1
|
Ontiveros-Padilla L, Bachelder EM, Ainslie KM. Microparticle and nanoparticle-based influenza vaccines. J Control Release 2024; 376:880-898. [PMID: 39427775 DOI: 10.1016/j.jconrel.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Influenza infections are a health public problem worldwide every year with the potential to become the next pandemic. Vaccination is the most effective strategy to prevent future influenza outbreaks, however, influenza vaccines need to be reformulated each year to provide protection due to viral antigenic drift and shift. As more efficient influenza vaccines are needed, it is relevant to recapitulate strategies to improve the immunogenicity and broad reactivity of the current vaccines. Here, we review the current approved vaccines in the U.S. market and the platform used for their production. We discuss the different approaches to develop a broadly reactive vaccine as well as reviewing the adjuvant systems that are under study for being potentially included in future influenza vaccine formulations. The main components of the immune system involved in achieving a protective immune response are reviewed and how they participate in the trafficking of particles systemically and in the mucosa. Finally, we describe and classify, according to their physicochemical properties, some of the potential micro and nano-particulate platforms that can be used as delivery systems for parenteral and mucosal vaccinations.
Collapse
Affiliation(s)
- Luis Ontiveros-Padilla
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA; Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Rowe T, Fletcher A, Svoboda P, Pohl J, Hatta Y, Jasso G, Wentworth DE, Ross TM. Interferon as an immunoadjuvant to enhance antibodies following influenza B infection and vaccination in ferrets. NPJ Vaccines 2024; 9:199. [PMID: 39448628 PMCID: PMC11502657 DOI: 10.1038/s41541-024-00973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Despite annual vaccination, influenza B viruses (IBV) continue to cause significant morbidity and mortality in humans. We have found that IBV infection resulted in a weaker innate and adaptive immune response than influenza A viruses (IAV) in ferrets. To understand and overcome the weak immune responses to IBV in ferrets, we administered type-I or type-III interferon (IFN) to ferrets following infection or vaccination and evaluated their effects on the immune response. IFN signaling following viral infection plays an important role in the initial innate immune response and affects subsequent adaptive immune responses. In the respiratory tract, IFN lambda (IFNL) has regulatory effects on adaptive immunity indirectly through thymic stromal lymphopoietin (TSLP), which then acts on immune cells to stimulate the adaptive response. Following IBV infection or vaccination, IFN treatment (IFN-Tx) upregulated gene expression of early inflammatory responses in the upper respiratory tract and robust IFN, TSLP, and inflammatory responses in peripheral blood cells. These responses were sustained following challenge or vaccination in IFN-Tx animals. Serum IFNL and TSLP levels were enhanced in IFN-Tx animals following challenge/rechallenge over mock-Tx; however, this difference was not observed following vaccination. Antibody responses in serum of IFN-Tx animals following IBV infection or vaccination increased more quickly and to higher titers and were sustained longer than mock-Tx animals over 3 months. Following rechallenge of infected animals 3 months post treatment, antibody levels remained higher than mock-Tx. However, IFN-Tx did not have an effect on antibody responses following challenge of vaccinated animals. A strong direct correlation was found between TSLP levels and antibody responses following challenge-rechallenge and vaccination-challenge indicating it as a useful tool for predicting adaptive immune responses following IBV infection or vaccination. The effects of IFN on strengthening both innate and adaptive responses to IBV may aid in development of more effective treatments following infection and improved influenza vaccines.
Collapse
Affiliation(s)
- Thomas Rowe
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | | | - Pavel Svoboda
- Division of Core Laboratory Services and Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jan Pohl
- Division of Core Laboratory Services and Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yasuko Hatta
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gabriela Jasso
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - David E Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ted M Ross
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
- Department of Infection Biology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Bilyalova A, Bilyalov A, Filatov N, Shagimardanova E, Kiyasov A, Vorontsova M, Gusev O. Non-classical animal models for studying adrenal diseases: advantages, limitations, and implications for research. Lab Anim Res 2024; 40:25. [PMID: 38898483 PMCID: PMC11186145 DOI: 10.1186/s42826-024-00212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
The study of adrenal disorders is a key component of scientific research, driven by the complex innervation, unique structure, and essential functions of the adrenal glands. This review explores the use of non-traditional animal models for studying congenital adrenal hyperplasia. It highlights the advantages, limitations, and relevance of these models, including domestic ferrets, dogs, guinea pigs, golden hamsters, pigs, and spiny mice. We provide a detailed analysis of the histological structure, steroidogenesis pathways, and genetic characteristics of these animal models. The morphological and functional similarities between the adrenal glands of spiny mice and humans highlight their potential as an important avenue for future research.
Collapse
Affiliation(s)
- Alina Bilyalova
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | - Airat Bilyalov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - Nikita Filatov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | - Elena Shagimardanova
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 121205, Russia
| | - Andrey Kiyasov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | | | - Oleg Gusev
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 121205, Russia.
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Endocrinology Research Center, Moscow, 117292, Russia.
| |
Collapse
|
4
|
Farrukee R, Schwab LSU, Barnes JB, Brooks AG, Londrigan SL, Hartmann G, Zillinger T, Reading PC. Induction and antiviral activity of ferret myxovirus resistance (Mx) protein 1 against influenza A viruses. Sci Rep 2024; 14:13524. [PMID: 38866913 PMCID: PMC11169552 DOI: 10.1038/s41598-024-63314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Myxovirus resistance (Mx) proteins are products of interferon stimulated genes (ISGs) and Mx proteins of different species have been reported to mediate antiviral activity against a number of viruses, including influenza A viruses (IAV). Ferrets are widely considered to represent the 'gold standard' small animal model for studying pathogenesis and immunity to human IAV infections, however little is known regarding the antiviral activity of ferret Mx proteins. Herein, we report induction of ferret (f)Mx1/2 in a ferret lung cell line and in airway tissues from IAV-infected ferrets, noting that fMx1 was induced to higher levels that fMx2 both in vitro and in vivo. Overexpression confirmed cytoplasmic expression of fMx1 as well as its ability to inhibit infection and replication of IAV, noting that this antiviral effect of fMx1was modest when compared to cells overexpressing either human MxA or mouse Mx1. Together, these studies provide the first insights regarding the role of fMx1 in cell innate antiviral immunity to influenza viruses. Understanding similarities and differences in the antiviral activities of human and ferret ISGs provides critical context for evaluating results when studying human IAV infections in the ferret model.
Collapse
Affiliation(s)
- Rubaiyea Farrukee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
| | - Lara S U Schwab
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - James B Barnes
- Victorian Infectious Diseases Reference Laboratory, WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Patrick C Reading
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia.
- Victorian Infectious Diseases Reference Laboratory, WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Victoria, 3000, Australia.
| |
Collapse
|
5
|
Laszlofy C, Fazekas G, Barath Z, Vajo Z. Evaluation of Vaccine Immunogenicity-Correlates to Real-World Protection: Influenza. Viruses 2024; 16:441. [PMID: 38543806 PMCID: PMC10975834 DOI: 10.3390/v16030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
Recent events highlighted that, despite decades of studying vaccine immunogenicity and efforts toward finding correlates of protection, evaluating real-world vaccine efficacy as well as establishing meaningful licensing criteria still represents a significant challenge. In this paper, we review all aspects of influenza vaccine immunogenicity, including animal and human challenge studies, humoral and cellular immunity parameters, and their potential correlation with real-life protection from disease.
Collapse
Affiliation(s)
- Csaba Laszlofy
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary; (C.L.); (Z.B.)
| | | | - Zoltan Barath
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary; (C.L.); (Z.B.)
| | - Zoltan Vajo
- Department of Family Medicine, Semmelweis University Medical School, 1085 Budapest, Hungary
| |
Collapse
|
6
|
Evans NG, Pence CH. Gain-of-function research and model organisms in biology. JOURNAL OF MEDICAL ETHICS 2024; 50:201-206. [PMID: 37188506 DOI: 10.1136/jme-2022-108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
So-called 'gain-of-function' (GOF) research is virological research that results in a virus substantially more virulent or transmissible than its wild antecedent. GOF research has been subject to ethical analysis in the past, but the methods of GOF research have to date been underexamined by philosophers in these analyses. Here, we examine the typical animal used in influenza GOF experiments, the ferret, and show how despite its longstanding use, it does not easily satisfy the desirable criteria for an animal model We then discuss the limitations of the ferret model, and how those epistemic limitations bear on ethical and policy questions around the risks and benefits of GOF research. We conclude with a reflection on how philosophy of science can contribute to ethical and policy debates around the risks, benefits and relative priority of life sciences research.
Collapse
Affiliation(s)
- Nicholas G Evans
- Department of Philosophy, University of Massachussetts Lowell, Lowell, MA, USA
| | - Charles H Pence
- Institut supérieur de philosophie, Universite catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Nuñez IA, Jang H, Huang Y, Kelvin A, Ross TM. Influenza virus immune imprinting dictates the clinical outcomes in ferrets challenged with highly pathogenic avian influenza virus H5N1. Front Vet Sci 2023; 10:1286758. [PMID: 38170075 PMCID: PMC10759238 DOI: 10.3389/fvets.2023.1286758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Zoonotic transmission of H5N1 highly pathogenic avian influenza virus (HPAIV) into the human population is an increasing global threat. The recent 2022 HPAIV outbreak significantly highlighted this possibility, increasing concern in the general population. The clinical outcomes of H5N1 influenza virus exposure can be determined by an individual's primary influenza virus infection (imprinting) or vaccination status. Immunological imprinting with Group 1 - (H1N1, H2N2, and H2N3) increases survival rates following H5N1 viral infection compared to Group 2 - (H3N2) imprinted individuals. Vaccination against H5N1 influenza viruses can offer protection to at-risk populations; however, stockpiled inactivated H5N1 influenza vaccines are not readily available to the public. We hypothesize that the immunological response to vaccination and subsequent clinical outcome following H5N1 influenza virus infection is correlated with the immunological imprinting status of an individual. To test this hypothesis, our lab established a ferret pre-immune model of disease. Naïve ferrets were intranasally inoculated with seasonal influenza viruses and allowed to recover for 84 days prior to H5N1 virus infection. Ferrets imprinted following H1N1 and H2N3 virus infections were completely protected against lethal H5N1 influenza virus challenge (100% survival), with few to no clinical symptoms. In comparison, H3N2 influenza virus-imprinted ferrets had severe clinical symptoms, delayed disease progression, and a sublethal phenotype (40% mortality). Consecutive infections with H1N1 influenza viruses followed by an H3N2 influenza virus infection did not abrogate the immune protection induced by the original H1N1 influenza virus infection. In addition, ferrets consecutively infected with H1N1 and H2N3 viruses had no clinical symptoms or weight loss. H3N2 pre-immune ferrets were vaccinated with a broadly reactive H5 HA-based or H1 NA-based vaccine (Hu-CO 2). These ferrets were protected against H5N1 influenza virus challenge, whereas ferrets vaccinated with the H1N1 wild-type CA/09 rHA vaccine had similar phenotypes as non-vaccinated H3N2-imprinted ferrets with 40% survival. Overall, Group 2 imprinted ferrets, which were vaccinated with heterologous Group 1 HA vaccines, had redirected immune responses to Group 1 influenza viral antigens and rescued a sublethal phenotype to complete protection.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Alyson Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Pilchová V, Gerhauser I, Armando F, Wirz K, Schreiner T, de Buhr N, Gabriel G, Wernike K, Hoffmann D, Beer M, Baumgärtner W, von Köckritz-Blickwede M, Schulz C. Characterization of young and aged ferrets as animal models for SARS-CoV-2 infection with focus on neutrophil extracellular traps. Front Immunol 2023; 14:1283595. [PMID: 38169647 PMCID: PMC10758425 DOI: 10.3389/fimmu.2023.1283595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released by activated neutrophils upon infection [e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] as part of the innate immune response that have protective effects by pathogen entrapment and immobilization or result in detrimental consequences for the host due to the massive release of NETs and their impaired degradation by nucleases like DNase-1. Higher amounts of NETs are associated with coronavirus disease 2019 (COVID-19) severity and are a risk factor for severe disease outcome. The objective of our study was to investigate NET formation in young versus aged ferrets to evaluate their value as translational model for SARS-CoV-2-infection and to correlate different NET markers and virological parameters. In each of the two groups (young and aged), nine female ferrets were intratracheally infected with 1 mL of 106 TCID50/mL SARS-CoV-2 (BavPat1/2020) and euthanized at 4, 7, or 21 days post-infection. Three animals per group served as negative controls. Significantly more infectious virus and viral RNA was found in the upper respiratory tract of aged ferrets. Interestingly, cell-free DNA and DNase-1 activity was generally higher in bronchoalveolar lavage fluid (BALF) but significantly lower in serum of aged compared to young ferrets. In accordance with these data, immunofluorescence microscopy revealed significantly more NETs in lungs of aged compared to young infected ferrets. The association of SARS-CoV-2-antigen in the respiratory mucosa and NET markers in the nasal conchae, but the absence of virus antigen in the lungs, confirms the nasal epithelium as the major location for virus replication as described for young ferrets. Furthermore, a strong positive correlation was found between virus shedding and cell-free DNA or the level of DNAse-1 activity in aged ferrets. Despite the increased NET formation in infected lungs of aged ferrets, the animals did not show a strong NET phenotype and correlation among tested NET markers. Therefore, ferrets are of limited use to study SARS-CoV-2 pathogenesis associated with NET formation. Nevertheless, the mild to moderate clinical signs, virus shedding pattern, and the lung pathology of aged ferrets confirm those animals as a relevant model to study age-dependent COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Veronika Pilchová
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Katrin Wirz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nicole de Buhr
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gülşah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
- Institute for Virology, University for Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
9
|
van de Ven K, Lanfermeijer J, van Dijken H, Muramatsu H, Vilas Boas de Melo C, Lenz S, Peters F, Beattie MB, Lin PJC, Ferreira JA, van den Brand J, van Baarle D, Pardi N, de Jonge J. A universal influenza mRNA vaccine candidate boosts T cell responses and reduces zoonotic influenza virus disease in ferrets. SCIENCE ADVANCES 2022; 8:eadc9937. [PMID: 36516261 PMCID: PMC9750153 DOI: 10.1126/sciadv.adc9937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Universal influenza vaccines should protect against continuously evolving and newly emerging influenza viruses. T cells may be an essential target of such vaccines, as they can clear infected cells through recognition of conserved influenza virus epitopes. We evaluated a novel T cell-inducing nucleoside-modified messenger RNA (mRNA) vaccine that encodes the conserved nucleoprotein, matrix protein 1, and polymerase basic protein 1 of an H1N1 influenza virus. To mimic the human situation, we applied the mRNA vaccine as a prime-boost regimen in naïve ferrets (mimicking young children) and as a booster in influenza-experienced ferrets (mimicking adults). The vaccine induced and boosted broadly reactive T cells in the circulation, bone marrow, and respiratory tract. Booster vaccination enhanced protection against heterosubtypic infection with a potential pandemic H7N9 influenza virus in influenza-experienced ferrets. Our findings show that mRNA vaccines encoding internal influenza virus proteins represent a promising strategy to induce broadly protective T cell immunity against influenza viruses.
Collapse
Affiliation(s)
- Koen van de Ven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josien Lanfermeijer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Harry van Dijken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Vilas Boas de Melo
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Stefanie Lenz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Florence Peters
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | | | - José A. Ferreira
- Department of Statistics, Informatics and Modelling, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Judith van den Brand
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, Netherlands
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
10
|
Qin J, Hu B, Song Q, Wang R, Zhang X, Yu Y, Wang JH. The transmembrane replacement H7N9-VLP vaccine displays high levels of protection in mice. Front Microbiol 2022; 13:1003714. [PMID: 36274725 PMCID: PMC9582854 DOI: 10.3389/fmicb.2022.1003714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of infections caused by the H7N9 subtype of the influenza virus has expanded rapidly in China in recent decades, generating massive economic loss and posing a significant threat to public health. In the absence of specialized antiviral treatments or long-term effective preventative vaccinations, it is critical to constantly enhance vaccines and create effective antiviral drugs to prevent the recurrence of pandemics. In the present study, a transmembrane-substituted (TM) virus-like particle (VLP)-based vaccine was created by replacing the transmembrane region of hemagglutinin (HA) protein with the transmembrane region of the H3 HA protein and then used to immunize BALB/c mice. Sera and T cells were collected from the immunized mice to evaluate the passive immune effects. Our results showed that naïve mice achieved 80–100% protection against homologous and heterologous H7N9 influenza strains after receiving passive serum immunization; the protective effect of the TM VLPs was more evident than that of the wild-type HA VLPs. In contrast, mice immunized with passive T cells achieved only 20 to 80% protection against homologous or heterologous strains. Our findings significantly contribute to understanding the control of the H7N9 virus and the development of a vaccine.
Collapse
Affiliation(s)
- Jianru Qin
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Bing Hu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qiqi Song
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ruijuan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiangfei Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yaqi Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Jian-Hua Wang,
| |
Collapse
|
11
|
Gupta T, Somanna N, Rowe T, LaGatta M, Helms S, Owino SO, Jelesijevic T, Harvey S, Jacobs W, Voss T, Sakamoto K, Day C, Whalen C, Karls R, He B, Tompkins SM, Bakre A, Ross T, Quinn FD. Ferrets as a model for tuberculosis transmission. Front Cell Infect Microbiol 2022; 12:873416. [PMID: 36051240 PMCID: PMC9425069 DOI: 10.3389/fcimb.2022.873416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
Even with the COVID-19 pandemic, tuberculosis remains a leading cause of human death due to a single infectious agent. Until successfully treated, infected individuals may continue to transmit Mycobacterium tuberculosis bacilli to contacts. As with other respiratory pathogens, such as SARS-CoV-2, modeling the process of person-to-person transmission will inform efforts to develop vaccines and therapies that specifically impede disease transmission. The ferret (Mustela furo), a relatively inexpensive, small animal has been successfully employed to model transmissibility, pathogenicity, and tropism of influenza and other respiratory disease agents. Ferrets can become naturally infected with Mycobacterium bovis and are closely related to badgers, well known in Great Britain and elsewhere as a natural transmission vehicle for bovine tuberculosis. Herein, we report results of a study demonstrating that within 7 weeks of intratracheal infection with a high dose (>5 x 103 CFU) of M. tuberculosis bacilli, ferrets develop clinical signs and pathological features similar to acute disease reported in larger animals, and ferrets infected with very-high doses (>5 x 104 CFU) develop severe signs within two to four weeks, with loss of body weight as high as 30%. Natural transmission of this pathogen was also examined. Acutely-infected ferrets transmitted M. tuberculosis bacilli to co-housed naïve sentinels; most of the sentinels tested positive for M. tuberculosis in nasal washes, while several developed variable disease symptomologies similar to those reported for humans exposed to an active tuberculosis patient in a closed setting. Transmission was more efficient when the transmitting animal had a well-established acute infection. The findings support further assessment of this model system for tuberculosis transmission including the testing of prevention measures and vaccine efficacy.
Collapse
Affiliation(s)
- Tuhina Gupta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Naveen Somanna
- Molecular Analytics R&D, GlaxoSmithKline Vaccines, Rockville, MD, United States
| | - Thomas Rowe
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Monica LaGatta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Shelly Helms
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Simon Odera Owino
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Stephen Harvey
- Animal Resources Program, University of Georgia, Athens, GA, United States
| | - Wayne Jacobs
- Animal Resources Program, University of Georgia, Athens, GA, United States
| | - Thomas Voss
- Merck Research Laboratories, West Point, PA, United States
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Cheryl Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher Whalen
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, United States
| | - Russell Karls
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - S. Mark Tompkins
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ted Ross
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Frederick D. Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- *Correspondence: Frederick D. Quinn,
| |
Collapse
|
12
|
Lossi L. Anatomical features for an adequate choice of the experimental animal model in biomedicine: III. Ferret, goat, sheep, and horse. Ann Anat 2022; 244:151978. [PMID: 35787443 DOI: 10.1016/j.aanat.2022.151978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The anatomical characteristics of each of the many species today employed in biomedical research are very important when selecting the correct animal model(s), especially for conducting translational research. In previous papers, these features have been considered for fish (D'Angelo et al. Ann. Anat, 2016, 205:75), the most common laboratory rodents, rabbits, and pigs (Lossi et al. 2016). I here follow this line of discussion by dealing with the importance of proper knowledge of ferrets, goats, sheep, and horses' main anatomical features in translational research.
Collapse
Affiliation(s)
- Laura Lossi
- University of Turin, Department of Veterinary Sciences, Turin, Italy; INN, Istituto Nazionale di Neuroscienze, Turin, Italy.
| |
Collapse
|
13
|
Mifsud EJ, Farrukee R, Hurt AC, Reading PC, Barr IG. Infection with different human influenza A subtypes affects the period of susceptibility to secondary bacterial infections in ferrets. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
It is well established that influenza virus infections predispose individuals to secondary bacterial infections (SBIs), which may result in a range of clinical outcomes from relatively mild (e.g. sinusitis, otitis media) to severe (e.g. pneumonia and septicaemia). The most common bacterial pathogen associated with SBI following influenza virus infections is Streptococcus pneumoniae. Of circulating human seasonal influenza viruses, influenza A viruses (IAV) of both the A(H1N1)pdm09 and A(H3N2) subtypes are associated with severe disease but have differing hospitalisation and complication rates. To study the interplay of these two IAV subtypes with SBI, we used a ferret model of influenza infection followed by secondary challenge with a clinical strain of Streptococcus pneumoniae (SPN) to determine the severity and the period of susceptibility for SBI. Ferrets challenged with SPN 5 days after infection with A(H3N2) or A(H1N1)pdm09 viruses developed severe disease that required euthanasia. When the time between viral infection and bacterial challenge was extended, A/H1N1pdm09-infected animals remained susceptible to SBI- for up to 10 days after the viral infection. For A(H3N2)- but not A(H1N1)pdm09-infected ferrets, susceptibility to SBI-associated disease could be extended out to 16 days post viral infection. While caution should be taken when extrapolating animal models to human infections, the differences between A(H3N2) and A(H1N1)pdm09 strains in duration of susceptibility to SBI observed in the ferret model, may provide some insight regarding the higher rates of SBI-associated disease associated with some strains of A(H3N2) viruses in humans.
Collapse
Affiliation(s)
- Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Patrick C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| |
Collapse
|
14
|
Bannantine JP, Gupta T, Zinniel DK, Hikal A, Quinn FD, Barletta RG. Use of a Ferret Model to Test Efficacy and Immunogenicity of Live Attenuated Mycobacterium avium Subspecies paratuberculosis Vaccines. Methods Mol Biol 2022; 2411:95-104. [PMID: 34816400 DOI: 10.1007/978-1-0716-1888-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Native hosts for the bacterial agent that causes Johne's disease are ruminants, which include cattle, sheep and goats among others. These large animals are often too costly to be used in testing experimental vaccines. In this chapter, we provide detailed methods to use an inexpensive and more manageable animal host, the ferret, to test efficacy and immunogenicity of live-attenuated Mycobacterium avium subspecies paratuberculosis (MAP) mutant strains prior to consideration as vaccine candidates.
Collapse
Affiliation(s)
| | - Tuhina Gupta
- University of Georgia, College of Veterinary Medicine, Athens, GA, USA
| | - Denise K Zinniel
- University of Nebraska-Lincoln, School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA
| | - Ahmed Hikal
- University of Georgia, College of Veterinary Medicine, Athens, GA, USA
| | - Frederick D Quinn
- University of Georgia, College of Veterinary Medicine, Athens, GA, USA
| | - Raul G Barletta
- University of Nebraska-Lincoln, School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA
| |
Collapse
|
15
|
Baloxavir Treatment Delays Influenza B Virus Transmission in Ferrets and Results in Limited Generation of Drug-Resistant Variants. Antimicrob Agents Chemother 2021; 65:e0113721. [PMID: 34424039 DOI: 10.1128/aac.01137-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Clinical efficacy of the influenza antiviral baloxavir marboxil (baloxavir) is compromised by treatment-emergent variants harboring a polymerase acidic protein I38T (isoleucine-38-threonine) substitution. However, the fitness of I38T-containing influenza B viruses (IBVs) remains inadequately defined. After the pharmacokinetics of the compound were confirmed in ferrets, animals were injected subcutaneously with 8 mg/kg of baloxavir acid (BXA) at 24 h postinoculation with recombinant BXA-sensitive (BXA-Sen, I38) or BXA-resistant (BXA-Res, I38T) B/Brisbane/60/2008 (Victoria lineage) virus. BXA treatment of donor ferrets reduced virus replication and delayed transmission of the BXA-Sen but not the BXA-Res IBV. The I38 genotype remained dominant in the BXA-Sen-infected animals, even with BXA treatment. In competitive-mixture experiments, no transmission to aerosol contacts was seen from BXA-treated donors coinfected with the BXA-Sen and BXA-Res B/Brisbane/60/2008 viruses. However, in parallel mixed infections with the B/Phuket/3073/2013 (Yamagata lineage) virus background, BXA treatment failed to block airborne transmission of the BXA-Res virus, and the I38T genotype generally predominated. Therefore, the relative fitness of BXA-Res IBVs is complex and dependent on the virus backbone and within-host virus competition. BXA treatment of single-virus-infected ferrets hampers aerosol transmission of the BXA-Sen virus and does not readily generate BXA-Res variants, whereas mixed infections may result in propagation of BXA-Res IBVs of the Yamagata lineage. Our findings confirm the antiviral potency of baloxavir against IBVs, while supporting optimization of the dosing regimen to maximize clinical benefit.
Collapse
|
16
|
Zaman M, Huber VC, Heiden DL, DeHaan KN, Chandra S, Erickson D, Ozberk V, Pandey M, Bailly B, Martin G, Langshaw EL, Zaid A, von Itzstein M, Good MF. Combinatorial liposomal peptide vaccine induces IgA and confers protection against influenza virus and bacterial super-infection. Clin Transl Immunology 2021; 10:e1337. [PMID: 34527244 PMCID: PMC8432089 DOI: 10.1002/cti2.1337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives The upper respiratory tract is the major entry site for Streptococcus pyogenes and influenza virus. Vaccine strategies that activate mucosal immunity could significantly reduce morbidity and mortality because of these pathogens. The severity of influenza is significantly greater if a streptococcal infection occurs during the viraemic period and generally viral infections complicated by a subsequent bacterial infection are known as super-infections. We describe an innovative vaccine strategy against influenza virus:S. pyogenes super-infection. Moreover, we provide the first description of a liposomal multi-pathogen-based platform that enables the incorporation of both viral and bacterial antigens into a vaccine and constitutes a transformative development. Methods Specifically, we have explored a vaccination strategy with biocompatible liposomes that express conserved streptococcal and influenza A virus B-cell epitopes on their surface and contain encapsulated diphtheria toxoid as a source of T-cell help. The vaccine is adjuvanted by inclusion of the synthetic analogue of monophosphoryl lipid A, 3D-PHAD. Results We observe that this vaccine construct induces an Immunoglobulin A (IgA) response in both mice and ferrets. Vaccination reduces viral load in ferrets from influenza challenge and protects mice from both pathogens. Notably, vaccination significantly reduces both mortality and morbidity associated with a super-infection. Conclusion The vaccine design is modular and could be adapted to include B-cell epitopes from other mucosal pathogens where an IgA response is required for protection.
Collapse
Affiliation(s)
- Mehfuz Zaman
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Victor C Huber
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Dustin L Heiden
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Katerina N DeHaan
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Sanyogita Chandra
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Demi Erickson
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Victoria Ozberk
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Manisha Pandey
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Benjamin Bailly
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Gael Martin
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Emma L Langshaw
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Ali Zaid
- The Emerging Viruses, Inflammation and Therapeutics GroupMenzies Health Institute QueenslandGriffith UniversityGold CoastQLDAustralia
- School of Medical SciencesGriffith UniversityGold CoastQLDAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastQLDAustralia
| | | | - Michael F Good
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| |
Collapse
|
17
|
Younes S, Younes N, Shurrab F, Nasrallah GK. Severe acute respiratory syndrome coronavirus-2 natural animal reservoirs and experimental models: systematic review. Rev Med Virol 2021; 31:e2196. [PMID: 33206434 PMCID: PMC7744864 DOI: 10.1002/rmv.2196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
The current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak has been rapidly spreading worldwide, causing serious global concern. The role that animal hosts play in disease transmission is still understudied and researchers wish to find suitable animal models for fundamental research and drug discovery. In this systematic review, we aimed to compile and discuss all articles that describe experimental or natural infections with SARS-CoV-2, from the initial discovery of the virus in December 2019 through to October 2020. We systematically searched four databases (Scopus, PubMed, Science Direct and Web of Science). The following data were extracted from the included studies: type of infection (natural or experimental), age, sample numbers, dose, route of inoculation, viral replication, detection method, clinical symptoms and transmission. Fifty-four studies were included, of which 34 were conducted on animal reservoirs (naturally or experimentally infected), and 20 involved models for testing vaccines and therapeutics. Our search revealed that Rousettus aegyptiacus (fruit bats), pangolins, felines, mink, ferrets and rabbits were all susceptible to SARS-CoV-2, while dogs were weakly susceptible and pigs, poultry, and tree shrews were not. In addition, virus replication in mice, mink, hamsters and ferrets resembled subclinical human infection, so these animals might serve as useful models for future studies to evaluate vaccines or antiviral agents and to study host-pathogen interactions. Our review comprehensively summarized current evidence on SARS-CoV-2 infection in animals and their usefulness as models for studying vaccines and antiviral drugs. Our findings may direct future studies for vaccine development, antiviral drugs and therapeutic agents to manage SARS-CoV-2-caused diseases.
Collapse
Affiliation(s)
- Salma Younes
- Biomedical Research CenterMember of QU HealthQatar UniversityDohaQatar
| | - Nadin Younes
- Biomedical Research CenterMember of QU HealthQatar UniversityDohaQatar
| | - Farah Shurrab
- Biomedical Research CenterMember of QU HealthQatar UniversityDohaQatar
| | - Gheyath K. Nasrallah
- Biomedical Research CenterMember of QU HealthQatar UniversityDohaQatar
- Department of Biomedical ScienceCollege of Health SciencesMember of QU HealthQatar UniversityDohaQatar
| |
Collapse
|
18
|
Widhiantara IG, Jawi IM. Phytochemical composition and health properties of Sembung plant ( Blumea balsamifera): A review. Vet World 2021; 14:1185-1196. [PMID: 34220120 PMCID: PMC8243688 DOI: 10.14202/vetworld.2021.1185-1196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Indonesia's mindset has been focusing on the use of natural medicines, food, and healing practices widely recognized by the nation's culture. Traditional medicines and herbs used in traditional medicine can often lead to the discovery of drugs against certain diseases. The aim of this review was to study evidence-based data on the importance of Sembung plant, Blumea balsamifera, as a potential traditional medicine. The distribution, ethnopharmacology, secondary metabolites, and bioactivity against several diseases are focused in this review. Information and research related to Sembung plant were searched using the terms "B. balsamifera," "phytochemicals," and "pharmacological activity" on ResearchGate, Google Scholar, Science Direct, PubMed, and scientific information-based databases up to 2020. Several ethnomedical articles recommend B. balsamifera for the treatment of sinusitis, colic pain, cough, kidney stones, flu, or as a diuretic. This knowledge has already been applied in several countries in Southeast Asia. B. balsamifera has been reported to contain several phytochemicals both volatile (terpenoids, fatty acids, phenols, alcohol, aldehydes, ethers, ketones, pyridines, furans, and alkanes) and non-volatile (flavonoids, flavanones, and chalcones). Extracts and phytochemicals of B. balsamifera contain several biological capacities such as antioxidant, antimicrobial, antifungal, anti-inflammatory, hypolipidemic, anti-infertility, hepatoprotective activity, antidiabetic, gastroprotective, antitumor, anticancer, and immunomodulatory agent against Coronavirus disease-19 infection. This review provides essential data for the potential application of B. balsamifera as a nutraceutical or in future medicinal preparations.
Collapse
Affiliation(s)
- I. Gede Widhiantara
- Medical Science Study Program, Faculty of Medicine, Udayana University, Jalan P.B. Sudirman, Denpasar City, Bali Province 80234, Indonesia
- Study Program of Biology, Faculty of Health, Science, and Technology, Dhyana Pura University, Jalan Raya Padang Luwih, Dalung, North Kuta, Badung, Bali Province 80361, Indonesia
| | - I. Made Jawi
- Department of Pharmacology, Faculty of Medicine, Udayana University, Jalan P.B. Sudirman, Denpasar City, Bali Province 80234, Indonesia
| |
Collapse
|
19
|
Spruit CM, Nemanichvili N, Okamatsu M, Takematsu H, Boons GJ, de Vries RP. N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses 2021; 13:815. [PMID: 34062844 PMCID: PMC8147317 DOI: 10.3390/v13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in influenza virus infection is the binding of hemagglutinin to sialic acid-containing glycans present on the cell surface. Over 50 different sialic acid modifications are known, of which N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two main species. Animal models with α2,6 linked Neu5Ac in the upper respiratory tract, similar to humans, are preferred to enable and mimic infection with unadapted human influenza A viruses. Animal models that are currently most often used to study human influenza are mice and ferrets. Additionally, guinea pigs, cotton rats, Syrian hamsters, tree shrews, domestic swine, and non-human primates (macaques and marmosets) are discussed. The presence of NeuGc and the distribution of sialic acid linkages in the most commonly used models is summarized and experimentally determined. We also evaluated the role of Neu5Gc in infection using Neu5Gc binding viruses and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH)-/- knockout mice, which lack Neu5Gc and concluded that Neu5Gc is unlikely to be a decoy receptor. This article provides a base for choosing an appropriate animal model. Although mice are one of the most favored models, they are hardly naturally susceptible to infection with human influenza viruses, possibly because they express mainly α2,3 linked sialic acids with both Neu5Ac and Neu5Gc modifications. We suggest using ferrets, which resemble humans closely in the sialic acid content, both in the linkages and the lack of Neu5Gc, lung organization, susceptibility, and disease pathogenesis.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
| | - Nikoloz Nemanichvili
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan;
| | - Hiromu Takematsu
- Department of Molecular Cell Biology, Faculty of Medical Technology, Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan;
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
| |
Collapse
|
20
|
Jang H, Ross TM. Hemagglutination Inhibition (HAI) antibody landscapes after vaccination with H7Nx virus like particles. PLoS One 2021; 16:e0246613. [PMID: 33735274 PMCID: PMC7971484 DOI: 10.1371/journal.pone.0246613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND A systemic evaluation of the antigenic differences of the H7 influenza hemagglutinin (HA) proteins, especially for the viruses isolated after 2016, are limited. The purpose of this study was to investigate the antigenic differences of major H7 strains with an ultimate aim to discover H7 HA proteins that can elicit protective receptor-binding antibodies against co-circulating H7 influenza strains. METHOD A panel of eight H7 influenza strains were selected from 3,633 H7 HA amino acid sequences identified over the past two decades (2000-2018). The sequences were expressed on the surface of virus like particles (VLPs) and used to vaccinate C57BL/6 mice. Serum samples were collected and tested for hemagglutination-inhibition (HAI) activity. The vaccinated mice were challenged with lethal dose of H7N9 virus, A/Anhui/1/2013. RESULTS VLPs expressing the H7 HA antigens elicited broadly reactive antibodies each of the selected H7 HAs, except the A/Turkey/Italy/589/2000 (Italy/00) H7 HA. A putative glycosylation due to an A169T substitution in antigenic site B was identified as a unique antigenic profile of Italy/00. Introduction of the putative glycosylation site (H7 HA-A169T) significantly altered the antigenic profile of HA of the A/Anhui/1/2013 (H7N9) strain. CONCLUSION This study identified key amino acid mutations that result in severe vaccine mismatches for future H7 epidemics. Future universal influenza vaccine candidates will need to focus on viral variants with these key mutations.
Collapse
Affiliation(s)
- Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
21
|
Liu WC, Nachbagauer R, Stadlbauer D, Strohmeier S, Solórzano A, Berlanda-Scorza F, Innis BL, García-Sastre A, Palese P, Krammer F, Albrecht RA. Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity against Influenza A Viruses in a Preclinical Ferret Model. Vaccines (Basel) 2021; 9:vaccines9010040. [PMID: 33440898 PMCID: PMC7826668 DOI: 10.3390/vaccines9010040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Epidemic or pandemic influenza can annually cause significant morbidity and mortality in humans. We developed novel chimeric hemagglutinin (cHA)-based universal influenza virus vaccines, which contain a conserved HA stalk domain from a 2009 pandemic H1N1 (pH1N1) strain combined with globular head domains from avian influenza A viruses. Our previous reports demonstrated that prime-boost sequential immunizations induced robust antibody responses directed toward the conserved HA stalk domain in ferrets. Herein, we further followed vaccinated animals for one year to compare the efficacy and durability of these vaccines in the preclinical ferret model of influenza. Although all cHA-based immunization regimens induced durable HA stalk-specific and heterosubtypic antibody responses in ferrets, sequential immunization with live-attenuated influenza virus vaccines (LAIV-LAIV) conferred the best protection against upper respiratory tract infection by a pH1N1 influenza A virus. The findings from this study suggest that our sequential immunization strategy for a cHA-based universal influenza virus vaccine provides durable protective humoral and cellular immunity against influenza virus infection.
Collapse
Affiliation(s)
- Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Biomedical Translation Research Center, Academia Sinica, Taipei 11571, Taiwan;
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Moderna Therapeutics, Inc., Cambridge, MA 02141, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | - Alicia Solórzano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | | | - Bruce L. Innis
- Biomedical Translation Research Center, Academia Sinica, Taipei 11571, Taiwan;
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
22
|
Sécher T, Bodier-Montagutelli E, Guillon A, Heuzé-Vourc'h N. Correlation and clinical relevance of animal models for inhaled pharmaceuticals and biopharmaceuticals. Adv Drug Deliv Rev 2020; 167:148-169. [PMID: 32645479 DOI: 10.1016/j.addr.2020.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022]
Abstract
Nonclinical studies are fundamental for the development of inhaled drugs, as for any drug product, and for successful translation to clinical practice. They include in silico, in vitro, ex vivo and in vivo studies and are intended to provide a comprehensive understanding of the inhaled drug beneficial and detrimental effects. To date, animal models cannot be circumvented during drug development programs, acting as surrogates of humans to predict inhaled drug response, fate and toxicity. Herein, we review the animal models used during the different development stages of inhaled pharmaceuticals and biopharmaceuticals, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - E Bodier-Montagutelli
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Pharmacy Department, Tours, France
| | - A Guillon
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Critical Care Department, Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France.
| |
Collapse
|
23
|
Abstract
Domestic ferrets (Mustela putorius furo) are common zoologic companion animals and display specific body language and vocalizations. Social interactions, play behavior, and resting periods are important keystone in domestic ferret behavior. Specific housing and environmental enrichment are recommended to preserve the expression of normal behavior and physiology in ferrets. Presence of abnormal behaviors, including aggression, urination and defecation outside the litter box, stereotypies, and absence of play behavior, should be carefully monitored by veterinarians and ferret owners to assess ferret wellness. Specific considerations, such as deafness, poor vision, and hybridation with other mustelids, may play a role in ferret behavior.
Collapse
|
24
|
Tateno M, Stone BJ, Srodulski SJ, Reedy S, Gawriluk TR, Chambers TM, Woodward J, Chappell J, Kempinski CF. Synthetic Biology-derived triterpenes as efficacious immunomodulating adjuvants. Sci Rep 2020; 10:17090. [PMID: 33051497 PMCID: PMC7553918 DOI: 10.1038/s41598-020-73868-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
The triterpene oil squalene is an essential component of nanoemulsion vaccine adjuvants. It is most notably in the MF59 adjuvant, a component in some seasonal influenza vaccines, in stockpiled, emulsion-based adjuvanted pandemic influenza vaccines, and with demonstrated efficacy for vaccines to other pandemic viruses, such as SARS-CoV-2. Squalene has historically been harvested from shark liver oil, which is undesirable for a variety of reasons. In this study, we have demonstrated the use of a Synthetic Biology (yeast) production platform to generate squalene and novel triterpene oils, all of which are equally as efficacious as vaccine adjuvants based on physiochemical properties and immunomodulating activities in a mouse model. These Synthetic Biology adjuvants also elicited similar IgG1, IgG2a, and total IgG levels compared to marine and commercial controls when formulated with common quadrivalent influenza antigens. Injection site morphology and serum cytokine levels did not suggest any reactogenic effects of the yeast-derived squalene or novel triterpenes, suggesting their safety in adjuvant formulations. These results support the advantages of yeast produced triterpene oils to include completely controlled growth conditions, just-in-time and scalable production, and the capacity to produce novel triterpenes beyond squalene.
Collapse
Affiliation(s)
- Mizuki Tateno
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, USA
| | | | | | - Stephanie Reedy
- Gluck Equine Research Center, University of Kentucky, Lexington, 40546-0099, USA
| | | | - Thomas M Chambers
- Gluck Equine Research Center, University of Kentucky, Lexington, 40546-0099, USA
| | - Jerold Woodward
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Joe Chappell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, USA
- Enepret Incorporated, Lexington, KY, 40506, USA
| | - Chase F Kempinski
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, USA.
- Enepret Incorporated, Lexington, KY, 40506, USA.
| |
Collapse
|
25
|
van de Ven K, de Heij F, van Dijken H, Ferreira JA, de Jonge J. Systemic and respiratory T-cells induced by seasonal H1N1 influenza protect against pandemic H2N2 in ferrets. Commun Biol 2020; 3:564. [PMID: 33037319 PMCID: PMC7547016 DOI: 10.1038/s42003-020-01278-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Traditional influenza vaccines primarily induce a narrow antibody response that offers no protection against heterosubtypic infections. Murine studies have shown that T cells can protect against a broad range of influenza strains. However, ferrets are a more potent model for studying immune correlates of protection in influenza infection. We therefore set out to investigate the role of systemic and respiratory T cells in the protection against heterosubtypic influenza A infections in ferrets. H1N1-priming induced systemic and respiratory T cells that responded against pandemic H2N2 and correlated with reduced viral replication and disease. CD8-positive T cell responses in the upper and lower respiratory tract were exceptionally high. We additionally confirmed that H2N2-responsive T cells are present in healthy human blood donors. These findings underline the importance of the T cell response in influenza immunity and show that T cells are a potent target for future universal influenza vaccines.
Collapse
Affiliation(s)
- Koen van de Ven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Femke de Heij
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Harry van Dijken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - José A Ferreira
- Department of Statistics, Informatics and Modelling, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
26
|
Convening on the influenza human viral challenge model for universal influenza vaccines, Part 2: Methodologic considerations. Vaccine 2020; 37:4830-4834. [PMID: 31362820 DOI: 10.1016/j.vaccine.2019.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 11/23/2022]
Abstract
In response to global interest in the development of a universal influenza vaccine, the Bill & Melinda Gates Foundation, PATH, and the Global Funders Consortium for Universal Influenza Vaccine Development convened a meeting of experts (London, UK, May 2018) to assess the role of a standardized controlled human influenza virus infection model (CHIVIM) towards the development of novel influenza vaccine candidates. This report (in two parts) summarizes those discussions and offers consensus recommendations. Part 1 covers challenge virus selection, regulatory and ethical considerations, and issues concerning standardization, access, and capacity. This article (Part 2) summarizes the discussion and recommendations concerning CHIVIM methods. The panelists identified an overall need for increased standardization of CHIVIM trials, in order to produce comparable results that can support universal vaccine licensure. Areas of discussion included study participant selection and screening, route of exposure and dose, devices for administering challenge, rescue therapy, protection of participants and institutions, clinical outcome measures, and other considerations. The panelists agreed upon specific recommendations to improve the standardization and usefulness of the model for vaccine development. Experts agreed that a research network of institutions working with a standardized CHIVIM could contribute important data to support more rapid development and licensure of novel vaccines capable of providing long-lasting protection against seasonal and pandemic influenza strains.
Collapse
|
27
|
Kitano M, Matsuzaki T, Oka R, Baba K, Noda T, Yoshida Y, Sato K, Kiyota K, Mizutare T, Yoshida R, Sato A, Kamimori H, Shishido T, Naito A. The antiviral effects of baloxavir marboxil against influenza A virus infection in ferrets. Influenza Other Respir Viruses 2020; 14:710-719. [PMID: 32533654 PMCID: PMC7578299 DOI: 10.1111/irv.12760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Baloxavir marboxil (BXM), the oral prodrug of baloxavir acid (BXA), greatly reduces virus titers as well as influenza symptoms of uncomplicated influenza in patients. Objectives To investigate the pharmacokinetic profiles of BXA and its efficacy against influenza A virus infection in ferrets. Methods Ferrets were dosed orally with BXM (10 and 30 mg/kg twice daily for 1 day), oseltamivir phosphate (OSP) (5 mg/kg twice daily for 2 days) or vehicle to measure the antiviral effects of BXM and OSP. The pharmacokinetic parameters of BXA was determined after single oral dosing of BXM. Results The maximum plasma concentrations of BXA were observed at 1.50 and 2.00 hours with the two BXM doses, which then declined with an elimination half‐life of 6.91 and 4.44 hours, respectively. BXM at both doses remained detectable in the plasma in ferrets, which may be due to higher stability in liver microsomes. BXM (10 and 30 mg/kg twice daily) treatment at Day 1 post‐infection (p.i.) reduced virus titers by ≥3 log10 of the 50% tissue culture infective doses by Day 2, which was significantly different compared with vehicle or OSP. Body temperature drops over time were significantly greater with BXM than with vehicle or OSP. Significant reduction in virus titers was also demonstrated when BXM was administrated after symptom onset at Day 2 p.i. compared with vehicle and OSP, although body temperature changes largely overlapped between Day 2 and Day 4. Conclusions The results highlight the rapid antiviral action of BXM with post‐exposure prophylaxis or therapeutic dosing in ferrets and offer support for further research on prevention of influenza virus infection and transmission.
Collapse
Affiliation(s)
| | | | - Ryoko Oka
- Shionogi & Co., Ltd., Toyonaka, Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research, Co., Ltd., Toyonaka, Japan
| | - Takahiro Noda
- Shionogi TechnoAdvance Research, Co., Ltd., Toyonaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Farrukee R, Tai CMK, Oh DY, Anderson DE, Gunalan V, Hibberd M, Lau GYF, Barr IG, von Messling V, Maurer-Stroh S, Hurt AC. Utilising animal models to evaluate oseltamivir efficacy against influenza A and B viruses with reduced in vitro susceptibility. PLoS Pathog 2020; 16:e1008592. [PMID: 32555740 PMCID: PMC7326275 DOI: 10.1371/journal.ppat.1008592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 05/02/2020] [Indexed: 11/19/2022] Open
Abstract
The neuraminidase (NA) inhibitor (NAI) oseltamivir (OST) is the most widely used influenza antiviral drug. Several NA amino acid substitutions are reported to reduce viral susceptibility to OST in in vitro assays. However, whether there is a correlation between the level of reduction in susceptibility in vitro and the efficacy of OST against these viruses in vivo is not well understood. In this study, a ferret model was utilised to evaluate OST efficacy against circulating influenza A and B viruses with a range of in vitro generated 50% inhibitory concentrations (IC50) values for OST. OST efficacy against an A(H1N1)pdm09 and an A(H1N1)pdm09 virus with the H275Y substitution in neuraminidase was also tested in the macaque model. The results from this study showed that OST had a significant impact on virological parameters compared to placebo treatment of ferrets infected with wild-type influenza A viruses with normal IC50 values (~1 nM). However, this efficacy was lower against wild-type influenza B and other viruses with higher IC50 values. Differing pathogenicity of the viruses made evaluation of clinical parameters difficult, although some effect of OST in reducing clinical signs was observed with influenza A(H1N1) and A(H1N1)pdm09 (H275Y) viruses. Viral titres in macaques were too low to draw conclusive results. Analysis of the ferret data revealed a correlation between IC50 and OST efficacy in reducing viral shedding but highlighted that the current WHO guidelines/criteria for defining normal, reduced or highly reduced inhibition in influenza B viruses based on in vitro data are not well aligned with the low in vivo OST efficacy observed for both wild-type influenza B viruses and those with reduced OST susceptibility.
Collapse
Affiliation(s)
- Rubaiyea Farrukee
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Celeste Ming-Kay Tai
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Health and Life Sciences, Federation University, Churchill, Victoria, Australia
| | | | - Vithiagaran Gunalan
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Martin Hibberd
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gary Yuk-Fai Lau
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Health and Life Sciences, Federation University, Churchill, Victoria, Australia
| | - Veronika von Messling
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Veterinary Medicine Division, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- National Public Health Laboratories, National Centre for Infectious Diseases, Ministry of Health, Singapore
- Department of Biological Sciences, National University Singapore, Singapore
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Dhar P, Samarasinghe RM, Shigdar S. Antibodies, Nanobodies, or Aptamers-Which Is Best for Deciphering the Proteomes of Non-Model Species? Int J Mol Sci 2020; 21:E2485. [PMID: 32260091 PMCID: PMC7177290 DOI: 10.3390/ijms21072485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
This planet is home to countless species, some more well-known than the others. While we have developed many techniques to be able to interrogate some of the "omics", proteomics is becoming recognized as a very important part of the puzzle, given how important the protein is as a functional part of the cell. Within human health, the proteome is fairly well-established, with numerous reagents being available to decipher cellular pathways. Recent research advancements have assisted in characterizing the proteomes of some model (non-human) species, however, in many other species, we are only just touching the surface. This review considers three main reagent classes-antibodies, aptamers, and nanobodies-as a means of continuing to investigate the proteomes of non-model species without the complications of understanding the full protein signature of a species. Considerations of ease of production, potential applications, and the necessity for producing a new reagent depending on homology are presented.
Collapse
Affiliation(s)
- Poshmaal Dhar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
30
|
Toots M, Yoon JJ, Hart M, Natchus MG, Painter GR, Plemper RK. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Transl Res 2020; 218:16-28. [PMID: 31945316 PMCID: PMC7568909 DOI: 10.1016/j.trsl.2019.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Seasonal influenza viruses cause major morbidity and mortality worldwide, threatening in particular older adults and the immunocompromised. Two classes of influenza therapeutics dominate current disease management, but both are compromised by pre-existing or rapidly emerging viral resistance. We have recently reported a novel ribonucleoside analog clinical candidate, EIDD-2801, that combines potent antiviral efficacy in ferrets and human airway epithelium cultures with a high barrier against viral escape. In this study, we established fundamental EIDD-2801 efficacy paradigms against pandemic and seasonal influenza A virus (IAV) strains in ferrets that can be used to inform exposure targets and treatment regimens. Based on reduction of shed virus titers, alleviation of clinical signs, and lowered virus burden in upper and lower respiratory tract tissues, lowest efficacious oral dose concentrations of EIDD-2801, given twice daily, were 2.3 and 7 mg/kg of body weight against seasonal and pandemic IAVs, respectively. The latest opportunity for initiation of efficacious treatment was 36 hours after infection of ferrets. Administered in 12-hour intervals, three 7 mg/kg doses of EIDD-2801 were sufficient for maximal therapeutic benefit against a pandemic IAV and significantly shortened the time to resolution of clinical signs. Ferrets infected with pandemic IAV and treated following the minimally efficacious EIDD-2801 regimen demonstrated significantly less shed virus and inflammatory cellular infiltrates in nasal lavages, but mounted a robust humoral antiviral response after recovery that was indistinguishable from that of vehicle-treated animals. These results provide an experimental basis in a human disease-relevant influenza animal model for clinical testing of EIDD-2801.
Collapse
Affiliation(s)
- Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Jeong-Joong Yoon
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Michael Hart
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia; Department of Pharmacology, Emory University, Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
31
|
Yau LF, Chan KM, Yang CG, Ip SW, Kang Y, Mai ZT, Tong TT, Jiang ZH, Yang ZF, Wang JR. Comprehensive Glycomic Profiling of Respiratory Tract Tissues of Tree Shrews by TiO 2-PGC Chip Mass Spectrometry. J Proteome Res 2020; 19:1470-1480. [PMID: 32129075 DOI: 10.1021/acs.jproteome.9b00727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Due to its relatively small size, homology to humans, and susceptibility to human viruses, the tree shrew becomes an ideal alternative animal model for the study of human viral infectious diseases. However, there is still no report for the comprehensive glycan profile of the respiratory tract tissues in tree shrews. In this study, we characterized the structural diversity of N-glycans in the respiratory tract of tree shrews using our well-established TiO2-PGC chip-Q-TOF-MS method. As a result, a total of 219 N-glycans were identified. Moreover, each identified N-glycan was quantitated by a high sensitivity and accurate MRM method, in which 13C-labeled internal standards were used to correct the inherent run-to-run variation in MS detection. Our results showed that the N-glycan composition in the turbinate and lung was significantly different from the soft palate, trachea, and bronchus. Meanwhile, 28 high-level N-glycans in turbinate were speculated to be correlated with the infection of H1N1 virus A/California/04/2009. This study is the first to reveal the comprehensive glycomic profile of the respiratory tract of tree shrews. Our results also help to better understand the role of glycan receptors in human influenza infection and pathogenesis.
Collapse
Affiliation(s)
- Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ka-Man Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chun-Guang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou University, Guangzhou 510120, Guangdong, China
| | - Sun-Wai Ip
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yue Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zhi-Tong Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou University, Guangzhou 510120, Guangdong, China
| | - Tian-Tian Tong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou University, Guangzhou 510120, Guangdong, China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
32
|
Mifsud EJ, Tilmanis D, Oh DY, Ming-Kay Tai C, Rossignol JF, Hurt AC. Prophylaxis of ferrets with nitazoxanide and oseltamivir combinations is more effective at reducing the impact of influenza a virus infection compared to oseltamivir monotherapy. Antiviral Res 2020; 176:104751. [PMID: 32088248 DOI: 10.1016/j.antiviral.2020.104751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Combination therapy is an alternative approach to reduce viral shedding and improve clinical outcomes following influenza virus infections. In this study we used oseltamivir (OST), a neuraminidase inhibitor and nitazoxanide (NTZ), a host directed drug, and found in vitro that the combination of these two antivirals have a synergistic relationship. Using the ferret model of (A/Perth/265/2009, (H1N1)pdm09), virus infections, we found that the combination of NTZ and OST was more effective than either NTZ or OST independently in preventing infection and reducing duration of viral shedding. However, these benefits were only seen if treatment was administered prophylactically, as opposed to therapeutically. We also found that if prophylactically treated ferrets that had detectable virus in the upper respiratory tract, no virus was detected in the lower respiratory tract. This benefit was not observed with NTZ or OST alone. The combination of NTZ and OST enhances the antiviral effect of OST, which is the standard of care in most settings.
Collapse
Affiliation(s)
- Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia.
| | - Danielle Tilmanis
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; School of Health and Life Sciences, Federation University, Churchill, Victoria, Australia
| | - Celeste Ming-Kay Tai
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; School of Health and Life Sciences, Federation University, Churchill, Victoria, Australia
| |
Collapse
|
33
|
Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93:268-276. [PMID: 32081774 PMCID: PMC7128205 DOI: 10.1016/j.ijid.2020.02.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
We reviewed the discovery and development process of broad-spectrum antiviral agents. We summarized the information on 120 safe-in-man agents in a freely accessible database. Further studies will increase the number of broad-spectrum antivirals, expand the spectrum of their indications, and identify drug combinations for treatment of emerging and re-emerging viral infections.
Viral diseases are one of the leading causes of morbidity and mortality in the world. Virus-specific vaccines and antiviral drugs are the most powerful tools to combat viral diseases. However, broad-spectrum antiviral agents (BSAAs, i.e. compounds targeting viruses belonging to two or more viral families) could provide additional protection of the general population from emerging and re-emerging viral diseases, reinforcing the arsenal of available antiviral options. Here, we review discovery and development of BSAAs and summarize the information on 120 safe-in-man agents in a freely accessible database (https://drugvirus.info/). Future and ongoing pre-clinical and clinical studies will increase the number of BSAAs, expand the spectrum of their indications, and identify drug combinations for treatment of emerging and re-emerging viral infections as well as co-infections.
Collapse
|
34
|
Characterization of the ferret TRB locus guided by V, D, J, and C gene expression analysis. Immunogenetics 2019; 72:101-108. [PMID: 31797007 PMCID: PMC6971162 DOI: 10.1007/s00251-019-01142-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 10/29/2022]
Abstract
The domestic ferret, Mustela putorius furo, is an important mammalian animal model to study human respiratory infection. However, insufficient genomic annotation hampers detailed studies of ferret T cell responses. In this study, we analyzed the published T cell receptor beta (TRB) locus and performed high-throughput sequencing (HTS) of peripheral blood of four healthy adult ferrets to identify expressed V, D, J, and C genes. The HTS data is used as a guide to manually curate the expressed V, D, J, and C genes. The ferret locus appears to be most similar to that of the dog. Like other mammalian TRB loci, the ferret TRB locus contains a library of variable genes located upstream of two D-J-C gene clusters, followed by a (in the ferret non-functional) V gene with an inverted transcriptional orientation. All TRB genes (expressed or not) reported here have been approved by the IMGT/WHO-IUIS nomenclature committee.
Collapse
|
35
|
Hodgins B, Pillet S, Landry N, Ward BJ. Prime-pull vaccination with a plant-derived virus-like particle influenza vaccine elicits a broad immune response and protects aged mice from death and frailty after challenge. IMMUNITY & AGEING 2019; 16:27. [PMID: 31700523 PMCID: PMC6829930 DOI: 10.1186/s12979-019-0167-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
Background Administered intramuscularly (IM), plant-derived, virus-like-particle (VLP) vaccines based on the influenza hemagglutinin (HA) protein elicit both humoral and cellular responses that can protect aged mice from lethal challenge. Unlike split virus vaccines, VLPs can be administered by different routes including intranasally (IN). We evaluated novel vaccine strategies such as prime-pull (IM boosted by IN) and multi-modality vaccination (IM and IN given simultaneously). We wished to determine if these approaches would provide better quality protection in old mice after less severe (borderline-lethal) challenge (ie: immunogenicity, frailty and survival). Results Survival rates were similar in all vaccinated groups. Antibody responses were modest in all groups but tended to be higher in VLP groups compared to inactivated influenza vaccine (IIV) recipients. All VLP groups had higher splenocyte T cell responses than the split virus group. Lung homogenate chemokine/cytokine levels and virus loads were lower in the VLP groups compared to IIV recipients 3 days after challenge (p < 0.05 for viral load vs all VLP groups combined). The VLP-vaccinated groups also had less weight loss and recovered more rapidly than the IIV recipients. There was limited evidence of an immunologic or survival advantage with IN delivery of the VLP vaccine. Conclusion Compared to IIV, the plant-derived VLP vaccine induced a broader immune response in aged mice (cellular and humoral) using either traditional (IM/IM) or novel schedules (multi-modality, prime-pull).
Collapse
Affiliation(s)
- Breanna Hodgins
- 1Department of Experimental Medicine, McGill University, Montreal, Quebec Canada
| | - Stephane Pillet
- 2Research Institute of McGill University Health Centre, 1001 Boul Decarie, Room EM33248, Montreal, QC H4A 3J1 Canada.,3Medicago Inc., Quebec City, Quebec Canada
| | | | - Brian J Ward
- 2Research Institute of McGill University Health Centre, 1001 Boul Decarie, Room EM33248, Montreal, QC H4A 3J1 Canada.,3Medicago Inc., Quebec City, Quebec Canada
| |
Collapse
|
36
|
Fox CB, Van Hoeven N, Granger B, Lin S, Guderian JA, Hartwig A, Marlenee N, Bowen RA, Soultanov V, Carter D. Vaccine adjuvant activity of emulsified oils from species of the Pinaceae family. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152927. [PMID: 31465981 PMCID: PMC6790179 DOI: 10.1016/j.phymed.2019.152927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Next to aluminum salts, squalene nanoemulsions comprise the most widely employed class of adjuvants in approved vaccines. Despite their importance, the mechanisms of action of squalene nanoemulsions are not completely understood, nor are the structure/function requirements of the oil composition. PURPOSE In this study, we build on previous work that compared the adjuvant properties of nanoemulsions made with different classes of oil structures to squalene nanoemulsion. Here, we introduce nanoemulsions made with polyprenols derived from species of the Pinaceae family as novel vaccine adjuvant compositions. In contrast with long-chain triglycerides that do not efficiently enhance an immune response, both polyprenols and squalene are comprised of multimeric isoprene units, which may represent an important structural property of oils in nanoemulsions with adjuvant properties. STUDY DESIGN Oils derived from species of the Pinaceae family were formulated in nanoemulsions, with or without a synthetic Toll-like receptor 4 (TLR4) ligand, and characterized regarding physicochemical and biological activity properties in comparison to squalene nanoemulsions. METHODS Oils were extracted from species of the Pinaceae family and used to prepare oil-in-water nanoemulsions by microfluidization. Emulsion droplet diameter stability was characterized by dynamic light scattering. Nanoemulsions were evaluated for in vitro biological activity using human whole blood, and in vivo biological activity in mouse, pig, and ferret models when combined with pandemic influenza vaccine antigens. RESULTS Nanoemulsions comprised of Pinaceae-derived polyprenol oils demonstrated long-term physical stability, stimulated cytokine production from human cells in vitro, and promoted antigen-specific immune responses in various animal models, particularly when formulated with the TLR4 ligand glucopyranosyl lipid adjuvant (GLA). CONCLUSION Pinaceae-derived nanoemulsions are compatible with inclusion of a synthetic TLR4 ligand and promote antigen-specific immune responses to pandemic influenza antigens in mouse, pig, and ferret models.
Collapse
Affiliation(s)
- Christopher B Fox
- IDRI, 1616 Eastlake Ave E, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | | | | | - Susan Lin
- IDRI, 1616 Eastlake Ave E, Seattle, WA, USA
| | | | - Airn Hartwig
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO, USA
| | - Nicole Marlenee
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO, USA
| | - Richard A Bowen
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO, USA
| | - Vagif Soultanov
- Prenolica Limited, 98-106 Moray St., South Melbourne, Victoria, Australia
| | - Darrick Carter
- IDRI, 1616 Eastlake Ave E, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Belser JA, Eckert AM, Huynh T, Gary JM, Ritter JM, Tumpey TM, Maines TR. A Guide for the Use of the Ferret Model for Influenza Virus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:11-24. [PMID: 31654637 DOI: 10.1016/j.ajpath.2019.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/09/2022]
Abstract
As influenza viruses continue to jump species barriers to cause human infection, assessments of disease severity and viral replication kinetics in vivo provide crucial information for public health professionals. The ferret model is a valuable resource for evaluating influenza virus pathogenicity; thus, understanding the most effective techniques for sample collection and usage, as well as the full spectrum of attainable data after experimental inoculation in this species, is paramount. This is especially true for scheduled necropsy of virus-infected ferrets, a standard component in evaluation of influenza virus pathogenicity, as necropsy findings can provide important information regarding disease severity and pathogenicity that is not otherwise available from the live animal. In this review, we describe the range of influenza viruses assessed in ferrets, the measures of experimental disease severity in this model, and optimal sample collection during necropsy of virus-infected ferrets. Collectively, this information is critical for assessing systemic involvement after influenza virus infection in mammals.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia.
| | - Alissa M Eckert
- Division of Communication Services, Office of the Associate Director for Communication, Atlanta, Georgia
| | - Thanhthao Huynh
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joy M Gary
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jana M Ritter
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| |
Collapse
|
38
|
Abstract
Introduction: High variance is associated with influenza vaccine effectiveness (VE). Accumulating evidence suggests that preexisting influenza-specific immunity results in the variance in VE and skews overall immune response to vaccination. Nevertheless, the investigation of preexisting immunity is highly limited due to the lack of proper methodology to explore the complex individual immune history.Areas covered: Retrospective observational studies have shown that the preexisting influenza specific immunity influences on VE. To simplify a discussion, we summarized important findings from the observational studies based on the transition of the individual immune history: the first exposure to influenza virus, the first vaccination, and repetitive exposure throughout life. We also discussed the prospectus of pre-immunized animal models to investigate the interaction between preexisting immunity and vaccine efficacy.Expert opinion: A better understanding in the underlying mechanisms on preexisting immunity is critical to improve VE and to help develop novel vaccine strategies. Using animals pre-immunized with historical influenza strains is a promising approach to verify the underlying immunologic mechanism of interaction between preexisting immunity and vaccine antigen. Also, pre-immunized animal models will be better able to evaluate the efficacy of novel vaccine strategies than naïve animals.
Collapse
Affiliation(s)
- Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
39
|
Chua SCJH, Tan HQ, Engelberg D, Lim LHK. Alternative Experimental Models for Studying Influenza Proteins, Host-Virus Interactions and Anti-Influenza Drugs. Pharmaceuticals (Basel) 2019; 12:E147. [PMID: 31575020 PMCID: PMC6958409 DOI: 10.3390/ph12040147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ninety years after the discovery of the virus causing the influenza disease, this malady remains one of the biggest public health threats to mankind. Currently available drugs and vaccines only partially reduce deaths and hospitalizations. Some of the reasons for this disturbing situation stem from the sophistication of the viral machinery, but another reason is the lack of a complete understanding of the molecular and physiological basis of viral infections and host-pathogen interactions. Even the functions of the influenza proteins, their mechanisms of action and interaction with host proteins have not been fully revealed. These questions have traditionally been studied in mammalian animal models, mainly ferrets and mice (as well as pigs and non-human primates) and in cell lines. Although obviously relevant as models to humans, these experimental systems are very complex and are not conveniently accessible to various genetic, molecular and biochemical approaches. The fact that influenza remains an unsolved problem, in combination with the limitations of the conventional experimental models, motivated increasing attempts to use the power of other models, such as low eukaryotes, including invertebrate, and primary cell cultures. In this review, we summarized the efforts to study influenza in yeast, Drosophila, zebrafish and primary human tissue cultures and the major contributions these studies have made toward a better understanding of the disease. We feel that these models are still under-utilized and we highlight the unique potential each model has for better comprehending virus-host interactions and viral protein function.
Collapse
Affiliation(s)
- Sonja C J H Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| | - David Engelberg
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
40
|
Reynés B, van Schothorst EM, Keijer J, Ceresi E, Oliver P, Palou A. Cold Induced Depot-Specific Browning in Ferret Aortic Perivascular Adipose Tissue. Front Physiol 2019; 10:1171. [PMID: 31620014 PMCID: PMC6759601 DOI: 10.3389/fphys.2019.01171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Brown adipose tissue is responsible for facultative thermogenesis to produce heat and increase energy expenditure in response to proper stimuli, e.g., cold. Acquisition of brown-like features (browning) in perivascular white adipose tissue (PVAT) may protect against obesity/cardiovascular disease. Most browning studies are performed in rodents, but translation to humans would benefit from a closer animal model. Therefore, we studied the browning response of ferret thoracic aortic PVAT (tPVAT) to cold. We performed global transcriptome analysis of tPVAT of 3-month-old ferrets acclimatized 1 week to 22 or 4°C, and compared the results with those of inguinal subcutaneous adipose tissue. Immunohistochemistry was used to visualize browning. Transcriptome data revealed a stronger cold exposure response of tPVAT, including increased expression of key brown/brite markers, compared to subcutaneous fat. This translated into a clear white-to-brown remodeling of tPVAT, with the appearance of multilocular highly UCP1-stained adipocytes. The pathway most affected by cold exposure in tPVAT was immune response, characterized by down-regulation of immune-related genes, with cardio protective implications. On the other hand, subcutaneous fat responded to cold by increasing energy metabolism based on increased expression of fatty acid oxidation and tricarboxylic acid cycle genes, concordant with lower inguinal adipose tissue weight in cold-exposed animals. Thus, ferret tPVAT responds to cold acclimation with a strong induction of browning and immunosuppression compared to subcutaneous fat. Our results present ferrets as an accessible translational animal model displaying functional responses relevant for obesity and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,Institut d'Investigació Sanitària Illes Balears, Palma, Spain
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Enzo Ceresi
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,Institut d'Investigació Sanitària Illes Balears, Palma, Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,Institut d'Investigació Sanitària Illes Balears, Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,Institut d'Investigació Sanitària Illes Balears, Palma, Spain
| |
Collapse
|
41
|
Huang SY, Huang CH, Chen CJ, Chen TW, Lin CY, Lin YT, Kuo SM, Huang CG, Lee LA, Chen YH, Chen MF, Kuo RL, Shih SR. Novel Role for miR-1290 in Host Species Specificity of Influenza A Virus. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:10-23. [PMID: 31173947 PMCID: PMC6554369 DOI: 10.1016/j.omtn.2019.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
The role of microRNA (miRNA) in influenza A virus (IAV) host species specificity is not well understood as yet. Here, we show that a host miRNA, miR-1290, is induced through the extracellular signal-regulated kinase (ERK) pathway upon IAV infection and is associated with increased viral titers in human cells and ferret animal models. miR-1290 was observed to target and reduce expression of the host vimentin gene. Vimentin binds with the PB2 subunit of influenza A virus ribonucleoprotein (vRNP), and knockdown of vimentin expression significantly increased vRNP nuclear retention and viral polymerase activity. Interestingly, miR-1290 was not detected in either chicken cells or mouse animal models, and the 3′ UTR of the chicken vimentin gene contains no binding site for miR-1290. These findings point to a host species-specific mechanism by which IAV upregulates miR-1290 to disrupt vimentin expression and retain vRNP in the nucleus, thereby enhancing viral polymerase activity and viral replication.
Collapse
Affiliation(s)
- Sheng-Yu Huang
- Graduate Institute of Biomedical Science, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Heng Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; The Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan; The Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chi-Jene Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Chun-Yuan Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yueh-Te Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shu-Ming Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Guei Huang
- Graduate Institute of Biomedical Science, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Li-Ang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hsiang Chen
- Graduate Institute of Biomedical Science, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Feng Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Rei-Lin Kuo
- Graduate Institute of Biomedical Science, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
| |
Collapse
|
42
|
Jin Song S, Woodhams DC, Martino C, Allaband C, Mu A, Javorschi-Miller-Montgomery S, Suchodolski JS, Knight R. Engineering the microbiome for animal health and conservation. Exp Biol Med (Maywood) 2019; 244:494-504. [PMID: 30776908 PMCID: PMC6547002 DOI: 10.1177/1535370219830075] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Considering the clear effects of microbiota on important aspects of animal biology and development (including in humans), this topic is timely and broadly appealing, as it compels us to consider the possibilities of altering the microbiome (without antibiotics) to positively affect animal health. In this review, we highlight three general approaches to manipulating the microbiome that have demonstrated success and promise for use in animal health. We also point out knowledge gaps where further inquiry would most benefit the field. Our paper not only provides a short and digestible overview of the current state of application, but also calls for further exploration of the microbial diversity at hand to expand our toolkit, while also leveraging the diversity and flexibility of animal systems to better understand mechanisms of efficacy.
Collapse
Affiliation(s)
- Se Jin Song
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
| | - Douglas C Woodhams
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA
- Smithsonian Tropical Research Institute, Panama city 0843-03092, Panama
| | - Cameron Martino
- Bioinformatics and Systems Biology Program, University of California, San Diego, CA 92093, USA
| | - Celeste Allaband
- Biomedical Sciences Graduate Program, University of California, San Diego, CA 92093, USA
| | - Andre Mu
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville 3010, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Australia
| | - Sandrine Javorschi-Miller-Montgomery
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX 77843, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA 92093, USA
| |
Collapse
|
43
|
Abstract
How virulence evolves after a virus jumps to a new host species is central to disease emergence. Our current understanding of virulence evolution is based on insights drawn from two perspectives that have developed largely independently: long-standing evolutionary theory based on limited real data examples that often lack a genomic basis, and experimental studies of virulence-determining mutations using cell culture or animal models. A more comprehensive understanding of virulence mutations and their evolution can be achieved by bridging the gap between these two research pathways through the phylogenomic analysis of virus genome sequence data as a guide to experimental study.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
44
|
Abstract
INTRODUCTION Influenza continues to be a major public health concern. Antivirals play an important role in limiting the burden of disease and preventing infection and/or transmission. The developments of such agents are heavily dependent on pre-clinical evaluation where animal models are used to answer questions that cannot be easily addressed in human clinical trials. There are numerous animal models available to study the potential benefits of influenza antivirals but each animal model has its own pros and cons. Areas covered: In this review, the authors describe the advantages and disadvantages of using mice, ferrets, guinea pigs, cotton rats, golden hamsters and non-human primates to evaluate influenza therapeutics. Expert opinion: Animals used for evaluating influenza therapeutics differ in their susceptibility to influenza virus infection, their ability to display clinical signs of illness following viral infection and in their practical requirements such as housing. Therefore, defining the scientific question being asked and the data output required will assist in selecting the most appropriate animal model.
Collapse
Affiliation(s)
- Edin J Mifsud
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Celeste Mk Tai
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Aeron C Hurt
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b Department of Microbiology and Immunology , University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
45
|
Kroeker A, He S, de La Vega MA, Wong G, Embury-Hyatt C, Qiu X. Characterization of Sudan Ebolavirus infection in ferrets. Oncotarget 2018; 8:46262-46272. [PMID: 28545034 PMCID: PMC5542265 DOI: 10.18632/oncotarget.17694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/30/2017] [Indexed: 01/17/2023] Open
Abstract
Sudan virus (SUDV) outbreaks in Africa are highly lethal; however, the development and testing of novel antivirals and vaccines for this virus has been limited by a lack of suitable animal models. Non-human primates (NHP) remain the gold standard for modeling filovirus disease, but they are not conducive to screening large numbers of experimental compounds and should only be used to test the most promising candidates. Therefore, other smaller animal models are a valuable asset. We have recently developed a guinea-pig adapted SUDV virus that is lethal in guinea pigs. In our current study, we show that ferrets are susceptible to wild-type SUDV, providing a small animal model to directly study clinical isolates, screen experimental anti-SUDV compounds and potentially study viral transmission.
Collapse
Affiliation(s)
- Andrea Kroeker
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marc-Antoine de La Vega
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada.,Département de microbiologie-infectiologie et d'immunologie, Université Laval, Quebec City, Québec, Canada
| | - Gary Wong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Carissa Embury-Hyatt
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
46
|
Abstract
Animal models are essential to examine the pathogenesis and transmission of influenza viruses and for preclinical evaluation of influenza virus vaccines. Among the animal models used in influenza virus research, the domestic ferret (Mustela putorius furo) is the gold standard. As seen in humans, infection with influenza virus or immunization with an influenza virus vaccine induces humoral and cellular immunity in ferrets that provides protection against infection by an antigenically similar influenza virus. Antibodies against the globular head domain of the influenza hemagglutinin can provide sterilizing immunity against virus infection by blocking receptor binding. However, antibodies that bind the stalk region of the hemagglutinin also confer protection by several mechanisms including antibody-dependent cellular cytotoxicity or phagocytosis. Recently, the antigenically and structurally conserved hemagglutinin stalk has become an attractive target for the development of universal influenza virus vaccines that hold the promise to provide protection against influenza epidemics and pandemics. Herein, in vivo and in vitro assays, including optimization of assay conditions to examine hemagglutinin stalk-specific antibody responses in small animal models, are described.
Collapse
|
47
|
A Single Intramuscular Dose of a Plant-Made Virus-Like Particle Vaccine Elicits a Balanced Humoral and Cellular Response and Protects Young and Aged Mice from Influenza H1N1 Virus Challenge despite a Modest/Absent Humoral Response. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00273-17. [PMID: 29021303 DOI: 10.1128/cvi.00273-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 12/21/2022]
Abstract
Virus-like-particle (VLP) influenza vaccines can be given intramuscularly (i.m.) or intranasally (i.n.) and may have advantages over split-virion formulations in the elderly. We tested a plant-made VLP vaccine candidate bearing the viral hemagglutinin (HA) delivered either i.m. or i.n. in young and aged mice. Young adult (5- to 8-week-old) and aged (16- to 20-month-old) female BALB/c mice received a single 3-μg dose based on the HA (A/California/07/2009 H1N1) content of a plant-made H1-VLP (i.m. or i.n.) split-virion vaccine (i.m.) or were left naive. After vaccination, humoral and splenocyte responses were assessed, and some mice were challenged. Both VLP and split vaccines given i.m. protected 100% of the young animals, but the VLP group lost the least weight and had stronger humoral and cellular responses. Compared to split-vaccine recipients, aged animals vaccinated i.m. with VLP were more likely to survive challenge (80% versus 60%). The lung viral load postchallenge was lowest in the VLP i.m. groups. Mice vaccinated with VLP i.n. had little detectable immune response, but survival was significantly increased. In both age groups, i.m. administration of the H1-VLP vaccine elicited more balanced humoral and cellular responses and provided better protection from homologous challenge than the split-virion vaccine.
Collapse
|
48
|
Serologic Detection of Subtype-specific Antibodies to Influenza A Viruses in Southern Sea Otters (Enhydra lutris nereis). J Wildl Dis 2017; 53:906-910. [PMID: 28513329 DOI: 10.7589/2017-01-011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are approximately 3,000 southern sea otters (Enhydra lutris nereis) in the nearshore environment along the California coast, US, and the species is classified as Threatened under the Endangered Species Act. We tested sera from 661 necropsied southern sea otters sampled from 1997 to 2015 to determine overall exposure to influenza A viruses (IAVs) and to identify subtype-specific antibody responses. Using an enzyme-linked immunosorbent assay (ELISA), antibodies to IAV nucleoproteins were detected in 160 (24.2%) otters, with seropositive animals found in every year except 2008. When the ELISA-positive samples were tested by virus microneutralization, antibody responses were detected to avian-origin hemagglutinin subtypes H1, H3, H4, H5, H6, H7, H9, and H11. Strong antibody responses to pandemic H1N1 (pdmH1N1) were also detected, indicating that epizootic transmission of pdmH1N1 occurred among the southern sea otter population after the emergence of this human-origin virus in 2009. We conclude that southern sea otters are susceptible to infection with avian and human-origin IAV and that exposure to a wide array of subtypes likely occurs during a given otter's 10- to 15-yr life span. Important unanswered questions include what effect, if any, IAV infection has on sea otter health, and how these animals become infected in their nearshore environment.
Collapse
|
49
|
Establishing the ferret as a gyrencephalic animal model of traumatic brain injury: Optimization of controlled cortical impact procedures. J Neurosci Methods 2017; 285:82-96. [PMID: 28499842 DOI: 10.1016/j.jneumeth.2017.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Although rodent TBI studies provide valuable information regarding the effects of injury and recovery, an animal model with neuroanatomical characteristics closer to humans may provide a more meaningful basis for clinical translation. The ferret has a high white/gray matter ratio, gyrencephalic neocortex, and ventral hippocampal location. Furthermore, ferrets are amenable to behavioral training, have a body size compatible with pre-clinical MRI, and are cost-effective. NEW METHODS We optimized the surgical procedure for controlled cortical impact (CCI) using 9 adult male ferrets. We used subject-specific brain/skull morphometric data from anatomical MRIs to overcome across-subject variability for lesion placement. We also reflected the temporalis muscle, closed the craniotomy, and used antibiotics. We then gathered MRI, behavioral, and immunohistochemical data from 6 additional animals using the optimized surgical protocol: 1 control, 3 mild, and 1 severely injured animals (surviving one week) and 1 moderately injured animal surviving sixteen weeks. RESULTS The optimized surgical protocol resulted in consistent injury placement. Astrocytic reactivity increased with injury severity showing progressively greater numbers of astrocytes within the white matter. The density and morphological changes of microglia amplified with injury severity or time after injury. Motor and cognitive impairments scaled with injury severity. COMPARISON WITH EXISTING METHOD(S) The optimized surgical methods differ from those used in the rodent, and are integral to success using a ferret model. CONCLUSIONS We optimized ferret CCI surgery for consistent injury placement. The ferret is an excellent animal model to investigate pathophysiological and behavioral changes associated with TBI.
Collapse
|
50
|
Tundup S, Kandasamy M, Perez JT, Mena N, Steel J, Nagy T, Albrecht RA, Manicassamy B. Endothelial cell tropism is a determinant of H5N1 pathogenesis in mammalian species. PLoS Pathog 2017; 13:e1006270. [PMID: 28282445 PMCID: PMC5362246 DOI: 10.1371/journal.ppat.1006270] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/22/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
The cellular and molecular mechanisms underpinning the unusually high virulence of highly pathogenic avian influenza H5N1 viruses in mammalian species remains unknown. Here, we investigated if the cell tropism of H5N1 virus is a determinant of enhanced virulence in mammalian species. We engineered H5N1 viruses with restricted cell tropism through the exploitation of cell type-specific microRNA expression by incorporating microRNA target sites into the viral genome. Restriction of H5N1 replication in endothelial cells via miR-126 ameliorated disease symptoms, prevented systemic viral spread and limited mortality, despite showing similar levels of peak viral replication in the lungs as compared to control virus-infected mice. Similarly, restriction of H5N1 replication in endothelial cells resulted in ameliorated disease symptoms and decreased viral spread in ferrets. Our studies demonstrate that H5N1 infection of endothelial cells results in excessive production of cytokines and reduces endothelial barrier integrity in the lungs, which culminates in vascular leakage and viral pneumonia. Importantly, our studies suggest a need for a combinational therapy that targets viral components, suppresses host immune responses, and improves endothelial barrier integrity for the treatment of highly pathogenic H5N1 virus infections. In healthy individuals, the symptoms of seasonal influenza virus infection are mild and the infection is cleared within 4–7 days. However, infection with highly pathogenic avian influenza virus (H5N1) can be severe and often results in fatal pneumonia even in healthy adults. While it is known that both viral and host factors play a role in enhanced disease progression, the molecular mechanisms for the high virulence of H5N1 virus are not completely understood. In this study, we engineered avian influenza H5N1 viruses incapable of replicating in endothelial cells and evaluated disease symptoms in mice and ferrets. Our studies show that H5N1 infection of endothelial cells causes severe disease and death of infected animals in part due to the damage of endothelial cells lining the blood vessels, which results in leakage of fluid into the lungs (pneumonia).
Collapse
Affiliation(s)
- Smanla Tundup
- Department of Microbiology, University of Chicago, Chicago, IL, United States of America
- Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, IL, United States of America
| | - Matheswaran Kandasamy
- Department of Microbiology, University of Chicago, Chicago, IL, United States of America
- Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, IL, United States of America
| | - Jasmine T. Perez
- Department of Microbiology, University of Chicago, Chicago, IL, United States of America
| | - Nacho Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - John Steel
- Department of Microbiology, Emory University, Atlanta, GA, United States of America
| | - Tamas Nagy
- Comparative Pathology Laboratory, University of Georgia, Athens, GA, United States of America
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Balaji Manicassamy
- Department of Microbiology, University of Chicago, Chicago, IL, United States of America
- Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, IL, United States of America
- * E-mail:
| |
Collapse
|