1
|
Fenyvesi É, Berkl Z, Ligethy L, Fekete-Kertész I, Csizmazia M, Malanga M, Puskás I, Szőcs L, Iványi R, Kese I, Varga E, Szente L, Molnár M. Long-Chain Alkylthio Cyclodextrin Derivatives for Modulation of Quorum-Sensing-Based Bioluminescence in Aliivibrio fischeri Model System. Int J Mol Sci 2024; 25:7139. [PMID: 39000246 PMCID: PMC11241527 DOI: 10.3390/ijms25137139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Quorum sensing (QS) allows bacteria to coordinate their activities by producing and detecting low-molecular-weight signal molecules based on population density, thereby controlling the infectivity of bacteria through various virulence factors. Quorum-sensing inhibition is a promising approach to tackle bacterial communication. Cyclodextrins (CDs) are a class of cyclic oligosaccharides that reversibly encapsulate the acyl chain of the signal molecules, thereby preventing their binding to receptors and interrupting bacterial communication. This results in the inhibition of the expression of various properties, including different virulence factors. To examine the potential quorum-quenching (QQ) ability of newly prepared cyclodextrin derivatives, we conducted short-term tests using Aliivibrio fischeri, a heterotrophic marine bacterium capable of bioluminescence controlled by quorum sensing. α- and β-cyclodextrins monosubstituted with alkylthio moieties and further derivatized with quaternary ammonium groups were used as the test agents. The effect of these cyclodextrins on the quorum-sensing system of A. fischeri was investigated by adding them to an exponential growth phase of the culture and then measuring bioluminescence intensity, population growth, and cell viability. Our results demonstrate that the tested cyclodextrins have an inhibitory effect on the quorum-sensing system of A. fischeri. The inhibitory effect varies based on the length of the alkyl chain, with alkylthio substitution enhancing it and the presence of quaternary ammonium groups decreasing it. Our findings suggest that cyclodextrins can be a promising therapeutic agent for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Zsófia Berkl
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Laura Ligethy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Ildikó Fekete-Kertész
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Márton Csizmazia
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Milo Malanga
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - István Puskás
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Levente Szőcs
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Róbert Iványi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - István Kese
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Erzsébet Varga
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| |
Collapse
|
2
|
Wu H, Zhang W, Huang X, Gu P, Li Q, Luo X, Zheng Z. Phosphorus conditions change the cellular responses of Microcystis aeruginosa to perfluorooctanoic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166707. [PMID: 37660808 DOI: 10.1016/j.scitotenv.2023.166707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Perfluorooctanoic acid (PFOA), a widespread and emerging organic contaminant of aquatic environments, has high bioaccumulation potential and high toxicity. Consequently, major concerns have been raised worldwide regarding the management of this pollutant in aquatic ecosystems. To thoroughly understand PFOA's toxic effects on aquatic organisms, systematic investigations were conducted on the cellular responses of Microcystis aeruginosa to the environmental concentrations of PFOA under various concentrations as well as phosphorus (P) conditions (concentrations and forms). The results showed that P conditions remarkably affected cyanobacterial growth as well as photosynthetic pigment content, triggered oxidative stress to disrupt the function and structure of the cell membrane, and caused changes in the extracellular and intracellular contents of microcystin-LR (MC-LR). Furthermore, PFOA (100 μg/L) was absorbed by cyanobacterial cells through the stimulation of the secretion of extracellular polymeric substances (EPS) by M. aeruginosa. After entering the cyanobacterial cells, PFOA inhibited photosynthesis, reduced P absorption, induced oxidative damage, lead to a loss of cell integrity evident in scanning electron microscope images, and increased mcyA gene expression to promote MC-LR production. Moreover, the limited P concentration and forms conditions led to increased PFOA absorption by cyanobacterial cells, which further upregulated mcyA gene expression and increased the risk of MC-LR diffusion into the aquatic environment. Our present study provided a theoretical basis and new ideas for understanding and addressing safety issues related to the presence of PFOA in aquatic environments with varying nutritional statuses.
Collapse
Affiliation(s)
- Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Weizheng Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xuhui Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
3
|
Farha AK, Li Z, Xu Y, Bordiga M, Sui Z, Corke H. Anti-quorum sensing effects of batatasin III: in vitro and in silico studies. J Biomol Struct Dyn 2023; 41:11341-11352. [PMID: 36871957 DOI: 10.1080/07391102.2023.2187226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/07/2022] [Indexed: 03/07/2023]
Abstract
The spread of multidrug resistant bacteria has fueled the development of new antibiotics to combat bacterial infections. Disrupting the quorum sensing (QS) mechanism with biomolecules is a promising approach against bacterial infections. Plants used in Traditional Chinese Medicine (TCM) represent a valuable resource for the identification of QS inhibitors. In this study, the in vitro anti-QS activity of 50 TCM-derived phytochemicals against the biosensor Chromobacterium violaceum CV026 was tested. Among the 50 phytochemicals, 7-methoxycoumarin, flavone, batatasin III, resveratrol, psoralen, isopsoralen, and rhein inhibited violacein production and showed good QS inhibitory effects. Batatasin III was selected as the best QS inhibitor based on drug-likeness, physicochemical properties, toxicity, and bioactivity score prediction analyses using SwissADME, PreADMET, ProtoxII, and Molinspiration. At 30 μg/ mL, Batatasin III inhibited violacein production and biofilm formation in C. violaceum CV026 by more than 69% and 54% respectively without affecting bacterial growth. The in vitro cytotoxicity evaluation by MTT assay demonstrated that batatasin III reduced the viability of 3T3 mouse fibroblast cells to 60% at 100 μg/mL. Furthermore, molecular docking studies showed that batatasin III has strong binding interactions with the QS-associated proteins CViR, LasR, RhlR, PqsE, and PqsR. Molecular dynamic simulation studies showed that batatasin III has strong binding interactions with 3QP1, a structural variant of CViR protein. The binding free energy value of batatasin III-3QP1 complex was -146.295 ± 10.800 KJ/mol. Overall results suggested that batatasin III could serve as a lead molecule that could be developed into a potent QS inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Zijun Li
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yijuan Xu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Zhongquan Sui
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Khoshbakht R, Panahi S, Neshani A, Ghavidel M, Ghazvini K. Novel approaches to overcome Colistin resistance in Acinetobacter baumannii: Exploring quorum quenching as a potential solution. Microb Pathog 2023; 182:106264. [PMID: 37474078 DOI: 10.1016/j.micpath.2023.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Acinetobacter baumannii is responsible for a variety of infections, such as nosocomial infections. In recent years, this pathogen has gained resistance to many antibiotics, and thus, carbapenems were used to treat infections with MDR A. baumannii strains in clinical settings. However, as carbapenem-resistant isolates are becoming increasingly prevalent, Colistin is now used as the last line of defense against resistant A. baumannii strains. Unfortunately, reports are increasing on the presence of Colistin-resistant phenotypes in infections caused by A. baumannii, creating an urgent need to find a substitute way to combat these resistant isolates. Quorum sensing inhibition, also known as quorum quenching, is an efficient alternative way of reversing resistance in different Gram-negative bacteria. Quorum sensing is a mechanism used by bacteria to communicate with each other by secreting signal molecules. When the population of bacteria increases and the concentration of signal molecules reaches a certain threshold, bacteria can implement mechanisms to adapt to a hostile environment, such as biofilm formation. Biofilms have many advantages for pathogens, such as antibiotic resistance. Different studies have revealed that disrupting the biofilm of A. baumannii makes it more susceptible to antibiotics. Although very few studies have been conducted on the biofilm disruption through quorum quenching in Colistin-resistant A. baumannii, these studies and similar studies bring hope in finding an alternative way of treating the Colistin-resistant isolates. In conclusion, quorum quenching has the potential to be used against Colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Reza Khoshbakht
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Neshani
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdis Ghavidel
- Shahid Hasheminejad Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Chakraborty S, Bashir Y, Sirotiya V, Ahirwar A, Das S, Vinayak V. Role of bacterial quorum sensing and quenching mechanism in the efficient operation of microbial electrochemical technologies: A state-of-the-art review. Heliyon 2023; 9:e16205. [PMID: 37215776 PMCID: PMC10199210 DOI: 10.1016/j.heliyon.2023.e16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Microbial electrochemical technologies (METs) are a group of innovative technologies that produce valuables like bioelectricity and biofuels with the simultaneous treatment of wastewater from microorganisms known as electroactive microorganisms. The electroactive microorganisms are capable of transferring electrons to the anode of a MET through various metabolic pathways such as direct (via cytochrome or pili) or indirect (through transporters) transfer. Though this technology is promising, the inferior yield of valuables and the high cost of reactor fabrication are presently impeding the large-scale application of this technology. Therefore, to overcome these major bottlenecks, a lot of research has been dedicated to the application of bacterial signalling, for instance, quorum sensing (QS) and quorum quenching (QQ) mechanisms in METs to improve its efficacy in order to achieve a higher power density and to make it more cost-effective. The QS circuit in bacteria produces auto-inducer signal molecules, which enhances the biofilm-forming ability and regulates the bacterial attachment on the electrode of METs. On the other hand, the QQ circuit can effectively function as an antifouling agent for the membranes used in METs and microbial membrane bioreactors, which is imperative for their stable long-term operation. This state-of-the-art review thus distinctly describes in detail the interaction between the QQ and QS systems in bacteria employed in METs to generate value-added by-products, antifouling strategies, and the recent applications of the signalling mechanisms in METs to improve their yield. Further, the article also throws some light on the recent advancements and the challenges faced while incorporating QS and QQ mechanisms in various types of METs. Thus, this review article will help budding researchers in upscaling METs with the integration of the QS signalling mechanism in METs.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Yasser Bashir
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| |
Collapse
|
6
|
Chu PL, Feng YM, Long ZQ, Xiao WL, Ji J, Zhou X, Qi PY, Zhang TH, Zhang H, Liu LW, Yang S. Novel Benzothiazole Derivatives as Potential Anti-Quorum Sensing Agents for Managing Plant Bacterial Diseases: Synthesis, Antibacterial Activity Assessment, and SAR Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6525-6540. [PMID: 37073686 DOI: 10.1021/acs.jafc.2c07810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As quorum sensing (QS) regulates bacterial pathogenicity, antiquorum sensing agents have powerful application potential for controlling bacterial infections and overcoming pesticide/drug resistance. Identifying anti-QS agents thus represents a promising approach in agrochemical development. In this study, the anti-QS potency of 53 newly prepared benzothiazole derivatives containing an isopropanolamine moiety was analyzed, and structure-activity relationships were examined. Compound D3 exhibited the strongest antibacterial activity, with an in vitro EC50 of 1.54 μg mL-1 against Xanthomonas oryzae pv oryzae (Xoo). Compound D3 suppressed QS-regulated virulence factors (e.g., biofilm, extracellular polysaccharides, extracellular enzymes, and flagella) to inhibit bacterial infection. In vivo anti-Xoo assays indicated good control efficiency (curative activity, 47.8%; protective activity, 48.7%) at 200 μg mL-1. Greater control efficiency was achieved with addition of 0.1% organic silicone or orange peel essential oil. The remarkable anti-QS potency of these benzothiazole derivatives could facilitate further novel bactericidal compound development.
Collapse
Affiliation(s)
- Pan-Long Chu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhou-Qing Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jin Ji
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pu-Ying Qi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Heng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Li J, Li Z, Xie J, Xia Y, Gong W, Tian J, Zhang K, Yu E, Wang G. Quorum-quenching potential of recombinant PvdQ-engineered bacteria for biofilm formation. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-023-00329-1. [PMID: 36773196 DOI: 10.1007/s10123-023-00329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
Quorum sensing (QS) is a core mechanism for bacteria to regulate biofilm formation, and therefore, QS inhibition or quorum quenching (QQ) is used as an effective and economically feasible strategy against biofilms. In this study, the PvdQ gene encoding AHL acylase was introduced into Escherichia coli (DE3), and a PvdQ-engineered bacterium with highly efficient QQ activity was obtained and used to inhibit biofilm formation. Gene sequencing and western blot analysis showed that the recombinant pET-PvdQ strain was successfully constructed. The color reaction of Agrobacterium tumefaciens A136 indicated that PvdQ engineering bacteria had shown strong AHL signal molecule quenching activity and significantly inhibited the adhesion (motility) of Pseudomonas aeruginosa and biofilm formation of activated sludge bacteria in Membrane Bio-Reactor (MBR; inhibition rate 51-85%, p < 0.05). In addition, qRT-PCR testing revealed that recombinant PvdQ acylase significantly reduced the transcription level of QS biofilm formation-related genes (cdrA, pqsA, and lasR; p < 0.05). In this study, QQ genetically engineered bacteria enhanced by genetic engineering could effectively inhibit the QS signal transduction mechanism and have the potential to control biofilm formation of pathogenic bacteria in the aquaculture environment, providing an environmentally friendly and alternative antibiotic strategy to suppress biofilm contamination.
Collapse
Affiliation(s)
- Junlin Li
- College of Fisheries and Life Science, Shanghai Ocean University, Nanhui New City, No.999, Huchenghuan Rd, Shanghai, People's Republic of China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China.
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China.
| | - Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Jingjing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Ermeng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| |
Collapse
|
8
|
Zhang X, Liu B, Ding X, Bin P, Yang Y, Zhu G. Regulatory Mechanisms between Quorum Sensing and Virulence in Salmonella. Microorganisms 2022; 10:2211. [PMID: 36363803 PMCID: PMC9693372 DOI: 10.3390/microorganisms10112211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 08/28/2023] Open
Abstract
Salmonella is a foodborne pathogen that causes enterogastritis among humans, livestock and poultry, and it not only causes huge economic losses for the feed industry but also endangers public health around the world. However, the prevention and treatment of Salmonella infection has remained poorly developed because of its antibiotic resistance. Bacterial quorum sensing (QS) system is an intercellular cell-cell communication mechanism involving multiple cellular processes, especially bacterial virulence, such as biofilm formation, motility, adherence, and invasion. Therefore, blocking the QS system may be a new strategy for Salmonella infection independent of antibiotic treatment. Here, we have reviewed the central role of the QS system in virulence regulation of Salmonella and summarized the most recent advances about quorum quenching (QQ) in virulence attenuation during Salmonella infection. Unraveling the complex relationship between QS and bacterial virulence may provide new insight into the therapy of pathogen infection.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Baobao Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyan Ding
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Peng Bin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yang Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Gao Z, Chen H, Wang Y, Lv Y. Advances in AHLs-mediated quorum sensing system in wastewater biological nitrogen removal: mechanism, function, and application. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1927-1943. [PMID: 36315086 DOI: 10.2166/wst.2022.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biological nitrogen removal process is to convert organic nitrogen and ammonia nitrogen into nitrogen via a series of reactions by microorganisms, and is widely used in wastewater treatment for its costless, high-effective, secondary pollution-free characteristics. Quorum sensing (QS) is a communication mode for microorganisms to regulate bacteria's physiological behaviors in response to environmental changes. N-acyl-homoserine lactones (AHLs)-mediated QS system is widespread in nitrogen removal-related functional bacteria and promotes biological nitrogen removal performance by regulating bacteria behavior. Recently, there has been an increasingly investigated AHLs-mediated QS system in wastewater biological nitrogen removal process. Consequently, the AHLs-mediated QS system is considered a promising regulatory strategy in the biological nitrogen removal process. This article reviewed the QS mechanism in various nitrogen removal-related functional bacteria and analyzed its effect on biological nitrogen removal performance. Combined with the application research of the QS system for enhanced biological nitrogen removal, it further put forward some prospects and suggestions which are of practical significance in practical application.
Collapse
Affiliation(s)
- Zhixiang Gao
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China E-mail:
| | - Hu Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Ying Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China E-mail: ; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Yongkang Lv
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China E-mail: ; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| |
Collapse
|
10
|
Sahreen S, Mukhtar H, Imre K, Morar A, Herman V, Sharif S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int J Mol Sci 2022; 23:ijms23179751. [PMID: 36077148 PMCID: PMC9456111 DOI: 10.3390/ijms23179751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Quorum sensing (QS), a type of bacterial cell–cell communication, produces autoinducers which help in biofilm formation in response to cell population density. In this review, biofilm formation, the role of QS in biofilm formation and development with reference to biological wastewater treatment are discussed. Autoinducers, for example, acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2, present in both Gram-negative and Gram-positive bacteria, with their mechanism, are also explained. Over the years, wastewater treatment (WWT) by QS-regulated biofilms and their optimization for WWT have gained much attention. This article gives a comprehensive review of QS regulation methods, QS enrichment methods and QS inhibition methods in biological waste treatment systems. Typical QS enrichment methods comprise adding QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods consist of additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. Potential applications of QS regulated biofilms for WWT have also been summarized. At last, the knowledge gaps present in current researches are analyzed, and future study requirements are proposed.
Collapse
Affiliation(s)
- Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Sundas Sharif
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
11
|
Effect of Cyclodextrins on the Biofilm Formation Capacity of Pseudomonas aeruginosa PAO1. Molecules 2022; 27:molecules27113603. [PMID: 35684540 PMCID: PMC9181962 DOI: 10.3390/molecules27113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Quorum sensing (QS) is a population-density-dependent communication process of microorganisms to coordinate their activities by producing and detecting low-molecular-weight signal molecules. In pathogenic bacteria, the property controlled by QS is often related to infectivity, e.g., biofilm formation. Molecular encapsulation of the QS signals is an innovative method to prevent the signals binding to the receptors and to attenuate QS. Cyclodextrins (CDs) may form an inclusion complex with the signals, thus reducing the communication (quorum quenching, QQ). A systematic study was performed with α-, β-cyclodextrin, and their random methylated, quaternary amino and polymer derivatives to evaluate and compare their effects on the biofilm formation of Pseudomonas aeruginosa. To examine the concentration-, temperature- and time-dependency of the QQ effect, the CDs were applied at a 0.1–12.5 mM concentration range, and biofilm formation was studied after 6, 24, 48 and 72 h at 22 and 30 °C. According to the results, the QS mechanism was significantly inhibited; the size of the cavity, the structure of the substituents, as well as the monomeric or polymeric character together with the concentration of the CDs have been identified as key influencing factors of biofilm formation. Statistically determined effective concentration values demonstrated outstanding efficiency (higher than 80% inhibition) of α-CD and its random methylated and polymer derivatives both on the short and long term. In summary, the potential value of CDs as inhibitors of QS should be considered since the inhibition of biofilm formation could significantly impact human health and the environment.
Collapse
|
12
|
Complete Genome Sequence of Streptomyces albus Strain G153. Microbiol Resour Announc 2022; 11:e0033222. [PMID: 35652652 PMCID: PMC9302078 DOI: 10.1128/mra.00332-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Streptomyces is a promising source of biologically active secondary metabolites. Here, we report the complete genome sequence of Streptomyces albus strain G153. The assembled genome comprised a single linear chromosome of 6.9 Mbp with a G+C content of 73.3%.
Collapse
|
13
|
Azli B, Razak MN, Omar AR, Mohd Zain NA, Abdul Razak F, Nurulfiza I. Metagenomics Insights Into the Microbial Diversity and Microbiome Network Analysis on the Heterogeneity of Influent to Effluent Water. Front Microbiol 2022; 13:779196. [PMID: 35495647 PMCID: PMC9048743 DOI: 10.3389/fmicb.2022.779196] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sanitizing the water sources of local communities is important to control the spread of microbial resistance genes, especially those for water-borne illnesses. The activities of antibiotic resistance gene (ARG)-host pathogens pose a threat to public health, and it has been estimated that the infection will lead up to 10 million deaths globally by the year 2050. Hence, in this study, we aim to analyze the efficiency of our municipal wastewater treatment plant (WWTP) process in producing pathogen-free water by investigating the microbial composition between influent and effluent water sites. Shotgun metagenomics sequencing using the Illumina platform was performed on the influent and effluent samples of six different WWTP sites located in Johore, Malaysia. After raw data pre-processing, the non-redundant contigs library was then aligned against BLASTP for taxonomy profiling and the Comprehensive Antibiotic Resistance Database for ARG annotation. Interestingly, the alpha-diversity result reported that effluent site samples showed higher abundance and diverse heterogeneity compared to the influent site. The principal component analysis (PCA) and non-metric multidimensional scaling (NMDS) plots also suggested that effluent sites showed high variation in the genetic material due to loosely clustered sample plots, as compared to the tightly clustered influent samples. This study has successfully identified the top three abundant phyla in influent-Proteobacteria, Firmicutes, and Bacteroidetes-and effluent-Proteobacteria, Actinobacteria, and Bacteroidetes-water. Despite the overlap within the top three abundant phyla in influent and effluent sites (Proteobacteria and Bacteroidetes), the ARG composition heat map and drug class phenotype plot bar exhibits a general trend of a downward shift, showing the efficiency of WWTP in reducing opportunistic pathogens. Overall, it was demonstrated that our municipal WWTP efficiently eliminated pathogenic microbes from the influent water before its total discharge to the environment, though not with the total elimination of microorganisms. This metagenomics study allowed for an examination of our water source and showed the potential interaction of species and ARGs residing in the influent and effluent environment. Both microbial profile structure and co-occurrence network analysis provide integrated understanding regarding the diversity of microorganisms and interactions for future advanced water sanitation treatments.
Collapse
Affiliation(s)
- Bahiyah Azli
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Mohd Nasharudin Razak
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Seri Kembangan, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Nor Azimah Mohd Zain
- Department of Biosciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia.,Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Fatimah Abdul Razak
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - I Nurulfiza
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Seri Kembangan, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
14
|
Jamil F, Mukhtar H, Fouillaud M, Dufossé L. Rhizosphere Signaling: Insights into Plant-Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms 2022; 10:microorganisms10050899. [PMID: 35630345 PMCID: PMC9147336 DOI: 10.3390/microorganisms10050899] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rhizospheric plant-microbe interactions have dynamic importance in sustainable agriculture systems that have a reduced reliance on agrochemicals. Rhizosphere signaling focuses on the interactions between plants and the surrounding symbiotic microorganisms that facilitate the development of rhizobiome diversity, which is beneficial for plant productivity. Plant-microbe communication comprises intricate systems that modulate local and systemic defense mechanisms to mitigate environmental stresses. This review deciphers insights into how the exudation of plant secondary metabolites can shape the functions and diversity of the root microbiome. It also elaborates on how rhizosphere interactions influence plant growth, regulate plant immunity against phytopathogens, and prime the plant for protection against biotic and abiotic stresses, along with some recent well-reported examples. A holistic understanding of these interactions can help in the development of tailored microbial inoculants for enhanced plant growth and targeted disease suppression.
Collapse
Affiliation(s)
- Fatima Jamil
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Mireille Fouillaud
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département Agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France;
| |
Collapse
|
15
|
Castillo-Juárez I, Blancas-Luciano BE, García-Contreras R, Fernández-Presas AM. Antimicrobial peptides properties beyond growth inhibition and bacterial killing. PeerJ 2022; 10:e12667. [PMID: 35116194 PMCID: PMC8785659 DOI: 10.7717/peerj.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) are versatile molecules with broad antimicrobial activity produced by representatives of the three domains of life. Also, there are derivatives of AMPs and artificial short peptides that can inhibit microbial growth. Beyond killing microbes, AMPs at grow sub-inhibitory concentrations also exhibit anti-virulence activity against critical pathogenic bacteria, including ESKAPE pathogens. Anti-virulence therapies are an alternative to antibiotics since they do not directly affect viability and growth, and they are considered less likely to generate resistance. Bacterial biofilms significantly increase antibiotic resistance and are linked to establishing chronic infections. Various AMPs can kill biofilm cells and eradicate infections in animal models. However, some can inhibit biofilm formation and promote dispersal at sub-growth inhibitory concentrations. These examples are discussed here, along with those of peptides that inhibit the expression of traits controlled by quorum sensing, such as the production of exoproteases, phenazines, surfactants, toxins, among others. In addition, specific targets that are determinants of virulence include secretion systems (type II, III, and VI) responsible for releasing effector proteins toxic to eukaryotic cells. This review summarizes the current knowledge on the anti-virulence properties of AMPs and the future directions of their research.
Collapse
Affiliation(s)
- Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Estado de México, Mexico
| | - Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| |
Collapse
|
16
|
Tripathi S, Chandra R, Purchase D, Bilal M, Mythili R, Yadav S. Quorum sensing - a promising tool for degradation of industrial waste containing persistent organic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118342. [PMID: 34653589 DOI: 10.1016/j.envpol.2021.118342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Restoring an environment contaminated with persistent organic pollutants (POPs) is highly challenging. Biodegradation by biofilm-forming bacteria through quorum sensing (QS) is a promising treatment process to remove these pollutants and promotes eco-restoration. QS plays an important role in biofilm formation, solubilization, and biotransformation of pollutants. QS is a density-based communication between microbial cells via signalling molecules, which coordinates specific characters and helps bacteria to acclimatize against stress conditions. Genetic diversification of a biofilm offers excellent opportunities for horizontal gene transfer, improves resistance against stress, and provides a suitable environment for the metabolism of POPs. To develop this technology in industrial scale, it is important to understand the fundamentals and ubiquitous nature of QS bacteria and appreciate the role of QS in the degradation of POPs. Currently, there are knowledge gaps regarding the environmental niche, abundance, and population of QS bacteria in wastewater treatment systems. This review aims to present up-to-date and state-of-the-art information on the roles of QS and QS-mediated strategies in industrial waste treatment including biological treatments (such as activated sludge), highlighting their potentials using examples from the pulp and paper mill industry, hydrocarbon remediation and phytoremediation. The information will help to provide a throughout understanding of the potential of QS to degrade POPs and advance the use of this technology. Current knowledge of QS strategies is limited to laboratory studies, full-scale applications remain challenging and more research is need to explore QS gene expression and test in full-scale reactors for wastewater treatment.
Collapse
Affiliation(s)
- Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, 226025, U.P., India.
| | - Diane Purchase
- Department of Natural Sciences, Facultyof Science and Technology, Middlesex University, The Burroughs, Hendon, London, England NW4 4BT, UK
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Raja Mythili
- PG & Research Department of Biotechnology, Mahendra Arts & Science College, Kalppatti, Namakkal, 637503, Tamil Nadu, India
| | - Sangeeta Yadav
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, 226025, U.P., India.
| |
Collapse
|
17
|
Lamin A, Kaksonen AH, Cole IS, Chen XB. Quorum sensing inhibitors applications: a new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry 2022; 145:108050. [DOI: 10.1016/j.bioelechem.2022.108050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/21/2022]
|
18
|
Amly DA, Hajardhini P, Jonarta AL, Yulianto HDK, Susilowati H. Enhancement of pyocyanin production by subinhibitory concentration of royal jelly in Pseudomonas aeruginosa. F1000Res 2021; 10:14. [PMID: 34540201 PMCID: PMC8424461 DOI: 10.12688/f1000research.27915.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Pseudomonas aeruginosa, a multidrug-resistant Gram-negative bacterium, produces pyocyanin, a virulence factor associated with antibiotic tolerance. High concentrations of royal jelly have an antibacterial effect, which may potentially overcome antibacterial resistance. However, in some cases, antibiotic tolerance can occur due to prolonged stress of low-dose antibacterial agents. This study aimed to investigate the effect of subinhibitory concentrations of royal jelly on bacterial growth, pyocyanin production, and biofilm formation of
P. aeruginosa. Methods:Pseudomonas aeruginosa ATCC 10145 and clinical isolates were cultured in a royal jelly-containing medium to test the antibacterial activity. Pyocyanin production was observed by measuring the absorbance at 690 nm after 36 h culture and determined using extinction coefficient 4310 M-1 cm-1. Static microtiter plate biofilm assay performed to detect the biofilm formation, followed by scanning electron microscopy. Results: Royal jelly effectively inhibited the viability of both strains from a concentration of 25%. The highest production of pyocyanin was observed in the subinhibitory concentration group 6.25%, which gradually decreased along with the decrease of royal jelly concentration. Results of one-way ANOVA tests differed significantly in pyocyanin production of the two strains between the royal jelly groups. Tukey HSD test showed concentrations of 12.5%, 6.25%, and 3.125% significantly increased pyocyanin production of ATCC
10145, and the concentrations of 12.5% and 6.25% significantly increased production of the clinical isolates. Concentrations of 12.5% and 6.125% significantly induced biofilm formation of
P. aeruginosa ATCC 10145, in line with the results of the SEM analysis. Conclusions: The royal jelly concentration of 25% or higher inhibits bacterial growth; however, the subinhibitory concentration increases pyocyanin production and biofilm formation in
P. aeruginosa. It is advisable to determine the appropriate concentration of royal jelly to obtain beneficial virulence inhibiting activity.
Collapse
Affiliation(s)
- Dina Auliya Amly
- Master of Dental Sciences Program, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Puspita Hajardhini
- Master of Dental Sciences Program, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Alma Linggar Jonarta
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heribertus Dedy Kusuma Yulianto
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heni Susilowati
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| |
Collapse
|
19
|
Vivero-Gomez RJ, Mesa GB, Higuita-Castro J, Robledo SM, Moreno-Herrera CX, Cadavid-Restrepo G. Detection of Quorum Sensing Signal Molecules, Particularly N-Acyl Homoserine Lactones, 2-Alky-4-Quinolones, and Diketopiperazines, in Gram-Negative Bacteria Isolated From Insect Vector of Leishmaniasis. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.760228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gram-negative bacteria are known to use a quorum sensing system to facilitate and stimulate cell to cell communication, mediated via regulation of specific genes. This system is further involved in the modulation of cell density and metabolic and physiological processes that putatively either affect the survival of insect vectors or the establishment of pathogens transmitted by them. The process of quorum sensing generally involves N-acyl homoserine lactones and 2-alkyl-4-quinolones signaling molecules. The present study aimed to detect and identify quorum sensing signaling molecules of AHLs and AHQs type that are secreted by intestinal bacteria, and link their production to their extracellular milieu and intracellular content. Isolates for assessment were obtained from the intestinal tract of Pintomyia evansi (Leishmania insect vector). AHLs and AHQs molecules were detected using chromatography (TLC) assays, with the aid of specific and sensitive biosensors. For identity confirmation, ultra-high-performance liquid chromatography coupled with mass spectrometry was used. TLC assays detected quorum sensing molecules (QSM) in the supernatant of the bacterial isolates and intracellular content. Interestingly, Pseudomonas otitidis, Enterobacter aerogenes, Enterobacter cloacae, and Pantoea ananatis isolates showed a migration pattern similar to the synthetic molecule 3-oxo-C6-HSL (OHHL), which was used as a control. Enterobacter cancerogenus secreted C6-HSL, a related molecules to N-hexanoyl homoserine lactone (HHL), while Acinetobacter gyllenbergii exhibited a migration pattern similar to 2-heptyl-4-quinolone (HHQ) molecules. In comparison to this, 3-oxo-C12-HSL (OdDHL) type molecules were produced by Lysobacter soli, Pseudomonas putida, A. gyllenbergii, Acinetobacter calcoaceticus, and Pseudomonas aeruginosa, while Enterobacter cloacae produced molecules similar to 2-heptyl-3-hydroxy-4-quinolone (PQS). For Pseudomonas putida, Enterobacter aerogenes, P. ananatis, and Pseudomonas otitidis extracts, peak chromatograms with distinct retention times and areas, consistent with the molecules described in case of TLC, were obtained using HPLC. Importantly, P. ananatis produced a greater variety of high QSM concentration, and thus served as a reference for confirmation and identification by UHPLC-MRM-MS/MS. The molecules that were identified included N-hexanoyl-L-homoserine lactone [HHL, C10H18NO3, (M + H)], N-(3-oxohexanoyl)-L-homoserine lactone [OHHL, C10H16NO4, (M + H)], N-(3-oxododecanoyl)-L-homoserine lactone [OdDHL, C16H28NO4, (M + H)], and 2-heptyl-3-hydroxy-4(1H)-quinolone [PQS, C16H22NO2, (M + H)]. Besides this, the detection of diketopiperazines, namely L-Pro-L-Tyr and ΔAla-L-Val cyclopeptides was reported for P. ananatis. These molecules might be potentially associated with the regulation of QSM system, and might represent another small molecule-mediated bacterial sensing system. This study presents the first report regarding the detection and identification of QSM and diketopiperazines in the gut sand fly bacteria. The possible effect of QSM on the establishment of Leishmania must be explored to determine its role in the modulation of intestinal microbiome and the life cycle of Pi. evansi.
Collapse
|
20
|
Integrating transcriptomics and metabolomics analysis on kojic acid combating Acinetobacter baumannii biofilm and its potential roles. Microbiol Res 2021; 254:126911. [PMID: 34763140 DOI: 10.1016/j.micres.2021.126911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
As a major secondary metabolite derived from a dominant marine filamentous fungus A7, kojic acid might confer the strain a competitive advantage in natural colonization. The bioactivities of kojic acid against bacterial growth and biofilm formation were investigated against Acinetobacter baumannii (A. baumannii) ATCC 19606. Then, transcriptomics and metabolomics were integrated to characterize the underlying mechanisms. It turned out that kojic acid exhibited a significantly suppressive impact against biofilm but a weak bacteriostatic activity. Meanwhile, a variety of transcriptional and metabolomic profiles were altered within biofilm formation as a result of kojic acid exposure. The alterations highlighted the mechanisms underlying biofilm formation, comprising of quorum sensing, fimbria assembly, bacterial virulence and metabolic plasticity, which could somewhat be hampered by kojic acid. The present study comprehensively elucidated multifactorial schemes for kojic acid combating biofilm formation of A. baumannii, which might provide mechanistic insights into the development of therapeutic strategies against this notorious pathogen. Meanwhile, our observations might shed new light on the ecological roles of kojic acid, e.g., serving as chemical deterrents for host adaptation to marine niches, which, however, awaits further validation.
Collapse
|
21
|
Hamiruddin NA, Awang NA, Mohd Shahpudin SN, Zaidi NS, Said MAM, Chaplot B, Azamathulla HM. Effects of wastewater type on stability and operating conditions control strategy in relation to the formation of aerobic granular sludge - a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2113-2130. [PMID: 34810301 DOI: 10.2166/wst.2021.415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, research trends on aerobic granular sludge (AGS) have integrated the operating conditions of extracellular polymeric substances (EPS) towards the stability of AGS systems in various types of wastewater with different physical and biochemical characteristics. More attention is given to the stability of the AGS system for real site applications. Although recent studies have reported comprehensively the mechanism of AGS formation and stability in relation to other intermolecular interactions such as microbial distribution, shock loading and toxicity, standard operating condition control strategies for different types of wastewater have not yet been discussed. Thus, the dimensional multi-layer structural model of AGS is discussed comprehensively in the first part of this review paper, focusing on diameter size, thickness variability of each layer and diffusion factor. This can assist in facilitating the interrelation between disposition and stability of AGS structure to correspond to the changes in wastewater types, which is the main objective and novelty of this review.
Collapse
Affiliation(s)
- N A Hamiruddin
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - N A Awang
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - S N Mohd Shahpudin
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - N S Zaidi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
| | - M A M Said
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - B Chaplot
- Department of Geography, M.J.K College, Bettiah, a constituent unit of B.R.A., Bihar University, Bettiah, Muzaffarpur, India
| | - H M Azamathulla
- Faculty of Engineering, The University of the West Indies, St. Augustine, Trinidad
| |
Collapse
|
22
|
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100556. [PMID: 34558234 PMCID: PMC8564466 DOI: 10.1002/advs.202100556] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/06/2021] [Indexed: 05/04/2023]
Abstract
The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed.
Collapse
Affiliation(s)
- Mohammad J. Hajipour
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Amir Ata Saei
- Division of Physiological Chemistry IDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 65Sweden
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Brian Conley
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Yadollah Omidi
- Department of Pharmaceutical SciencesCollege of PharmacyNova Southeastern UniversityFort LauderdaleFL33328USA
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
23
|
Amankwah S, Abdella K, Kassa T. Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents. Nanotechnol Sci Appl 2021; 14:161-177. [PMID: 34548785 PMCID: PMC8449863 DOI: 10.2147/nsa.s325594] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilms are bacterial communities that live in association with biotic or abiotic surfaces and enclosed in an extracellular polymeric substance. Their formation on both biotic and abiotic surfaces, including human tissue and medical device surfaces, pose a major threat causing chronic infections. In addition, current antibiotics and antiseptic agents have shown limited ability to completely remove biofilms. In this review, the authors provide an overview on the formation of bacterial biofilms and its characteristics, burden and evolution with phages. Moreover, the most recent possible use of phages and phage-derived enzymes to combat bacteria in biofilm structures is elucidated. From the emerging results, it can be concluded that despite successful use of phages and phage-derived products in destroying biofilms, they are mostly not adequate to eradicate all bacterial cells. Nevertheless, a combined therapy with the use of phages and/or phage-derived products with other antimicrobial agents including antibiotics, nanoparticles, and antimicrobial peptides may be effective approaches to remove biofilms from medical device surfaces and to treat their associated infections in humans.
Collapse
Affiliation(s)
- Stephen Amankwah
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Accra Medical Centre, Accra, Ghana
| | - Kedir Abdella
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tesfaye Kassa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
24
|
Santos CA, Lima EMF, Franco BDGDM, Pinto UM. Exploring Phenolic Compounds as Quorum Sensing Inhibitors in Foodborne Bacteria. Front Microbiol 2021; 12:735931. [PMID: 34594318 PMCID: PMC8477669 DOI: 10.3389/fmicb.2021.735931] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of multidrug-resistant bacteria stimulates the search for new substitutes to traditional antimicrobial agents, especially molecules with antivirulence properties, such as those that interfere with quorum sensing (QS). This study aimed to evaluate the potential of phenolic compounds for QS inhibition in a QS biosensor strain (Chromobacterium violaceum) and three foodborne bacterial species (Aeromonas hydrophila, Salmonella enterica serovar Montevideo, and Serratia marcescens). Initially, an in silico molecular docking study was performed to select the compounds with the greatest potential for QS inhibition, using structural variants of the CviR QS regulator of C. violaceum as target. Curcumin, capsaicin, resveratrol, gallic acid, and phloridizin presented good affinity to at least four CviR structural variants. These phenolic compounds were tested for antimicrobial activity, inhibition of biofilm formation, and anti-QS activity. The antimicrobial activity when combined with kanamycin was also assessed. Curcumin, capsaicin, and resveratrol inhibited up to 50% of violacein production by C. violaceum. Biofilm formation was inhibited by resveratrol up to 80% in A. hydrophila, by capsaicin and curcumin up to 40% in S. Montevideo and by resveratrol and capsaicin up to 60% in S. marcescens. Curcumin completely inhibited swarming motility in S. marcescens. Additionally, curcumin and resveratrol increased the sensitivity of the tested bacteria to kanamycin. These results indicate that curcumin and resveratrol at concentrations as low as 6μM are potential quorum sensing inhibitors besides having antimicrobial properties at higher concentrations, encouraging applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Liu H, Shi F, Tan S, Yu X, Lai W, Li Y. Engineering a Bifunctional ComQXPA-P srfA Quorum-Sensing Circuit for Dynamic Control of Gene Expression in Corynebacterium glutamicum. ACS Synth Biol 2021; 10:1761-1774. [PMID: 34165971 DOI: 10.1021/acssynbio.1c00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum is an important industrial workhorse for the production of amino acids and other chemicals. However, the engineering of C. glutamicum is inflexible due to the lack of dynamic regulation tools. In this study, a quorum sensing (QS) circuit and its modulated hfq-sRNA cassette were constructed, and the dynamic control of gene expression by these bifunctional circuits was researched. First, the ComQXPA-PsrfA QS system of Bacillus subtilis was harnessed and modified to create an upregulating QS circuit, in which the transcription of genes controlled by the PsrfA promoter may be promoted at high cell density. This QS circuit successfully activated the expression of green fluorescent protein (GFP) to 6.35-fold in a cell density-dependent manner in C. glutamicum. Next, the hfq-sRNA-mediated downregulating circuit under the control of the ComQXPA-PsrfA QS system was established, and the expression of GFP was autonomously repressed by 96.1%. Next, to fine-tune these two QS circuits, a library of synthetic PsrfA based promoters was constructed, and a series of mutant PsrfAM promoters with 0.4-1.5-fold strength of native PsrfA were selected. Subsequently, the ComQXPA-PsrfAM QS circuit was utilized to upregulate the expression of red fluorescent protein, and the same QS-based hfq-sRNA system was utilized to downregulate the expression of GFP simultaneously. Last, this bifunctional ComQXPA-PsrfAM QS circuit was verified again by fine-tuning the expression of α-amylase. Therefore, the engineered ComQXPA-PsrfAM QS cassette can be applied as a novel bifunctional QS circuit to flexibly control gene expression in C. glutamicum.
Collapse
Affiliation(s)
- Haiyan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shuyu Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinping Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenmei Lai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongfu Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Xue J, Chi L, Tu P, Lai Y, Liu CW, Ru H, Lu K. Detection of gut microbiota and pathogen produced N-acyl homoserine in host circulation and tissues. NPJ Biofilms Microbiomes 2021; 7:53. [PMID: 34183673 PMCID: PMC8239043 DOI: 10.1038/s41522-021-00224-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Recent studies suggest that quorum-sensing molecules may play a role in gut microbiota-host crosstalk. However, whether microbiota produces quorum-sensing molecules and whether those molecules can trans-kingdom transport to the host are still unknown. Here, we develop a UPLC-MS/MS-based assay to screen the 27 N-acyl homoserine lactones (AHLs) in the gut microbiota and host. Various AHL molecules are exclusively detected in the cecal contents, sera and livers from conventionally-raised mice but cannot be detected in germ-free mice. Pathogen-produced C4-HSL is detected in the cecal contents and sera of Citrobacter rodentium (C. rodentium)-infected mice, but not found in uninfected controls. Moreover, C. rodentium infection significantly increases the level of multiple AHL molecules in sera. Our findings demonstrate that both commensal and pathogenic bacteria, can produce AHLs that can be detected in host bodies, suggesting that quorum-sensing molecules could be a group of signaling molecules in trans-kingdom microbiota-host crosstalk.
Collapse
Affiliation(s)
- Jingchuan Xue
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Patel B, Mishra S, Priyadarsini IK, Vavilala SL. Elucidating the anti-biofilm and anti-quorum sensing potential of selenocystine against respiratory tract infections causing bacteria: in vitro and in silico studies. Biol Chem 2021; 402:769-783. [PMID: 33735944 DOI: 10.1515/hsz-2020-0375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/10/2021] [Indexed: 11/15/2022]
Abstract
Bacteria are increasingly relying on biofilms to develop resistance to antibiotics thereby resulting in their failure in treating many infections. In spite of continuous research on many synthetic and natural compounds, ideal anti-biofilm molecule is still not found thereby warranting search for new class of molecules. The current study focuses on exploring anti-biofilm potential of selenocystine against respiratory tract infection (RTI)-causing bacteria. Anti-bacterial and anti-biofilm assays demonstrated that selenocystine inhibits the growth of bacteria in their planktonic state, and formation of biofilms while eradicating preformed-biofilm effectively. Selenocystine at a MIC50 as low as 42 and 28 μg/mL effectively inhibited the growth of Klebsiella pneumonia and Pseudomonas aeruginosa. The antibacterial effect is further reconfirmed by agar cup diffusion assay and growth-kill assay. Selenocystine showed 30-60% inhibition of biofilm formation in K. pneumonia, and 44-70% in P. aeruginosa respectively. It also distorted the preformed-biofilms by degrading the eDNA component of the Extracellular Polymeric Substance matrix. Molecular docking studies of selenocystine with quorum sensing specific proteins clearly showed that through the carboxylic acid moiety it interacts and inhibits the protein function, thereby confirming its anti-biofilm potential. With further validation selenocystine can be explored as a potential candidate for the treatment of RTIs.
Collapse
Affiliation(s)
- Bharti Patel
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| | - Subrata Mishra
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| | - Indira K Priyadarsini
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| | - Sirisha L Vavilala
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| |
Collapse
|
28
|
Jain A, Krishnan KP. Marine Group-II archaea dominate particle-attached as well as free-living archaeal assemblages in the surface waters of Kongsfjorden, Svalbard, Arctic Ocean. Antonie van Leeuwenhoek 2021; 114:633-647. [PMID: 33694023 PMCID: PMC7945612 DOI: 10.1007/s10482-021-01547-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
Marine archaea are a significant component of the global oceanic ecosystems, including the polar oceans. However, only a few attempts have been made to study archaea in the high Arctic fjords. Given the importance of Archaea in carbon and nitrogen cycling, it is imperative to explore their diversity and community composition in the high Arctic fjords, such as Kongsfjorden (Svalbard). In the present study, we evaluated archaeal diversity and community composition in the size-fractionated microbial population, viz-a-viz free-living (FL; 0.2-3 μm) and particle-attached (PA; > 3 μm) using archaeal V3-V4 16S rRNA gene amplicon sequencing. Our results indicate that the overall archaeal community in the surface water of Kongsfjorden was dominated by the members of the marine group-II (MGII) archaea, followed by the MGI group members, including Nitrosopumilaceae and Nitrososphaeraceae. Although a clear niche partitioning between PA and FL archaeal communities was not observed, 2 OTUs among 682 OTUs, and 3 ASVs out of 1932 ASVs were differentially abundant among the fractions. OTU001/ASV0002, classified as MGIIa, was differentially abundant in the PA fraction. OTU006/ASV0006/ASV0010 affiliated with MGIIb were differentially abundant in the FL fraction. Particulate organic nitrogen and C:N ratio were the most significant variables (P < 0.05) explaining the observed variation in the FL and PA archaeal communities, respectively. These results indicate an exchange between archaeal communities or a generalist lifestyle switching between FL and PA fractions. Besides, the particles' elemental composition (carbon and nitrogen) seems to play an essential role in shaping the PA archaeal communities in the surface waters of Kongsfjorden.
Collapse
Affiliation(s)
- Anand Jain
- Arctic Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India.
| | | |
Collapse
|
29
|
Topka-Bielecka G, Dydecka A, Necel A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G, Węgrzyn A. Bacteriophage-Derived Depolymerases against Bacterial Biofilm. Antibiotics (Basel) 2021; 10:175. [PMID: 33578658 PMCID: PMC7916357 DOI: 10.3390/antibiotics10020175] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022] Open
Abstract
In addition to specific antibiotic resistance, the formation of bacterial biofilm causes another level of complications in attempts to eradicate pathogenic or harmful bacteria, including difficult penetration of drugs through biofilm structures to bacterial cells, impairment of immunological response of the host, and accumulation of various bioactive compounds (enzymes and others) affecting host physiology and changing local pH values, which further influence various biological functions. In this review article, we provide an overview on the formation of bacterial biofilm and its properties, and then we focus on the possible use of phage-derived depolymerases to combat bacterial cells included in this complex structure. On the basis of the literature review, we conclude that, although these bacteriophage-encoded enzymes may be effective in destroying specific compounds involved in the formation of biofilm, they are rarely sufficient to eradicate all bacterial cells. Nevertheless, a combined therapy, employing depolymerases together with antibiotics and/or other antibacterial agents or factors, may provide an effective approach to treat infections caused by bacteria able to form biofilms.
Collapse
Affiliation(s)
- Gracja Topka-Bielecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Aleksandra Dydecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Agnieszka Necel
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Sylwia Bloch
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| |
Collapse
|
30
|
Cyclodextrin-mediated quorum quenching in the Aliivibrio fischeri bioluminescence model system – Modulation of bacterial communication. Int J Pharm 2021; 594:120150. [DOI: 10.1016/j.ijpharm.2020.120150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
|
31
|
Amly DA, Hajardhini P, Jonarta AL, Yulianto HDK, Susilowati H. Enhancement of pyocyanin production by subinhibitory concentration of royal jelly in Pseudomonas aeruginosa. F1000Res 2021; 10:14. [PMID: 34540201 PMCID: PMC8424461 DOI: 10.12688/f1000research.27915.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/17/2023] Open
Abstract
Background:Pseudomonas aeruginosa, a multidrug-resistant Gram-negative bacterium, produces pyocyanin, a virulence factor associated with antibiotic tolerance. High concentrations of royal jelly have an antibacterial effect, which may potentially overcome antibacterial resistance. However, in some cases, antibiotic tolerance can occur due to prolonged stress of low-dose antibacterial agents. This study aimed to investigate the effect of subinhibitory concentrations of royal jelly on bacterial growth, pyocyanin production, and biofilm formation of P. aeruginosa. Methods:Pseudomonas aeruginosa ATCC 10145 and clinical isolates were cultured in a royal jelly-containing medium to test the antibacterial activity. Pyocyanin production was observed by measuring the absorbance at 690 nm after 36 h culture and determined using extinction coefficient 4310 M-1 cm-1. Static microtiter plate biofilm assay performed to detect the biofilm formation, followed by scanning electron microscopy. Results: Royal jelly effectively inhibited the viability of both strains from a concentration of 25%. The highest production of pyocyanin was observed in the subinhibitory concentration group 6.25%, which gradually decreased along with the decrease of royal jelly concentration. Results of one-way ANOVA tests differed significantly in pyocyanin production of the two strains between the royal jelly groups. Tukey HSD test showed concentrations of 12.5%, 6.25%, and 3.125% significantly increased pyocyanin production of ATCC 10145, and the concentrations of 12.5% and 6.25% significantly increased production of the clinical isolates. Concentrations of 12.5% and 6.125% significantly induced biofilm formation of P. aeruginosa ATCC 10145, in line with the results of the SEM analysis. Conclusions: The royal jelly concentration of 25% or higher inhibits bacterial growth; however, the subinhibitory concentration increases pyocyanin production and biofilm formation in P. aeruginosa. It is advisable to determine the appropriate concentration of royal jelly to obtain beneficial virulence inhibiting activity.
Collapse
Affiliation(s)
- Dina Auliya Amly
- Master of Dental Sciences Program, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Puspita Hajardhini
- Master of Dental Sciences Program, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Alma Linggar Jonarta
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heribertus Dedy Kusuma Yulianto
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heni Susilowati
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| |
Collapse
|
32
|
Sotolon is a natural virulence mitigating agent in Serratia marcescens. Arch Microbiol 2020; 203:533-541. [PMID: 32970221 DOI: 10.1007/s00203-020-02039-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/25/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
Abstract
Serratia marcescens is an emerging opportunistic bacterium that can cause healthcare-associated infections. The high rate of multidrug resistance and the ability to produce a set of virulence factors, by which it can produce infectious diseases makes it urgent to find an alternative approach to the treatment of such infections. Disarming of virulence by targeting of quorum sensing (QS) as the regulating mechanism of virulence is a promising approach that has no effect on bacterial growth that is considered a key factor in emergence of resistance. This study was designed to investigate the ability of sub-inhibitory concentrations (sub-MICs) of sotolon to attenuate virulence of a clinical isolate of S. marcescens. Sotolon at 25 and 50 μg/ml inhibited 35.2 and 47.5% of biofilm formation, respectively. The inhibition of swimming motility were 41.4 and 69.3%, while that of swarming motility were 77.6 and 86.8% at 25 and 50 µg/ml, respectively. Moreover, sotolon reduced prodigiosin production by 76.6 and 87.6% at concentrations of 25 and 50 µg/ml, respectively. Protease activity was reduced by 25 µg/ml of sotolon by 54.8% and was completely blocked at 50 µg/ml. The relative expression of genes regulating virulence factors decreased by 40% for fimA, 29% for fimC, 59% for flhC, 57% for flhD, 39% for bsmB, 37% for rssB, 49% for rsmA, 54% for pigP, and 62% for shlA gene in the presence of 50 µg/ml sotolon. In conclusion, sotolon is an anti-virulence agent that could be used for the treatment of S.marcescens hospital-acquired infections.
Collapse
|
33
|
Ibrahim YM, Abouwarda AM, Omar FA. Effect of kitasamycin and nitrofurantoin at subinhibitory concentrations on quorum sensing regulated traits of Chromobacterium violaceum. Antonie van Leeuwenhoek 2020; 113:1601-1615. [PMID: 32889593 DOI: 10.1007/s10482-020-01467-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Quorum sensing (QS) is a mechanism of intercellular communication in bacteria that received substantial attention as alternate strategy for combating bacterial resistance and the development of new anti-infective agents. The present investigation reports on the assessment of using subinhibitory concentrations of antibiotics for the inhibition of QS-regulated phenotypes in Chromobacterium violaceum. Primarily, the minimum inhibitory concentrations of a series of antibiotics were determined by a microdilution method. Subsequently, the inhibitory effects of selected antibiotics on QS-regulated traits, namely violacein and chitinase production, biofilm formation and motility were evaluated using C. violaceum CV026 and C. violaceum ATCC 12472. Results revealed that kitasamycin and nitrofurantoin exhibited the highest quorum sensing inhibitory (QSI) activity. The amount of violacein produced by C. violaceum was significantly reduced in the presence of either kitasamycin or nitrofurantoin. Moreover, the chitinolytic activity, biofilm formation, and motility were also impaired in kitasamycin or nitrofurantoin-treated cultures. We further confirmed QSI effects at the molecular level using molecular docking and real-time quantitative polymerase chain reaction (RT-qPCR). Results of molecular docking suggested that both antibiotics can interact with CviR transcriptional regulator of C. violaceum. Furthermore, RT-qPCR revealed the suppressive effect of kitasamycin and nitrofurantoin on five genes under the control of the CviI/CviR system: cviI, cviR, vioB, vioC, and vioD. Giving that kitasamycin and nitrofurantoin are being safely used for decades, this study emphasizes their potential application as antivirulence agents to disarm resistant bacterial strains, making their removal an easier task for the immune system or for another antibacterial agent.
Collapse
Affiliation(s)
- Yasser Musa Ibrahim
- Department of Microbiology, General Division of Basic Medical Sciences, National Organization for Drug Control and Research (NODCAR), Giza, 12611, Egypt.
| | - Ahmed Megahed Abouwarda
- Department of Microbiology, General Division of Basic Medical Sciences, National Organization for Drug Control and Research (NODCAR), Giza, 12611, Egypt
| | | |
Collapse
|
34
|
Erandapurathukadumana Sreedharan H, Cherukara Chellappan H, Selvanesan P, Garvasis J. Quorum sensing mediated response of Achromobacter denitrificans SP1 towards prodigiosin production under phthalate stress. J Basic Microbiol 2020; 60:758-767. [PMID: 32573013 DOI: 10.1002/jobm.201900697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 11/07/2022]
Abstract
Quorum sensing is a density-dependent chemical process between bacteria, which may be intergenus or intragenus. N-acyl homoserine lactones (HSLs) are a type of small signaling molecules associated with Gram-negative bacteria for monitoring their own population density. The present study unveils the mechanism of HSLs in Achromobacter denitrificans SP1 while transforming di(2-ethylhexyl) phthalate (DEHP) into prodigiosin in a simple basal salt medium. The primary detection of HSLs was done by the colorimetric method. Fourier-transform infrared spectroscopy and liquid chromatography-mass spectrometry-quadrupole time-of-flight confirmed and identified the HSLs. The maximum production of HSLs was observed between 24 and 72 h of incubation, which is noted to be a peak time of DEHP degradation. A total of 57.2% of DEHP was degraded within 30 h and complete degradation was observed within 72 h of incubation. Regulation in the synthesis of various acyl-HSL molecules, viz. 3OC6-HSL in the initial stage of DEHP stress, 3OC8-HSL, and C10-HSL during the time of degradation and 3OC12-HSL on completion of degradation was noticed. The role of HSLs on the production of prodigiosin was confirmed using vanillin as an HSL inhibitor. Through the selective activation of HSL molecules, A. denitrificans SP1 sustain the changing stressful conditions. Supplementation of acyl-HSL signal molecules may boost up the efficacy of A. denitrificans SP1 in both DEHP degradation and prodigiosin production which offers great potential towards the management of DEHP containing plastic wastes.
Collapse
Affiliation(s)
| | | | - Pradeep Selvanesan
- Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Julia Garvasis
- Corrosion and Electrochemistry Lab, Department of Chemistry, University of Calicut, Kerala, India
| |
Collapse
|
35
|
Jiang B, Zeng Q, Hou Y, Liu J, Xu J, Li H, Du C, Shi S, Ma F. Quorum quenching bacteria bioaugmented GO/PPy modified membrane in EMBR for membrane antifouling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137412. [PMID: 32092509 DOI: 10.1016/j.scitotenv.2020.137412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/31/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
A novel integrated system with quorum quenching (QQ) bacterium Burkholderia sp. ssn-2 bioaugmented graphene oxide/polypyrrole (GO/PPy) conductive polymercomposite membrane (CPM) in MBR with electric field (EMBR) was established. The integrated system exhibited the highest degradation efficiency for phenol (100%) and COD (93.2%-99.9%) during the 120 days operation. Membrane fouling in the integrated system was notably mitigated by the coupling effect of CPM + voltage and QQ bacterium ssn-2. The hydrophilicity and antibacterial activity of CPM inhibited the hydrophobic protein foulants adsorption, bacteria colonization and attachment on the CPM surface. Extracellular polymeric substances (EPS) content was positively correlated with N-acyl-homoserine lactones (AHLs) concentration, and decreased with AHLs degradation by QQ bacterium ssn-2. The increased negative charge of EPS on the CPM surface augmented the electrostatic repulsion between the EPS and cathode CPM in the integrated system. Moreover, the coupling effect altered the microbial communities. A decreased AHLs concentration had a significantly negative correlation with QQ bacterium ssn-2 enrichment, which exhibited the dual effects of degrading phenol and AHLs, and enriching biopolymer-degrading genera Clostridium sensu strict and Acidovorax in the integrated system and on the CPM surface. This can lead to a decrease in the EPS content.
Collapse
Affiliation(s)
- Bei Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Qianzhi Zeng
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuan Hou
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jin Xu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Hongxin Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Cong Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
36
|
Zhao X, Yu Z, Ding T. Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms 2020; 8:E425. [PMID: 32192182 PMCID: PMC7143945 DOI: 10.3390/microorganisms8030425] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/21/2023] Open
Abstract
Quorum sensing is a cell-to-cell communication system that exists widely in the microbiome and is related to cell density. The high-density colony population can generate a sufficient number of small molecule signals, activate a variety of downstream cellular processes including virulence and drug resistance mechanisms, tolerate antibiotics, and harm the host. This article gives a general introduction to the current research status of microbial quorum-sensing systems, focuses on the role of quorum-sensing systems in regulating microbial resistance mechanisms, such as drug efflux pump and microbial biofilm formation regulation, and discusses a new strategy for the treatment of drug-resistant bacteria proposed by using quorum quenching to prevent microbial resistance.
Collapse
Affiliation(s)
- Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (Z.Y.)
| | - Zixuan Yu
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (Z.Y.)
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Sun Y, Ding S, He M, Liu A, Long H, Guo W, Cao Z, Xie Z, Zhou Y. Construction and analysis of the immune effect of Vibrio harveyi subunit vaccine and DNA vaccine encoding TssJ antigen. FISH & SHELLFISH IMMUNOLOGY 2020; 98:45-51. [PMID: 31887410 DOI: 10.1016/j.fsi.2019.12.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Vibrio harveyi, a severe pathogen infects different kinds of sea animals, causes huge economic loss in aquaculture industry. In order to control the Vibriosis disease caused mainly by V. harveyi and other Vibrio spp., the best solution lies in developing corresponding efficient vaccines. In this study, we have cloned and analysed a putative antigen TssJ from the T6SS of V. harveyi, which has the potential as a vaccine against infection. The sequence analysis and western blotting experiments indicated that TssJ anchored in outer membrane and there were several antigenic determinants existed on its extracellular region. Two forms of universal vaccines, subunit vaccine and DNA vaccine, were developed based on TssJ and applied in Trachinotus ovatus. The results showed that both of the two vaccines could generate a moderate protection in fish against V. harveyi. The relative percentage survival (RPS) of subunit vaccine and DNA vaccine were 52.39% and 69.11%, respectively. Immunological analysis showed both subunit vaccine and DNA vaccine enhanced acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme activities. Specific serum antibodies against TssJ in the fish vaccinated with subunit vaccine was much higher than that in the DNA vaccine group. Several immune-related genes, i.e., IL10, C3, MHC Iα, MHC IIα, and IgM, were induced both by the two forms of vaccines. TNFα and Mx were only upregulated in the DNA vaccine group. However, the induction levels of these genes induced by DNA vaccine were higher than subunit vaccine. All these findings suggested that TssJ from V. harveyi had a potential application value in vaccine industry.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Susu Ding
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Mingwang He
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Anzhu Liu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Weiliang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
38
|
Abstract
At the biointerface where materials and microorganisms meet, the organic and synthetic worlds merge into a new science that directs the design and safe use of synthetic materials for biological applications. Vapor deposition techniques provide an effective way to control the material properties of these biointerfaces with molecular-level precision that is important for biomaterials to interface with bacteria. In recent years, biointerface research that focuses on bacteria-surface interactions has been primarily driven by the goals of killing bacteria (antimicrobial) and fouling prevention (antifouling). Nevertheless, vapor deposition techniques have the potential to create biointerfaces with features that can manipulate and dictate the behavior of bacteria rather than killing or deterring them. In this review, we focus on recent advances in antimicrobial and antifouling biointerfaces produced through vapor deposition and provide an outlook on opportunities to capitalize on the features of these techniques to find unexplored connections between surface features and microbial behavior.
Collapse
Affiliation(s)
- Trevor B. Donadt
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rong Yang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
39
|
Zhang B, Zhuang X, Guo L, McLean RJC, Chu W. Recombinant N-acyl homoserine lactone-Lactonase AiiA QSI-1 Attenuates Aeromonas hydrophila Virulence Factors, Biofilm Formation and Reduces Mortality in Crucian Carp. Mar Drugs 2019; 17:E499. [PMID: 31461929 PMCID: PMC6780897 DOI: 10.3390/md17090499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/15/2019] [Accepted: 08/24/2019] [Indexed: 01/19/2023] Open
Abstract
Quorum quenching (QQ) is a promising alternative infection-control strategy to antibiotics that controls quorum-regulated virulence without killing the pathogens. Aeromonas hydrophila is an opportunistic gram-negative pathogen living in freshwater and marine environments. A. hydrophila possesses an N-acyl homoserine lactone (AHL)-based quorum-sensing (QS) system that regulates virulence, so quorum signal-inactivation (i.e., QQ) may represent a new way to combat A. hydrophila infection. In this study, an AHL lactonase gene, aiiA was cloned from Bacillus sp. strain QSI-1 and expressed in Escherichia coli strain BL21(DE3). The A. hydrophila hexanoyl homoserine lactone (C6-HSL) QS signal molecule was degraded by AiiAQSI-1, which resulted in a decrease of bacterial swimming motility, reduction of extracellular protease and hemolysin virulence factors, and inhibited the biofilm formation of A. hydrophila YJ-1 in a microtiter assay. In cell culture studies, AiiAQSI-1 decreased the ability of A. hydrophila adherence to and internalization by Epithelioma papulosum cyprini (EPC) cells. During in vivo studies, oral administration of AiiAQSI-1 via feed supplementation attenuated A. hydrophila infection in Crucian Carp. Results from this work indicate that feed supplementation with AiiAQSI-1 protein has potential to control A. hydrophila aquaculture disease via QQ.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiyi Zhuang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Liyun Guo
- Department of Microbiology, Nanjing Institute of Fisheries Science, Nanjing 210036, China
| | - Robert J C McLean
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
40
|
Effects of Exogenous N-Acyl-Homoserine Lactone as Signal Molecule on Nitrosomonas Europaea under ZnO Nanoparticle Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16163003. [PMID: 31434344 PMCID: PMC6719103 DOI: 10.3390/ijerph16163003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022]
Abstract
Despite the adverse effects of emerging ZnO nanoparticles (nano-ZnO) on wastewater biological nitrogen removal (BNR) systems being widely documented, strategies for mitigating nanoparticle (NP) toxicity impacts on nitrogen removal have not been adequately addressed. Herein, N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) was investigated for its effects against nano-ZnO toxicity to a model nitrifier, Nitrosomonas europaea. The results indicated that AHL-attenuated nano-ZnO toxicity, which was inversely correlated with the increasing dosage of AHL from 0.01 to 1 µM. At 0.01 µM, AHL notably enhanced the tolerance of N. europaea cells to nano-ZnO stress, and the inhibited cell proliferation, membrane integrity, ammonia oxidation rate, ammonia monooxygenase activity and amoA gene expression significantly increased by 18.2 ± 2.1, 2.4 ± 0.9, 58.7 ± 7.1, 32.3 ± 1.7, and 7.3 ± 5.9%, respectively, after 6 h of incubation. However, increasing the AHL dosage compromised the QS-mediated effects and even aggravated the NPs’ toxicity effects. Moreover, AHLs, at all tested concentrations, significantly increased superoxide dismutase activity, indicating the potential of QS regulations to enhance cellular anti-oxidative stress capacities when facing NP invasion. These results provide novel insights into the development of QS regulation strategies to reduce the impact of nanotoxicity on BNR systems.
Collapse
|
41
|
Tourneroche A, Lami R, Hubas C, Blanchet E, Vallet M, Escoubeyrou K, Paris A, Prado S. Bacterial-Fungal Interactions in the Kelp Endomicrobiota Drive Autoinducer-2 Quorum Sensing. Front Microbiol 2019; 10:1693. [PMID: 31417510 PMCID: PMC6685064 DOI: 10.3389/fmicb.2019.01693] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Brown macroalgae are an essential component of temperate coastal ecosystems and a growing economic sector. They harbor diverse microbial communities that regulate algal development and health. This algal holobiont is dynamic and achieves equilibrium via a complex network of microbial and host interactions. We now report that bacterial and fungal endophytes associated with four brown algae (Ascophyllum nodosum, Pelvetia canaliculata, Laminaria digitata, and Saccharina latissima) produce metabolites that interfere with bacterial autoinducer-2 quorum sensing, a signaling system implicated in virulence and host colonization. Additionally, we performed co-culture experiments combined to a metabolomic approach and demonstrated that microbial interactions influence production of metabolites, including metabolites involved in quorum sensing. Collectively, the data highlight autoinducer-2 quorum sensing as a key metabolite in the complex network of interactions within the algal holobiont.
Collapse
Affiliation(s)
- Anne Tourneroche
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, Paris, France
| | - Raphaël Lami
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), USR3579, Observatoire Océanologique de Banyuls, Sorbonne Université, Banyuls-sur-Mer, France
| | - Cédric Hubas
- Muséum National d'Histoire Naturelle, UMR BOREA 7208 MNHN-Sorbonne Université-CNRS-UCN-UA-IRD, Station Marine de Concarneau, Paris, France
| | - Elodie Blanchet
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), USR3579, Observatoire Océanologique de Banyuls, Sorbonne Université, Banyuls-sur-Mer, France
| | - Marine Vallet
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, Paris, France
| | - Karine Escoubeyrou
- CNRS, Observatoire Océanologique de Banyuls, Sorbonne Université, FR3724, Banyuls-sur-Mer, France
| | - Alain Paris
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, Paris, France
| | - Soizic Prado
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, Paris, France
| |
Collapse
|
42
|
Chane A, Barbey C, Bourigault Y, Maillot O, Rodrigues S, Bouteiller M, Merieau A, Konto-Ghiorghi Y, Beury-Cirou A, Gattin R, Feuilloley M, Laval K, Gobert V, Latour X. A Flavor Lactone Mimicking AHL Quorum-Sensing Signals Exploits the Broad Affinity of the QsdR Regulator to Stimulate Transcription of the Rhodococcal qsd Operon Involved in Quorum-Quenching and Biocontrol Activities. Front Microbiol 2019; 10:786. [PMID: 31040836 PMCID: PMC6476934 DOI: 10.3389/fmicb.2019.00786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
In many Gram-negative bacteria, virulence, and social behavior are controlled by quorum-sensing (QS) systems based on the synthesis and perception of N-acyl homoserine lactones (AHLs). Quorum-quenching (QQ) is currently used to disrupt bacterial communication, as a biocontrol strategy for plant crop protection. In this context, the Gram-positive bacterium Rhodococcus erythropolis uses a catabolic pathway to control the virulence of soft-rot pathogens by degrading their AHL signals. This QS signal degradation pathway requires the expression of the qsd operon, encoding the key enzyme QsdA, an intracellular lactonase that can hydrolyze a wide range of substrates. QsdR, a TetR-like family regulator, represses the expression of the qsd operon. During AHL degradation, this repression is released by the binding of the γ-butyrolactone ring of the pathogen signaling molecules to QsdR. We show here that a lactone designed to mimic quorum signals, γ-caprolactone, can act as an effector ligand of QsdR, triggering the synthesis of qsd operon-encoded enzymes. Interaction between γ-caprolactone and QsdR was demonstrated indirectly, by quantitative RT-PCR, molecular docking and transcriptional fusion approaches, and directly, in an electrophoretic mobility shift assay. This broad-affinity regulatory system demonstrates that preventive or curative quenching therapies could be triggered artificially and/or managed in a sustainable way by the addition of γ-caprolactone, a compound better known as cheap food additive. The biostimulation of QQ activity could therefore be used to counteract the lack of consistency observed in some large-scale biocontrol assays.
Collapse
Affiliation(s)
- Andrea Chane
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France
| | - Corinne Barbey
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France.,Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville-du-Grand-Caux, France
| | - Yvann Bourigault
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France
| | - Sophie Rodrigues
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France
| | - Mathilde Bouteiller
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France
| | - Amélie Beury-Cirou
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville-du-Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Richard Gattin
- Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France.,Institut Polytechnique UniLaSalle, UP Transformations & Agro-Ressources, Mont-Saint-Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France
| | - Karine Laval
- Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France.,Institut Polytechnique UniLaSalle, UP Aghyle, Mont-Saint-Aignan, France
| | - Virginie Gobert
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville-du-Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Xavier Latour
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France
| |
Collapse
|
43
|
Zhang B, Guo Y, Lens PNL, Zhang Z, Shi W, Cui F, Tay JH. Effect of light intensity on the characteristics of algal-bacterial granular sludge and the role of N-acyl-homoserine lactone in the granulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:372-383. [PMID: 30599356 DOI: 10.1016/j.scitotenv.2018.12.250] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/01/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
The effects of light intensity on the development of algal-bacterial granular sludge (ABGS) were investigated over a period of 12 weeks. The ABGS developed at low light intensity (142 ± 10 μmol m-2·s-1) exhibited excellent settling ability (SVI30 of 30.9 mL/g), COD and TN removal efficiencies (97.6% and 60.4%, respectively). High light intensity (316 ± 12 μmol m-2·s-1) accelerated granular biomass growth (5.3 g/L) and enhanced the TP removal efficiency (83.7%). Extracellular polymeric substance (EPS) analysis revealed that low light intensity induced more large weight distribution protein production (9-12 kDa and 50-150 kDa), predominantly tryptophan and aromatic proteins. Furthermore, N-acyl-homoserine lactones (AHLs) with a side chain ≤ C10 were commonly shared in the ABGS, and the ABGS developed at low light intensity had a higher C6- and 3OC8-HSL content, which effectively promoted the biofilm formation. The add-back studies showed that the AHLs facilitated the regulation of EPS synthesis. Statistical analysis indicated that the AHLs content had a close correlation with the EPS production, the 50th percentile of the particle size distribution and microbial community assembly, suggesting that AHLs-mediated quorum sensing have an important ecological role in EPS expression and algal-bacterial granulation. Overall, this study describes the ABGS development at different light intensities and the mechanisms of ABGS formation treating synthetic domestic wastewater.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China; Department of Civil Engineering, University of Calgary, Calgary, Canada
| | - Yuan Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Piet N L Lens
- UNESCO-IHE, P.O. Box 3015, 2601 DA Delft, the Netherlands
| | - Zhiqiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China; College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China.
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China.
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, Calgary, Canada
| |
Collapse
|
44
|
Sun B, Lei Y, Cao Z, Zhou Y, Sun Y, Wu Y, Wang S, Guo W, Liu C. TroCCL4, a CC chemokine of Trachinotus ovatus, is involved in the antimicrobial immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 86:525-535. [PMID: 30521967 DOI: 10.1016/j.fsi.2018.11.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
CC chemokines are a large subfamily of chemokines that play an important role in the innate immune system. To date, several CC chemokines have been identified in fish species; however, the activities and functions of these putative chemokines remain ambiguous in teleosts, especially in the golden pompano, Trachinotus ovatus. Here, we characterized CC chemokine ligand 4 from T. ovatus (TroCCL4) and studied its functions. TroCCL4 contains a 294 bp open reading frame that encodes a putative peptide comprising 97 amino acids. TroCCL4 shares a high amino acid sequence similarity of 31.11%-78.35% with other CC chemokines sequences in humans and teleosts and has four cysteine residues that are conserved among other CC chemokines. TroCCL4 is also related to the macrophage inflammatory protein (MIP) group of CC chemokines. TroCCL4 expression was most abundant in immune organs and significantly upregulated in a time-dependent manner following Edwardsiella tarda infection. Recombinant TroCCL4 (rTroCCL4) induced the migration of peripheral blood leukocytes and the cellular proliferation of head kidney lymphocytes. In addition, rTroCCL4 inhibited the growth of Escherichia coli and E. tarda, indicating an antimicrobial function. Furthermore, the results of in vivo analysis showed that TroCCL4 overexpression in T. ovatus significantly enhanced macrophage activation; upregulated the gene expression of interleukin 1-β (IL-1β), interleukin 15 (IL15), interferon-induced Mx protein (Mx), tumor necrosis factor α (TNFα), complement C3, and major histocompatibility complex (MHC) class Iα and class IIα; and protected against bacterial infection in fish tissues. In contrast, knockdown of TroCCL4 expression resulted in increased bacterial dissemination and colonization in fish tissues. Taken together, our results provide evidence indicating that TroCCL4 has the ability to stimulate leukocytes and macrophages and enhance host immunity to defend against bacterial infection.
Collapse
Affiliation(s)
- Baiming Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China.
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Shifeng Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Weiliang Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| |
Collapse
|
45
|
Teren M, Turonova Michova H, Vondrakova L, Demnerova K. Molecules Autoinducer 2 and cjA and Their Impact on Gene Expression in Campylobacter jejuni. J Mol Microbiol Biotechnol 2019; 28:207-215. [DOI: 10.1159/000495411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/14/2018] [Indexed: 11/19/2022] Open
Abstract
Quorum sensing is a widespread form of cell-to-cell communication, which is based on the production of signaling molecules known as autoinducers (AIs). The first group contains highly species-specific N-acyl homoserine lactones (N-AHLs), generally known as AI-1, which are produced by AHL synthase. The second group, possessing the characteristic structure of a furanone ring, are known as AI-2. The enzyme responsible for their production is S-ribosylhomocysteine lyase (LuxS). In <i>Campylobacter jejuni</i>, AI-2 and LuxS play a role in many important processes, including biofilm formation, stress response, motility, expression of virulence factors, and colonization. However, neither the receptor protein nor the exact structure of the AI-2 molecule have been identified to date. Similarly, little is known about the possible existence of AHL-synthase producing AI-1 and its impact on gene expression. Recently, an analogue of homoserine lactone, called cjA, was isolated from a cell-free supernatant of <i>C. jejuni</i> strain<i></i> 81–176 and from the food isolate c11. The molecule cjA particularly impacted the expression of virulence factors and biofilm formation. This review summarizes the role of AI-2 and cjA in the context of biofilm formation, motility, stress responses, and expression of virulence factors.
Collapse
|
46
|
Joshi C, Patel P, Kothari V. Anti-infective potential of hydroalcoholic extract of Punica granatum peel against gram-negative bacterial pathogens. F1000Res 2019; 8:70. [PMID: 30828441 PMCID: PMC6392158 DOI: 10.12688/f1000research.17430.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 07/30/2023] Open
Abstract
Background: Punica granatum extracts have been prescribed in traditional medicine for management of a variety of disease conditions including microbial infections. Generation of scientific evidence for validation of P. granatum peel extract's anti-pathogenic efficacy is required. Methods: Hydroalcoholic extract of P. granatum peel (PGPE), prepared by microwave assisted extraction method was evaluated for its quorum-modulatory potential against two different human-pathogenic bacteria viz. Chromobacterium violaceum and Pseudomonas aeruginosa. Results: This extract was able to modulate in vitro production of quorum sensing-regulated pigments in both these test bacteria at ≥5 μg/ml. Virulence traits of P. aeruginosa like haemolytic activity, and biofilm formation were negatively affected by the test extract, and it also made P. aeruginosa more susceptible to lysis by human serum. Antibiotic susceptibility of both test bacteria was modulated owing to pre-treatment with PGPE. Exposure of these test pathogens to PGPE (≥0.5 μg/ml) effectively reduced their virulence towards the nematode Caenorhabditis elegans. Repeated subculturing of P. aeruginosa on PGPE-supplemented growth medium did not induce resistance to PGPE in this notorious pathogen, and this extract was also found to exert a post-extract effect on P. aeruginosa. Individual constituent phytocompounds of PGPE were found to be less efficacious than the whole extract. PGPE seemed to interfere with the signal-response machinery of P. aeruginosa and C. violaceum. PGPE also exhibited notable prebiotic potential by promoting growth of probiotic strains- Bifidobacterium bifidum and Lactobacillus plantarum at ≤50 μg/ml. Conclusions: This study indicates PGPE to be an effective antipathogenic and prebiotic preparation, and validates its therapeutic use mentioned in traditional medicine. This study also emphasizes the need for testing any bioactive extract at broadest possible concentration range, particularly in vivo, so that an accurate picture of dose-response relationship can emerge.
Collapse
Affiliation(s)
- Chinmayi Joshi
- Institute of Science, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Pooja Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
47
|
Joshi C, Patel P, Kothari V. Anti-infective potential of hydroalcoholic extract of Punica granatum peel against gram-negative bacterial pathogens. F1000Res 2019; 8:70. [PMID: 30828441 PMCID: PMC6392158 DOI: 10.12688/f1000research.17430.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background:Punica granatum extracts have been prescribed in traditional medicine for management of a variety of disease conditions including microbial infections. Generation of scientific evidence for validation of P. granatum peel extract's anti-pathogenic efficacy is required. Methods: Hydroalcoholic extract of P. granatum peel (PGPE), prepared by microwave assisted extraction method was evaluated for its quorum-modulatory potential against two different human-pathogenic bacteria viz. Chromobacterium violaceum and Pseudomonas aeruginosa. Results: This extract was able to modulate in vitro production of quorum sensing-regulated pigments in both these test bacteria at ≥5 μg/ml. Virulence traits of P. aeruginosa like haemolytic activity, and biofilm formation were negatively affected by the test extract, and it also made P. aeruginosa more susceptible to lysis by human serum. Antibiotic susceptibility of both test bacteria was modulated owing to pre-treatment with PGPE. Exposure of these test pathogens to PGPE (≥0.5 μg/ml) effectively reduced their virulence towards the nematode Caenorhabditis elegans. Repeated subculturing of P. aeruginosa on PGPE-supplemented growth medium did not induce resistance to PGPE in this notorious pathogen, and this extract was also found to exert a post-extract effect on P. aeruginosa. Individual constituent phytocompounds of PGPE were found to be less efficacious than the whole extract. PGPE seemed to interfere with the signal-response machinery of P. aeruginosa and C. violaceum. PGPE also exhibited notable prebiotic potential by promoting growth of probiotic strains- Bifidobacterium bifidum and Lactobacillus plantarum at ≤50 μg/ml. Conclusions: This study indicates PGPE to be an effective antipathogenic and prebiotic preparation, and validates its therapeutic use mentioned in traditional medicine. This study also emphasizes the need for testing any bioactive extract at broadest possible concentration range, particularly in vivo, so that an accurate picture of dose-response relationship can emerge.
Collapse
Affiliation(s)
- Chinmayi Joshi
- Institute of Science, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Pooja Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
48
|
Barbey C, Chane A, Burini JF, Maillot O, Merieau A, Gallique M, Beury-Cirou A, Konto-Ghiorghi Y, Feuilloley M, Gobert V, Latour X. A Rhodococcal Transcriptional Regulatory Mechanism Detects the Common Lactone Ring of AHL Quorum-Sensing Signals and Triggers the Quorum-Quenching Response. Front Microbiol 2018; 9:2800. [PMID: 30524404 PMCID: PMC6262395 DOI: 10.3389/fmicb.2018.02800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023] Open
Abstract
The biocontrol agent Rhodococcus erythropolis disrupts virulence of plant and human Gram-negative pathogens by catabolizing their N-acyl-homoserine lactones. This quorum-quenching activity requires the expression of the qsd (quorum-sensing signal degradation) operon, which encodes the lactonase QsdA and the fatty acyl-CoA ligase QsdC, involved in the catabolism of lactone ring and acyl chain moieties of signaling molecules, respectively. Here, we demonstrate the regulation of qsd operon expression by a TetR-like family repressor, QsdR. This repression was lifted by adding the pathogen quorum signal or by deleting the qsdR gene, resulting in enhanced lactone degrading activity. Using interactomic approaches and transcriptional fusion strategy, the qsd operon derepression was elucidated: it is operated by the binding of the common part of signaling molecules, the homoserine lactone ring, to the effector-receiving domain of QsdR, preventing a physical binding of QsdR to the qsd promoter region. To our knowledge, this is the first evidence revealing quorum signals as inducers of the suitable quorum-quenching pathway, confirming this TetR-like protein as a lactone sensor. This regulatory mechanism designates the qsd operon as encoding a global disrupting pathway for degrading a wide range of signal substrates, allowing a broad spectrum anti-virulence activity mediated by the rhodococcal biocontrol agent. Understanding the regulation mechanisms of qsd operon expression led also to the development of biosensors useful to monitor in situ the presence of exogenous signals and quorum-quenching activity.
Collapse
Affiliation(s)
- Corinne Barbey
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France.,Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France
| | - Andrea Chane
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Jean-François Burini
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Mathias Gallique
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Amélie Beury-Cirou
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Virginie Gobert
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Xavier Latour
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| |
Collapse
|
49
|
Characterization of a Novel N-Acylhomoserine Lactonase RmmL from Ruegeria mobilis YJ3. Mar Drugs 2018; 16:md16100370. [PMID: 30297643 PMCID: PMC6213412 DOI: 10.3390/md16100370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/23/2022] Open
Abstract
Gram-negative bacteria utilize N-acylhomoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for intercellular communication. Cell-to-cell communication depends on cell population density, and AHL-dependent QS is related to the production of multiple genes including virulence factors. Quorum quenching (QQ), signal inactivation by enzymatic degradation, is a potential strategy for attenuating QS regulated bacterial infections. Both Gram-positive and -negative bacteria have QQ enzymes that can degrade AHLs. In our previous study, strain Ruegeria mobilis YJ3, isolated from healthy shrimp, showed strong AHLs degradative activity. In the current study, an AHL lactonase (designated RmmL) was cloned and characterized from Ruegeria mobilis YJ3. Amino acid sequence analysis showed that RmmL has a conserved “HXHXDH” motif and clusters together with lactonase AidC that belongs to the metallo-β-lactamase superfamily. Recombinant RmmL could degrade either short- or long-chain AHLs in vitro. High-performance liquid chromatography analysis indicated that RmmL works as an AHL lactonase catalyzing AHL ring-opening by hydrolyzing lactones. Furthermore, RmmL can reduce the production of pyocyanin by Pseudomonas aeruginosa PAO1, while for the violacein and the extracellular protease activities by Chromobacterium violaceum CV026 and Vibrio anguillarum VIB72, no significant reduction was observed. This study suggests that RmmL might be used as a therapeutic agent in aquaculture.
Collapse
|
50
|
Dangi AK, Sharma B, Hill RT, Shukla P. Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 2018; 39:79-98. [DOI: 10.1080/07388551.2018.1500997] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Arun Kumar Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|