1
|
Contarin R, Drapeau A, François P, Madec JY, Haenni M, Dordet-Frisoni E. The interplay between mobilome and resistome in Staphylococcus aureus. mBio 2024; 15:e0242824. [PMID: 39287446 PMCID: PMC11481524 DOI: 10.1128/mbio.02428-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Antibiotic resistance genes (ARGs) in Staphylococcus aureus can disseminate vertically through successful clones, but also horizontally through the transfer of genes conveyed by mobile genetic elements (MGEs). Even though underexplored, MGE/ARG associations in S. aureus favor the emergence of multidrug-resistant clones, which are challenging therapeutic success in both human and animal health. This study investigated the interplay between the mobilome and the resistome of more than 10,000 S. aureus genomes from human and animal origin. The analysis revealed a remarkable diversity of MGEs and ARGs, with plasmids and transposons being the main carriers of ARGs. Numerous MGE/ARG associations were identified, suggesting that MGEs play a critical role in the dissemination of resistance. A high degree of similarity was observed in MGE/ARG associations between human and animal isolates, highlighting the potential for unrestricted spread of ARGs between hosts. Our results showed that in parallel to clonal expansion, MGEs and their associated ARGs can spread across different strain types sequence types (STs), favoring the evolution of these clones and their adaptation in selective environments. The high variability of MGE/ARG associations within individual STs and their spread across several STs highlight the crucial role of MGEs in shaping the S. aureus resistome. Overall, this study provides valuable insights into the complex interplay between MGEs and ARGs in S. aureus, emphasizing the need to elucidate the mechanisms governing the epidemic success of MGEs, particularly those implicated in ARG transfer.IMPORTANCEThe research presented in this article highlights the importance of understanding the interactions between mobile genetic elements (MGEs) and antibiotic resistance genes (ARGs) carried by Staphylococcus aureus, a versatile bacterium that can be both a harmless commensal and a dangerous pathogen for humans and animals. S. aureus has a great capacity to acquire and disseminate ARGs, enabling efficient adaption to various environmental or clinical conditions. By analyzing a large data set of S. aureus genomes, we highlighted the substantial role of MGEs, particularly plasmids and transposons, in disseminating ARGs within and between S. aureus populations, bypassing host barriers. Given that multidrug-resistant S. aureus strains are classified as a high-priority pathogen by global health organizations, this knowledge is crucial for understanding the complex dynamics of transmission of antibiotic resistance in this species.
Collapse
Affiliation(s)
- Rachel Contarin
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Antoine Drapeau
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Pauline François
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | | |
Collapse
|
2
|
Kundu R, Murugadoss K, Manoharan M, Mandal J. Burden of biocide resistance among multidrug-resistant bacteria isolated from various clinical specimens in a tertiary care hospital. Indian J Med Microbiol 2023; 46:100478. [PMID: 37769586 DOI: 10.1016/j.ijmmb.2023.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Most studies on biocide resistance and its genetic determinants arise from environmental or food-borne microbial isolates and only a few from clinically relevant isolates. OBJECTIVES This study determines the proportion of biocide resistance against five commonly used biocides and detects biocide resistance genes among MDR bacterial isolates using PCR. METHODS Consecutive MDR isolates (n = 180) were included (30 each of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, and Enterococcus species) from clinical specimens of various inpatient units at JIPMER. The isolates were challenged at 0.5,1 and 2 Macfarland (McF) inoculum with discrete dilutions of disinfectants. The minimum bactericidal concentrations (MBCs) for 70% Ethanol, 1.5% Cresol, 2% Glutaraldehyde, 1% Cetrimide, and 1% Chlorhexidine were determined for the isolates using ATCC reference strains as controls. PCR was performed targeting qac A/B, G; smr; and nfx B genes. RESULTS For all biocides, MDR isolates had MBCs less than the maximum MBCs of ATCC strains. For MDR K. pneumoniae, A. baumannii, and P. aeruginosa, the highest MBCs of chlorhexidine and cetrimide were ≥75 and ≥ 150 μg/ml respectively at 0.5 McF inoculum; whereas these organisms grew at higher inoculum (2McF) even at commercially recommended biocidal concentration (1%) corresponding to 750 and 1500 μg/ml of chlorhexidine and cetrimide respectively. Meanwhile, the highest MBCs of MDR E. coli were 75 and 150 μg/ml for chlorhexidine and cetrimide respectively. Interestingly, the Gram-positive cocci survived the action of up to 35% ethanol. The nfxB and qacG genes were detected in 87% and 6.67% of MDR P. aeruginosa isolates respectively with no biocide resistance genes detected among the other organisms. CONCLUSIONS Biocide dilutions challenged with higher inoculum indicated a narrow margin of effectiveness for certain biocides. Although a significant proportion of clinical MDR isolates of P. aeruginosa harbored biocide resistance genes, this finding had no phenotypic correlation.
Collapse
Affiliation(s)
- Ramit Kundu
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Institute and Research (JIPMER), Dhanvantri Nagar, Gorimedu, Pondicherry-605006, India.
| | - Kamali Murugadoss
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Institute and Research (JIPMER), Dhanvantri Nagar, Gorimedu, Pondicherry-605006, India.
| | - Meerabai Manoharan
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Institute and Research (JIPMER), Dhanvantri Nagar, Gorimedu, Pondicherry-605006, India.
| | - Jharna Mandal
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Institute and Research (JIPMER), Dhanvantri Nagar, Gorimedu, Pondicherry-605006, India.
| |
Collapse
|
3
|
Zhang G, Yang N, Liu Z, Chen X, Li M, Fu T, Zhang D, Zhao C. Genome-Assisted Probiotic Characterization and Application of Lactiplantibacillus plantarum 18 as a Candidate Probiotic for Laying Hen Production. Microorganisms 2023; 11:2373. [PMID: 37894031 PMCID: PMC10609342 DOI: 10.3390/microorganisms11102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Probiotics gained significant attention for their potential to improve gut health and enhance productivity in animals, including poultry. This comprehensive study focused on the genetic analysis of Lactiplantibacillus plantarum 18 (LP18) to understand its survival and colonization characteristics in the gastrointestinal tract. LP18 was supplemented in the late-stage diet of laying hens to investigate its impact on growth performance, egg quality, and lipid metabolism. The complete genome sequence of LP18 was determined, consisting of 3,275,044 base pairs with a GC content of 44.42% and two circular plasmids. Genomic analysis revealed genes associated with adaptability, adhesion, and gastrointestinal safety. LP18 supplementation significantly improved the daily laying rate (p < 0.05) during the late-production phase and showed noteworthy advancements in egg quality, including egg shape index (p < 0.05), egg albumen height (p < 0.01), Haugh unit (p < 0.01), and eggshell strength (p < 0.05), with notable improvements in eggshell ultrastructure. Additionally, LP18 supplementation resulted in a significant reduction in serum lipid content, including LDL (p < 0.01), FFA (p < 0.05), and Gly (p < 0.05). These findings provide valuable insights into the genomic characteristics of LP18 and the genes that support its survival and colonization in the gastrointestinal tract. Importantly, this study highlights the potential of LP18 as a probiotic candidate to enhance productivity, optimize egg quality, and modulate lipid metabolism in poultry production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China; (G.Z.)
| |
Collapse
|
4
|
Konishi K, Yasutake Y, Muramatsu S, Murata S, Yoshida K, Ishiya K, Aburatani S, Sakasegawa SI, Tamura T. Disruption of SMC-related genes promotes recombinant cholesterol esterase production in Burkholderia stabilis. Appl Microbiol Biotechnol 2022; 106:8093-8110. [PMID: 36399168 DOI: 10.1007/s00253-022-12277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Burkholderia stabilis strain FERMP-21014 secretes cholesterol esterase (BsChe), which is used in clinical settings to determine serum cholesterol levels. Previously, we constructed an expression plasmid with an endogenous constitutive promoter to enable the production of recombinant BsChe. In this study, we obtained one mutant strain with 13.1-fold higher BsChe activity than the wild type, using N-methyl-N'-nitro-N-nitrosoguanidine as a mutagen. DNA-sequencing analysis revealed that the strain had lost chromosome 3 (∆Chr3), suggesting that the genes hindering BsChe production may be encoded on Chr3. We also identified common mutations in the functionally unknown BSFP_068720/30 genes in the top 10 active strains generated during transposon mutagenesis. As BSFP_068720/30/40 comprised an operon on Chr3, we created the BSFP_068720/30/40 disruption mutant and confirmed that each disruption mutant containing the expression plasmid exhibited ~ 16.1-fold higher BsChe activity than the wild type. Quantitative PCR showed that each disruption mutant and ΔChr3 had a ~ 9.4-fold higher plasmid copy number than the wild type. Structural prediction models indicate that BSFP_068730/40 is structurally homologous to the structural maintenance of chromosomes (SMC) protein MukBE, which is responsible for chromosome segregation during cell division. Conversely, BSFP_068720/30/40 disruption did not lead to a Chr3 drop-out. These results imply that BSFP_068720/30/40 is not a SMC protein but is involved in destabilizing foreign plasmids to prevent the influx of genetic information from the environment. In conclusion, the disruption of BSFP_068720/30/40 improved plasmid stability and copy number, resulting in exceptionally high BsChe production. KEY POINTS: • Disruption of BSFP_068720/30/40 enabled mass production of Burkholderia Che/Lip. • BSFP_068730/40 is an SMC protein homolog not involved in chromosome retention. • BSFP_068720/30/40 is likely responsible for the exclusion of exogenous plasmids.
Collapse
Affiliation(s)
- Kenji Konishi
- Asahi Kasei Pharma Corporation, Shizuoka, 410-2321, Japan.,Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, 169-8555, Japan
| | | | - Satomi Murata
- Asahi Kasei Pharma Corporation, Shizuoka, 410-2321, Japan
| | - Keitaro Yoshida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | | | - Tomohiro Tamura
- Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan. .,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan.
| |
Collapse
|
5
|
Sommers KJ, Michaud ME, Hogue CE, Scharnow AM, Amoo LE, Petersen AA, Carden RG, Minbiole KPC, Wuest WM. Quaternary Phosphonium Compounds: An Examination of Non-Nitrogenous Cationic Amphiphiles That Evade Disinfectant Resistance. ACS Infect Dis 2022; 8:387-397. [PMID: 35077149 PMCID: PMC8996050 DOI: 10.1021/acsinfecdis.1c00611] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Quaternary ammonium compounds (QACs) serve as mainstays in the formulation of disinfectants and antiseptics. However, an over-reliance and misuse of our limited QAC arsenal has driven the development and spread of resistance to these compounds, as well as co-resistance to common antibiotics. Extensive use of these compounds throughout the COVID-19 pandemic thus raises concern for the accelerated proliferation of antimicrobial resistance and demands for next-generation antimicrobials with divergent architectures that may evade resistance. To this end, we endeavored to expand beyond canonical ammonium scaffolds and examine quaternary phosphonium compounds (QPCs). Accordingly, a synthetic and biological investigation into a library of novel QPCs unveiled biscationic QPCs to be effective antimicrobial scaffolds with improved broad-spectrum activities compared to commercial QACs. Notably, a subset of these compounds was found to be less effective against a known QAC-resistant strain of MRSA. Bioinformatic analysis revealed the unique presence of a family of small multiresistant transporter proteins, hypothesized to enable efflux-mediated resistance to QACs and QPCs. Further investigation of this resistance mechanism through efflux-pump inhibition and membrane depolarization assays illustrated the superior ability of P6P-10,10 to perturb the cell membrane and exert the observed broad-spectrum potency compared to its commercial counterparts. Collectively, this work highlights the promise of biscationic phosphonium compounds as next-generation disinfectant molecules with potent bioactivities, thereby laying the foundation for future studies into the synthesis and biological investigation of this nascent antimicrobial class.
Collapse
Affiliation(s)
| | | | - Cody E. Hogue
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Amber M. Scharnow
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lauren E. Amoo
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Ashley A. Petersen
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Robert G. Carden
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Kevin P. C. Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Ding D, Zhu J, Gao Y, Yang F, Ma Y, Cheng X, Li J, Dong P, Yang H, Chen S. Effect of cattle farm exposure on oropharyngeal and gut microbial communities and antibiotic resistance genes in workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150685. [PMID: 34600986 DOI: 10.1016/j.scitotenv.2021.150685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Livestock farms are recognized as the main sources of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) with potential implications for human health. In this study, we systematically analyzed microbiome composition, distribution of ARGs and mobile genetic elements (MGEs) in the oropharynx and gut of workers in cattle farms and surrounding villagers, cattle feces and farm air, and the relationship of microbial communities among farm air, cattle feces and farmworkers (oropharynx and gut). Exposure to the farm environment may have remodeled farmworkers' oropharynx and gut microbiota, with reduced microbial diversity (P < 0.05) and enrichment of some opportunistic pathogenic bacteria like Shigella, Streptococcus, and Neisseria in the oropharynx. Meanwhile, compared with villagers, ARG abundance in oropharynx of farmworkers increased significantly (P < 0.05), but, no significant difference in gut (P > 0.05). Microbial composition and ARG profile in farmworkers might be influenced by working time and work type, ARG abundance in farmworkers' gut was positively correlated with working time (P < 0.01), and higher ARG abundance was found in the oropharynx of drovers. The network analysis revealed that 4 MGEs (tnpA-01, tnpA-04, Tp614, and IS613), 5 phyla (e.g. Bacteroidetes, Fusobacteria, and TM7), and 6 genera were significantly associated with 37 ARGs (ρ > 0.6, P < 0.01). Overall, our results indicated that farm exposure may have affected the microbial composition and increased ARG abundance of farmworkers. Transmission of some ARGs may have occurred among the environment, animals and humans via host bacteria, which might pose a potential threat to human health.
Collapse
Affiliation(s)
- Dong Ding
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingyuan Zhu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanling Gao
- Henan Vocational College of Agriculture, Zhengzhou 450001, Henan, China; Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Fan Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yan Ma
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jinlei Li
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Peng Dong
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
7
|
Fergestad ME, Touzain F, De Vliegher S, De Visscher A, Thiry D, Ngassam Tchamba C, Mainil JG, L’Abee-Lund T, Blanchard Y, Wasteson Y. Whole Genome Sequencing of Staphylococci Isolated From Bovine Milk Samples. Front Microbiol 2021; 12:715851. [PMID: 34987483 PMCID: PMC8721127 DOI: 10.3389/fmicb.2021.715851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022] Open
Abstract
Staphylococci are among the commonly isolated bacteria from intramammary infections in bovines, where Staphylococcus aureus is the most studied species. This species carries a variety of virulence genes, contributing to bacterial survival and spread. Less is known about non-aureus staphylococci (NAS) and their range of virulence genes and mechanisms, but they are the most frequently isolated bacteria from bovine milk. Staphylococci can also carry a range of antimicrobial resistance genes, complicating treatment of the infections they cause. We used Illumina sequencing to whole genome sequence 93 staphylococcal isolates selected from a collection of staphylococcal isolates; 45 S. aureus isolates and 48 NAS isolates from 16 different species, determining their content of antimicrobial resistance genes and virulence genes. Antimicrobial resistance genes were frequently observed in the NAS species as a group compared to S. aureus. However, the lincosamide resistance gene lnuA and penicillin resistance gene blaZ were frequently identified in NAS, as well as a small number of S. aureus. The erm genes conferring macrolide resistance were also identified in several NAS isolates and in a small number of S. aureus isolates. In most S. aureus isolates, no antimicrobial resistance genes were detected, but in five S. aureus isolates three to six resistance genes were identified and all five of these carried the mecA gene. Virulence genes were more frequently identified in S. aureus, which contained on average five times more virulence genes compared to NAS. Among the NAS species there were also differences in content of virulence genes, such as S. chromogenes with a higher average number of virulence genes. By determining the content of a large selection of virulence genes and antimicrobial resistance genes in S. aureus and 16 different NAS species our results contribute with knowledge regarding the genetic basis for virulence and antimicrobial resistance in bovine staphylococci, especially the less studied NAS. The results can create a broader basis for further research into the virulence mechanisms of this important group of bacteria in bovine intramammary infections.
Collapse
Affiliation(s)
- Marte Ekeland Fergestad
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Fabrice Touzain
- Anses, Ploufragan-Plouzané-Niort Laboratory, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Sarne De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Anneleen De Visscher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Damien Thiry
- Bacteriology, Department of Infection and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH Research Centre, Liège University, Liège, Belgium
| | - Cyrille Ngassam Tchamba
- Bacteriology, Department of Infection and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH Research Centre, Liège University, Liège, Belgium
| | - Jacques G. Mainil
- Bacteriology, Department of Infection and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH Research Centre, Liège University, Liège, Belgium
| | - Trine L’Abee-Lund
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Yannick Blanchard
- Anses, Ploufragan-Plouzané-Niort Laboratory, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- *Correspondence: Yngvild Wasteson,
| |
Collapse
|
8
|
Dashtbani-Roozbehani A, Brown MH. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics (Basel) 2021; 10:antibiotics10121502. [PMID: 34943714 PMCID: PMC8698293 DOI: 10.3390/antibiotics10121502] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing emergence of antimicrobial resistance in staphylococcal bacteria is a major health threat worldwide due to significant morbidity and mortality resulting from their associated hospital- or community-acquired infections. Dramatic decrease in the discovery of new antibiotics from the pharmaceutical industry coupled with increased use of sanitisers and disinfectants due to the ongoing COVID-19 pandemic can further aggravate the problem of antimicrobial resistance. Staphylococci utilise multiple mechanisms to circumvent the effects of antimicrobials. One of these resistance mechanisms is the export of antimicrobial agents through the activity of membrane-embedded multidrug efflux pump proteins. The use of efflux pump inhibitors in combination with currently approved antimicrobials is a promising strategy to potentiate their clinical efficacy against resistant strains of staphylococci, and simultaneously reduce the selection of resistant mutants. This review presents an overview of the current knowledge of staphylococcal efflux pumps, discusses their clinical impact, and summarises compounds found in the last decade from plant and synthetic origin that have the potential to be used as adjuvants to antibiotic therapy against multidrug resistant staphylococci. Critically, future high-resolution structures of staphylococcal efflux pumps could aid in design and development of safer, more target-specific and highly potent efflux pump inhibitors to progress into clinical use.
Collapse
|
9
|
Ragupathi NKD, Bakthavatchalam YD, Mathur P, Pragasam AK, Walia K, Ohri VC, Veeraraghavan B. Plasmid profiles among some ESKAPE pathogens in a tertiary care centre in south India. Indian J Med Res 2019; 149:222-231. [PMID: 31219087 PMCID: PMC6563733 DOI: 10.4103/ijmr.ijmr_2098_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background & objectives Plasmid has led to increase in resistant bacterial pathogens through the exchange of antimicrobial resistance (AMR) genetic determinants through horizontal gene transfer. Baseline data on the occurrence of plasmids carrying AMR genes are lacking in India. This study was aimed to identify the plasmids associated with AMR genetic determinants in ESKAPE pathogens. Methods A total of 112 ESKAPE isolates including Escherichia coli (n=37), Klebsiella pneumoniae (n=48, including 7 pan-drug susceptible isolates), Acinetobacter baumannii (n=8), Pseudomonas aeruginosa (n=1) and Staphylococcus aureus (n=18) were analyzed in the study. Isolates were screened for antimicrobial susceptibility and whole genome sequencing of isolates was performed using Ion Torrent (PGM) sequencer. Downstream data analysis was done using PATRIC, ResFinder, PlasmidFinder and MLSTFinder databases. All 88 whole genome sequences (WGS) were deposited at GenBank. Results Most of the study isolates showed resistant phenotypes. As analyzed from WGS, the isolates included both known and unknown sequence types. The plasmid analysis revealed the presence of single or multiple plasmids in the isolates. Plasmid types such as IncHI1B(pNDM-MAR), IncFII(pRSB107), IncFIB(Mar), IncFIB(pQil), IncFIA, IncFII(K), IncR, ColKP3 and ColpVC were present in K. pneumoniae. In E. coli, IncFIA, IncFII, IncFIB, Col(BS512), IncL1, IncX3 and IncH were present along with other types. S. aureus harboured seven different plasmid groups pMW2 (rep 5), pSAS1 (rep 7), pDLK1 (rep 10), pUB110 (rep US12), Saa6159 (rep 16), pKH12 (rep 21) and pSA1308 (rep 21). The overall incidence of IncF type plasmids was 56.5 per cent followed by Col type plasmids 18.3 per cent and IncX 5.3 per cent. Other plasmid types identified were <5 per cent. Interpretation & conclusions Results from the study may serve as a baseline data for the occurrence of AMR genes and plasmids in India. Information on the association between phenotypic and genotypic expression of AMR was deciphered from the data. Further studies on the mechanism of antibiotic resistance dissemination are essential for enhancing clinical lifetime of antibiotics.
Collapse
Affiliation(s)
| | | | - Purva Mathur
- Department of Clinical Microbiology, All India Institute of Medical Science, New Delhi, India
| | | | - Kamini Walia
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - V C Ohri
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | |
Collapse
|
10
|
Firth N, Jensen SO, Kwong SM, Skurray RA, Ramsay JP. Staphylococcal Plasmids, Transposable and Integrative Elements. Microbiol Spectr 2018; 6:10.1128/microbiolspec.gpp3-0030-2018. [PMID: 30547857 PMCID: PMC11633639 DOI: 10.1128/microbiolspec.gpp3-0030-2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
Strains of Staphylococcus aureus, and to a lesser extent other staphylococcal species, are a significant cause of morbidity and mortality. An important factor in the notoriety of these organisms stems from their frequent resistance to many antimicrobial agents used for chemotherapy. This review catalogues the variety of mobile genetic elements that have been identified in staphylococci, with a primary focus on those associated with the recruitment and spread of antimicrobial resistance genes. These include plasmids, transposable elements such as insertion sequences and transposons, and integrative elements including ICE and SCC elements. In concert, these diverse entities facilitate the intra- and inter-cellular gene mobility that enables horizontal genetic exchange, and have also been found to play additional roles in modulating gene expression and genome rearrangement.
Collapse
Affiliation(s)
- Neville Firth
- School of Life and Environmental Sciences, University of Sydney, New South Wales 2006, Australia
| | - Slade O Jensen
- Infectious Diseases and Microbiology, School of Medicine and Antibiotic Resistance and Mobile Elements Group, Ingham Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, New South Wales 2006, Australia
| | - Ronald A Skurray
- School of Life and Environmental Sciences, University of Sydney, New South Wales 2006, Australia
| | - Joshua P Ramsay
- School of Pharmacy and Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
11
|
Kwong SM, Ramsay JP, Jensen SO, Firth N. Replication of Staphylococcal Resistance Plasmids. Front Microbiol 2017; 8:2279. [PMID: 29218034 PMCID: PMC5703833 DOI: 10.3389/fmicb.2017.02279] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/06/2017] [Indexed: 11/16/2022] Open
Abstract
The currently widespread and increasing prevalence of resistant bacterial pathogens is a significant medical problem. In clinical strains of staphylococci, the genetic determinants that confer resistance to antimicrobial agents are often located on mobile elements, such as plasmids. Many of these resistance plasmids are capable of horizontal transmission to other bacteria in their surroundings, allowing extraordinarily rapid adaptation of bacterial populations. Once the resistance plasmids have been spread, they are often perpetually maintained in the new host, even in the absence of selective pressure. Plasmid persistence is accomplished by plasmid-encoded genetic systems that ensure efficient replication and segregational stability during cell division. Staphylococcal plasmids utilize proteins of evolutionarily diverse families to initiate replication from the plasmid origin of replication. Several distinctive plasmid copy number control mechanisms have been studied in detail and these appear conserved within plasmid classes. The initiators utilize various strategies and serve a multifunctional role in (i) recognition and processing of the cognate replication origin to an initiation active form and (ii) recruitment of host-encoded replication proteins that facilitate replisome assembly. Understanding the detailed molecular mechanisms that underpin plasmid replication may lead to novel approaches that could be used to reverse or slow the development of resistance.
Collapse
Affiliation(s)
- Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Joshua P Ramsay
- School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Slade O Jensen
- Antimicrobial Resistance and Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Wassenaar TM, Cabal A. The mobile dso-gene-sso element in rolling-circle plasmids of staphylococci reflects the evolutionary history of its resistance gene. Lett Appl Microbiol 2017. [PMID: 28631335 DOI: 10.1111/lam.12767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The qacC and lnuA genes of Staphylococcus species were recently proposed to comprise a mobile element when residing on rolling-circle plasmids. Here we present other examples of resistance genes on staphylococcal rolling-circle plasmids, including fosB producing resistance to fosfomycin, cat resulting in resistance to chloramphenicol and cadB for resistance to the toxic heavy metal cadmium. For three of these genes (qacC, lnuA and fosB), evidence was obtained that the genes have spread between different plasmid backgrounds. The lack of mutations in qacC suggests that the spread occurred relatively recently, while the build up of mutations in lnuA and fosB suggests their mobilization occurred in the more distant past. These observations can be explained by the use of the respective antibiotics over time. However, the cat and cadB genes sequences analysed had not collected any mutations, an observation that is not completely understood but possible explanations are discussed. SIGNIFICANCE AND IMPACT OF THE STUDY We have analysed five resistance genes in Staphylococcus aureus that are positioned between the replication elements of rolling-circle plasmids. For three of these genes, evidence was obtained indicative of recent mobilization. The historical use of the antibiotics to which the genes produce resistance could be related to the number of mutations collected in these genes. However, two other resistance genes have not collected any mutations over time, and the reasons for this are discussed. The analyses presented provide insights into the spread and evolution of antibiotic resistance genes.
Collapse
Affiliation(s)
- T M Wassenaar
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany.,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - A Cabal
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany.,VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| |
Collapse
|
13
|
Vali L, Dashti AA, Mathew F, Udo EE. Characterization of Heterogeneous MRSA and MSSA with Reduced Susceptibility to Chlorhexidine in Kuwaiti Hospitals. Front Microbiol 2017; 8:1359. [PMID: 28775716 PMCID: PMC5517409 DOI: 10.3389/fmicb.2017.01359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 07/04/2017] [Indexed: 11/20/2022] Open
Abstract
The objective of this investigation was to identify the lineages of MRSA and MSSA with reduced susceptibility to chlorhexidine in Kuwaiti hospitals. 121 clinical MRSA and 56 MSSA isolates were included in this study. Antimicrobial susceptibility testing was performed for a selection of agents including chlorhexidine and resistance genes were amplified and sequenced. PFGE, spa typing, and MLST were completed for a selection of isolates. The results showed SCCmec II, III, IV, and V were present in 0.8, 21.5, 69.4, and 8.3% of the MRSA isolates. agr-1Sa was the most prevalent type in both MSSA (48%) and MRSA (54%). Forty-five percentage of MRSA contained pvl and 39% contained lukE-lukD, however, as many as 86% of MSSA contained pvl and 96.4% contained lukE-lukD. qac A-C genes were identified in 12.3% of MRSA, norA was present in 82.6% and blaZ in 94.2%. Among MSSA only 5.4% harbored qacA, 83% contained norA, and 91% blaZ. Multi-drug resistant ST239/t945 lineage containing a qac gene was the most identified S. aureus. However, other lineages, including ST772-MRSA-V/t4867/pvl(+)qacC/smr and non-qac harboring lineages of ST217-MRSAIV/t3244/pvl(-), ST34-MSSA/t161/pvl(+), ST5-MSSA/t688/pvl(+), ST5-MSSA/t4867/norA(+), and ST672-MSSA/t003/pvl(-), also showed reduced susceptibility to chlorhexidine. The observed reduced susceptibility of non-qac dependent MSSA isolates to chlorhexidine suggests the involvement of other elements in promoting higher MBC (≥30 mg/L). Our results confirm that monitoring MSSA is essential as they may have the potential to survive low level biocide exposure.
Collapse
Affiliation(s)
- Leila Vali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait UniversitySulaibekhat, Kuwait
| | - Ali A. Dashti
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait UniversitySulaibekhat, Kuwait
| | - Febine Mathew
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait UniversitySulaibekhat, Kuwait
| | - Edet E. Udo
- Department of Medical Microbiology, Faculty of Medicine, Kuwait UniversitySulaibekhat, Kuwait
| |
Collapse
|