1
|
Canini D, Ceschi E, Perozeni F. Toward the Exploitation of Sustainable Green Factory: Biotechnology Use of Nannochloropsis spp. BIOLOGY 2024; 13:292. [PMID: 38785776 PMCID: PMC11117969 DOI: 10.3390/biology13050292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Securing food, energy, and raw materials for a growing population is one of the most significant challenges of our century. Algae play a central role as an alternative to plants. Wastewater and flue gas can secure nutrients and CO2 for carbon fixation. Unfortunately, algae domestication is necessary to enhance biomass production and reduce cultivation costs. Nannochloropsis spp. have increased in popularity among microalgae due to their ability to accumulate high amounts of lipids, including PUFAs. Recently, the interest in the use of Nannochloropsis spp. as a green bio-factory for producing high-value products increased proportionally to the advances of synthetic biology and genetic tools in these species. In this review, we summarized the state of the art of current nuclear genetic manipulation techniques and a few examples of their application. The industrial use of Nannochloropsis spp. has not been feasible yet, but genetic tools can finally lead to exploiting this full-of-potential microalga.
Collapse
Affiliation(s)
| | | | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (D.C.); (E.C.)
| |
Collapse
|
2
|
Pasaribu B, Purba NP, Dewanti LP, Pasaribu D, Khan AMA, Harahap SA, Syamsuddin ML, Ihsan YN, Siregar SH, Faizal I, Herawati T, Irfan M, Simorangkir TPH, Kurniawan TA. Lipid Droplets in Endosymbiotic Symbiodiniaceae spp. Associated with Corals. PLANTS (BASEL, SWITZERLAND) 2024; 13:949. [PMID: 38611478 PMCID: PMC11013053 DOI: 10.3390/plants13070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Symbiodiniaceae species is a dinoflagellate that plays a crucial role in maintaining the symbiotic mutualism of reef-building corals in the ocean. Reef-building corals, as hosts, provide the nutrition and habitat to endosymbiotic Symbiodiniaceae species and Symbiodiniaceae species transfer the fixed carbon to the corals for growth. Environmental stress is one of the factors impacting the physiology and metabolism of the corals-dinoflagellate association. The environmental stress triggers the metabolic changes in Symbiodiniaceae species resulting in an increase in the production of survival organelles related to storage components such as lipid droplets (LD). LDs are found as unique organelles, mainly composed of triacylglycerols surrounded by phospholipids embedded with some proteins. To date, it has been reported that investigation of lipid droplets significantly present in animals and plants led to the understanding that lipid droplets play a key role in lipid storage and transport. The major challenge of investigating endosymbiotic Symbiodiniaceae species lies in overcoming the strategies in isolating lesser lipid droplets present in its intercellular cells. Here, we review the most recent highlights of LD research in endosymbiotic Symbiodiniaceae species particularly focusing on LD biogenesis, mechanism, and major lipid droplet proteins. Moreover, to comprehend potential novel ways of energy storage in the symbiotic interaction between endosymbiotic Symbiodiniaceae species and its host, we also emphasize recent emerging environmental factors such as temperature, ocean acidification, and nutrient impacting the accumulation of lipid droplets in endosymbiotic Symbiodiniaceae species.
Collapse
Affiliation(s)
- Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
- Shallow Coastal and Aquatic Research Forensic (SCARF) Laboratory, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Noir Primadona Purba
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Lantun Paradhita Dewanti
- Department of Fisheries, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia;
| | - Daniel Pasaribu
- Faculty of Law, Social, and Political Sciences, Universitas Terbuka, Tangerang 15437, Indonesia;
| | - Alexander Muhammad Akbar Khan
- Tropical Marine Fisheries Undergraduate Programme for Pangandaran Campus, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia;
| | - Syawaludin Alisyahbana Harahap
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Mega Laksmini Syamsuddin
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Yudi Nurul Ihsan
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Sofyan Husein Siregar
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Riau, Pekanbaru 28291, Indonesia;
| | - Ibnu Faizal
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Titin Herawati
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
- Master Program of Marine Conservation, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA;
| | | | | |
Collapse
|
3
|
Shimojo M, Nakamura M, Kitaura G, Ihara Y, Shimizu S, Hori K, Iwai M, Ohta H, Ishizaki K, Shimojima M. Phosphatidic acid phosphohydrolase modulates glycerolipid synthesis in Marchantia polymorpha and is crucial for growth under both nutrient-replete and -deficient conditions. PLANTA 2023; 258:92. [PMID: 37792042 PMCID: PMC10550880 DOI: 10.1007/s00425-023-04247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
MAIN CONCLUSION The phosphatidic acid phosphohydrolase of Marchantia polymorpha modulates plastid glycolipid synthesis through the ER pathway and is essential for normal plant development regardless of nutrient availability. Membrane lipid remodeling is one of the strategies plant cells use to secure inorganic phosphate (Pi) for plant growth, but many aspects of the molecular mechanism and its regulation remain unclear. Here we analyzed membrane lipid remodeling using a non-vascular plant, Marchantia polymorpha. The lipid composition and fatty acid profile during Pi starvation in M. polymorpha revealed a decrease in phospholipids and an increase in both galactolipids and betaine lipids. In Arabidopsis thaliana, phosphatidic acid phosphohydrolase (PAH) is involved in phospholipid degradation and is crucial for tolerance to both Pi and nitrogen starvation. We produced two M. polymorpha PAH (MpPAH) knockout mutants (Mppah-1 and Mppah-2) and found that, unlike Arabidopsis mutants, Mppah impaired plant growth with shorter rhizoids compared with wild-type plants even under nutrient-replete conditions. Mutation of MpPAH did not significantly affect the mole percent of each glycerolipid among total membrane glycerolipids from whole plants under both Pi-replete and Pi-deficient conditions. However, the fatty acid composition of monogalactosyldiacylglycerol indicated that the amount of plastid glycolipids produced through the endoplasmic reticulum pathway was suppressed in Mppah mutants. Phospholipids accumulated in the mutants under N starvation. These results reveal that MpPAH modulates plastid glycolipid synthesis through the endoplasmic reticulum pathway more so than what has been observed for Arabidopsis PAH; moreover, unlike Arabidopsis, MpPAH is crucial for M. polymorpha growth regardless of nutrient availability.
Collapse
Affiliation(s)
- Misao Shimojo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masashi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ginga Kitaura
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yuta Ihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinsuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
4
|
Südfeld C, Kiyani A, Wefelmeier K, Wijffels RH, Barbosa MJ, D’Adamo S. Expression of glycerol-3-phosphate acyltransferase increases non-polar lipid accumulation in Nannochloropsis oceanica. Microb Cell Fact 2023; 22:12. [PMID: 36647076 PMCID: PMC9844033 DOI: 10.1186/s12934-022-01987-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
Microalgae are considered a suitable production platform for high-value lipids and oleochemicals. Several species including Nannochloropsis oceanica produce large amounts of essential [Formula: see text]-3 polyunsaturated fatty acids (PUFAs) which are integral components of food and feed and have been associated with health-promoting effects. N. oceanica can further accumulate high contents of non-polar lipids with chemical properties that render them a potential replacement for plant oils such as palm oil. However, biomass and lipid productivities obtained with microalgae need to be improved to reach commercial feasibility. Genetic engineering can improve biomass and lipid productivities, for instance by increasing carbon flux to lipids. Here, we report the overexpression of glycerol-3-phosphate acyltransferase (GPAT) in N. oceanica during favorable growth conditions as a strategy to increase non-polar lipid content. Transformants overproducing either an endogenous (NoGPAT) or a heterologous (Acutodesmus obliquus GPAT) GPAT enzyme targeted to the endoplasmic reticulum had up to 42% and 51% increased non-polar lipid contents, respectively, compared to the wild type. Biomass productivities of transformant strains were not substantially impaired, resulting in lipid productivities that were increased by up to 37% and 42% for NoGPAT and AoGPAT transformants, respectively. When exposed to nutrient stress, transformants and wild type had similar lipid contents, suggesting that GPAT enzyme exerts strong flux control on lipid synthesis in N. oceanica under favorable growth conditions. NoGPAT transformants further accumulated PUFAs in non-polar lipids, reaching a total of 6.8% PUFAs per biomass, an increase of 24% relative to the wild type. Overall, our results indicate that GPAT is an interesting target for engineering of lipid metabolism in microalgae, in order to improve non-polar lipid and PUFAs accumulation in microalgae.
Collapse
Affiliation(s)
- Christian Südfeld
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands
| | - Aamna Kiyani
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands ,grid.412621.20000 0001 2215 1297Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Katrin Wefelmeier
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands
| | - René H. Wijffels
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands ,grid.465487.cFaculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Maria J. Barbosa
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands
| | - Sarah D’Adamo
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands
| |
Collapse
|
5
|
Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dogs. Animals (Basel) 2022; 12:ani12192643. [PMID: 36230383 PMCID: PMC9558554 DOI: 10.3390/ani12192643] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
The growing pet population is questioning the sustainability of the pet food system. Although microalgae may constitute a more sustainable food resource, the assessment of their potential for canine diets is almost non-existent. The present study aimed to evaluate the potential of three microalgae species (Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica) grown locally in industrial photobioreactors as alternative food resources for dogs. A detailed characterization of their nutritional composition and metabolomic profile was carried out and related to the nutritional requirements of dogs. Overall, the essential amino acid content exceeded the amounts required for dogs at all life stages, except methionine and cysteine. The three microalgae were deficient in linoleic acid, N. oceanica presented a linolenic acid content below requirements and T. obliquus and C. vulgaris were deficient in arachidonic and eicosapentaenoic acids. The fiber was mainly composed of insoluble dietary fiber. The mineral profile varied greatly with the microalgae species, demonstrating their different potential for dog feeding. Untargeted metabolomics highlighted glycolipids, glycerolipids and phospholipids as the most discriminating compounds between microalgae species. Overall, the results support the potential of T. obliquus, C. vulgaris and N. oceanica as valuable macro- and micro-nutrients sources for dog feeding.
Collapse
|
6
|
Wan Razali WA, Evans CA, Pandhal J. Comparative Proteomics Reveals Evidence of Enhanced EPA Trafficking in a Mutant Strain of Nannochloropsis oculata. Front Bioeng Biotechnol 2022; 10:838445. [PMID: 35646838 PMCID: PMC9134194 DOI: 10.3389/fbioe.2022.838445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 01/23/2023] Open
Abstract
The marine microalga Nannochloropsis oculata is a bioproducer of eicosapentaenoic acid (EPA), a fatty acid. EPA is incorporated into monogalactosyldiacylglycerol within N. oculata thylakoid membranes, and there is a biotechnological need to remodel EPA synthesis to maximize production and simplify downstream processing. In this study, random mutagenesis and chemical inhibitor-based selection method were devised to increase EPA production and accessibility for improved extraction. Ethyl methanesulfonate was used as the mutagen with selective pressure achieved by using two enzyme inhibitors of lipid metabolism: cerulenin and galvestine-1. Fatty acid methyl ester analysis of a selected fast-growing mutant strain had a higher percentage of EPA (37.5% of total fatty acids) than the wild-type strain (22.2% total fatty acids), with the highest EPA quantity recorded at 68.5 mg/g dry cell weight, while wild-type cells had 48.6 mg/g dry cell weight. Label-free quantitative proteomics for differential protein expression analysis revealed that the wild-type and mutant strains might have alternative channeling pathways for EPA synthesis. The mutant strain showed potentially improved photosynthetic efficiency, thus synthesizing a higher quantity of membrane lipids and EPA. The EPA synthesis pathways could also have deviated in the mutant, where fatty acid desaturase type 2 (13.7-fold upregulated) and lipid droplet surface protein (LDSP) (34.8-fold upregulated) were expressed significantly higher than in the wild-type strain. This study increases the understanding of EPA trafficking in N. oculata, leading to further strategies that can be implemented to enhance EPA synthesis in marine microalgae.
Collapse
Affiliation(s)
- Wan Aizuddin Wan Razali
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom.,Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Caroline A Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Couto D, Conde TA, Melo T, Neves B, Costa M, Cunha P, Guerra I, Correia N, Silva JT, Pereira H, Varela J, Silva J, Domingues R, Domingues P. Effects of outdoor and indoor cultivation on the polar lipid composition and antioxidant activity of Nannochloropsis oceanica and Nannochloropsis limnetica: A lipidomics perspective. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Genome editing with removable TALEN vectors harboring a yeast centromere and autonomous replication sequence in oleaginous microalga. Sci Rep 2022; 12:2480. [PMID: 35169205 PMCID: PMC8847555 DOI: 10.1038/s41598-022-06495-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Algal lipids are expected to become a basis for sustainable fuels because of the highly efficient lipid production by photosynthesis accompanied by carbon dioxide assimilation. Molecular breeding of microalgae has been studied to improve algal lipid production, but the resultant gene-modified algae containing transgenes are rarely used for outdoor culture because the use of genetically modified organisms (GMOs) is strictly restricted under biocontainment regulations. Recently, it was reported that plasmids containing yeast centromere and autonomous replication sequence (CEN/ARS) behaved as episomes in Nannochloropsis species. We previously reported that the Platinum TALEN (PtTALEN) system exhibited high activity in Nannochloropsis oceanica. Therefore, we attempted to develop a genome editing system in which the expression vectors for PtTALEN can be removed from host cells after introduction of mutations. Using all-in-one PtTALEN plasmids containing CEN/ARS, targeted mutations and removal of all-in-one vectors were observed in N. oceanica, suggesting that our all-in-one PtTALEN vectors enable the construction of mutated N. oceanica without any transgenes. This system will be a feasible method for constructing non-GMO high-performance algae.
Collapse
|
9
|
Farfan-Cabrera LI, Franco-Morgado M, González-Sánchez A, Pérez-González J, Marín-Santibáñez BM. Microalgae Biomass as a New Potential Source of Sustainable Green Lubricants. Molecules 2022; 27:1205. [PMID: 35208995 PMCID: PMC8875479 DOI: 10.3390/molecules27041205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/31/2022] Open
Abstract
Lubricants are materials able to reduce friction and/or wear of any type of moving surfaces facilitating smooth operations, maintaining reliable machine functions, and reducing risks of failures while contributing to energy savings. At present, most worldwide used lubricants are derived from crude oil. However, production, usage and disposal of these lubricants have significant impact on environment and health. Hence, there is a growing pressure to reduce demand of this sort of lubricants, which has fostered development and use of green lubricants, as vegetable oil-based lubricants (biolubricants). Despite the ecological benefits of producing/using biolubricants, availability of the required raw materials and agricultural land to create a reliable chain supply is still far from being established. Recently, biomass from some microalgae species has attracted attention due to their capacity to produce high-value lipids/oils for potential lubricants production. Thus, this multidisciplinary work reviews the main chemical-physical characteristics of lubricants and the main attempts and progress on microalgae biomass production for developing oils with pertinent lubricating properties. In addition, potential microalgae strains and chemical modifications to their oils to produce lubricants for different industrial applications are identified. Finally, a guide for microalgae oil selection based on its chemical composition for specific lubricant applications is provided.
Collapse
Affiliation(s)
- Leonardo I. Farfan-Cabrera
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| | - Mariana Franco-Morgado
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| | - Armando González-Sánchez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - José Pérez-González
- Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, Laboratorio de Reología y Física de la Materia Blanda, U.P. Adolfo López Mateos Edif. 9, Col. Lindavista, Alc. Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Benjamín M. Marín-Santibáñez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, U.P. Adolfo López Mateos Edif. 7, Col. Lindavista, Alc. Gustavo A. Madero, Mexico City 07738, Mexico;
| |
Collapse
|
10
|
Genetic engineering of microalgae for enhanced lipid production. Biotechnol Adv 2021; 52:107836. [PMID: 34534633 DOI: 10.1016/j.biotechadv.2021.107836] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Microalgae have the potential to become microbial cell factories for lipid production. Their ability to convert sunlight and CO2 into valuable lipid compounds has attracted interest from cosmetic, biofuel, food and feed industries. In order to make microalgae-derived products cost-effective and commercially competitive, enhanced growth rates and lipid productivities are needed, which require optimization of cultivation systems and strain improvement. Advances in genetic tool development and omics technologies have increased our understanding of lipid metabolism, which has opened up possibilities for targeted metabolic engineering. In this review we provide a comprehensive overview on the developments made to genetically engineer microalgal strains over the last 30 years. We focus on the strategies that lead to an increased lipid content and altered fatty acid profile. These include the genetic engineering of the fatty acid synthesis pathway, Kennedy pathway, polyunsaturated fatty acid and triacylglycerol metabolisms and fatty acid catabolism. Moreover, genetic engineering of specific transcription factors, NADPH generation and central carbon metabolism, which lead to increase of lipid accumulation are also reviewed.
Collapse
|
11
|
Nicolò MS, Gugliandolo C, Rizzo MG, Zammuto V, Cicero N, Dugo G, Guglielmino SPP. Nutritional conditions of the novel freshwater Coccomyxa AP01 for versatile fatty acids composition. J Appl Microbiol 2021; 132:401-412. [PMID: 34260800 PMCID: PMC9292221 DOI: 10.1111/jam.15223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 01/25/2023]
Abstract
AIMS This study was to analyse the biomass production and fatty acids (FAs) profiles in a newly isolated chlorophyte, namely Coccomyxa AP01, under nutritionally balanced (NB) conditions (comparing nitrate and urea as nitrogen sources) and nitrogen or phosphate deprivation. METHODS AND RESULTS Lipid yields was about 30%-40% of dried biomasses in all examined nutritional conditions. Under NB conditions, lipids were principally constituted by monounsaturated FAs, mainly represented by oleic acid, and saturated and polyunsaturated FAs at similar concentrations. Nutrients deprivation induced remarkable changes in FAs profiles, with the highest amounts of saturated (42%-46%), followed by similar amounts of monounsaturated and polyunsaturated, and the emergence of rare long-chain FAs. Under phosphate deprivation, biomass yield was similar to NB conditions, with the highest yield of saturated (mainly palmitic acid) and of polyunsaturated FAs (33%) (mainly linoleic and linolenic acids). CONCLUSIONS Balanced or deprived nutritional conditions in Coccomyxa AP01 induced a selective production and composition of FAs. The phosphate-deprivation condition concomitantly provided high biomass yield and the production of high value saturated and polyunsaturated FAs with industrial interest. SIGNIFICANCE AND IMPACT OF THE STUDY Coccomyxa AP01 could be considered a promising source of different FAs, including also docosapentaenoic acid, for several commercial purposes spanning from biodiesel production, pharmaceutical and cosmetic applications to innovative aquaculture fish feeds.
Collapse
Affiliation(s)
- Marco Sebastiano Nicolò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vincenzo Zammuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, Messina, Italy
| | - Giacomo Dugo
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, Messina, Italy
| | | |
Collapse
|
12
|
Guéguen N, Le Moigne D, Amato A, Salvaing J, Maréchal E. Lipid Droplets in Unicellular Photosynthetic Stramenopiles. FRONTIERS IN PLANT SCIENCE 2021; 12:639276. [PMID: 33968100 PMCID: PMC8100218 DOI: 10.3389/fpls.2021.639276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The Heterokonta or Stramenopile phylum comprises clades of unicellular photosynthetic species, which are promising for a broad range of biotechnological applications, based on their capacity to capture atmospheric CO2 via photosynthesis and produce biomolecules of interest. These molecules include triacylglycerol (TAG) loaded inside specific cytosolic bodies, called the lipid droplets (LDs). Understanding TAG production and LD biogenesis and function in photosynthetic stramenopiles is therefore essential, and is mostly based on the study of a few emerging models, such as the pennate diatom Phaeodactylum tricornutum and eustigmatophytes, such as Nannochloropsis and Microchloropsis species. The biogenesis of cytosolic LD usually occurs at the level of the endoplasmic reticulum. However, stramenopile cells contain a complex plastid deriving from a secondary endosymbiosis, limited by four membranes, the outermost one being connected to the endomembrane system. Recent cell imaging and proteomic studies suggest that at least some cytosolic LDs might be associated to the surface of the complex plastid, via still uncharacterized contact sites. The carbon length and number of double bonds of the acyl groups contained in the TAG molecules depend on their origin. De novo synthesis produces long-chain saturated or monounsaturated fatty acids (SFA, MUFA), whereas subsequent maturation processes lead to very long-chain polyunsaturated FA (VLC-PUFA). TAG composition in SFA, MUFA, and VLC-PUFA reflects therefore the metabolic context that gave rise to the formation of the LD, either via an early partitioning of carbon following FA de novo synthesis and/or a recycling of FA from membrane lipids, e.g., plastid galactolipids or endomembrane phosphor- or betaine lipids. In this review, we address the relationship between cytosolic LDs and the complex membrane compartmentalization within stramenopile cells, the metabolic routes leading to TAG accumulation, and the physiological conditions that trigger LD production, in response to various environmental factors.
Collapse
|
13
|
Billey E, Magneschi L, Leterme S, Bedhomme M, Andres-Robin A, Poulet L, Michaud M, Finazzi G, Dumas R, Crouzy S, Laueffer F, Fourage L, Rébeillé F, Amato A, Collin S, Jouhet J, Maréchal E. Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. PLANT PHYSIOLOGY 2021; 185:815-835. [PMID: 33793914 PMCID: PMC8133546 DOI: 10.1093/plphys/kiaa110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 05/15/2023]
Abstract
The metabolic pathways of glycerolipids are well described in cells containing chloroplasts limited by a two-membrane envelope but not in cells containing plastids limited by four membranes, including heterokonts. Fatty acids (FAs) produced in the plastid, palmitic and palmitoleic acids (16:0 and 16:1), are used in the cytosol for the synthesis of glycerolipids via various routes, requiring multiple acyl-Coenzyme A (CoA) synthetases (ACS). Here, we characterized an ACS of the Bubblegum subfamily in the photosynthetic eukaryote Microchloropsis gaditana, an oleaginous heterokont used for the production of lipids for multiple applications. Genome engineering with TALE-N allowed the generation of MgACSBG point mutations, but no knockout was obtained. Point mutations triggered an overall decrease of 16:1 in lipids, a specific increase of unsaturated 18-carbon acyls in phosphatidylcholine and decrease of 20-carbon acyls in the betaine lipid diacylglyceryl-trimethyl-homoserine. The profile of acyl-CoAs highlighted a decrease in 16:1-CoA and 18:3-CoA. Structural modeling supported that mutations affect accessibility of FA to the MgACSBG reaction site. Expression in yeast defective in acyl-CoA biosynthesis further confirmed that point mutations affect ACSBG activity. Altogether, this study supports a critical role of heterokont MgACSBG in the production of 16:1-CoA and 18:3-CoA. In M. gaditana mutants, the excess saturated and monounsaturated FAs were diverted to triacylglycerol, thus suggesting strategies to improve the oil content in this microalga.
Collapse
Affiliation(s)
- Elodie Billey
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Total Raffinage-Chimie, Tour Coupole, 2 Place Jean Millier, 92078 Paris La Défense, France
| | - Leonardo Magneschi
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Sébastien Leterme
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Mariette Bedhomme
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Total Raffinage-Chimie, Tour Coupole, 2 Place Jean Millier, 92078 Paris La Défense, France
| | - Amélie Andres-Robin
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Laurent Poulet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Renaud Dumas
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Serge Crouzy
- Laboratoire de Chimie et Biologie des Métaux, Unité mixte de Recherche 5249 CNRS–CEA–Univ. Grenoble Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Frédéric Laueffer
- Total Raffinage-Chimie, Tour Coupole, 2 Place Jean Millier, 92078 Paris La Défense, France
| | - Laurent Fourage
- Total Raffinage-Chimie, Tour Coupole, 2 Place Jean Millier, 92078 Paris La Défense, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Séverine Collin
- Total Raffinage-Chimie, Tour Coupole, 2 Place Jean Millier, 92078 Paris La Défense, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
14
|
Jeon S, Koh HG, Cho JM, Kang NK, Chang YK. Enhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102218] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12219083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae have received widespread interest owing to their potential in biofuel production. However, economical microalgal biomass production is conditioned by enhancing the lipid accumulation without decreasing growth rate or by increasing both simultaneously. While extensive investigation has been performed on promoting the economic feasibility of microalgal-based biofuel production that aims to increase the productivity of microalgae species, only a handful of them deal with increasing lipid productivity (based on lipid contents and growth rate) in the feedstock production process. The purpose of this review is to provide an overview of the recent advances and novel approaches in promoting lipid productivity (depends on biomass and lipid contents) in feedstock production from strain selection to after-harvesting stages. The current study comprises two parts. In the first part, bilateral improving biomass/lipid production will be investigated in upstream measures, including strain selection, genetic engineering, and cultivation stages. In the second part, the enhancement of lipid productivity will be discussed in the downstream measure included in the harvesting and after-harvesting stages. An integrated approach involving the strategies for increasing lipid productivity in up- and down-stream measures can be a breakthrough approach that would promote the commercialization of market-driven microalgae-derived biofuel production.
Collapse
|
16
|
Kurita T, Moroi K, Iwai M, Okazaki K, Shimizu S, Nomura S, Saito F, Maeda S, Takami A, Sakamoto A, Ohta H, Sakuma T, Yamamoto T. Efficient and multiplexable genome editing using Platinum TALENs in oleaginous microalga, Nannochloropsis oceanica NIES-2145. Genes Cells 2020; 25:695-702. [PMID: 32888368 DOI: 10.1111/gtc.12805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
Algae accumulate large amounts of lipids produced by photosynthesis, and these lipids are expected to be utilized as feedstocks for sustainable new energies, known as biodiesels. Nannochloropsis species are eukaryotic microalgae that produce high levels of lipids. However, since the production costs of algal biodiesels are higher than those of fossil fuels, the improved productivity of algal lipids by molecular breeding of algae is required for practical use. In the present study, we developed a highly efficient genome-editing system involving Platinum transcription activator-like effector nucleases (TALENs) in Nannochloropsis oceanica. Platinum TALENs codon-optimized for N. oceanica were synthesized, and their DNA-binding activity was confirmed by single-strand annealing assays in human HEK293T cells. All-in-one expression vectors for Platinum TALEN targeting the nitrate reductase gene, NoNR, and acyltransferase gene, LPAT1, were transfected into Nannochloropsis species. The introduction of each Platinum TALEN revealed high genome-editing efficiency with no detectable off-target mutations at the candidate sites in N. oceanica. By simultaneously introducing TALENs targeting two genes, we obtained double mutant strains. The loss-of-function phenotype of NoNR was also confirmed. These findings will provide an essential technology for molecular breeding in Nannochloropsis species.
Collapse
Affiliation(s)
- Tomokazu Kurita
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Keishi Moroi
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kumiko Okazaki
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinsuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Seiji Nomura
- Mazda Motor Corporation, Fuchu-cho, Hiroshima, Japan
| | | | | | | | - Atsushi Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
17
|
Murakami H, Kakutani N, Kuroyanagi Y, Iwai M, Hori K, Shimojima M, Ohta H. MYB-like transcription factor NoPSR1 is crucial for membrane lipid remodeling under phosphate starvation in the oleaginous microalga Nannochloropsis oceanica. FEBS Lett 2020; 594:3384-3394. [PMID: 32770739 DOI: 10.1002/1873-3468.13902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022]
Abstract
Membrane lipid remodeling under phosphate (Pi) limitation, a process that replaces structural membrane phospholipids with nonphosphorus lipids, is a widely observed adaptive response in plants and algae. Here, we identified the transcription factor phosphorus starvation response 1 (NoPSR1) as an indispensable player for regulating membrane lipid conversion during Pi starvation in the microalga Nannochloropsis oceanica. Knocking out NoPSR1 scarcely perturbed membrane lipid composition under Pi-sufficient conditions but significantly impaired dynamic alteration in membrane lipids during Pi starvation. In contrast, the absence of NoPSR1 led to no obvious change in cell proliferation or storage lipid accumulation under either nutrient-sufficient or Pi-deficient conditions. Our results demonstrate a key factor controlling the membrane lipid profile during the Pi starvation response in N. oceanica.
Collapse
Affiliation(s)
- Hiroki Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Natsue Kakutani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yunato Kuroyanagi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
18
|
Matsui H, Shiozaki K, Okumura Y, Ishikawa M, Waqalevu V, Hayasaka O, Honda A, Kotani T. Effects of phosphorous deficiency of a microalga Nannochloropsis oculata on its fatty acid profiles and intracellular structure and the effectiveness in rotifer nutrition. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Zienkiewicz A, Zienkiewicz K, Poliner E, Pulman JA, Du ZY, Stefano G, Tsai CH, Horn P, Feussner I, Farre EM, Childs KL, Brandizzi F, Benning C. The Microalga Nannochloropsis during Transition from Quiescence to Autotrophy in Response to Nitrogen Availability. PLANT PHYSIOLOGY 2020; 182:819-839. [PMID: 31740503 PMCID: PMC6997683 DOI: 10.1104/pp.19.00854] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/04/2019] [Indexed: 05/03/2023]
Abstract
The marine microalgae Nannochloropsis oceanica (CCMP1779) is a prolific producer of oil and is considered a viable and sustainable resource for biofuel feedstocks. Nitrogen (N) availability has a strong impact on the physiological status and metabolism of microalgal cells, but the exact nature of this response is poorly understood. To fill this gap we performed transcriptomic profiling combined with cellular and molecular analyses of N. oceanica CCMP1779 during the transition from quiescence to autotrophy. N deprivation-induced quiescence was accompanied by a strong reorganization of the photosynthetic apparatus and changes in the lipid homeostasis, leading to accumulation of triacylglycerol. Cell cycle activation and re-establishment of photosynthetic activity observed in response to resupply of the growth medium with N were accompanied by a rapid degradation of triacylglycerol stored in lipid droplets (LDs). Besides observing LD translocation into vacuoles, we also provide evidence for direct interaction between the LD surface protein (NoLDSP) and AUTOPHAGY-RELATED8 (NoATG8) protein and show a role of microlipophagy in LD turnover in N. oceanica CCMP1779. This knowledge is crucial not only for understanding the fundamental mechanisms controlling the cellular energy homeostasis in microalgal cells but also for development of efficient strategies to achieve higher algal biomass and better microalgal lipid productivity.
Collapse
Affiliation(s)
- Agnieszka Zienkiewicz
- Michigan State University-United States Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, Michigan 48824
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Krzysztof Zienkiewicz
- Michigan State University-United States Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37073 Goettingen, Germany
| | - Eric Poliner
- Michigan State University-United States Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Jane A Pulman
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Center for Genomics-Enabled Plant Science, Michigan State University, East Lansing, Michigan 48824
| | - Zhi-Yan Du
- Michigan State University-United States Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Giovanni Stefano
- Michigan State University-United States Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Chia-Hong Tsai
- Michigan State University-United States Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Patrick Horn
- Michigan State University-United States Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37073 Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37073 Goettingen, Germany
- Department of Plant Biochemistry, International Center for Advanced Studies of Energy Conversion (ICASEC), University of Goettingen, 37073 Goettingen, Germany
| | - Eva M Farre
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Center for Genomics-Enabled Plant Science, Michigan State University, East Lansing, Michigan 48824
| | - Federica Brandizzi
- Michigan State University-United States Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Christoph Benning
- Michigan State University-United States Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
20
|
Poliner E, Clark E, Cummings C, Benning C, Farre EM. A high-capacity gene stacking toolkit for the oleaginous microalga, Nannochloropsis oceanica CCMP1779. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101664] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Meng Y, Cao X, Yang M, Liu J, Yao C, Xue S. Glycerolipid remodeling triggered by phosphorous starvation and recovery in Nannochloropsis oceanica. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Stoyneva-Gärtner M, Uzunov B, Gärtner G, Borisova C, Draganova P, Radkova M, Stoykova P, Atanassov I. Current bioeconomical interest in stramenopilic Eustigmatophyceae: a review. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1573154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Maya Stoyneva-Gärtner
- Department of Botany, Faculty of Biology, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Georg Gärtner
- Institute of Botany, Faculty of Biology, University of Innsbruck, Innsbruck, Austria
| | - Cvetanka Borisova
- Department of Botany, Faculty of Biology, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Petya Draganova
- Department of Botany, Faculty of Biology, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Mariana Radkova
- Functional Genetics Legumes Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Petya Stoykova
- Functional Genetics Legumes Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Ivan Atanassov
- Molecular Genetics Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| |
Collapse
|
23
|
Shaikh KM, Nesamma AA, Abdin MZ, Jutur PP. Molecular profiling of an oleaginous trebouxiophycean alga Parachlorella kessleri subjected to nutrient deprivation for enhanced biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:182. [PMID: 31338124 PMCID: PMC6628475 DOI: 10.1186/s13068-019-1521-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/05/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Decreasing fossil fuels and its impact on global warming have led to an increasing demand for its replacement by sustainable renewable biofuels. Microalgae may offer a potential feedstock for renewable biofuels capable of converting atmospheric CO2 to substantial biomass and valuable biofuels, which is of great importance for the food and energy industries. Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amount of lipids under nutrient-deprived conditions. The present study aims to understand the metabolic imprints in order to elucidate the physiological mechanisms of lipid accumulations in this microalga under nutrient deprivation. RESULTS Molecular profiles were obtained using gas chromatography-mass spectrometry (GC-MS) of P. kessleri subjected to nutrient deprivation. Relative quantities of more than 60 metabolites were systematically compared in all the three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, and nitrogen assimilation. Nitrogen starvation seems to trigger the triacylglycerol (TAG) accumulation rapidly, while the microalga seems to tolerate phosphorous limitation, hence increasing both biomass and lipid content. The metabolomic and lipidomic profiles have identified a few common metabolites such as citric acid and 2-ketoglutaric acid which play significant role in diverting flux towards acetyl-CoA leading to accumulation of neutral lipids, whereas other molecules such as trehalose involve in cell growth regulation, when subjected to nutrient deprivation. CONCLUSIONS Understanding the entire system through qualitative (untargeted) metabolome approach in P. kessleri has led to identification of relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have potential for biofuel production, aiming towards the vision of tomorrow's bioenergy needs.
Collapse
Affiliation(s)
- Kashif Mohd Shaikh
- Omics of Algae Group, Integrative Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, 110062 India
| | - Asha Arumugam Nesamma
- Omics of Algae Group, Integrative Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Malik Zainul Abdin
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, 110062 India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Integrative Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
24
|
Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H. Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:272. [PMID: 30305845 PMCID: PMC6171298 DOI: 10.1186/s13068-018-1275-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Microalgae have drawn great attention as promising sustainable source of lipids and carotenoids. Their lipid and carotenoids accumulation machinery can be trigged by the stress conditions such as nutrient limitation or exposure to the damaging physical factors. However, stressful conditions often adversely affect microalgal growth and cause oxidative damage to the cells, which can eventually reduce the yield of the desired products. To overcome these limitations, two-stage cultivation strategies and supplementation of growth-promoting agents have traditionally been utilized, but developing new highly adapted strains is theoretically the simplest strategy. In addition to genetic engineering, adaptive laboratory evolution (ALE) is frequently used to develop beneficial phenotypes in industrial microorganisms during long-term selection under specific stress conditions. In recent years, many studies have gradually introduced ALE as a powerful tool to improve the biological properties of microalgae, especially for improving the production of lipid and carotenoids. In this review, strategies for the manipulation of stress in microalgal lipids and carotenoids production are summarized and discussed. Furthermore, this review summarizes the overall state of ALE technology, including available selection pressures, methods, and their applications in microalgae for the improved production of lipids and carotenoids.
Collapse
Affiliation(s)
- Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People’s Republic of China
| | - Quan-Yu Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People’s Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People’s Republic of China
| |
Collapse
|
25
|
Poliner E, Farré EM, Benning C. Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp. PLANT CELL REPORTS 2018; 37:1383-1399. [PMID: 29511798 DOI: 10.1007/s00299-018-2270-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 05/16/2023]
Abstract
Nannochloropsis is a genus of fast-growing microalgae that are regularly used for biotechnology applications. Nannochloropsis species have a high triacylglycerol content and their polar lipids are rich in the omega-3 long-chain polyunsaturated fatty acid, eicosapentaenoic acid. Placed in the heterokont lineage, the Nannochloropsis genus has a complex evolutionary history. Genome sequences are available for several species, and a number of transcriptomic datasets have been produced, making this genus a facile model for comparative genomics. There is a growing interest in Nannochloropsis species as models for the study of microalga lipid metabolism and as a chassis for synthetic biology. Recently, techniques for gene stacking, and targeted gene disruption and repression in the Nannochloropsis genus have been developed. These tools enable gene-specific, mechanistic studies and have already allowed the engineering of improved Nannochloropsis strains with superior growth, or greater bioproduction.
Collapse
Affiliation(s)
- Eric Poliner
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Eva M Farré
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
26
|
Murakami H, Nobusawa T, Hori K, Shimojima M, Ohta H. Betaine Lipid Is Crucial for Adapting to Low Temperature and Phosphate Deficiency in Nannochloropsis. PLANT PHYSIOLOGY 2018; 177:181-193. [PMID: 29555786 PMCID: PMC5933114 DOI: 10.1104/pp.17.01573] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/21/2018] [Indexed: 05/12/2023]
Abstract
Diacylglyceryl-N,N,N-trimethylhomo-Ser (DGTS) is a nonphosphorous, polar glycerolipid that is regarded as analogous to the phosphatidylcholine in bacteria, fungi, algae, and basal land plants. In some species of algae, including the stramenopile microalga Nannochloropsis oceanica, DGTS contains an abundance of eicosapentaenoic acid (EPA), which is relatively scarce in phosphatidylcholine, implying that DGTS has a unique physiological role. In this study, we addressed the role of DGTS in N. oceanica We identified two DGTS biosynthetic enzymes that have distinct domain configurations compared to previously identified DGTS synthases. Mutants lacking DGTS showed growth retardation under phosphate starvation, demonstrating a pivotal role for DGTS in the adaptation to this condition. Under normal conditions, DGTS deficiency led to an increase in the relative amount of monogalactosyldiacylglycerol, a major plastid membrane lipid with high EPA content, whereas excessive production of DGTS induced by gene overexpression led to a decrease in monogalactosyldiacylglycerol. Meanwhile, lipid analysis of partial phospholipid-deficient mutants revealed a role for phosphatidylcholine and phosphatidylethanolamine in EPA biosynthesis. These results suggest that DGTS and monogalactosyldiacylglycerol may constitute the two major pools of EPA in extraplastidic and plastidic membranes, partially competing to acquire EPA or its precursors derived from phospholipids. The mutant lacking DGTS also displayed impaired growth and a lower proportion of EPA in extraplastidic compartments at low temperatures. Our results indicate that DGTS is involved in the adaptation to low temperatures through a mechanism that is distinct from the DGTS-dependent adaptation to phosphate starvation in N. oceanica.
Collapse
Affiliation(s)
- Hiroki Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takashi Nobusawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
27
|
Charoonnart P, Purton S, Saksmerprome V. Applications of Microalgal Biotechnology for Disease Control in Aquaculture. BIOLOGY 2018; 7:E24. [PMID: 29649182 PMCID: PMC6022871 DOI: 10.3390/biology7020024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Aquaculture industries, and in particular the farming of fish and crustaceans, are major contributors to the economy of many countries and an increasingly important component in global food supply. However, the severe impact of aquatic microbial diseases on production performance remains a challenge to these industries. This article considers the potential applications of microalgal technology in the control of such diseases. At the simplest level, microalgae offer health-promoting benefits as a nutritional supplement in feed meal because of their digestibility and high content of proteins, lipids and essential nutrients. Furthermore, some microalgal species possess natural anti-microbial compounds or contain biomolecules that can serve as immunostimulants. In addition, emerging genetic engineering technologies in microalgae offer the possibility of producing 'functional feed additives' in which novel and specific bioactives, such as fish growth hormones, anti-bacterials, subunit vaccines, and virus-targeted interfering RNAs, are components of the algal supplement. The evaluation of such technologies for farm applications is an important step in the future development of sustainable aquaculture.
Collapse
Affiliation(s)
- Patai Charoonnart
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, Bangkok 10400, Thailand.
- National Center for Genetic Engineering and Biotechnology (BIOTEC) Thailand Science Park, Pathumthani 12120, Thailand.
| | - Saul Purton
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK.
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, Bangkok 10400, Thailand.
- National Center for Genetic Engineering and Biotechnology (BIOTEC) Thailand Science Park, Pathumthani 12120, Thailand.
| |
Collapse
|
28
|
Toyoshima M, Sato N. Optimization of triacylglycerol and starch production in Chlamydomonas debaryana NIES-2212 with regard to light intensity and CO2 concentration. MICROBIOLOGY-SGM 2018; 164:359-368. [PMID: 29458672 DOI: 10.1099/mic.0.000603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Triacylglycerol (TAG) and starch produced by micro-algae are potential sources of biofuel. Our previous studies showed that the unicellular green alga, Chlamydomonas debaryana NIES-2212, which is a rare species of Chlamydomonas that possesses phosphatidylcholine (PC), is a seed organism for the development of biofuel producers. This alga accumulates large amounts of TAG and starch under completely photo-autotrophic conditions during stationary phase without nutrient deprivation. The present study was performed to optimize the growth conditions of this alga with regard to light intensity and CO2 concentration to improve the efficiency of TAG and starch production. The growth rate of C. debaryana was greater at higher light intensity, although there was no significant difference in the final cell density of the culture. The highest contents of TAG and starch, approximately 200 fmol cell-1 and 600 pg cell-1, respectively, were achieved with a light intensity of 200 µmol m-2 s-1 bubbled with air containing 5.0 % CO2. These results suggest that optimization of light intensity and CO2 concentration can enhance the productivity of TAG and starch by C. debaryana NIES-2212.
Collapse
Affiliation(s)
- Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 102-0076, Japan.,Present address: Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| |
Collapse
|
29
|
Gan Q, Jiang J, Han X, Wang S, Lu Y. Engineering the Chloroplast Genome of Oleaginous Marine Microalga Nannochloropsis oceanica. FRONTIERS IN PLANT SCIENCE 2018; 9:439. [PMID: 29696028 PMCID: PMC5904192 DOI: 10.3389/fpls.2018.00439] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/21/2018] [Indexed: 05/21/2023]
Abstract
Plastid engineering offers an important tool to fill the gap between the technical and the enormous potential of microalgal photosynthetic cell factory. However, to date, few reports on plastid engineering in industrial microalgae have been documented. This is largely due to the small cell sizes and complex cell-wall structures which make these species intractable to current plastid transformation methods (i.e., biolistic transformation and polyethylene glycol-mediated transformation). Here, employing the industrial oleaginous microalga Nannochloropsis oceanica as a model, an electroporation-mediated chloroplast transformation approach was established. Fluorescent microscopy and laser confocal scanning microscopy confirmed the expression of the green fluorescence protein, driven by the endogenous plastid promoter and terminator. Zeocin-resistance selection led to an acquisition of homoplasmic strains of which a stable and site-specific recombination within the chloroplast genome was revealed by sequencing and DNA gel blotting. This demonstration of electroporation-mediated chloroplast transformation opens many doors for plastid genome editing in industrial microalgae, particularly species of which the chloroplasts are recalcitrant to chemical and microparticle bombardment transformation.
Collapse
Affiliation(s)
- Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Jiaoyun Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Xiao Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Shifan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
- *Correspondence: Yandu Lu
| |
Collapse
|
30
|
Lee S, Lee YJ, Choi S, Park SB, Tran QG, Heo J, Kim HS. Development of an alcohol-inducible gene expression system for recombinant protein expression in Chlamydomonas reinhardtii. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:2297-2304. [PMID: 30147236 PMCID: PMC6096782 DOI: 10.1007/s10811-018-1480-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 05/13/2023]
Abstract
Microalgae have been widely considered for the production of valuable products, such as lipid-based biofuel, value-added pigments, and anti-photo aging reagents. More recently, microalgae have been considered an alternative host for recombinant protein production because of their economic benefits and ecofriendly characteristics. Additionally, many microalgal strains identified to date are generally recognized as safe (GRAS); therefore, the use of microalgae-based technology is promising. However, basic studies on the genetic engineering of microalgae are rare, despite their importance. Particularly, inducible promoter systems that can be applied for strain engineering or recombinant protein production are rarely studied; hence, a number of challenging issues remain unsolved. Therefore, in this study, we focused on the development of a convenient and compact-inducible promoter system that can be used in microalgae. Based on previous success with plant systems, we employed the alcohol-inducible AlcR-P alcA system, which originates from the filamentous fungus, Aspergillus nidulans. This system comprises only two components, a regulatory protein, AlcR, and an inducible promoter, P alcA. Therefore, construction and transformation of the gene cassettes can be easily performed. Ethanol-dependent gene expression was observed in the transformants with no significant growth retardation or inducer consumption observed in the cells cultivated under optimized conditions.
Collapse
Affiliation(s)
- Sujin Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
| | - Saehae Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Present Address: K-Biohealth, Osong, Chungbuk, 28160 Republic of Korea
| | - Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Jina Heo
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| |
Collapse
|
31
|
Mühlroth A, Winge P, El Assimi A, Jouhet J, Maréchal E, Hohmann-Marriott MF, Vadstein O, Bones AM. Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga. PLANT PHYSIOLOGY 2017; 175:1543-1559. [PMID: 29051196 PMCID: PMC5717724 DOI: 10.1104/pp.17.00621] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
Molecular mechanisms of phosphorus (P) limitation are of great interest for understanding algal production in aquatic ecosystems. Previous studies point to P limitation-induced changes in lipid composition. As, in microalgae, the molecular mechanisms of this specific P stress adaptation remain unresolved, we reveal a detailed phospholipid-recycling scheme in Nannochloropsis oceanica and describe important P acquisition genes based on highly corresponding transcriptome and lipidome data. Initial responses to P limitation showed increased expression of genes involved in P uptake and an expansion of the P substrate spectrum based on purple acid phosphatases. Increase in P trafficking displayed a rearrangement between compartments by supplying P to the chloroplast and carbon to the cytosol for lipid synthesis. We propose a novel phospholipid-recycling scheme for algae that leads to the rapid reduction of phospholipids and synthesis of the P-free lipid classes. P mobilization through membrane lipid degradation is mediated mainly by two glycerophosphoryldiester phosphodiesterases and three patatin-like phospholipases A on the transcriptome level. To compensate for low phospholipids in exponential growth, N. oceanica synthesized sulfoquinovosyldiacylglycerol and diacylglyceroltrimethylhomoserine. In this study, it was shown that an N. oceanica strain has a unique repertoire of genes that facilitate P acquisition and the degradation of phospholipids compared with other stramenopiles. The novel phospholipid-recycling scheme opens new avenues for metabolic engineering of lipid composition in algae.
Collapse
Affiliation(s)
- Alice Mühlroth
- Department of Biology, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Per Winge
- Department of Biology, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Aimen El Assimi
- Department of Biology, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, 38000 Grenoble, France
| | - Martin F Hohmann-Marriott
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Atle M Bones
- Department of Biology, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
32
|
Hayashi T, Otaki R, Hirai K, Tsuzuki M, Sato N. Optimization of seawater-based triacylglycerol accumulation in a freshwater green alga, Chlorella kessleri , through simultaneous imposition of lowered-temperature and enhanced-light intensity. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Chen B, Wan C, Mehmood MA, Chang JS, Bai F, Zhao X. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products-A review. BIORESOURCE TECHNOLOGY 2017; 244:1198-1206. [PMID: 28601395 DOI: 10.1016/j.biortech.2017.05.170] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 05/12/2023]
Abstract
Microalgae have promising potential to produce lipids and a variety of high-value chemicals. Suitable stress conditions such as nitrogen starvation and high salinity could stimulate synthesis and accumulation of lipids and high-value products by microalgae, therefore, various stress-modification strategies were developed to manipulate and optimize cultivation processes to enhance bioproduction efficiency. On the other hand, advancements in omics-based technologies have boosted the research to globally understand microalgal gene regulation under stress conditions, which enable further improvement of production efficiency via genetic engineering. Moreover, integration of multi-omics data, synthetic biology design, and genetic engineering manipulations exhibits a tremendous potential in the betterment of microalgal biorefinery. This review discusses the process manipulation strategies and omics studies on understanding the regulation of metabolite biosynthesis under various stressful conditions, and proposes genetic engineering of microalgae to improve bioproduction via manipulating stress tolerance.
Collapse
Affiliation(s)
- Bailing Chen
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chun Wan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Muhammad Aamer Mehmood
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Taiwan
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
34
|
Zhang JG, Zhang F, Thakur K, Hu F, Wei ZJ. Valorization of Spent Escherichia coli Media Using Green Microalgae Chlamydomonas reinhardtii and Feedstock Production. Front Microbiol 2017. [PMID: 28638375 PMCID: PMC5461289 DOI: 10.3389/fmicb.2017.01026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The coupling of Chlamydomonas reinhardtii biomass production for nutrients removal of Escherichia coli anaerobic broth (EAB) is thought to be an economically feasible option for the cultivation of microalgae. The feasibility of growing microalgae in using EAB high in nutrients for the production of more biomass was examined. EAB comprised of nutrient-abundant effluents, which can be used to produce microalgae biomass and remove environment pollutant simultaneously. In this study, C. reinhardtii 21gr (cc1690) was cultivated in different diluted E. coli anaerobic broth supplemented with trace elements under mixotrophic and heterotrophic conditions. The results showed that C. reinhardtii grown in 1×, 1/2×, 1/5× and 1/10×E. coli anaerobic broth under mixotrophic conditions exhibited specific growth rates of 2.71, 2.68, 1.45, and 1.13 day-1, and biomass production of 201.9, 184.2, 175.5, and 163.8 mg L-1, respectively. Under heterotrophic conditions, the specific growth rates were 1.80, 1.86, 1.75, and 1.02 day-1, and biomass production were 45.6, 29.4, 15.8, and 12.1 mg L-1, respectively. The removal efficiency of chemical oxygen demand, total-nitrogen and total-phosphorus from 1×E. coli anaerobic broth was 21.51, 22.41, and 15.53%. Moreover, the dry biomass had relatively high carbohydrate (44.3%) and lipid content (18.7%). Therefore, this study provides an environmentally sustainable as well economical method for biomass production in promising model microalgae and subsequently paves the way for industrial use.
Collapse
Affiliation(s)
- Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Fang Zhang
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| |
Collapse
|
35
|
Nobusawa T, Hori K, Mori H, Kurokawa K, Ohta H. Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:547-559. [PMID: 28218992 DOI: 10.1111/tpj.13512] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 05/04/2023]
Abstract
The production of renewable bioenergy will be necessary to meet rising global fossil fuel demands. Members of the marine microalgae genus Nannochloropsis produce large quantities of oils (triacylglycerols; TAGs), and this genus is regarded as one of the most promising for biodiesel production. Recent genome sequencing and transcriptomic studies on Nannochloropsis have provided a foundation for understanding its oleaginous trait, but the mechanism underlying oil accumulation remains to be clarified. Here we report Nannochloropsis knock-out strains of four extraplastidic lysophosphatidic acid acyltransferases (LPAT1-LPAT4) that catalyze a major de novo biosynthetic step of TAGs and membrane lipids. We found that the four LPATs are differently involved in lipid metabolic flow in Nannochloropsis. Double knock-outs among the LPATs revealed the pivotal LPATs for TAG biosynthesis, and localization analysis indicated that the stramenopile-specific LPATs (LPAT3 and LPAT4) associated with TAG synthesis reside at the perimeter of lipid droplets. No homologous region has been found with other lipid droplet-associated proteins, however. Lipid droplets are an organelle found in nearly all organisms, and recently they were shown to play important roles in cellular metabolism and signaling. Our results provide direct evidence for the importance of the perimeter of lipid droplet in TAG synthesis in addition to its known role in maintaining TAG stability, and these findings suggest that the oleaginous trait of Nannochloropsis is enabled by the acquisition of LPATs at the perimeter of lipid droplets.
Collapse
Affiliation(s)
- Takashi Nobusawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
- CREST, JST, Yokohama, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
- CREST, JST, Yokohama, Japan
| | - Hiroshi Mori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
- CREST, JST, Yokohama, Japan
| | - Ken Kurokawa
- CREST, JST, Yokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, Japan
- Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima, 411-8540, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
- CREST, JST, Yokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| |
Collapse
|
36
|
Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 2017; 33:74. [DOI: 10.1007/s11274-017-2236-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
|
37
|
Kang NK, Kim EK, Kim YU, Lee B, Jeong WJ, Jeong BR, Chang YK. Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:231. [PMID: 29046718 PMCID: PMC5635583 DOI: 10.1186/s13068-017-0919-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/30/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Genetic engineering of microalgae is necessary to produce economically feasible strains for biofuel production. Current efforts are focused on the manipulation of individual metabolic genes, but the outcomes are not sufficiently stable and/or efficient for large-scale production of biofuels and other materials. Transcription factors (TFs) are emerging as good alternatives for engineering of microalgae, not only to increase production of biomaterials but to enhance stress tolerance. Here, we investigated an AP2 type TF Wrinkled1 in Arabidopsis (AtWRI1) known as a key regulator of lipid biosynthesis in plants, and applied it to industrial microalgae, Nannochloropsis salina. RESULTS We expressed AtWRI1 TF heterologously in N. salina, named NsAtWRI1, in an effort to re-enact its key regulatory function of lipid accumulation. Stable integration AtWRI1 was confirmed by RESDA PCR, and its expression was confirmed by Western blotting using the FLAG tag. Characterizations of transformants revealed that the neutral and total lipid contents were greater in NsAtWRI1 transformants than in WT under both normal and stress conditions from day 8. Especially, total lipid contents were 36.5 and 44.7% higher in NsAtWRI1 2-3 than in WT under normal and osmotic stress condition, respectively. FAME contents of NsAtWRI1 2-3 were also increased compared to WT. As a result, FAME yield of NsAtWRI1 2-3 was increased to 768 mg/L/day, which was 64% higher than that of WT under the normal condition. We identified candidates of AtWRI1-regulated genes by searching for the presence of the AW-box in promoter regions, among which lipid metabolic genes were further analyzed by qRT-PCR. Overall, qRT-PCR results on day 1 indicated that AtWRI1 down-regulated TAGL and DAGK, and up-regulated PPDK, LPL, LPGAT1, and PDH, resulting in enhanced lipid production in NsAtWRI1 transformants from early growth phase. CONCLUSION AtWRI1 TF regulated several genes involved in lipid synthesis in N. salina, resulting in enhancement of neutral lipid and FAME production. These findings suggest that heterologous expression of AtWRI1 TF can be utilized for efficient biofuel production in industrial microalgae.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Eun Kyung Kim
- Advanced Biomass R&D Center, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Young Uk Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Bongsoo Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Byeong-ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
38
|
Dolch LJ, Rak C, Perin G, Tourcier G, Broughton R, Leterrier M, Morosinotto T, Tellier F, Faure JD, Falconet D, Jouhet J, Sayanova O, Beaudoin F, Maréchal E. A Palmitic Acid Elongase Affects Eicosapentaenoic Acid and Plastidial Monogalactosyldiacylglycerol Levels in Nannochloropsis. PLANT PHYSIOLOGY 2017; 173:742-759. [PMID: 27895203 PMCID: PMC5210741 DOI: 10.1104/pp.16.01420] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/24/2016] [Indexed: 05/03/2023]
Abstract
Nannochloropsis species are oleaginous eukaryotes containing a plastid limited by four membranes, deriving from a secondary endosymbiosis. In Nannochloropsis, thylakoid lipids, including monogalactosyldiacylglycerol (MGDG), are enriched in eicosapentaenoic acid (EPA). The need for EPA in MGDG is not understood. Fatty acids are de novo synthesized in the stroma, then converted into very-long-chain polyunsaturated fatty acids (FAs) at the endoplasmic reticulum (ER). The production of MGDG relies therefore on an EPA supply from the ER to the plastid, following an unknown process. We identified seven elongases and five desaturases possibly involved in EPA production in Nannochloropsis gaditana Among the six heterokont-specific saturated FA elongases possibly acting upstream in this pathway, we characterized the highly expressed isoform Δ0-ELO1 Heterologous expression in yeast (Saccharomyces cerevisiae) showed that NgΔ0-ELO1 could elongate palmitic acid. Nannochloropsis Δ0-elo1 mutants exhibited a reduced EPA level and a specific decrease in MGDG In NgΔ0-elo1 lines, the impairment of photosynthesis is consistent with a role of EPA-rich MGDG in nonphotochemical quenching control, possibly providing an appropriate MGDG platform for the xanthophyll cycle. Concomitantly with MGDG decrease, the level of triacylglycerol (TAG) containing medium chain FAs increased. In Nannochloropsis, part of EPA used for MGDG production is therefore biosynthesized by a channeled process initiated at the elongation step of palmitic acid by Δ0-ELO1, thus acting as a committing enzyme for galactolipid production. Based on the MGDG/TAG balance controlled by Δ0-ELO1, this study also provides novel prospects for the engineering of oleaginous microalgae for biotechnological applications.
Collapse
Affiliation(s)
- Lina-Juana Dolch
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| | - Camille Rak
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| | - Giorgio Perin
- Padua Algae Research Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy (G.P., T.M.)
- Padua Algae Research Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy (G.P., T.M.);
| | - Guillaume Tourcier
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| | - Richard Broughton
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.)
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.);
| | - Marina Leterrier
- Fermentalg, 4 Rue Rivière, 33500, Libourne, France (M.L.); and
- Fermentalg, 4 Rue Rivière, 33500, Libourne, France (M.L.); and
| | - Tomas Morosinotto
- Padua Algae Research Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy (G.P., T.M.)
- Padua Algae Research Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy (G.P., T.M.);
| | - Frédérique Tellier
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France (J.-D.F.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France (J.-D.F.)
| | - Jean-Denis Faure
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France (J.-D.F.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France (J.-D.F.)
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| | - Olga Sayanova
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.)
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.);
| | - Frédéric Beaudoin
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.)
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.);
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| |
Collapse
|
39
|
Fu W, Chaiboonchoe A, Khraiwesh B, Nelson DR, Al-Khairy D, Mystikou A, Alzahmi A, Salehi-Ashtiani K. Algal Cell Factories: Approaches, Applications, and Potentials. Mar Drugs 2016; 14:md14120225. [PMID: 27983586 PMCID: PMC5192462 DOI: 10.3390/md14120225] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive “cell factories”: the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO2, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field.
Collapse
Affiliation(s)
- Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Amphun Chaiboonchoe
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Basel Khraiwesh
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - David R Nelson
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Dina Al-Khairy
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Amnah Alzahmi
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| |
Collapse
|
40
|
Gomaa M, Al-Haj L, Abed R. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products. J Appl Microbiol 2016; 121:919-31. [DOI: 10.1111/jam.13232] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/25/2016] [Accepted: 07/07/2016] [Indexed: 01/26/2023]
Affiliation(s)
- M.A. Gomaa
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| | - L. Al-Haj
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| | - R.M.M. Abed
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| |
Collapse
|
41
|
Hori K, Nobusawa T, Watanabe T, Madoka Y, Suzuki H, Shibata D, Shimojima M, Ohta H. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1294-1308. [PMID: 27108062 DOI: 10.1016/j.bbalip.2016.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/09/2016] [Accepted: 04/15/2016] [Indexed: 01/25/2023]
Abstract
In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Koichi Hori
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Takashi Nobusawa
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Tei Watanabe
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama City, Kanagawa 226-8501, Japan
| | - Yuka Madoka
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mie Shimojima
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan
| | - Hiroyuki Ohta
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan; Tokyo Institute of Technology, Earth-Life Science Institute, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
42
|
Banerjee C, Dubey KK, Shukla P. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges. Front Microbiol 2016; 7:432. [PMID: 27065986 PMCID: PMC4815533 DOI: 10.3389/fmicb.2016.00432] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.
Collapse
Affiliation(s)
- Chiranjib Banerjee
- Department of Environmental Science and Engineering, Indian School of Mines Dhanbad, India
| | - Kashyap K Dubey
- Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, India
| |
Collapse
|