ramírez
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States of America
- * E-mail:
| | - Paraskevi Mara
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Taylor Sehein
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University Bremen, Germany
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Christopher R. Chambers
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
| | - Samantha B. Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, United States of America
| | - Richard N. Peterson
- School of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC, United States of America
| | - Aurélie Philippe
- Univ. Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Gaëtan Burgaud
- Univ. Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Virginia P. Edgcomb
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Andreas P. Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
| |
Collapse
|
7
|
Chen P, Zhou H, Huang Y, Xie Z, Zhang M, Wei Y, Li J, Ma Y, Luo M, Ding W, Cao J, Jiang T, Nan P, Fang J, Li X. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol 2021; 22:207. [PMID: 34256809 PMCID: PMC8276468 DOI: 10.1186/s13059-021-02408-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The full biosphere structure and functional exploration of the microbial communities of the Challenger Deep of the Mariana Trench, the deepest known hadal zone on Earth, lag far behind that of other marine realms. RESULTS We adopt a deep metagenomics approach to investigate the microbiome in the sediment of Challenger Deep, Mariana Trench. We construct 178 metagenome-assembled genomes (MAGs) representing 26 phyla, 16 of which are reported from hadal sediment for the first time. Based on the MAGs, we find the microbial community functions are marked by enrichment and prevalence of mixotrophy and facultative anaerobic metabolism. The microeukaryotic community is found to be dominated by six fungal groups that are characterized for the first time in hadal sediment to possess the assimilatory and dissimilatory nitrate/sulfate reduction, and hydrogen sulfide oxidation pathways. By metaviromic analysis, we reveal novel hadal Caudovirales clades, distinctive virus-host interactions, and specialized auxiliary metabolic genes for modulating hosts' nitrogen/sulfur metabolism. The hadal microbiome is further investigated by large-scale cultivation that cataloged 1070 bacterial and 19 fungal isolates from the Challenger Deep sediment, many of which are found to be new species specialized in the hadal habitat. CONCLUSION Our hadal MAGs and isolates increase the diversity of the Challenger Deep sediment microbial genomes and isolates present in the public. The deep metagenomics approach fills the knowledge gaps in structure and diversity of the hadal microbiome, and provides novel insight into the ecology and metabolism of eukaryotic and viral components in the deepest biosphere on earth.
Collapse
Affiliation(s)
- Ping Chen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hui Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Chinese Ancient Books reservation and Conservation Institute, Fudan University, Shanghai, China
| | - Zhe Xie
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Mengjie Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jia Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuewei Ma
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Luo
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Wenmian Ding
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Tao Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Nan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
| | - Xuan Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Rock Surface Fungi in Deep Continental Biosphere-Exploration of Microbial Community Formation with Subsurface In Situ Biofilm Trap. Microorganisms 2020; 9:microorganisms9010064. [PMID: 33383728 PMCID: PMC7824546 DOI: 10.3390/microorganisms9010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023] Open
Abstract
Fungi have an important role in nutrient cycling in most ecosystems on Earth, yet their ecology and functionality in deep continental subsurface remain unknown. Here, we report the first observations of active fungal colonization of mica schist in the deep continental biosphere and the ability of deep subsurface fungi to attach to rock surfaces under in situ conditions in groundwater at 500 and 967 m depth in Precambrian bedrock. We present an in situ subsurface biofilm trap, designed to reveal sessile microbial communities on rock surface in deep continental groundwater, using Outokumpu Deep Drill Hole, in eastern Finland, as a test site. The observed fungal phyla in Outokumpu subsurface were Basidiomycota, Ascomycota, and Mortierellomycota. In addition, significant proportion of the community represented unclassified Fungi. Sessile fungal communities on mica schist surfaces differed from the planktic fungal communities. The main bacterial phyla were Firmicutes, Proteobacteria, and Actinobacteriota. Biofilm formation on rock surfaces is a slow process and our results indicate that fungal and bacterial communities dominate the early surface attachment process, when pristine mineral surfaces are exposed to deep subsurface ecosystems. Various fungi showed statistically significant cross-kingdom correlation with both thiosulfate and sulfate reducing bacteria, e.g., SRB2 with fungi Debaryomyces hansenii.
Collapse
|
9
|
West KM, Richards ZT, Harvey ES, Susac R, Grealy A, Bunce M. Under the karst: detecting hidden subterranean assemblages using eDNA metabarcoding in the caves of Christmas Island, Australia. Sci Rep 2020; 10:21479. [PMID: 33293686 PMCID: PMC7722930 DOI: 10.1038/s41598-020-78525-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
Subterranean ecosystems are understudied and challenging to conventionally survey given the inaccessibility of underground voids and networks. In this study, we conducted a eukaryotic environmental DNA (eDNA) metabarcoding survey across the karst landscape of Christmas Island, (Indian Ocean, Australia) to evaluate the utility of this non-invasive technique to detect subterranean aquatic 'stygofauna' assemblages. Three metabarcoding assays targeting the mitochondrial 16S rRNA and nuclear 18S genes were applied to 159 water and sediment samples collected from 23 caves and springs across the island. Taken together, our assays detected a wide diversity of chordates, cnidarians, porifera, arthropods, molluscs, annelids and bryozoans from 71 families across 60 orders. We report a high level of variation between cave and spring subterranean community compositions which are significantly influenced by varying levels of salinity. Additionally, we show that dissolved oxygen and longitudinal gradients significantly affect biotic assemblages within cave communities. Lastly, we combined eDNA-derived community composition and environmental (water quality) data to predict potential underground interconnectivity across Christmas Island. We identified three cave and spring groups that showed a high degree of biotic and abiotic similarity indicating likely local connectivity. This study demonstrates the applicability of eDNA metabarcoding to detect subterranean eukaryotic communities and explore underground interconnectivity.
Collapse
Affiliation(s)
- Katrina M West
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| | - Zoe T Richards
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Euan S Harvey
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Robert Susac
- Western Australian Speleological Group, Nedlands, WA, 6909, Australia
| | - Alicia Grealy
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Environmental Protection Authority, 215 Lambton Quay, Wellington, 6011, New Zealand
| |
Collapse
|
10
|
Ivarsson M, Drake H, Bengtson S, Rasmussen B. A Cryptic Alternative for the Evolution of Hyphae. Bioessays 2020; 42:e1900183. [DOI: 10.1002/bies.201900183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Magnus Ivarsson
- Department of BiologyUniversity of Southern Denmark Campusvej 55 Odense M DK 5230 Denmark
- Department of PaleobiologySwedish Museum of Natural History Box 50007 Stockholm SE‐104 05 Sweden
| | - Henrik Drake
- Department of Biology and Environmental ScienceLinnaeus University Kalmar 391 82 Sweden
| | - Stefan Bengtson
- Department of PaleobiologySwedish Museum of Natural History Box 50007 Stockholm SE‐104 05 Sweden
| | - Birger Rasmussen
- School of Earth SciencesThe University of Western Australia Nedlands WA 6009 Australia
| |
Collapse
|
11
|
Abstract
Fungi are phylogenetically and functionally diverse ubiquitous components of almost all ecosystems on Earth, including aquatic environments stretching from high montane lakes down to the deep ocean. Aquatic ecosystems, however, remain frequently overlooked as fungal habitats, although fungi potentially hold important roles for organic matter cycling and food web dynamics. Recent methodological improvements have facilitated a greater appreciation of the importance of fungi in many aquatic systems, yet a conceptual framework is still missing. In this Review, we conceptualize the spatiotemporal dimensions, diversity, functions and organismic interactions of fungi in structuring aquatic food webs. We focus on currently unexplored fungal diversity, highlighting poorly understood ecosystems, including emerging artificial aquatic habitats.
Collapse
|
12
|
Purkamo L, Kietäväinen R, Nuppunen-Puputti M, Bomberg M, Cousins C. Ultradeep Microbial Communities at 4.4 km within Crystalline Bedrock: Implications for Habitability in a Planetary Context. Life (Basel) 2020; 10:E2. [PMID: 31947979 PMCID: PMC7175195 DOI: 10.3390/life10010002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/06/2023] Open
Abstract
The deep bedrock surroundings are an analog for extraterrestrial habitats for life. In this study, we investigated microbial life within anoxic ultradeep boreholes in Precambrian bedrock, including the adaptation to environmental conditions and lifestyle of these organisms. Samples were collected from Pyhäsalmi mine environment in central Finland and from geothermal drilling wells in Otaniemi, Espoo, in southern Finland. Microbial communities inhabiting the up to 4.4 km deep bedrock were characterized with phylogenetic marker gene (16S rRNA genes and fungal ITS region) amplicon and DNA and cDNA metagenomic sequencing. Functional marker genes (dsrB, mcrA, narG) were quantified with qPCR. Results showed that although crystalline bedrock provides very limited substrates for life, the microbial communities are diverse. Gammaproteobacterial phylotypes were most dominant in both studied sites. Alkanindiges -affiliating OTU was dominating in Pyhäsalmi fluids, while different depths of Otaniemi samples were dominated by Pseudomonas. One of the most common OTUs detected from Otaniemi could only be classified to phylum level, highlighting the uncharacterized nature of the deep biosphere in bedrock. Chemoheterotrophy, fermentation and nitrogen cycling are potentially significant metabolisms in these ultradeep environments. To conclude, this study provides information on microbial ecology of low biomass, carbon-depleted and energy-deprived deep subsurface environment. This information is useful in the prospect of finding life in other planetary bodies.
Collapse
Affiliation(s)
- Lotta Purkamo
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews KY16 9AL, UK
- Geological Survey of Finland, 02151 Espoo, Finland
| | - Riikka Kietäväinen
- Geological Survey of Finland, 02151 Espoo, Finland
- Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | | | - Malin Bomberg
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| | - Claire Cousins
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews KY16 9AL, UK
| |
Collapse
|
13
|
Inferences of environmental and biotic effects on patterns of eukaryotic alpha and beta diversity for the spring systems of Ash Meadows, Nevada. Oecologia 2019; 191:931-944. [PMID: 31628545 DOI: 10.1007/s00442-019-04526-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Freshwater springs are important ecosystems. In the arid regions of North America, groundwater extraction has caused the desiccation of springs and the extinction of taxa. To better describe the biodiversity of freshwater springs in the hope of establishing a sensitive approach for monitoring the predicted change in spring systems, we used high-resolution genetic methods to estimate the alpha and beta diversity of 19 springs and two reservoirs within the Ash Meadows National Wildlife Refuge in southwestern Nevada. We discovered a large number of distinct taxa based on eukaryote ribosomal gene sequences and show water temperature, spring size, and the presence or absence of non-native predators predicts alpha diversity, and temperature predicts beta diversity. Our study highlights how DNA data support inferences of environmental factors influencing community diversity and demonstrates the method may be an important tool for monitoring ecological communities.
Collapse
|
14
|
Highly diverse fungal communities in carbon-rich aquifers of two contrasting lakes in Northeast Germany. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Onstott T, Ehlmann B, Sapers H, Coleman M, Ivarsson M, Marlow J, Neubeck A, Niles P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. ASTROBIOLOGY 2019; 19:1230-1262. [PMID: 31237436 PMCID: PMC6786346 DOI: 10.1089/ast.2018.1960] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic pathways for chemolithoautotrophic microorganisms evolved earlier in Earth's history than those of surface-dwelling phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to 3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops, and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the search for life on Mars.
Collapse
Affiliation(s)
- T.C. Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Address correspondence to: T.C. Onstott, Department of Geosciences, Princeton University,, Princeton, NJ 008544
| | - B.L. Ehlmann
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- B.L. Ehlmann, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - H. Sapers
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - M. Coleman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Astrobiology Institute, Pasadena, California, USA
| | - M. Ivarsson
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - J.J. Marlow
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - A. Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - P. Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
16
|
McMahon S, Ivarsson M. A New Frontier for Palaeobiology: Earth's Vast Deep Biosphere. Bioessays 2019; 41:e1900052. [PMID: 31241200 DOI: 10.1002/bies.201900052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/29/2019] [Indexed: 11/11/2022]
Abstract
Diverse micro-organisms populate a global deep biosphere hosted by rocks and sediments beneath land and sea, containing more biomass than any other biome except forests. This paper reviews an emerging palaeobiological archive of these dark habitats: microfossils preserved in ancient pores and fractures in the crust. This archive, seemingly dominated by mineralized filaments (although rods and coccoids are also reported), is presently far too sparsely sampled and poorly understood to reveal trends in the abundance, distribution, or diversity of deep life through time. New research is called for to establish the nature and extent of the fossil record of Earth's deep biosphere by combining systematic exploration, rigorous microanalysis, and experimental studies of both microbial preservation and the formation of abiotic pseudofossils within the crust. It is concluded that the fossil record of Earth's largest microbial habitat may still have much to tell us about the history of life, the evolution of biogeochemical cycles, and the search for life on Mars.
Collapse
Affiliation(s)
- Sean McMahon
- School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK.,UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Magnus Ivarsson
- Department of Biology, University of Southern Denmark, DK-5230, Odense, Denmark.,Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, SE-104 05, Sweden
| |
Collapse
|
17
|
Purkamo L, Kietäväinen R, Miettinen H, Sohlberg E, Kukkonen I, Itävaara M, Bomberg M. Diversity and functionality of archaeal, bacterial and fungal communities in deep Archaean bedrock groundwater. FEMS Microbiol Ecol 2019; 94:5035813. [PMID: 29893836 DOI: 10.1093/femsec/fiy116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/08/2018] [Indexed: 01/19/2023] Open
Abstract
The diversity and metabolic functions of deep subsurface ecosystems remain relatively unexplored. Microbial communities in previously studied deep subsurface sites of the Fennoscandian Shield are distinctive to each site. Thus, we hypothesized that the microbial communities of the deep Archaean bedrock fracture aquifer in Romuvaara, northern Finland, differ both in community composition and metabolic functionality from the other sites in the Fennoscandian Shield. We characterized the composition, functionality and substrate preferences of the microbial communities at different depths in a 600 m deep borehole. In contrast to other Fennoscandian deep biosphere communities studied to date, iron-oxidizing Gallionella dominated the bacterial communities, while methanogenic and ammonia-oxidizing archaea were the most prominent archaea, and a diverse fungal community was also detected. Potential for methane cycling and sulfate and nitrate reduction was confirmed by detection of the functional genes of these metabolic pathways. Organotrophs were less abundant, although carbohydrates were the most preferred of the tested substrates. The microbial communities shared features with those detected from other deep groundwaters with similar geochemistry, but the majority of taxa distinctive to Romuvaara are different from the taxa previously detected in saline deep groundwater in the Fennoscandian Shield, most likely because of the differences in water chemistry.
Collapse
Affiliation(s)
- Lotta Purkamo
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| | - Riikka Kietäväinen
- Geological Survey of Finland (GTK), Betonimiehenkuja 4, 02151 Espoo, Finland
| | - Hanna Miettinen
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| | - Elina Sohlberg
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| | - Ilmo Kukkonen
- Geological Survey of Finland (GTK), Betonimiehenkuja 4, 02151 Espoo, Finland
| | - Merja Itävaara
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| |
Collapse
|
18
|
Chen X, Li L, Chan Z, Zeng R, Lin M, Lin H. One-Step Process for Environment-Friendly Preparation of Agar Oligosaccharides From Gracilaria lemaneiformis by the Action of Flammeovirga sp. OC4. Front Microbiol 2019; 10:724. [PMID: 31057495 PMCID: PMC6478668 DOI: 10.3389/fmicb.2019.00724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022] Open
Abstract
Oligosaccharides extracted from agar Gracilaria lemaneiformis (G. lemaneiformis) have stronger physiological activities and a higher value than agar itself, but the pollution caused by the extraction process greatly restricts the sustainable use of agar. In this study, four bacterial strains with a high ability to degrade G. lemaneiformis were isolated from seawater by in situ enrichment in the deep sea. Among them, Flammeovirga sp. OC4, identified by morphological observation and its 16S rRNA sequencing (98.07% similarity to type strain JL-4 of Flammeovirga aprica), was selected. The optimum temperature and pH of crude enzyme produced by Flammeovirga sp. OC4 were 50°C and 8, respectively. More than 60% of the maximum enzyme activity remained after storage at pH 5.0-10.0 for 60 min. Both Mn2+ and Ba2+ could enhance the enzyme activity. A "one-step process" for preparation of oligosaccharides from G. lemaneiformis was established using Flammeovirga sp. OC4. After optimization of the Plackett-Burman (PB) design and response surface methodology (RSM), the yield of oligosaccharides was increased by 36.1% from 2.71 to 3.09 g L-1 in a 250-mL fermenter with optimized parameters: 30 g L-1 G. lemaneiformis powder, 4.84 g L-1 (NH4)2SO4, 44.8-mL working medium volume at 36.7°C, and a shaking speed of 200 × g for 42 h. The extracted oligosaccharides were identified by thin layer chromatography (TLC) and ion chromatography, which consisted of neoagarobiose, agarotriose, neoagarotetraose, agaropentaose, and neoagarohexaose. These results provided an alternative approach for environment-friendly and sustainable utilization of algae.
Collapse
Affiliation(s)
- Xinglin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Li Li
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zhuhua Chan
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Mengshi Lin
- Food Science Program, Division of Food System and Bioengineering, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00547] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Lopez-Fernandez M, Åström M, Bertilsson S, Dopson M. Depth and Dissolved Organic Carbon Shape Microbial Communities in Surface Influenced but Not Ancient Saline Terrestrial Aquifers. Front Microbiol 2018; 9:2880. [PMID: 30538690 PMCID: PMC6277548 DOI: 10.3389/fmicb.2018.02880] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
The continental deep biosphere is suggested to contain a substantial fraction of the earth's total biomass and microorganisms inhabiting this environment likely have a substantial impact on biogeochemical cycles. However, the deep microbial community is still largely unknown and can be influenced by parameters such as temperature, pressure, water residence times, and chemistry of the waters. In this study, 21 boreholes representing a range of deep continental groundwaters from the Äspö Hard Rock Laboratory were subjected to high-throughput 16S rRNA gene sequencing to characterize how the different water types influence the microbial communities. Geochemical parameters showed the stability of the waters and allowed their classification into three groups. These were (i) waters influenced by infiltration from the Baltic Sea with a "modern marine (MM)" signature, (ii) a "thoroughly mixed (TM)" water containing groundwaters of several origins, and (iii) deep "old saline (OS)" waters. Decreasing microbial cell numbers positively correlated with depth. In addition, there was a stronger positive correlation between increased cell numbers and dissolved organic carbon for the MM compared to the OS waters. This supported that the MM waters depend on organic carbon infiltration from the Baltic Sea while the ancient saline waters were fed by "geogases" such as carbon dioxide and hydrogen. The 16S rRNA gene relative abundance of the studied groundwaters revealed different microbial community compositions. Interestingly, the TM water showed the highest dissimilarity compared to the other two water types, potentially due to the several contrasting water types contributing to this groundwater. The main identified microbial phyla in the groundwaters were Gammaproteobacteria, unclassified sequences, Campylobacterota (formerly Epsilonproteobacteria), Patescibacteria, Deltaproteobacteria, and Alphaproteobacteria. Many of these taxa are suggested to mediate ferric iron and nitrate reduction, especially in the MM waters. This indicated that nitrate reduction may be a neglected but important process in the deep continental biosphere. In addition to the high number of unclassified sequences, almost 50% of the identified phyla were archaeal or bacterial candidate phyla. The percentage of unknown and candidate phyla increased with depth, pointing to the importance and necessity of further studies to characterize deep biosphere microbial populations.
Collapse
Affiliation(s)
| | - Mats Åström
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Stefan Bertilsson
- Limnology and Science for Life Laboratory, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
21
|
Metatranscriptomes Reveal That All Three Domains of Life Are Active but Are Dominated by Bacteria in the Fennoscandian Crystalline Granitic Continental Deep Biosphere. mBio 2018; 9:mBio.01792-18. [PMID: 30459191 PMCID: PMC6247080 DOI: 10.1128/mbio.01792-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A newly designed sampling apparatus was used to fix RNA under in situ conditions in the deep continental biosphere and benchmarks a strategy for deep biosphere metatranscriptomic sequencing. This apparatus enabled the identification of active community members and the processes they carry out in this extremely oligotrophic environment. This work presents for the first time evidence of eukaryotic, archaeal, and bacterial activity in two deep subsurface crystalline rock groundwaters from the Äspö Hard Rock Laboratory with different depths and geochemical characteristics. The findings highlight differences between organic carbon-fed shallow communities and carbon dioxide- and hydrogen-fed old saline waters. In addition, the data reveal a large portion of uncharacterized microorganisms, as well as the important role of candidate phyla in the deep biosphere, but also the disparity in microbial diversity when using standard microbial 16S rRNA gene amplification versus the large unknown portion of the community identified with unbiased metatranscriptomes. The continental subsurface is suggested to contain a significant part of the earth’s total biomass. However, due to the difficulty of sampling, the deep subsurface is still one of the least understood ecosystems. Therefore, microorganisms inhabiting this environment might profoundly influence the global nutrient and energy cycles. In this study, in situ fixed RNA transcripts from two deep continental groundwaters from the Äspö Hard Rock Laboratory (a Baltic Sea-influenced water with a residence time of <20 years, defined as “modern marine,” and an “old saline” groundwater with a residence time of thousands of years) were subjected to metatranscriptome sequencing. Although small subunit (SSU) rRNA gene and mRNA transcripts aligned to all three domains of life, supporting activity within these community subsets, the data also suggested that the groundwaters were dominated by bacteria. Many of the SSU rRNA transcripts grouped within newly described candidate phyla or could not be mapped to known branches on the tree of life, suggesting that a large portion of the active biota in the deep biosphere remains unexplored. Despite the extremely oligotrophic conditions, mRNA transcripts revealed a diverse range of metabolic strategies that were carried out by multiple taxa in the modern marine water that is fed by organic carbon from the surface. In contrast, the carbon dioxide- and hydrogen-fed old saline water with a residence time of thousands of years predominantly showed the potential to carry out translation. This suggested these cells were active, but waiting until an energy source episodically becomes available.
Collapse
|
22
|
Nawaz A, Purahong W, Lehmann R, Herrmann M, Totsche KU, Küsel K, Wubet T, Buscot F. First insights into the living groundwater mycobiome of the terrestrial biogeosphere. WATER RESEARCH 2018; 145:50-61. [PMID: 30118976 DOI: 10.1016/j.watres.2018.07.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/02/2018] [Accepted: 07/27/2018] [Indexed: 05/15/2023]
Abstract
Although fungi play important roles in biogeochemical cycling in aquatic ecosystems and have received a great deal of attention, much remains unknown about the living fractions of fungal communities in aquifers of the terrestrial subsurface in terms of diversity, community dynamics, functional roles, the impact of environmental factors and presence of fungal pathogens. Here we address this gap in knowledge by using RNA-based high throughput pair-end illumina sequencing analysis of fungal internal transcribed spacer (ITS) gene markers, to target the living fractions of groundwater fungal communities from fractured alternating carbonate-/siliciclastic-rock aquifers of the Hainich Critical Zone Exploratory. The probed levels of the hillslope multi-storey aquifer system differ primarily in their oxygen and nitrogen content due to their different connections to the surface. We discovered highly diverse living fungal communities (384 Operational Taxonomic Units, OTUs) with different taxonomic affiliations and ecological functions. The observed fungal communities primarily belonged to three phyla: Ascomycota, Basidiomycota and Chytridiomycota. Perceived dynamics in the composition of living fungal communities were significantly shaped by the concentration of ammonium in the moderately agriculturally impacted aquifer system. Apart from fungal saprotrophs, we also detected living plant and animal pathogens for the first time in this aquifer system. This work also demonstrates that the RNA-based high throughput pair-end illumina sequencing method can be used in future for water quality monitoring in terms of living fungal load and subsequent risk assessments. In general, this study contributes towards the growing knowledge of aquatic fungi in terrestrial subsurface biogeosphere.
Collapse
Affiliation(s)
- Ali Nawaz
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Halle (Saale), Germany; Department of Biology, University of Leipzig, Leipzig, Germany.
| | - Witoon Purahong
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany
| | - Robert Lehmann
- Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Martina Herrmann
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Kai Uwe Totsche
- Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Tesfaye Wubet
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - François Buscot
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
23
|
Ancient Microbial Activity in Deep Hydraulically Conductive Fracture Zones within the Forsmark Target Area for Geological Nuclear Waste Disposal, Sweden. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8060211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Escudero C, Oggerin M, Amils R. The deep continental subsurface: the dark biosphere. Int Microbiol 2018; 21:3-14. [DOI: 10.1007/s10123-018-0009-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
|
25
|
Siriyappagouder P, Kiron V, Lokesh J, Rajeish M, Kopp M, Fernandes J. The Intestinal Mycobiota in Wild Zebrafish Comprises Mainly Dothideomycetes While Saccharomycetes Predominate in Their Laboratory-Reared Counterparts. Front Microbiol 2018; 9:387. [PMID: 29559965 PMCID: PMC5845672 DOI: 10.3389/fmicb.2018.00387] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/20/2018] [Indexed: 12/27/2022] Open
Abstract
As an integral part of the resident microbial community of fish intestinal tract, the mycobiota is expected to play important roles in health and disease resistance of the host. The composition of the diverse fungal communities, which colonize the intestine, is greatly influenced by the host, their diet and geographic origin. Studies of fungal communities are rare and the majority of previous studies have relied on culture-based methods. In particular, fungal communities in fish are also poorly characterized. The aim of this study was to provide an in-depth overview of the intestinal mycobiota in a model fish species (zebrafish, Danio rerio) and to determine differences in fungal composition between wild and captive specimens. We have profiled the intestinal mycobiota of wild-caught (Sharavati River, India), laboratory-reared (Bodø, Norway) and wild-caught-laboratory-kept (Uttara, India) zebrafish by sequencing the fungal internal transcribed spacer 2 region on the Illumina MiSeq platform. Wild fish were exposed to variable environmental factors, whereas both laboratory groups were kept in controlled conditions. There were also differences in husbandry practices at Bodø and Uttara, particularly diet. Zebrafish from Bodø were reared in the laboratory for over 10 generations, while wild-caught-laboratory-kept fish from Uttara were housed in the laboratory for only 2 months before sample collection. The intestine of zebrafish contained members of more than 15 fungal classes belonging to the phyla Ascomycota, Basidiomycota, and Zygomycota. Fungal species richness and diversity distinguished the wild-caught and laboratory-reared zebrafish communities. Wild-caught zebrafish-associated mycobiota comprised mainly Dothideomycetes in contrast to their Saccharomycetes-dominated laboratory-reared counterparts. The predominant Saccharomycetes in laboratory-reared fish belonged to the saprotrophic guild. Another characteristic feature of laboratory-reared fish was the significantly higher abundance of Cryptococcus (Tremellomycetes) compared to wild fish. This pioneer study has shed light into the differences in the intestinal fungal communities of wild-caught and laboratory-reared zebrafish and the baseline data generated will enrich our knowledge on fish mycobiota.
Collapse
Affiliation(s)
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Moger Rajeish
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, India
| | - Martina Kopp
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Jorge Fernandes
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
26
|
|
27
|
Ivarsson M, Bengtson S, Drake H, Francis W. Fungi in Deep Subsurface Environments. ADVANCES IN APPLIED MICROBIOLOGY 2018; 102:83-116. [PMID: 29680127 DOI: 10.1016/bs.aambs.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The igneous crust of the oceans and the continents represents the major part of Earth's lithosphere and has recently been recognized as a substantial, yet underexplored, microbial habitat. While prokaryotes have been the focus of most investigations, microeukaryotes have been surprisingly neglected. However, recent work acknowledges eukaryotes, and in particular fungi, as common inhabitants of the deep biosphere, including the deep igneous provinces. The fossil record of the subseafloor igneous crust, and to some extent the continental bedrock, establishes fungi or fungus-like organisms as inhabitants of deep rock since at least the Paleoproterozoic, which challenges the present notion of early fungal evolution. Additionally, deep fungi have been shown to play an important ecological role engaging in symbiosis-like relationships with prokaryotes, decomposing organic matter, and being responsible for mineral weathering and formation, thus mediating mobilization of biogeochemically important elements. In this review, we aim at covering the abundance and diversity of fungi in the various igneous rock provinces on Earth as well as describing the ecological impact of deep fungi. We further discuss what consequences recent findings might have for the understanding of the fungal distribution in extensive anoxic environments and for early fungal evolution.
Collapse
Affiliation(s)
- Magnus Ivarsson
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark; Swedish Museum of Natural History, Stockholm, Sweden.
| | | | | | - Warren Francis
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, de Vere N, Pfrender ME, Bernatchez L. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol Ecol 2017; 26:5872-5895. [PMID: 28921802 DOI: 10.1111/mec.14350] [Citation(s) in RCA: 626] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High-throughput sequencing ("HTS") platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed "environmental DNA" or "eDNA"). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called "eDNA metabarcoding" and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.
Collapse
Affiliation(s)
- Kristy Deiner
- Atkinson Center for a Sustainable Future, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Holly M Bik
- Department of Nematology, University of California, Riverside, CA, USA
| | - Elvira Mächler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Mathew Seymour
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales Building, Bangor University, Bangor, Gwynedd, UK
| | | | - Florian Altermatt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales Building, Bangor University, Bangor, Gwynedd, UK
| | - Iliana Bista
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales Building, Bangor University, Bangor, Gwynedd, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - David M Lodge
- Atkinson Center for a Sustainable Future, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Natasha de Vere
- Conservation and Research Department, National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Louis Bernatchez
- IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, QC, Canada
| |
Collapse
|
29
|
Bomberg M, Raulio M, Jylhä S, Mueller CW, Höschen C, Rajala P, Purkamo L, Kietäväinen R, Ahonen L, Itävaara M. CO 2 and carbonate as substrate for the activation of the microbial community in 180 m deep bedrock fracture fluid of Outokumpu Deep Drill Hole, Finland. AIMS Microbiol 2017; 3:846-871. [PMID: 31294193 PMCID: PMC6604968 DOI: 10.3934/microbiol.2017.4.846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/17/2017] [Indexed: 01/22/2023] Open
Abstract
Microbial communities in deep subsurface environments comprise a large portion of Earth's biomass, but the metabolic activities in these habitats are largely unknown. Here the effect of CO2 and carbonate on the microbial community of an isolated groundwater fracture zone at 180 m depth of the Outokumpu Deep Scientific Drill Hole (Finland) was tested. Outokumpu groundwater at 180 m depth contains approximately 0.45 L L−1 dissolved gas of which methane contributes 76%. CO2, on the other hand, is scarce. The number of microbial cells with intracellular activity in the groundwater was low when examined with redox staining. Fluorescence Assisted Cell Sorting (FACS) analyses indicated that only 1% of the microbial community stained active with the redox sensing dye in the untreated groundwater after 4 weeks of starvation. However, carbon substrate and sulfate addition increased the abundance of fluorescent cells up to 7%. CO2 and CO2 + sulfate activated the greatest number of microbes, especially increasing the abundance of Pseudomonas sp., which otherwise was present at only low abundance in Outokumpu. Over longer exposure time (2 months) up to 50% of the bacterial cells in the groundwater were shown to incorporate inorganic carbon from carbonate into biomass. Carbon recapture is an important feature in this ecosystem since it may decrease the rate of carbon loss in form of CO2 released from cellular processes.
Collapse
Affiliation(s)
- Malin Bomberg
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT, Finland
| | - Mari Raulio
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT, Finland.,Tikkurila Oyj, P.O. Box 53, Kuninkaalantie 1, FI-01301 Vantaa, Finland
| | - Sirpa Jylhä
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT, Finland
| | - Carsten W Mueller
- Lehrstuhl für Bodenkunde, Department Ecology and Ecosystem Management, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85350, Freising-Weihenstephan, Germany
| | - Carmen Höschen
- Lehrstuhl für Bodenkunde, Department Ecology and Ecosystem Management, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85350, Freising-Weihenstephan, Germany
| | - Pauliina Rajala
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT, Finland
| | - Lotta Purkamo
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT, Finland
| | | | - Lasse Ahonen
- Geological Survey of Finland (GTK), P.O. Box 96, 02151 Espoo, Finland
| | - Merja Itävaara
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT, Finland
| |
Collapse
|
30
|
Drake H, Ivarsson M, Bengtson S, Heim C, Siljeström S, Whitehouse MJ, Broman C, Belivanova V, Åström ME. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat Commun 2017; 8:55. [PMID: 28676652 PMCID: PMC5496868 DOI: 10.1038/s41467-017-00094-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/31/2017] [Indexed: 11/08/2022] Open
Abstract
The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.
Collapse
Affiliation(s)
- Henrik Drake
- Department of Biology and Environmental Science, Linnæus University, Kalmar, 39182, Sweden.
| | - Magnus Ivarsson
- Department of Palaeobiology and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50 007, Stockholm, 10405, Sweden
| | - Stefan Bengtson
- Department of Palaeobiology and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50 007, Stockholm, 10405, Sweden
| | - Christine Heim
- Geoscience Centre Göttingen of the Georg-August University (Department of Geobiology), Goldschmidtstr. 3, Göttingen, 37077, Germany
| | - Sandra Siljeström
- Department of Surfaces, Chemistry and Materials, SP Technical Research Institute of Sweden, P.O. Box 857, Borås, 50115, Sweden
| | - Martin J Whitehouse
- Department of Geosciences and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50007, Stockholm, 10405, Sweden
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Veneta Belivanova
- Department of Palaeobiology and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50 007, Stockholm, 10405, Sweden
| | - Mats E Åström
- Department of Biology and Environmental Science, Linnæus University, Kalmar, 39182, Sweden
| |
Collapse
|
31
|
Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017. [PMCID: PMC5486322 DOI: 10.3390/ijerph14060636] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.
Collapse
|
32
|
Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat Ecol Evol 2017; 1:141. [PMID: 28812648 DOI: 10.1038/s41559-017-0141] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 11/09/2022]
Abstract
Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces. Filaments branch and anastomose, touch and entangle each other. They are indistinguishable from mycelial fossils found in similar deep-biosphere habitats in the Phanerozoic, where they are attributed to fungi on the basis of chemical and morphological similarities to living fungi. The Ongeluk fossils, however, are two to three times older than current age estimates of the fungal clade. Unless they represent an unknown branch of fungus-like organisms, the fossils imply that the fungal clade is considerably older than previously thought, and that fungal origin and early evolution may lie in the oceanic deep biosphere rather than on land. The Ongeluk discovery suggests that life has inhabited submarine volcanics for more than 2.4 billion years.
Collapse
|
33
|
Rajala P, Bomberg M, Vepsäläinen M, Carpén L. Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater. BIOFOULING 2017; 33:195-209. [PMID: 28198664 DOI: 10.1080/08927014.2017.1285914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Understanding the corrosion of carbon steel materials of low and intermediate level radioactive waste under repository conditions is crucial to ensure the safe storage of radioactive contaminated materials. The waste will be in contact with the concrete of repository silos and storage containers, and eventually with groundwater. In this study, the corrosion of carbon steel under repository conditions as well as the microbial community forming biofilm on the carbon steel samples, consisting of bacteria, archaea, and fungi, was studied over a period of three years in a groundwater environment with and without inserted concrete. The number of biofilm forming bacteria and archaea was 1,000-fold lower, with corrosion rates 620-times lower in the presence of concrete compared to the natural groundwater environment. However, localized corrosion was detected in the concrete-groundwater environment indicating the presence of local microenvironments where the conditions for pitting corrosion were favorable.
Collapse
Affiliation(s)
- Pauliina Rajala
- a Materials Performance , Technical Research Centre of Finland (VTT) , Espoo , Finland
| | - Malin Bomberg
- b Material Processing and Geotechnology , Technical Research Centre of Finland (VTT) , Espoo , Finland
| | | | - Leena Carpén
- a Materials Performance , Technical Research Centre of Finland (VTT) , Espoo , Finland
| |
Collapse
|
34
|
Korbel K, Chariton A, Stephenson S, Greenfield P, Hose GC. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems. Sci Rep 2017; 7:40702. [PMID: 28102290 PMCID: PMC5244371 DOI: 10.1038/srep40702] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/02/2016] [Indexed: 11/16/2022] Open
Abstract
When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys.
Collapse
Affiliation(s)
- Kathryn Korbel
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia
| | | | | | | | - Grant C. Hose
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia
| |
Collapse
|
35
|
Pachiadaki MG, Rédou V, Beaudoin DJ, Burgaud G, Edgcomb VP. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy. Front Microbiol 2016; 7:846. [PMID: 27375571 PMCID: PMC4899926 DOI: 10.3389/fmicb.2016.00846] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/22/2016] [Indexed: 11/13/2022] Open
Abstract
The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.
Collapse
Affiliation(s)
- Maria G Pachiadaki
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Vanessa Rédou
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, EA 3882, ESIAB, Technopôle de Brest Iroise, Université de Brest Plouzané, France
| | - David J Beaudoin
- Department of Biology, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, EA 3882, ESIAB, Technopôle de Brest Iroise, Université de Brest Plouzané, France
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| |
Collapse
|
36
|
Nawaz A, Purahong W, Lehmann R, Herrmann M, Küsel K, Totsche KU, Buscot F, Wubet T. Superimposed Pristine Limestone Aquifers with Marked Hydrochemical Differences Exhibit Distinct Fungal Communities. Front Microbiol 2016; 7:666. [PMID: 27242696 PMCID: PMC4860458 DOI: 10.3389/fmicb.2016.00666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/21/2016] [Indexed: 11/13/2022] Open
Abstract
Fungi are one important group of eukaryotic microorganisms in a diverse range of ecosystems, but their diversity in groundwater ecosystems is largely unknown. We used DNA-based pyro-tag sequencing of the fungal internal transcribed spacer (ITS) rDNA gene to investigate the presence and community structure of fungi at different sampling sites of two superimposed limestone aquifers ranging from 8.5 to 84 m depth in the newly established Hainich Critical Zone Exploratory (Hainich CZE). We detected a diversity of fungal OTUs in groundwater samples of all sampling sites. The relative percentage abundance of Basidiomycota was higher in the upper aquifer assemblage, whilst Ascomycota dominated the lower one. In parallel to differences in the hydrochemistry we found distinct fungal communities at all sampling sites. Classification into functional groups revealed an overwhelming majority of saprotrophs. Finding taxa common to all analyzed groundwater sites, point to a groundwater specific fungal microbiome. The presence of different functional groups and, in particular plant and cattle pathogens that are not typical of subsurface habitats, suggests links between the surface and subsurface biogeosphere due to rapid transportation across the fracture networks typical of karstic regions during recharge episodes. However, further studies including sampling series extended in both time and space are necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Ali Nawaz
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil EcologyHalle (Saale), Germany; Department of Biology, University of LeipzigLeipzig, Germany
| | - Witoon Purahong
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology Halle (Saale), Germany
| | - Robert Lehmann
- Institute of Geosciences, Friedrich Schiller University Jena Jena, Germany
| | - Martina Herrmann
- Institute of Ecology, Friedrich Schiller University Jena Jena, Germany
| | - Kirsten Küsel
- Institute of Ecology, Friedrich Schiller University JenaJena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| | - Kai U Totsche
- Institute of Geosciences, Friedrich Schiller University Jena Jena, Germany
| | - François Buscot
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil EcologyHalle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| | - Tesfaye Wubet
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil EcologyHalle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| |
Collapse
|
37
|
Itävaara M, Salavirta H, Marjamaa K, Ruskeeniemi T. Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 94:1-77. [PMID: 26917241 DOI: 10.1016/bs.aambs.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities.
Collapse
Affiliation(s)
- M Itävaara
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - H Salavirta
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - K Marjamaa
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | | |
Collapse
|
38
|
Miettinen H, Kietäväinen R, Sohlberg E, Numminen M, Ahonen L, Itävaara M. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland. Front Microbiol 2015; 6:1203. [PMID: 26579109 PMCID: PMC4626562 DOI: 10.3389/fmicb.2015.01203] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/15/2015] [Indexed: 02/01/2023] Open
Abstract
Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 10(4) cells mL(-1)) in water. The water for nucleic acid analysis went through high decompression (60-130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill holes. No dramatic differences in gas compositions were observed between different gas sampling methods tested. For simple characterization of gas composition the most convenient way to collect samples is from free flowing fluid. However, compared to a pressurized method a relative decrease in the least soluble gases may appear.
Collapse
Affiliation(s)
- Hanna Miettinen
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd.Espoo, Finland
| | | | - Elina Sohlberg
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd.Espoo, Finland
| | - Mikko Numminen
- Pyhäsalmi Mine Oy, First Quantum Minerals Ltd.Pyhäsalmi, Finland
| | | | - Merja Itävaara
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd.Espoo, Finland
| |
Collapse
|
39
|
Kietäväinen R, Purkamo L. The origin, source, and cycling of methane in deep crystalline rock biosphere. Front Microbiol 2015; 6:725. [PMID: 26236303 PMCID: PMC4505394 DOI: 10.3389/fmicb.2015.00725] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/02/2015] [Indexed: 11/13/2022] Open
Abstract
The emerging interest in using stable bedrock formations for industrial purposes, e.g., nuclear waste disposal, has increased the need for understanding microbiological and geochemical processes in deep crystalline rock environments, including the carbon cycle. Considering the origin and evolution of life on Earth, these environments may also serve as windows to the past. Various geological, chemical, and biological processes can influence the deep carbon cycle. Conditions of CH4 formation, available substrates and time scales can be drastically different from surface environments. This paper reviews the origin, source, and cycling of methane in deep terrestrial crystalline bedrock with an emphasis on microbiology. In addition to potential formation pathways of CH4, microbial consumption of CH4 is also discussed. Recent studies on the origin of CH4 in continental bedrock environments have shown that the traditional separation of biotic and abiotic CH4 by the isotopic composition can be misleading in substrate-limited environments, such as the deep crystalline bedrock. Despite of similarities between Precambrian continental sites in Fennoscandia, South Africa and North America, where deep methane cycling has been studied, common physicochemical properties which could explain the variation in the amount of CH4 and presence or absence of CH4 cycling microbes were not found. However, based on their preferred carbon metabolism, methanogenic microbes appeared to have similar spatial distribution among the different sites.
Collapse
Affiliation(s)
| | - Lotta Purkamo
- VTT Technical Research Centre of Finland Espoo, Finland
| |
Collapse
|