1
|
Hogan CH, Owens SM, Reynoso GV, Liao Y, Meyer TJ, Zelazowska MA, Liu B, Li X, Grosskopf AK, Khairallah C, Kirillov V, Reich NC, Sheridan BS, McBride KM, Gewurz BE, Hickman HD, Forrest JC, Krug LT. Multifaceted roles for STAT3 in gammaherpesvirus latency revealed through in vivo B cell knockout models. mBio 2024; 15:e0299823. [PMID: 38170993 PMCID: PMC10870824 DOI: 10.1128/mbio.02998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anna K. Grosskopf
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Yifei L, Jinjie Y, Beri NR, Roth LG, Ethel C, Benjamin E. G. Germinal Center Cytokines Driven Epigenetic Control of Epstein-Barr Virus Latency Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573986. [PMID: 38260430 PMCID: PMC10802360 DOI: 10.1101/2024.01.02.573986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Liao Yifei
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Yan Jinjie
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Lisa G. Roth
- Weill Cornell Medical College, New York, NY 10065
| | | | - Gewurz Benjamin E.
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Harvard Program in Virology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
3
|
Ramsey MC, Sabatini PJB, Watson G, Chawla T, Ko M, Sakhdari A. Case Report: Identification of a novel STAT3 mutation in EBV-positive inflammatory follicular dendritic cell sarcoma. Front Oncol 2023; 13:1266897. [PMID: 37965457 PMCID: PMC10640977 DOI: 10.3389/fonc.2023.1266897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
EBV-positive inflammatory follicular dendritic cell sarcoma (EBV+ IFDCS) is an uncommon disease primarily observed in Asia. It is characterized by the development of tumors believed to originate from follicular dendritic cells (FDC). The consistent association between this condition and clonal EBV infection suggests EBV's involvement as an etiological factor. However, diagnosing EBV+ IFDCS can be challenging due to its morphological variability and diverse immunohistochemical staining patterns. The genetic characteristics of EBV+ IFDCS remain insufficiently understood. To address this knowledge gap, we present a case study of a 47-year-old male patient diagnosed with EBV+ IFDCS. We utilized a Next-generation sequencing (NGS) platform to investigate the genetic profile of the tumor cells. We identified a single pathogenic mutation (G618R) in the STAT3 gene. This finding provides valuable insights into the genetic alterations associated with EBV+ IFDCS and potentially contributes to our understanding of the disease's pathogenesis.
Collapse
Affiliation(s)
- Megan C. Ramsey
- Hematopathology Department, Toronto General Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Peter J. B. Sabatini
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - Tanya Chawla
- Joint Department of Medical Imaging, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Ko
- Thoracic Surgery, Unity Health Network, St Joseph’s Hospital Site, Toronto, ON, Canada
| | - Ali Sakhdari
- Hematopathology Department, Toronto General Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Hogan CH, Owens SM, Reynoso GV, Kirillov V, Meyer TJ, Zelazowska MA, Liu B, Li X, Chikhalya A, Dong Q, Khairallah C, Reich NC, Sheridan B, McBride KM, Hearing P, Hickman HD, Forrest JC, Krug LT. B cell-intrinsic STAT3-mediated support of latency and interferon suppression during murine gammaherpesvirus 68 infection revealed through an in vivo competition model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533727. [PMID: 36993230 PMCID: PMC10055336 DOI: 10.1101/2023.03.22.533727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor STAT3. To better understand the role of STAT3 during gammaherpesvirus latency and immune control, we utilized murine gammaherpesvirus 68 (MHV68) infection. Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak latency approximately 7-fold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to WT littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeras consisting of WT and STAT3-knockout B cells. Using a competitive model of infection, we discovered a dramatic reduction in latency in STAT3-knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that STAT3 promotes proliferation and B cell processes of the germinal center but does not directly regulate viral gene expression. Last, this analysis uncovered a STAT3-dependent role for dampening type I IFN responses in newly infected B cells. Together, our data provide mechanistic insight into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aniska Chikhalya
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Qiwen Dong
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
5
|
Galectin-9 Facilitates Epstein-Barr Virus Latent Infection and Lymphomagenesis in Human B Cells. Microbiol Spectr 2023; 11:e0493222. [PMID: 36622166 PMCID: PMC9927364 DOI: 10.1128/spectrum.04932-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The immune regulator galectin-9 (Gal-9) is commonly involved in the regulation of cell proliferation, but with various impacts depending on the cell type. Here, we revealed that Gal-9 expression was persistently increased in Epstein-Barr virus (EBV)-infected primary B cells from the stage of early infection to the stage of mature lymphoblastoid cell lines (LCLs). This sustained upregulation paralleled that of gene sets related to cell proliferation, such as oxidative phosphorylation, cell cycle activation, and DNA replication. Knocking down or blocking Gal-9 expression obstructed the establishment of latent infection and outgrowth of EBV-infected B cells, while exogenous Gal-9 protein promoted EBV acute and latent infection and outgrowth of EBV-infected B cells at the early infection stage. Mechanically, stimulator of interferon gene (STING) activation or signal transducer and activator of transcription 3 (STAT3) inhibition impeded the outgrowth of EBV-infected B cells and promotion of Gal-9-induced lymphoblastoid cell line (LCL) transformation. Accordingly, Gal-9 expression was upregulated by forced EBV nuclear antigen 1 (EBNA1) expression in 293T cells in vitro. Clinical data showed that Gal-9 expression in B-cell lymphomas (BCLs) correlated positively with EBNA1 and disease stage. Targeting Gal-9 slowed LCL tumor growth and metastasis in xenografted immunodeficient mice. These findings highlight an oncogenic role of Gal-9 in EBV-associated BCLs, indicating that Gal-9 boosts the transformation of EBV-infected B cells. IMPORTANCE The cross talk between Epstein-Barr virus (EBV) and the host cell transcriptome assumes important roles in the oncogenesis of EBV-associated malignancies. Here, we first observed that endogenous Gal-9 expression was persistently increased along with an overturned V-type change in antivirus signaling during the immortalization of EBV-transformed B cells. Upregulation of Gal-9 promoted the outgrowth and latent infection of EBV-infected B cells, which was linked to B-cell-origin tumors by suppressing STING signaling and subsequently promoting STAT3 phosphorylation. EBV nuclear antigen EBNA1 induced Gal-9 expression and formed a positive feedback loop with Gal-9 in EBV-infected B cells. Tumor Gal-9 levels were positively correlated with disease stage and EBNA1 expression in patients with B-cell lymphomas (BCLs). Targeting Gal-9 slowed the growth and metastases of LCL tumors in immunodeficient mice. Altogether, our findings indicate that Gal-9 is involved in the lymphomagenesis of EBV-positive BCLs through cross talk with EBNA1 and STING signals.
Collapse
|
6
|
Trefoil Factor 3 Inhibits Thyroid Cancer Cell Progression Related to IL-6/JAK/STAT3 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2130229. [PMID: 34567204 PMCID: PMC8457945 DOI: 10.1155/2021/2130229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
Objectives Abnormal expression of trefoil factor 3 (TFF3) in breast, stomach, and colon tumors may be related to the occurrence of tumors, suggesting its role in angiogenesis. In this study, the aim was to explore the role of TFF3 in thyroid cancer. Methods TFF3 expression analysis was performed via GEPIA and RT-PCR. To explore the effects of TFF3 on thyroid cancer cell motility, cell function assays were performed. Furthermore, GSEA pathway analysis and western blot were used to explore the mechanism by which TFF3 represses the progression of thyroid cancer cells. Results Here, we showed that low expression level of TFF3 in thyroid cancer is related to thyroid cancer nodal metastasis. The patients with low TFF3 expression showed worse disease-free survival than those with high level of TFF3. Underexpressed TFF3 increased cell motility and inhibited cell apoptosis. We found that the levels of IL-6, p-JAK2/JAK2, and pSTAT3/STAT3 were inhibited in the pcDNA-TFF3 group compared to the pcDNA-NC group and these factors were upregulated in the si-TFF3 group compared to the si-NC group in BCPAP and TPC-1 cells. Conclusion TFF3 inhibits thyroid cancer cell progression related to IL-6/JAK/STAT3 signaling pathway.
Collapse
|
7
|
Frey TR, Akinyemi IA, Burton EM, Bhaduri-McIntosh S, McIntosh MT. An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles. Front Microbiol 2021; 12:708404. [PMID: 34434177 PMCID: PMC8381357 DOI: 10.3389/fmicb.2021.708404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist as life-long infections alternating between latency and lytic replication. Human endogenous retroviruses (HERVs), via integration into the host genome, represent genetic remnants of ancient retroviral infections. Both show similar epigenetic silencing while dormant, but can reactivate in response to cell signaling cues or triggers that, for gammaherpesviruses, result in productive lytic replication. Given their co-existence with humans and shared epigenetic silencing, we asked if HERV expression might be linked to lytic activation of human gammaherpesviruses. We found ERVW-1 mRNA, encoding the functional HERV-W envelope protein Syncytin-1, along with other repeat class elements, to be elevated upon lytic activation of EBV. Knockdown/knockout of ERVW-1 reduced lytic activation of EBV and KSHV in response to various lytic cycle triggers. In this regard, reduced expression of immediate early proteins ZEBRA and RTA for EBV and KSHV, respectively, places Syncytin-1's influence on lytic activation mechanistically upstream of the latent-to-lytic switch. Conversely, overexpression of Syncytin-1 enhanced lytic activation of EBV and KSHV in response to lytic triggers, though this was not sufficient to induce lytic activation in the absence of such triggers. Syncytin-1 is expressed in replicating B cell blasts and lymphoma-derived B cell lines where it appears to contribute to cell cycle progression. Together, human gammaherpesviruses and B cells appear to have adapted a dependency on Syncytin-1 that facilitates the ability of EBV and KSHV to activate lytic replication from latency, while promoting viral persistence during latency by contributing to B cell proliferation.
Collapse
Affiliation(s)
- Tiffany R. Frey
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Ibukun A. Akinyemi
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Michael T. McIntosh
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Lymphotropic Viruses: Chronic Inflammation and Induction of Cancers. BIOLOGY 2020; 9:biology9110390. [PMID: 33182552 PMCID: PMC7697807 DOI: 10.3390/biology9110390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
Inflammation induced by transcription factors, including Signal Transducers and Activators of Transcription (STATs) and NF-κB, in response to microbial pathogenic infections and ligand dependent receptors stimulation are critical for controlling infections. However, uncontrolled inflammation induced by these transcription factors could lead to immune dysfunction, persistent infection, inflammatory related diseases and the development of cancers. Although the induction of innate immunity and inflammation in response to viral infection is important to control virus replication, its effects can be modulated by lymphotropic viruses including human T-cell leukemia virus type 1 (HTLV-1), Κaposi's sarcoma herpesvirus (KSHV), and Epstein Barr virus (EBV) during de novo infection as well as latent infection. These lymphotropic viruses persistently activate JAK-STAT and NF-κB pathways. Long-term STAT and NF-κB activation by these viruses leads to the induction of chronic inflammation, which can support the persistence of these viruses and promote virus-mediated cancers. Here, we review how HTLV-1, KSHV and EBV hijack the function of host cell surface molecules (CSMs), which are involved in the regulation of chronic inflammation, innate and adaptive immune responses, cell death and the restoration of tissue homeostasis. Thus, better understanding of CSMs-mediated chronic activation of STATs and NF-κB pathways in lymphotropic virus-infected cells may pave the way for therapeutic intervention in malignancies caused by lymphotropic viruses.
Collapse
|
9
|
Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, Fry CJ, Puri R, Wolinsky E, Schineller M, Frost TC, Gebre M, Zhao B, Giulino-Roth L, Doench JG, Teng M, Gewurz BE. MYC Controls the Epstein-Barr Virus Lytic Switch. Mol Cell 2020; 78:653-669.e8. [PMID: 32315601 DOI: 10.1016/j.molcel.2020.03.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is associated with multiple human malignancies. To evade immune detection, EBV switches between latent and lytic programs. How viral latency is maintained in tumors or in memory B cells, the reservoir for lifelong EBV infection, remains incompletely understood. To gain insights, we performed a human genome-wide CRISPR/Cas9 screen in Burkitt lymphoma B cells. Our analyses identified a network of host factors that repress lytic reactivation, centered on the transcription factor MYC, including cohesins, FACT, STAGA, and Mediator. Depletion of MYC or factors important for MYC expression reactivated the lytic cycle, including in Burkitt xenografts. MYC bound the EBV genome origin of lytic replication and suppressed its looping to the lytic cycle initiator BZLF1 promoter. Notably, MYC abundance decreases with plasma cell differentiation, a key lytic reactivation trigger. Our results suggest that EBV senses MYC abundance as a readout of B cell state and highlights Burkitt latency reversal therapeutic targets.
Collapse
Affiliation(s)
- Rui Guo
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Chang Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuchen Zhang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Apurva Govande
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Stephen J Trudeau
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Fang Chen
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA
| | | | - Rishi Puri
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emma Wolinsky
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Molly Schineller
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas C Frost
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Makda Gebre
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Giulino-Roth
- Division of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Broussard G, Damania B. KSHV: Immune Modulation and Immunotherapy. Front Immunol 2020; 10:3084. [PMID: 32117196 PMCID: PMC7025529 DOI: 10.3389/fimmu.2019.03084] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is associated with KS, primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). To ensure its own survival and propagation, KSHV employs an extensive network of viral proteins to subvert the host immune system, resulting in lifelong latent infection. Modulation of cellular and systemic immune defenses allows KSHV to persist in the host, which may eventually lead to the progression of KSHV-associated cancers. Due to KSHV's reliance on modifying immune responses to efficiently infect its host, immunotherapy is an attractive option for treating KSHV-associated malignancies. In this review, we will focus on the mechanisms by which KSHV evades the immune system and the current immune-related clinical strategies to treat KSHV-associated disease.
Collapse
Affiliation(s)
- Grant Broussard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Granato M, Gilardini Montani MS, Zompetta C, Santarelli R, Gonnella R, Romeo MA, D'Orazi G, Faggioni A, Cirone M. Quercetin Interrupts the Positive Feedback Loop Between STAT3 and IL-6, Promotes Autophagy, and Reduces ROS, Preventing EBV-Driven B Cell Immortalization. Biomolecules 2019; 9:biom9090482. [PMID: 31547402 PMCID: PMC6769872 DOI: 10.3390/biom9090482] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022] Open
Abstract
The oncogenic gammaherpesvirus Epstein–Barr virus (EBV) immortalizes in vitro B lymphocytes into lymphoblastoid cell lines (LCLs), a model that gives the opportunity to explore the molecular mechanisms driving viral tumorigenesis. In this study, we addressed the potential of quercetin, a widely distributed flavonoid displaying antioxidant, anti-inflammatory, and anti-cancer properties, in preventing EBV-driven B cell immortalization. The results obtained indicated that quercetin inhibited thectivation of signal transducer and activator of transcription 3 (STAT3) induced by EBV infection and reduced molecules such as interleukin-6 (IL-6) and reactive oxidative species (ROS) known to be essential for the immortalization process. Moreover, we found that quercetin promoted autophagy and counteracted the accumulation of sequestosome1/p62 (SQSTM1/p62), ultimately leading to the prevention of B cell immortalization. These findings suggest that quercetin may have the potential to be used to counteract EBV-driven lymphomagenesis, especially if its stability is improved.
Collapse
Affiliation(s)
- Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Claudia Zompetta
- Department of Experimental Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Maria Anele Romeo
- Department of Experimental Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Gabriella D'Orazi
- Translational Research Area, Regina Elena National Cancer Institute, 00128 Rome, Italy.
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", 66013 Chieti, Italy.
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| |
Collapse
|
12
|
Epstein-Barr virus (EBV) activates NKL homeobox gene HLX in DLBCL. PLoS One 2019; 14:e0216898. [PMID: 31141539 PMCID: PMC6541347 DOI: 10.1371/journal.pone.0216898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
NKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and lymphopoiesis, particular members of this homeobox gene subclass constitute an NKL-code. B-cell specific NKL-code genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as models to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed the pro-apoptotic factor BCL2L11/BIM and hence supported cell survival. Thus, EBV aberrantly activated HLX in DLBCL, thereby disturbing both B-cell differentiation and apoptosis. The results of our study appreciate the pathogenic role of EBV in NKL homeobox gene deregulation and B-cell malignancies.
Collapse
|
13
|
Marek's Disease Virus Disables the ATR-Chk1 Pathway by Activating STAT3. J Virol 2019; 93:JVI.02290-18. [PMID: 30787154 DOI: 10.1128/jvi.02290-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/12/2019] [Indexed: 01/05/2023] Open
Abstract
Oncogenic virus replication often leads to genomic instability, causing DNA damage and inducing the DNA damage response (DDR) pathway. The DDR pathway is a cellular pathway that senses DNA damage and regulates the cell cycle to maintain genomic stability. Therefore, the DDR pathway is critical for the viral lifecycle and tumorigenesis. Marek's disease virus (MDV), an alphaherpesvirus that causes lymphoma in chickens, has been shown to induce DNA damage in infected cells. However, the interaction between MDV and the host DDR is unclear. In this study, we observed that MDV infection causes DNA strand breakage in chicken fibroblast (CEF) cells along with an increase in the DNA damage markers p53 and p21. Interestingly, we showed that phosphorylation of STAT3 was increased during MDV infection, concomitantly with a decrease of Chk1 phosphorylation. In addition, we found that MDV infection was enhanced by VE-821, an ATR-specific inhibitor, but attenuated by hydroxyurea, an ATR activator. Moreover, inhibition of STAT3 phosphorylation by Stattic eliminates the ability of MDV to inhibit Chk1 phosphorylation. Finally, we showed that MDV replication was decreased by Stattic treatment. Taken together, these results suggest that MDV disables the ATR-Chk1 pathway through STAT3 activation to benefit its replication.IMPORTANCE MDV is used as a biomedical model to study virus-induced lymphoma due to the similar genomic structures and physiological characteristics of MDV and human herpesviruses. Upon infection, MDV induces DNA damage, which may activate the DDR pathway. The DDR pathway has a dual impact on viruses because it manipulates repair and recombination factors to facilitate viral replication and also initiates antiviral action by regulating other signaling pathways. Many DNA viruses evolve to manipulate the DDR pathway to promote virus replication. In this study, we identified a mechanism used by MDV to inhibit ATR-Chk1 pathways. ATR is a cellular kinase that responds to broken single-stranded DNA, which has been less studied in MDV infection. Our results suggest that MDV infection activates STAT3 to disable the ATR-Chk1 pathway, which is conducive to viral replication. This finding provides new insight into the role of STAT3 in interrupting the ATR-Chk1 pathway during MDV replication.
Collapse
|
14
|
EBV and KSHV Infection Dysregulates Autophagy to Optimize Viral Replication, Prevent Immune Recognition and Promote Tumorigenesis. Viruses 2018; 10:v10110599. [PMID: 30384495 PMCID: PMC6266050 DOI: 10.3390/v10110599] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic process strongly involved in the immune response, and its dysregulation contributes to the onset of several diseases including cancer. The human oncogenic gammaherpesviruses, Epstein—Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), manipulate autophagy, either during the de novo infection or during the lytic reactivation, in naturally latently-infected lymphoma cells. In particular, the gammaherpesvirus infection reduces autophagy in immune cells, such as monocytes, resulting in the impairment of cell survival and cell differentiation into dendritic cells (DCs), which are essential for initiating and regulating the immune response. In the case of EBV, the reduction of autophagy in these cells, leading to p62 accumulation, activated the p62-NRF2-antioxidant response, reducing ROS, and further inhibiting autophagy. KSHV inhibits autophagy in monocytes by de-phosphorylating JNK2, altering the calpains–calpastatin balance and increasing the calpain activity responsible for the cleavage of ATG5. To further impair the immune response, KSHV also inhibits autophagy in differentiated DCs by hyper-phosphorylating STAT3. Conversely, when the lytic cycle is induced in vitro in latently-infected lymphoma B cells, both EBV and KSHV promote autophagy to enhance their replication, although the final autophagic steps are blocked through the down-regulation of Rab7. This strategy allows viruses to avoid the destructive environment of lysosomes, and to exploit the autophagic machinery for intracellular transportation. EBV and KSHV encode for proteins that may either inhibit or promote autophagy and, in addition, they can modulate the cellular pathways that control this process. In this review we will discuss the findings that indicate that autophagy is dysregulated by gammaherpesvirus to promote immune suppression, facilitate viral replication and contribute to the onset and maintenance of gammaherpesvirus-associated malignancies.
Collapse
|
15
|
Gilardini Montani MS, Santarelli R, Granato M, Gonnella R, Torrisi MR, Faggioni A, Cirone M. EBV reduces autophagy, intracellular ROS and mitochondria to impair monocyte survival and differentiation. Autophagy 2018; 15:652-667. [PMID: 30324853 DOI: 10.1080/15548627.2018.1536530] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
EBV has been reported to impair monocyte in vitro differentiation into dendritic cells (DCs) and reduce cell survival. In this study, we added another layer of knowledge to this topic and showed that these effects correlated with macroautophagy/autophagy, ROS and mitochondrial biogenesis reduction. Of note, autophagy and ROS, although strongly interconnected, have been separately reported to be induced by CSF2/GM-CSF (colony stimulating factor 2) and required for CSF2-IL4-driven monocyte in vitro differentiation into DCs. We show that EBV infects monocytes and initiates a feedback loop in which, by inhibiting autophagy, reduces ROS and through ROS reduction negatively influences autophagy. Mechanistically, autophagy reduction correlated with the downregulation of RAB7 and ATG5 expression and STAT3 activation, leading to the accumulation of SQSTM1/p62. The latter activated the SQSTM1-KEAP1- NFE2L2 axis and upregulated the anti-oxidant response, reducing ROS and further inhibiting autophagy. ROS decrease correlated also with the reduction of mitochondria, the main source of intracellular ROS, achieved by the downregulation of NRF1 and TFAM, mitochondrial biogenesis transcription factors. Interestingly, mitochondria supply membranes and ATP required for autophagy execution, thus their reduction may further reduce autophagy in EBV-infected monocytes. In conclusion, this study shows for the first time that the interconnected reduction of autophagy, intracellular ROS and mitochondria mediated by EBV switches monocyte differentiation into apoptosis, giving new insights into the mechanisms through which this virus reduces immune surveillance. Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; BAF: bafilomycin A1; BECN1: beclin 1; CAT: catalase; CSF2: colony stimulating factor 2; CT: control; CYCS (cytochrome C: somatic); DCs: dendritic cells; EBV: Epstein-Barr virus; GSR: glutathione-disulfide reductase; KEAP1: kelch like ECH associated protein 1; IL4: interleukin 4; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MET: metformin; NAC: N-acetylcysteine; NFE2L2/NRF2 nuclear factor: erythroid 2 like 2; NRF1 (nuclear respiratory factor 1); clPARP1: cleaved poly(ADP-ribose) polymerase; Rapa: Rapamycin; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TFAM: (transcription factor A: mitochondrial); TUBA1A: tubulin alpha 1a.
Collapse
Affiliation(s)
- M S Gilardini Montani
- a Department of Experimental Medicine , Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Rome , Italy
| | - R Santarelli
- a Department of Experimental Medicine , Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Rome , Italy
| | - M Granato
- a Department of Experimental Medicine , Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Rome , Italy
| | - R Gonnella
- a Department of Experimental Medicine , Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Rome , Italy
| | - M R Torrisi
- b Department of Clinical and Molecular Medicine , Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Italy.,c Sant'Andrea University Hospital , Azienda Ospedaliera Sant'Andrea , Rome , Italy
| | - A Faggioni
- a Department of Experimental Medicine , Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Rome , Italy
| | - M Cirone
- a Department of Experimental Medicine , Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Rome , Italy
| |
Collapse
|
16
|
Frost TC, Gewurz BE. Epigenetic crossroads of the Epstein-Barr virus B-cell relationship. Curr Opin Virol 2018; 32:15-23. [PMID: 30227386 DOI: 10.1016/j.coviro.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus that establishes lifelong infection in the majority of people worldwide. EBV uses epigenetic reprogramming to switch between multiple latency states in order to colonize the memory B-cell compartment and to then periodically undergo lytic reactivation upon plasma cell differentiation. This review focuses on recent advances in the understanding of epigenetic mechanisms that EBV uses to control its lifecycle and to subvert the growth and survival pathways that underly EBV-driven B-cell differentiation versus B-cell growth transformation, a hallmark of the first human tumor virus. These include the formation of viral super enhancers that drive expression of key host dependency factors, evasion of tumor suppressor responses, prevention of plasmablast differentiation, and regulation of the B-cell lytic switch.
Collapse
Affiliation(s)
- Thomas C Frost
- Graduate Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin E Gewurz
- Graduate Program in Virology, Harvard Medical School, Boston, MA, 02115, USA; Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Boston, MA, 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
17
|
Li CW, Jheng BR, Chen BS. Investigating genetic-and-epigenetic networks, and the cellular mechanisms occurring in Epstein-Barr virus-infected human B lymphocytes via big data mining and genome-wide two-sided NGS data identification. PLoS One 2018; 13:e0202537. [PMID: 30133498 PMCID: PMC6105016 DOI: 10.1371/journal.pone.0202537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is prevalent in all human populations. EBV mainly infects human B lymphocytes and epithelial cells, and is therefore associated with their various malignancies. To unravel the cellular mechanisms during the infection, we constructed interspecies networks to investigate the molecular cross-talk mechanisms between human B cells and EBV at the first (0-24 hours) and second (8-72 hours) stages of EBV infection. We first constructed a candidate genome-wide interspecies genetic-and-epigenetic network (the candidate GIGEN) by big database mining. We then pruned false positives in the candidate GIGEN to obtain the real GIGENs at the first and second infection stages in the lytic phase by their corresponding next-generation sequencing data through dynamic interaction models, the system identification approach, and the system order detection method. The real GIGENs are very complex and comprise protein-protein interaction networks, gene/microRNA (miRNA)/long non-coding RNA regulation networks, and host-virus cross-talk networks. To understand the molecular cross-talk mechanisms underlying EBV infection, we extracted the core GIGENs including host-virus core networks and host-virus core pathways from the real GIGENs using the principal network projection method. According to the results, we found that the activities of epigenetics-associated human proteins or genes were initially inhibited by viral proteins and miRNAs, and human immune responses were then dysregulated by epigenetic modification. We suggested that EBV exploits viral proteins and miRNAs, such as EBNA1, BPLF1, BALF3, BVRF1 and miR-BART14, to develop its defensive mechanism to defeat multiple immune attacks by the human immune system, promotes virion production, and facilitates the transportation of viral particles by activating the human genes NRP1 and CLIC5. Ultimately, we propose a therapeutic intervention comprising thymoquinone, valpromide, and zebularine to act as inhibitors of EBV-associated malignancies.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bo-Ren Jheng
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Mariggiò G, Koch S, Schulz TF. Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0275. [PMID: 28893942 PMCID: PMC5597742 DOI: 10.1098/rstb.2016.0275] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany .,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| |
Collapse
|
19
|
Lv DW, Zhang K, Li R. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog 2018; 14:e1006868. [PMID: 29357389 PMCID: PMC5794192 DOI: 10.1371/journal.ppat.1006868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/01/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a transcription factor of the IRF family. IRF8 plays a key role in normal B cell differentiation, a cellular process that is intrinsically associated with Epstein-Barr virus (EBV) reactivation. However, whether IRF8 regulates EBV lytic replication remains unknown. In this study, we utilized a CRISPR/Cas9 genomic editing approach to deplete IRF8 and found that IRF8 depletion dramatically inhibits the reactivation of EBV upon lytic induction. We demonstrated that IRF8 depletion suppresses the expression of a group of genes involved in apoptosis and thus inhibits apoptosis induction upon lytic induction by B cell receptor (BCR) stimulation or chemical induction. The protein levels of caspase-1, caspase-3 and caspase-8 all dramatically decreased in IRF8-depleted cells, which led to reduced caspase activation and the stabilization of KAP1, PAX5 and DNMT3A upon BCR stimulation. Interestingly, caspase inhibition blocked the degradation of KAP1, PAX5 and DNMT3A, suppressed EBV lytic gene expression and viral DNA replication upon lytic induction, suggesting that the reduced caspase expression in IRF8-depleted cells contributes to the suppression of EBV lytic replication. We further demonstrated that IRF8 directly regulates CASP1 (caspase-1) gene expression through targeting its gene promoter and knockdown of caspase-1 abrogates EBV reactivation upon lytic induction, partially through the stabilization of KAP1. Together our study suggested that, by modulating the activation of caspases and the subsequent cleavage of KAP1 upon lytic induction, IRF8 plays a critical role in EBV lytic reactivation. Infection with Epstein-Barr virus (EBV) is closely associated with human cancers of both B cell and epithelial cell origin. The EBV life cycle is tightly regulated by both viral and cellular factors. Here, we demonstrate that interferon regulatory factor 8 (IRF8) is required for EBV lytic replication. Mechanistically, IRF8 directly regulates caspase-1 expression and hence caspase activation upon B cell receptor (BCR) stimulation and chemical induction, which leads to the cleavage and de-stabilization of several host factors suppressing lytic replication, including KAP1. Caspase-1 depletion blocks EBV reactivation while KAP1 depletion facilitates reactivation in caspase-1 depleted cells. These results together establish a IRF8/caspase-1/KAP1 axis important for EBV reactivation.
Collapse
Affiliation(s)
- Dong-Wen Lv
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hau PM, Tsao SW. Epstein-Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle. Viruses 2017; 9:v9110341. [PMID: 29144413 PMCID: PMC5707548 DOI: 10.3390/v9110341] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a ubiquitous virus that infects most of the human population. EBV infection is associated with multiple human cancers, including Burkitt’s lymphoma, Hodgkin’s lymphoma, a subset of gastric carcinomas, and almost all undifferentiated non-keratinizing nasopharyngeal carcinoma. Intensive research has shown that EBV triggers a DNA damage response (DDR) during primary infection and lytic reactivation. The EBV-encoded viral proteins have been implicated in deregulating the DDR signaling pathways. The consequences of DDR inactivation lead to genomic instability and promote cellular transformation. This review summarizes the current understanding of the relationship between EBV infection and the DDR transducers, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase), and discusses how EBV manipulates the DDR signaling pathways to complete the replication process of viral DNA during lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Sai Wah Tsao
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
The regulatory role of protein phosphorylation in human gammaherpesvirus associated cancers. Virol Sin 2017; 32:357-368. [PMID: 29116588 PMCID: PMC6704201 DOI: 10.1007/s12250-017-4081-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Activation of specific sets of protein kinases by intracellular signal molecules
has become more and more apparent in the past decade. Phosphorylation, one of key
posttranslational modification events, is activated by kinase or regulatory protein
and is vital for controlling many physiological functions of eukaryotic cells such
as cell proliferation, differentiation, malignant transformation, and signal
transduction mediated by external stimuli. Moreovers, the reversible modification of
phosphorylation and dephosphorylation can result in different features of the target
substrate molecules including DNA binding, protein-protein interaction, subcellular
location and enzymatic activity, and is often hijacked by viral infection.
Epstein-Barr virus (EBV) and Kaposi’s sarcomaassociated herpesvirus (KSHV), two
human oncogenic gamma-herpesviruses, are shown to tightly associate with many
malignancies. In this review, we summarize the recent progresses on understanding of
molecular properties and regulatory modes of cellular and viral proteins
phosphorylation influenced by these two tumor viruses, and highlight the potential
therapeutic targets and strategies against their related cancers. ![]()
Collapse
|
22
|
Foreman HCC, Armstrong J, Santana AL, Krug LT, Reich NC. The replication and transcription activator of murine gammaherpesvirus 68 cooperatively enhances cytokine-activated, STAT3-mediated gene expression. J Biol Chem 2017; 292:16257-16266. [PMID: 28821622 DOI: 10.1074/jbc.m117.786970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
Gammaherpesviruses (γHVs) have a dynamic strategy for lifelong persistence, involving productive infection, latency, and intermittent reactivation. In latency reservoirs, such as B lymphocytes, γHVs exist as viral episomes and express few viral genes. Although the ability of γHV to reactivate from latency and re-enter the lytic phase is challenging to investigate and control, it is known that the γHV replication and transcription activator (RTA) can promote lytic reactivation. In this study, we provide first evidence that RTA of murine γΗV68 (MHV68) selectively binds and enhances the activity of tyrosine-phosphorylated host STAT3. STAT3 is a transcription factor classically activated by specific tyrosine 705 phosphorylation (pTyr705-STAT3) in response to cytokine stimulation. pTyr705-STAT3 forms a dimer that avidly binds a consensus target site in the promoters of regulated genes, and our results indicate that RTA cooperatively enhances the ability of pTyr705-STAT3 to induce expression of a STAT3-responsive reporter gene. As indicated by coimmunoprecipitation, in latently infected B cells that are stimulated to reactivate MHV68, RTA bound specifically to endogenous pTyr705-STAT3. An in vitro binding assay confirmed that RTA selectively recognizes pTyr705-STAT3 and indicated that the C-terminal transactivation domain of RTA was required for enhancing STAT3-directed gene expression. The cooperation of these transcription factors may influence both viral and host genes. During MHV68 de novo infection, pTyr705-STAT3 promoted the temporal expression of ORF59, a viral replication protein. Our results demonstrate that MHV68 RTA specifically recognizes and recruits activated pTyr705-STAT3 during the lytic phase of infection.
Collapse
Affiliation(s)
- Hui-Chen Chang Foreman
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Julie Armstrong
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Alexis L Santana
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Laurie T Krug
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Nancy C Reich
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
23
|
Singh S, Jha HC. Status of Epstein-Barr Virus Coinfection with Helicobacter pylori in Gastric Cancer. JOURNAL OF ONCOLOGY 2017; 2017:3456264. [PMID: 28421114 PMCID: PMC5379099 DOI: 10.1155/2017/3456264] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus is a ubiquitous human herpesvirus whose primary infection causes mononucleosis, Burkett's lymphoma, nasopharyngeal carcinoma, autoimmune diseases, and gastric cancer (GC). The persistent infection causes malignancies in lymph and epithelial cells. Helicobacter pylori causes gastritis in human with chronic inflammation. This chronic inflammation is thought to be the cause of genomic instability. About 45%-word population have a probability of having both pathogens, namely, H. pylori and EBV. Approximately 180 per hundred thousand population is developing GC along with many gastric abnormalities. This makes GC the third leading cause of cancer-related death worldwide. Although lots of research are carried out individually for EBV and H. pylori, still there are very few reports available on coinfection of both pathogens. Recent studies suggested that EBV and H. pylori coinfection increases the occurrence of GC as well as the early age of GC detection comparing to individual infection. The aim of this review is to present status on coinfection of both pathogens and their association with GC.
Collapse
Affiliation(s)
- Shyam Singh
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Hem Chandra Jha
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|