1
|
Khalid N, Adams N, Cunha F, Taki AC, Le TG, Baell JB, Heine HS, Gasser RB, Eshraghi A. Tolfenpyrad Derivatives Exhibit Potent Francisella-Specific Antibacterial Activity without Toxicity to Mammalian Cells In Vitro. ACS Infect Dis 2024; 10:3902-3914. [PMID: 39356820 DOI: 10.1021/acsinfecdis.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Tularemia is a deadly disease caused by Francisella tularensis, an emerging intracellular bacterial pathogen that can be disseminated rapidly through aerosols and vector-borne transmission. Recent surveillance data demonstrate an increasing incidence in several countries. Although clinical isolates of Francisella strains are sensitive to currently used antibiotics, engineered or horizontal acquisition of antibiotic resistance is a constant threat to public health. Therefore, the identification of antibiotics that target previously undrugged pathways is required to safeguard human health. An environmental pesticide that is registered for use in multiple countries, tolfenpyrad, shows promising activity to block Francisella growth; however, it is not a suitable antimicrobial candidate for use in vivo due to potential toxicity in humans and other animals. In this study, we applied a structure-activity relationship approach to tolfenpyrad to generate compounds with improved antibacterial activity and reduced toxicity. Through screening of a library of derivatives, we identified analogs with improved therapeutic windows compared with tolfenpyrad. Although structural diversity exists among these analogs, they inhibit the growth of Francisella species but not other Gram-negative or Gram-positive species. These compounds block intramacrophage growth of F. novicida and pathogenesis in an in vivo arthropod model of infection. Although the biochemical activity of these drugs is unknown, they appear to target the same pathway as the parent molecule because F. novicida mutants that are resistant to tolfenpyrad are also resistant to its analogs. Taken together, these findings suggest that these tolfenpyrad-derived compounds comprise a new class of Francisella-targeted antimicrobials and merit further evaluation and development.
Collapse
Affiliation(s)
- Nimra Khalid
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida 32608, United States
| | - Nicole Adams
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida 32608, United States
| | - Federico Cunha
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, Florida 32608, United States
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Thuy G Le
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Jonathan B Baell
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Henry S Heine
- Institute for Therapeutic Innovation, University of Florida, Orlando, Florida 32827, United States
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Aria Eshraghi
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida 32608, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610, United States
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Cantlay S, Garrison NL, Patterson R, Wagner K, Kirk Z, Fan J, Primerano DA, Sullivan MLG, Franks JM, Stolz DB, Horzempa J. Phenotypic and transcriptional characterization of F. tularensis LVS during transition into a viable but non-culturable state. Front Microbiol 2024; 15:1347488. [PMID: 38380104 PMCID: PMC10877056 DOI: 10.3389/fmicb.2024.1347488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Francisella tularensis is a gram-negative, intracellular pathogen which can cause serious, potentially fatal, illness in humans. Species of F. tularensis are found across the Northern Hemisphere and can infect a broad range of host species, including humans. Factors affecting the persistence of F. tularensis in the environment and its epidemiology are not well understood, however, the ability of F. tularensis to enter a viable but non-culturable state (VBNC) may be important. A broad range of bacteria, including many pathogens, have been observed to enter the VBNC state in response to stressful environmental conditions, such as nutrient limitation, osmotic or oxidative stress or low temperature. To investigate the transition into the VBNC state for F. tularensis, we analyzed the attenuated live vaccine strain, F. tularensis LVS grown under standard laboratory conditions. We found that F. tularensis LVS rapidly and spontaneously enters a VBNC state in broth culture at 37°C and that this transition coincides with morphological differentiation of the cells. The VBNC bacteria retained an ability to interact with both murine macrophages and human erythrocytes in in vitro assays and were insensitive to treatment with gentamicin. Finally, we present the first transcriptomic analysis of VBNC F. tularensis, which revealed clear differences in gene expression, and we identify sets of differentially regulated genes which are specific to the VBNC state. Identification of these VBNC specific genes will pave the way for future research aimed at dissecting the molecular mechanisms driving entry into the VBNC state.
Collapse
Affiliation(s)
- Stuart Cantlay
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Nicole L. Garrison
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Rachelle Patterson
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Kassey Wagner
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Zoei Kirk
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Donald A. Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Mara L. G. Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan M. Franks
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donna B. Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph Horzempa
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| |
Collapse
|
3
|
Lang M, Carvalho A, Baharoglu Z, Mazel D. Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules. Microbiol Mol Biol Rev 2023; 87:e0003622. [PMID: 38047635 PMCID: PMC10732077 DOI: 10.1128/mmbr.00036-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYAminoglycosides (AGs) are long-known molecules successfully used against Gram-negative pathogens. While their use declined with the discovery of new antibiotics, they are now classified as critically important molecules because of their effectiveness against multidrug-resistant bacteria. While they can efficiently cross the Gram-negative envelope, the mechanism of AG entry is still incompletely understood, although this comprehension is essential for the development of new therapies in the face of the alarming increase in antibiotic resistance. Increasing antibiotic uptake in bacteria is one strategy to enhance effective treatments. This review aims, first, to consolidate old and recent knowledge about AG uptake; second, to explore the connection between AG-dependent bacterial stress and drug uptake; and finally, to present new strategies of potentiation of AG uptake for more efficient antibiotic therapies. In particular, we emphasize on the connection between sugar transport and AG potentiation.
Collapse
Affiliation(s)
- Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - André Carvalho
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
4
|
Chilambi GS, Wang YH, Wallace NR, Obiwuma C, Evans KM, Li Y, Shalaby MAW, Flaherty DP, Shields RK, Doi Y, Van Tyne D. Carbonic Anhydrase Inhibition as a Target for Antibiotic Synergy in Enterococci. Microbiol Spectr 2023; 11:e0396322. [PMID: 37260400 PMCID: PMC10434275 DOI: 10.1128/spectrum.03963-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Enterococcus faecalis is a hospital-associated opportunistic pathogen that can cause infections with high mortality, such as infective endocarditis. With an increasing occurrence of multidrug-resistant enterococci, there is a need for alternative strategies to treat enterococcal infections. We isolated a gentamicin-hypersusceptible E. faecalis strain from a patient with infective endocarditis that carried a mutation in the alpha-carbonic anhydrase (α-CA) and investigated how disruption of α-CA sensitized E. faecalis to killing with gentamicin. The gentamicin-hypersusceptible α-CA mutant strain showed increased intracellular gentamicin uptake in comparison to an isogenic strain encoding full-length, wild-type α-CA. We hypothesized that increased gentamicin uptake could be due to increased proton motive force (PMF), increased membrane permeability, or both. We observed increased intracellular ATP production in the α-CA mutant strain, suggesting increased PMF-driven gentamicin uptake contributed to the strain's gentamicin susceptibility. We also analyzed the membrane permeability and fatty acid composition of isogenic wild-type and α-CA mutant strains and found that the mutant displayed a membrane composition that was consistent with increased membrane permeability. Finally, we observed that exposure to the FDA-approved α-CA inhibitor acetazolamide lowered the gentamicin MIC of eight genetically diverse E. faecalis strains with intact α-CA but did not change the MIC of the α-CA mutant strain. These results suggest that α-CA mutation or inhibition increases PMF and alters membrane permeability, leading to increased uptake of gentamicin into E. faecalis. This connection could be exploited clinically to provide new combination therapies for patients with enterococcal infections. IMPORTANCE Enterococcal infections can be difficult to treat, and new therapeutic approaches are needed. In studying an E. faecalis clinical strain from an infected patient, we found that the bacteria were rendered hypersusceptible to aminoglycoside antibiotics through a mutation that disrupted the α-CA. Our follow-on work suggested two different ways that α-CA disruption causes increased gentamicin accumulation in E. faecalis: increased proton motive force-powered uptake and increased membrane permeability. We also found that a mammalian CA inhibitor could sensitize a variety of E. faecalis strains to killing with gentamicin. Given that mammalian CA inhibitors are frequently used to treat conditions such as glaucoma, hypertension, and epilepsy, our findings suggest that these "off-the-shelf" inhibitors could also be useful partner antibiotics for the treatment of E. faecalis infections.
Collapse
Affiliation(s)
- Gayatri Shankar Chilambi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu-Hao Wang
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nathan R. Wallace
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chetachukwu Obiwuma
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kirsten M. Evans
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yanhong Li
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Menna-Allah W. Shalaby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Mira P, Lozano‐Huntelman N, Johnson A, Savage VM, Yeh P. Evolution of antibiotic resistance impacts optimal temperature and growth rate in
Escherichia coli
and
Staphylococcus epidermidis. J Appl Microbiol 2022; 133:2655-2667. [DOI: 10.1111/jam.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Portia Mira
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
| | | | - Adrienne Johnson
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
| | - Van M. Savage
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
- Department of Computational Medicine, David Geffen School of Medicine University of California Los Angeles U.S.A
- Santa Fe Institute Santa Fe New Mexico U.S.A
| | - Pamela Yeh
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
- Santa Fe Institute Santa Fe New Mexico U.S.A
| |
Collapse
|
6
|
Danner MC, Azams SO, Robertson A, Perkins D, Behrends V, Reiss J. It More than Adds Up: Interaction of Antibiotic Mixing and Temperature. Life (Basel) 2021; 11:life11121435. [PMID: 34947966 PMCID: PMC8703992 DOI: 10.3390/life11121435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Use of antibiotics for the treatment and prevention of bacterial infections in humans, agri- and aquaculture as well as livestock rearing leads to antibiotic pollution of fresh water and these antibiotics have an impact on free-living bacteria. While we know which antibiotics are most common in natural environments such as rivers and streams, there is considerable uncertainty regarding antibiotics’ interactions with one another and the effect of abiotic factors such as temperature. Here, we used an experimental approach to explore the effects of antibiotic identity, concentration, mixing and water temperature on the growth of Pseudomonas fluorescens, a common, ubiquitous bacterium. We exposed P. fluorescens to the four antibiotics most commonly found in surface waters (ciprofloxacin, ofloxacin, sulfamethoxazole and sulfapyridine) and investigated antibiotic interactions for single and mixed treatments at different, field-realistic temperatures. We observed an overall dependence of antibiotic potency on temperature, as temperature increased efficacy of ciprofloxacin and ofloxacin with their EC50 lowered by >75% with a 10 °C temperature increase. Further, we show that mixtures of ciprofloxacin and ofloxacin, despite both belonging to the fluoroquinolone class, exhibit low-temperature-dependent synergistic effects in inhibiting bacterial growth. These findings highlight the context dependency of antibiotic efficacy. They further suggest antibiotic-specific off-target effects that only affect the bacteria once they enter a certain temperature range. This has important implications as freshwater systems already contain multi-drug antibiotic cocktails and are changing temperature due to environmental warming. These factors will interact and affect aquatic food webs, and hence this creates an urgent need to adapt and improve laboratory testing conditions to closer reflect natural environments.
Collapse
Affiliation(s)
- Marie-Claire Danner
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, UK; (M.-C.D.); (S.O.A.); (A.R.); (D.P.); (V.B.)
- FRB—CESAB, Institut Bouisson Bertrand, 34070 Montpellier, France
| | - Sharon Omonor Azams
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, UK; (M.-C.D.); (S.O.A.); (A.R.); (D.P.); (V.B.)
| | - Anne Robertson
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, UK; (M.-C.D.); (S.O.A.); (A.R.); (D.P.); (V.B.)
| | - Daniel Perkins
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, UK; (M.-C.D.); (S.O.A.); (A.R.); (D.P.); (V.B.)
| | - Volker Behrends
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, UK; (M.-C.D.); (S.O.A.); (A.R.); (D.P.); (V.B.)
| | - Julia Reiss
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, UK; (M.-C.D.); (S.O.A.); (A.R.); (D.P.); (V.B.)
- Correspondence:
| |
Collapse
|
7
|
Abstract
Temperature variation-through time and across climatic gradients-affects individuals, populations, and communities. Yet how the thermal response of biological systems is altered by environmental stressors is poorly understood. Here, we quantify two key features-optimal temperature and temperature breadth-to investigate how temperature responses vary in the presence of antibiotics. We use high-throughput screening to measure growth of Escherichia coli under single and pairwise combinations of 12 antibiotics across seven temperatures that range from 22°C to 46°C. We find that antibiotic stress often results in considerable changes in the optimal temperature for growth and a narrower temperature breadth. The direction of the optimal temperature shifts can be explained by the similarities between antibiotic-induced and temperature-induced damage to the physiology of the bacterium. We also find that the effects of pairs of stressors in the temperature response can often be explained by just one antibiotic out of the pair. Our study has implications for a general understanding of how ecological systems adapt and evolve to environmental changes. IMPORTANCE The growth of living organisms varies with temperature. This dependence is described by a temperature response curve that is described by an optimal temperature where growth is maximized and a temperature range (termed breadth) across which the organism can grow. Because an organism's temperature response evolves or acclimates to its environment, it is often assumed to change over only evolutionary or developmental timescales. Counter to this, we show here that antibiotics can quickly (over hours) change the optimal growth temperature and temperature breadth for the bacterium Escherichia coli. Moreover, our results suggest a shared-damage hypothesis: when an antibiotic damages similar cellular components as hot (or cold) temperatures do, this shared damage will combine and compound to more greatly reduce growth when that antibiotic is administered at hot (or cold) temperatures. This hypothesis could potentially also explain how temperature responses are modified by stressors other than antibiotics.
Collapse
|
8
|
Gong M, Han Y, Wang X, Tao H, Meng F, Hou B, Sun BB, Wang G. Effect of Temperature on Metronidazole Resistance in Helicobacter pylori. Front Microbiol 2021; 12:681911. [PMID: 34093508 PMCID: PMC8170400 DOI: 10.3389/fmicb.2021.681911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/23/2021] [Indexed: 01/14/2023] Open
Abstract
Efficacy of Helicobacter pylori (H. pylori) eradication therapy has declined due to rapid rises in antibiotic resistance. We investigated how increased temperature affected H. pylori (NCTC 11637) growth and its sensitivity to metronidazole in vitro. We performed transcriptomic profiling using RNA-sequencing to identify differentially expressed genes (DEGs) associated with increased temperature. Transcriptional pathways involved in temperature-driven metronidazole resistance changes were analyzed through bioinformatic and literature curation approaches. We showed that H. pylori growth was inhibited at 41°C and inhibition was more apparent with prolonged incubation. Resistance to metronidazole was also reduced—minimum inhibitory concentration for metronidazole decreased from > 256 μg/ml at 37°C to 8 μg/ml at 41°C after culturing for 3 days. RNA-sequencing results, which were highly concordant within treatment conditions, revealed more than one third of genes (583/1,552) to be differentially expressed at increased temperatures with similar proportions up and down-regulated. Quantitative real-time PCR validation for 8 out of 10 DEGs tested gave consistent direction in gene expression changes. We found enrichment for redox and oxygen radical pathways, highlighting a mechanistic pathway driving temperature-related metronidazole resistance. Independent literature review of published genes associated with metronidazole resistance revealed 46 gene candidates, 21 of which showed differential expression and 7 out of 9 DEGs associated with “redox” resistance pathways. Sanger sequencing did not detect any changes in genetic sequences for known resistance genes rdxA, frxA nor fdxB. Our findings suggest that temperature increase can inhibit the growth and reduce H. pylori resistance to metronidazole. Redox pathways are possible potential drivers in metronidazole resistance change induced by temperature. Our study provides insight into potential novel approaches in treating antibiotic resistant H. pylori.
Collapse
Affiliation(s)
- Meiliang Gong
- Department of Laboratory Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingjie Han
- Department of Gastroenterology, Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Department of Oncology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuning Wang
- Department of Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongjin Tao
- Department of Gastroenterology, Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fansen Meng
- Department of Gastroenterology, Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Baicun Hou
- Department of Gastroenterology, Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Benjamin B Sun
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.,Royal Free Hospital, London, United Kingdom
| | - Gangshi Wang
- Department of Gastroenterology, Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
9
|
Kassinger SJ, van Hoek ML. Genetic Determinants of Antibiotic Resistance in Francisella. Front Microbiol 2021; 12:644855. [PMID: 34054749 PMCID: PMC8149597 DOI: 10.3389/fmicb.2021.644855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Tularemia, caused by Francisella tularensis, is endemic to the northern hemisphere. This zoonotic organism has historically been developed into a biological weapon. For this Tier 1, Category A select agent, it is important to expand our understanding of its mechanisms of antibiotic resistance (AMR). Francisella is unlike many Gram-negative organisms in that it does not have significant plasmid mobility, and does not express AMR mechanisms on plasmids; thus plasmid-mediated resistance does not occur naturally. It is possible to artificially introduce plasmids with AMR markers for cloning and gene expression purposes. In this review, we survey both the experimental research on AMR in Francisella and bioinformatic databases which contain genomic and proteomic data. We explore both the genetic determinants of intrinsic AMR and naturally acquired or engineered antimicrobial resistance as well as phenotypic resistance in Francisella. Herein we survey resistance to beta-lactams, monobactams, carbapenems, aminoglycosides, tetracycline, polymyxins, macrolides, rifampin, fosmidomycin, and fluoroquinolones. We also highlight research about the phenotypic AMR difference between planktonic and biofilm Francisella. We discuss newly developed methods of testing antibiotics against Francisella which involve the intracellular nature of Francisella infection and may better reflect the eventual clinical outcomes for new antibiotic compounds. Understanding the genetically encoded determinants of AMR in Francisella is key to optimizing the treatment of patients and potentially developing new antimicrobials for this dangerous intracellular pathogen.
Collapse
Affiliation(s)
| | - Monique L. van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
10
|
OpiA, a Type Six Secretion System Substrate, Localizes to the Cell Pole and Plays a Role in Bacterial Growth and Viability in Francisella tularensis LVS. J Bacteriol 2020; 202:JB.00048-20. [PMID: 32366588 DOI: 10.1128/jb.00048-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Francisella tularensis is an intracellular pathogen and the causative agent of tularemia. The F. tularensis type six secretion system (T6SS) is required for a number of host-pathogen interactions, including phagolysosomal escape and invasion of erythrocytes. One known effector of the T6SS, OpiA, has recently been shown to be a phosphatidylinositol-3 kinase. To investigate the role of OpiA in erythrocyte invasion, we constructed an opiA-null mutant in the live vaccine strain, F. tularensis LVS. OpiA was not required for erythrocyte invasion; however, deletion of opiA affected growth of F. tularensis LVS in broth cultures in a medium-dependent manner. We also found that opiA influenced cell size, gentamicin sensitivity, bacterial viability, and the lipid content of F. tularensis A fluorescently tagged OpiA (OpiA-emerald-green fluorescent protein [EmGFP]) accumulated at the cell poles of F. tularensis, which is consistent with the location of the T6SS. However, OpiA-EmGFP also exhibited a highly dynamic localization, and this fusion protein was detected in erythrocytes and THP-1 cells in vitro, further supporting that OpiA is secreted. Similar to previous reports with F. novicida, our data demonstrated that opiA had a minimal effect on intracellular replication of F. tularensis in host immune cells in vitro However, THP-1 cells infected with the opiA mutant produced modestly (but significantly) higher levels of the proinflammatory cytokine tumor necrosis factor alpha compared to these host cells infected with wild-type bacteria. We conclude that, in addition to its role in host-pathogen interactions, our results reveal that the function of opiA is central to the biology of F. tularensis bacteria.IMPORTANCE F. tularensis is a pathogenic intracellular pathogen that is of importance for public health and strategic defense. This study characterizes the opiA gene of F. tularensis LVS, an attenuated strain that has been used as a live vaccine but that also shares significant genetic similarity to related Francisella strains that cause human disease. The data presented here provide the first evidence of a T6SS effector protein that affects the physiology of F. tularensis, namely, the growth, cell size, viability, and aminoglycoside resistance of F. tularensis LVS. This study also adds insight into our understanding of OpiA as a determinant of virulence. Finally, the fluorescence fusion constructs presented here will be useful tools for dissecting the role of OpiA in infection.
Collapse
|
11
|
Langlois JP, Millette G, Guay I, Dubé-Duquette A, Chamberland S, Jacques PÉ, Rodrigue S, Bouarab K, Marsault É, Malouin F. Bactericidal Activity of the Bacterial ATP Synthase Inhibitor Tomatidine and the Combination of Tomatidine and Aminoglycoside Against Persistent and Virulent Forms of Staphylococcus aureus. Front Microbiol 2020; 11:805. [PMID: 32431678 PMCID: PMC7216300 DOI: 10.3389/fmicb.2020.00805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Tomatidine (TO), a steroid alkaloid, exerts a strong bactericidal activity on the infection-persistent phenotype of Staphylococcus aureus, the small-colony variant (SCV), with a minimal inhibitory concentration (MIC) of 0.06 μg/ml. Also, the combination of TO to an aminoglycoside (AMG) shows a strong synergistic effect against prototypical (WT) S. aureus (MIC 0.06 μg/ml), which is otherwise unaffected by TO alone (MIC > 128 μg/ml). We have recently established that the ATP synthase (subunit AtpE) was the molecular target of TO and that TO reduces the production of ATP in S. aureus. The purpose of this study was to understand how TO and the TO-AMG combination exert bactericidal activities against S. aureus SCV and WT strains, respectively. The impact of TO and of the TO-gentamicin (GEN) combination on the membrane potential and generation of reactive oxygen species (ROS) were determined using florescent probes. GEN uptake in WT was assessed in the presence of TO. Virulence of SCV and WT strains as well as of in vitro-selected mutants showing resistance to TO or the TO-GEN combination was evaluated in a murine thigh infection model. TO causes a reduction in membrane potential in both WT and SCV, but significant amounts of ROS are only produced in SCVs. Besides, the presence of TO improves the uptake of GEN by the WT strain and the combination TO-GEN generated 2.5-folds more ROS in WT, compared to that induced by GEN alone. Under anaerobic conditions, WT adopts a fermentative slow-growth phenotype and becomes susceptible to TO even if used alone. In vivo, TO- or TO-GEN-resistant strains were significantly altered in their ability to colonize tissues. These results shed light on the mechanism of action of TO and its synergy with AMGs against S. aureus WT. TO bactericidal activity against SCVs is attributable to both a critical drop in the membrane potential accompanied by a substantial ROS production. In the WT, TO helps GEN uptake and ROS is also important for the synergy. Acquiring resistance to TO significantly impairs virulence. The residual ATP synthase activity of SCVs might represent the Achilles’ heel of persistent S. aureus.
Collapse
Affiliation(s)
- Jean-Philippe Langlois
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Millette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Isabelle Guay
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexis Dubé-Duquette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Suzanne Chamberland
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Rodrigue
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kamal Bouarab
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric Marsault
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
12
|
TpiA is a Key Metabolic Enzyme That Affects Virulence and Resistance to Aminoglycoside Antibiotics through CrcZ in Pseudomonas aeruginosa. mBio 2020; 11:mBio.02079-19. [PMID: 31911486 PMCID: PMC6946797 DOI: 10.1128/mbio.02079-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The increase in bacterial resistance against antibiotics imposes a severe threat to public health. It is urgent to identify new drug targets and develop novel antimicrobials. Metabolic homeostasis of bacteria plays an essential role in their virulence and resistance to antibiotics. Recent studies demonstrated that antibiotic efficacies can be improved by modulating the bacterial metabolism. Pseudomonas aeruginosa is an important opportunistic human pathogen that causes various infections. The bacterium is intrinsically resistant to antibiotics. In this study, we provide clear evidence that TpiA (triosephosphate isomerase) plays an essential role in the metabolism of P. aeruginosa and influences bacterial virulence and antibiotic resistance. The significance of this work is in identifying a key enzyme in the metabolic network, which will provide clues as to the development of novel treatment strategies against infections caused by P. aeruginosa. Carbon metabolism plays an essential role in bacterial pathogenesis and susceptibility to antibiotics. In Pseudomonas aeruginosa, Crc, Hfq, and a small RNA, CrcZ, are central regulators of carbon metabolism. By screening mutants of genes involved in carbon metabolism, we found that mutation of the tpiA gene reduces the expression of the type III secretion system (T3SS) and bacterial resistance to aminoglycoside antibiotics. TpiA is a triosephosphate isomerase that reversibly converts glyceraldehyde 3-phosphate to dihydroxyacetone phosphate, a key step connecting glucose metabolism with glycerol and phospholipid metabolisms. We found that mutation of the tpiA gene enhances the bacterial carbon metabolism, respiration, and oxidative phosphorylation, which increases the membrane potential and promotes the uptake of aminoglycoside antibiotics. Further studies revealed that the level of CrcZ is increased in the tpiA mutant due to enhanced stability. Mutation of the crcZ gene in the tpiA mutant background restored the expression of the T3SS genes and the bacterial resistance to aminoglycoside antibiotics. Overall, this study reveals an essential role of TpiA in the metabolism, virulence, and antibiotic resistance in P. aeruginosa.
Collapse
|
13
|
Cruz-Loya M, Kang TM, Lozano NA, Watanabe R, Tekin E, Damoiseaux R, Savage VM, Yeh PJ. Stressor interaction networks suggest antibiotic resistance co-opted from stress responses to temperature. ISME JOURNAL 2018; 13:12-23. [PMID: 30171253 DOI: 10.1038/s41396-018-0241-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 11/09/2022]
Abstract
Environmental factors like temperature, pressure, and pH partly shaped the evolution of life. As life progressed, new stressors (e.g., poisons and antibiotics) arose as part of an arms race among organisms. Here we ask if cells co-opted existing mechanisms to respond to new stressors, or whether new responses evolved de novo. We use a network-clustering approach based purely on phenotypic growth measurements and interactions among the effects of stressors on population growth. We apply this method to two types of stressors-temperature and antibiotics-to discover the extent to which their cellular responses overlap in Escherichia coli. Our clustering reveals that responses to low and high temperatures are clearly separated, and each is grouped with responses to antibiotics that have similar effects to cold or heat, respectively. As further support, we use a library of transcriptional fluorescent reporters to confirm heat-shock and cold-shock genes are induced by antibiotics. We also show strains evolved at high temperatures are more sensitive to antibiotics that mimic the effects of cold. Taken together, our results strongly suggest that temperature stress responses have been co-opted to deal with antibiotic stress.
Collapse
Affiliation(s)
- Mauricio Cruz-Loya
- Department of Biomathematics, University of California, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Tina Manzhu Kang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Natalie Ann Lozano
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Rina Watanabe
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Elif Tekin
- Department of Biomathematics, University of California, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- Department of Medical and Molecular Pharmacology, University of California, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Van M Savage
- Department of Biomathematics, University of California, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.,Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Pamela J Yeh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA. .,Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
14
|
Sagun S, Collins E, Martin C, Nolan EJ, Horzempa J. Alarm Odor Compounds of the Brown Marmorated Stink Bug Exhibit Antibacterial Activity. ACTA ACUST UNITED AC 2016; 2. [PMID: 27656692 PMCID: PMC5027987 DOI: 10.4172/2472-0992.1000119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Some insects release scented compounds as a defense against predators that also exhibit antimicrobial activity. Trans-2-octenal and trans-2-decenal are the major alarm aldehydes responsible for the scent of Halyomorpha halys, the brown marmorated stink bug. Previous research has shown these aldehydes are antifungal and produce an antipredatory effect, but have never been tested for antibacterial activity. We hypothesized that these compounds functioned similarly to the analogous multifunctional action of earwig compounds, so we tested whether these aldehydes could inhibit the growth of bacteria. Disk diffusion assays indicated that these aldehydes significantly inhibited the growth of Methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, in vitro. Moreover, mealworm beetles (Tenebrio molitor) coated in stink bug aldehydes showed a substantial reduction in bacterial colonization compared to vehicle-treated insects. These results suggest that brown marmorated stinkbug aldehydes are indeed antibacterial agents and serve a multifunctional role for this insect. Therefore, stinkbug aldehydes may have potential for use as chemical antimicrobials.
Collapse
Affiliation(s)
- Steven Sagun
- Department of Natural Sciences and Mathematics, West Liberty University, USA
| | - Elliot Collins
- Department of Natural Sciences and Mathematics, West Liberty University, USA
| | - Caleb Martin
- Department of Natural Sciences and Mathematics, West Liberty University, USA
| | - E Joseph Nolan
- Department of Natural Sciences and Mathematics, West Liberty University, USA
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, USA
| |
Collapse
|