1
|
Wang X, Wang H, Liang Y, McMinn A, Wang M. Community organization and network complexity and stability: contrasting strategies of prokaryotic versus eukaryotic microbiomes in the Bohai Sea and Yellow Sea. mSphere 2024; 9:e0039524. [PMID: 39136485 PMCID: PMC11423591 DOI: 10.1128/msphere.00395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 09/26/2024] Open
Abstract
Unraveling the effects of spatial gradients on microbiome assembly and association is a challenging topic that remains understudied in the coastal ecosystem. Here, we aimed to investigate the effects of spatial variation on the network complexity and stability of plankton microbiomes in the Bohai Sea and Yellow Sea. These seas serve as spawning and nursery grounds for economically important fisheries valued at billions of dollars annually. Environmental heterogeneity structures microbial communities into distinct spatial patterns, leading to complex direct/indirect relationships and broader ecological niches of bacterioplankton compared to microeukaryotic communities. Interestingly, salinity gradients positively influenced the richness of rare subgroups of bacterioplankton, while the rare microeukaryotic subgroups showed an opposite trend. Abundant subgroups of prokaryotic/eukaryotic microbiomes exhibited greater environmental niche breadth and lower phylogenetic distance compared to the rare subgroups. Stochastic processes contributed greatly to microbiome dynamics, and deterministic processes governed the bacterioplankton organization with a lower phylogenetic turnover rate. Compared to microeukaryotes, bacterioplankton exhibit higher network modularity, complexity, and robustness and lower fragmentation, and vulnerability. These observations offer vital insights into the anti-interference ability and resistance of plankton microbiomes in response to environmental gradients in terms of organization and survival strategy as well as their adaptability to environmental disturbances.IMPORTANCEAn in-depth understanding of community organization and stability of coastal microbiomes is crucial to determining the sustainability of marine ecosystems, such as the Bohai Sea and Yellow Sea. Distinct responses between prokaryotic and eukaryotic microbiomes to spatial heterogeneity were observed in terms of geographical distribution, phylogenetic distance, niche breadth, and community assembly process. Environmental variations are significantly correlated with the dynamics of rare eukaryotic plankton subcommunities compared to prokaryotic plankton subcommunities. Deterministic processes shaped prokaryotic plankton community organization with a lower phylogenic turnover rate. Rare subgroups had noticeably higher phylogenetic distance and lower niche breadth than the corresponding abundant subgroups. Prokaryotic microbiomes had higher molecular network complexity and stability compared to microeukaryotes. Results presented here show how environmental gradients alter both the geographical characteristics of the microbial organization in coastal seas and also their co-occurrence network complexity and stability and thus have critical implications for nutrient and energy cycling.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| |
Collapse
|
2
|
Valencia‐Agami SS, Cerqueda‐García D, Gamboa‐Muñoz AM, Aguirre‐Macedo ML, García‐Maldonado JQ. Structure and composition of microbial communities in the water column from Southern Gulf of Mexico and detection of putative hydrocarbon-degrading microorganisms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13264. [PMID: 38692840 PMCID: PMC11062854 DOI: 10.1111/1758-2229.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
This study assessed the bacterioplankton community and its relationship with environmental variables, including total petroleum hydrocarbon (TPH) concentration, in the Yucatan shelf area of the Southern Gulf of Mexico. Beta diversity analyses based on 16S rRNA sequences indicated variations in the bacterioplankton community structure among sampling sites. PERMANOVA indicated that these variations could be mainly related to changes in depth (5 to 180 m), dissolved oxygen concentration (2.06 to 5.93 mg L-1), and chlorophyll-a concentration (0.184 to 7.65 mg m3). Moreover, SIMPER and one-way ANOVA analyses showed that the shifts in the relative abundances of Synechococcus and Prochlorococcus were related to changes in microbial community composition and chlorophyll-a values. Despite the low TPH content measured in the studied sites (0.01 to 0.86 μL L-1), putative hydrocarbon-degrading bacteria such as Alteromonas, Acinetobacter, Balneola, Erythrobacter, Oleibacter, Roseibacillus, and the MWH-UniP1 aquatic group were detected. The relatively high copy number of the alkB gene detected in the water column by qPCR and the enrichment of hydrocarbon-degrading bacteria obtained during lab crude oil tests exhibited the potential of bacterioplankton communities from the Yucatan shelf to respond to potential hydrocarbon impacts in this important area of the Gulf Mexico.
Collapse
Affiliation(s)
- Sonia S. Valencia‐Agami
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| | - Daniel Cerqueda‐García
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y VectoresInstituto de Ecología, AC–INECOLXalapaVeracruzMexico
| | - Abril M. Gamboa‐Muñoz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| | - M. Leopoldina Aguirre‐Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| | - José Q. García‐Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| |
Collapse
|
3
|
Wigren MA, Johnson TA, Griffitt RJ, Hay AG, Knott JA, Sepúlveda MS. Limited impact of weathered residues from the Deepwater Horizon oil spill on the gut-microbiome and foraging behavior of sheepshead minnows ( Cyprinodon variegatus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:1-21. [PMID: 37830742 DOI: 10.1080/15287394.2023.2265413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM). Within fish, the microbiome plays a key symbiotic role in maintaining host health and aids in acquiring nutrients, supporting immune function, and modulating behavior. The aim of this study was to examine if exposure to weathered oil might produce significant shifts in fish gut-associated microbial communities as determined from taxa and genes known for hydrocarbon degradation, and whether foraging behavior was affected. The gut microbiome (16S rRNA and shotgun metagenomics) of sheepshead minnow (Cyprinodon variegatus) was characterized after fish were exposed to oil in High Energy Water Accommodated Fractions (HEWAF; tPAH = 81.1 ± 12.4 µg/L) for 7 days. A foraging behavioral assay was used to determine feeding efficiency before and after oil exposure. The fish gut microbiome was not significantly altered in alpha or beta diversity. None of the most abundant taxa produced any significant shifts as a result of oil exposure, with only rare taxa showing significant shifts in abundance between treatments. However, several bioindicator taxa known for hydrocarbon degradation were detected in the oil treatment, primarily Sphingomonas and Acinetobacter. Notably, the genus Stenotrophomonas was detected in high abundance in 16S data, which previously was not described as a core member of fish gut microbiomes. Data also demonstrated that behavior was not significantly affected by oil exposure. Potential low bioavailability of the oil may have been a factor in our observation of minor shifts in taxa and no behavioral effects. This study lays a foundation for understanding the microbiome of captive sheepshead minnows and indicates the need for further research to elucidate the responses of the fish gut-microbiome under oil spill conditions.
Collapse
Affiliation(s)
- Maggie A Wigren
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, USA
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Jonathan A Knott
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
4
|
Lin L, Xiong J, Liu L, Wang F, Cao W, Xu W. Microbial interactions strengthen deterministic processes during community assembly in a subtropical estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167499. [PMID: 37778550 DOI: 10.1016/j.scitotenv.2023.167499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Systematic studies on the assembly process and driving mechanisms of microbial communities in estuaries with diverse seasonal and spatial scales are still limited. In this study, high-throughput sequencing, and microbial network analysis were combined to decipher the impact of environmental changes and biological interactions on the maintenance of microbial diversity patterns in the Jiulong River Estuary (JRE). The results showed that overall, stochastic processes dominated the bacterioplankton community assembly in the estuary, accounting for 49.66-74.78 % of the total. Additionally, bacterioplankton community diversity varied significantly across seasons and subzones. Specifically, the concentration of soluble reactive phosphorus (SRP) in the estuary steadily reduced from winter to summer, and the corresponding bacterioplankton community interactions gradually shifted from the weakest interaction in winter to the strongest in summer. The deterministic processes contributed more than half (50.34 %) to microbial assembly in the summer, but only 25.22 % in winter. Deterministic processes prevailed in the seaward with low SRP concentrations and strong bacterioplankton community interactions, while stochastic processes contributed 70.14 % to the assembly of microbial communities riverward. Biotic and abiotic factors, such as nutrients and microbial interactions, jointly drove the seasonal and spatial patterns of bacterioplankton community assembly, but overall, nutrients played a dominant role. Nevertheless, the contributions of nutrients and microbial interactions were equivalent in spatial assembly processes, albeit nutrients were the primary seasonal driver of the bacterioplankton community assembly process. This study emphasizes the significance of microbial interactions in the bacterioplankton community assemblage. These findings provide new and comprehensive insights into the microbial communities' organization in estuaries.
Collapse
Affiliation(s)
- Ling Lin
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiang'an South Road, Xiamen 361102, China
| | - Jiangzhiqian Xiong
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiang'an South Road, Xiamen 361102, China
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen 361022, China
| | - Feifei Wang
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiang'an South Road, Xiamen 361102, China
| | - Wenzhi Cao
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiang'an South Road, Xiamen 361102, China.
| | - Wenfeng Xu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen 361022, China.
| |
Collapse
|
5
|
Yang Y, Suyamud B, Liang S, Liang X, Wan W, Zhang W. Distinct spatiotemporal succession of bacterial generalists and specialists in the lacustrine plastisphere. Environ Microbiol 2023; 25:2746-2760. [PMID: 37190986 DOI: 10.1111/1462-2920.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
The assembly processes of generalists and specialists and their driving mechanisms during spatiotemporal succession is a central issue in microbial ecology but a poorly researched subject in the plastisphere. We investigated the composition variation, spatiotemporal succession, and assembly processes of bacterial generalists and specialists in the plastisphere, including non-biodegradable (NBMPs) and biodegradable microplastics (BMPs). Although the composition of generalists and specialists on NBMPs differed from that of BMPs, colonization time mainly mediated the composition variation. The relative abundance of generalists and the relative contribution of species replacement were initially increased and then decreased with colonization time, while the specialists initially decreased and then increased. Besides, the richness differences also affected the composition variation of generalists and specialists in the plastisphere, and the generalists were more susceptible to richness differences than corresponding specialists. Furthermore, the assembly of generalists in the plastisphere was dominated by deterministic processes, while stochastic processes dominated the assembly of specialists. The network stability test showed that the community stability of generalists on NBMPs and BMPs was lower than corresponding specialists. Our results suggested that different ecological assembly processes shaped the spatiotemporal succession of bacterial generalists and specialists in the plastisphere, but were less influenced by polymer types.
Collapse
Affiliation(s)
- Yuyi Yang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Bongkotrat Suyamud
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Shuxin Liang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Science, Tibet University, Lhasa, China
| | - Xinjin Liang
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, UK
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| |
Collapse
|
6
|
Qiu Z, Li J, Wang P, Wang D, Han L, Gao X, Shu J. Response of soil bacteria on habitat-specialization and abundance gradient to different afforestation types. Sci Rep 2023; 13:18181. [PMID: 37875517 PMCID: PMC10598043 DOI: 10.1038/s41598-023-44468-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Studies involving response of subgroups of soil microorganisms to forest change, especially comparative studies on habitat-specialization and abundance gradient were still lack. In this study, we analyzed the response of soil bacterial diversity and structure to afforestation types and its relationship to environment of Fanggan ecological restoration area under the classification of subgroups by habitat-specialization and abundance gradient based on abundance ratio respectively. The results were: (1) On the habitat-specialization gradient, the variation of OTUs species number and abundance was consistent and positively correlated with habitat-specialization; on the abundance gradient, the variation was opposite and OTUs species number was negatively correlated with abundance gradient; (2) The distribution frequency of each subgroup on both gradients was the highest in broad-leaved forests, but the abundance was the opposite. The distribution frequency of the same stand showed no difference among habitat-specialization subgroups, but the abundant subgroup in broad-leaved forests was the highest among the abundance subgroups; (3) α-diversity was positively correlated with habitat-specialization but negatively with abundance, with the highest mostly in broad-leaved and mixed forests; (4) Community structure among stands on habitat-specialization gradient showed no significant difference, but that of rare subgroup between broad-leaved forests and other stands significantly differed. Plant diversity and vegetation composition correlated stronger with community structure than spatial distance and soil physicochemical properties on both gradients. Our results provided a new perspective for revealing the effects of afforestation types on soil bacteria from the comparison of habitat specialization and abundance gradient.
Collapse
Affiliation(s)
- Zhenlu Qiu
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Jie Li
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Peng Wang
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Dong Wang
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Li Han
- College of Biological and Chemical Enginering, Qilu Institute of Technology, Jinan, 250200, China
| | - Xiaojuan Gao
- College of Biological and Chemical Enginering, Qilu Institute of Technology, Jinan, 250200, China
| | - Jing Shu
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China.
| |
Collapse
|
7
|
Xiong W, Chen Y, Zhan A. Dominance of species sorting over dispersal at microgeographical scales in polluted lotic ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122093. [PMID: 37352962 DOI: 10.1016/j.envpol.2023.122093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Global rivers, particularly those in populated urban areas, are challenged by multiple stressors such as pollution from anthropogenic activities. Dissecting the relative role of each ecological process involved in structuring biotic communities is fundamental in both theoretical and applied ecology. The ecological niche-based species sorting and stochastic dynamics-based dispersal are two major competing processes in determining community structure. Studies have reached a common realization on the environmental gradient-geographical scale relationship (EGGSR), resulting in species sorting over dispersal in determining community structure at large geographical scales where significant environmental gradients often exist. However, this relationship has been recently challenged at fine geographical scales when significant environmental gradients are formed by local anthropogenic activities. Here, we used three receiving rivers of wastewater treatment plants (WWTPs) as the promising system to test the hypothesis that species sorting plays a dominant role over dispersal in structuring zooplankton communities at microgeographical scales (∼1.2 km). After WWTP effluent discharge, we consistently detected significant environmental changes in all three receiving rivers, leading to significant variation in both community structure and taxonomic co-occurrence networks. Variation partitioning showed that environmental variables explained higher proportions of community variation than spatial ones, supporting that species sorting played a dominant role over dispersal in structuring zooplankton communities. Thus, our findings here reject EGGSR, illustrating that the effect of species sorting has been overlooked in disturbed aquatic ecosystems at fine spatial scales. More importantly, all analyses in multiple rivers here validate the "microscale species sorting" hypothesis. The validation of such hypothesis provides a novel methodology for point source pollution management by assessing environment-community interactions and functional changes of biological communities. The differed variables underlying species sorting among three rivers illustrate that ecological management should be case-specific, with the full consideration of local water quality background and pollutant composition of each point pollution source.
Collapse
Affiliation(s)
- Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China; Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, 2 Puxin Road, Kunming Economic and Technological Development District, Yunan, 650214, China.
| |
Collapse
|
8
|
Mohapatra M, Manu S, Kim JY, Rastogi G. Distinct community assembly processes and habitat specialization driving the biogeographic patterns of abundant and rare bacterioplankton in a brackish coastal lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163109. [PMID: 36996988 DOI: 10.1016/j.scitotenv.2023.163109] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
The ecological diversity patterns and community assembly processes along spatio-temporal scales are least studied in the bacterioplankton sub-communities of brackish coastal lagoons. We examined the biogeographic patterns and relative influences of different assembly processes in structuring the abundant and rare bacterioplankton sub-communities of Chilika, the largest brackish water coastal lagoon of India. Rare taxa demonstrated significantly higher α- and β-diversity and biogeochemical functions than abundant taxa in the high-throughput 16S rRNA gene sequence dataset. The majority of the abundant taxa (91.4 %) were habitat generalists with a wider niche breadth (niche breadth index, B = 11.5), whereas most of the rare taxa (95.2 %) were habitat specialists with a narrow niche breadth (B = 8.9). Abundant taxa exhibited a stronger distance-decay relationship and higher spatial turnover rate than rare taxa. β-diversity partitioning revealed that the contribution of species turnover (72.2-97.8 %) was greater than nestedness (2.2-27.8 %) in causing the spatial variation in both abundant and rare taxa. Null model analyses revealed that the distribution of abundant taxa was mostly structured by stochastic processes (62.8 %), whereas deterministic processes (54.1 %) played a greater role in the rare taxa. However, the balance of these two processes varied across spatio-temporal scales in the lagoon. Salinity was the key deterministic factor controlling the variation of both abundant and rare taxa. Potential interaction networks showed a higher influence of negative interactions, indicating that species exclusion and top-down processes played a greater role in the community assembly. Notably, abundant taxa emerged as keystone taxa across spatio-temporal scales, suggesting their greater influences on other bacterial co-occurrences and network stability. Overall, this study provided detailed mechanistic insights into biogeographic patterns and underlying community assembly processes of the abundant and rare bacterioplankton over spatio-temporal scales in a brackish lagoon.
Collapse
Affiliation(s)
- Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India
| | - Shivakumara Manu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500048, India
| | - Ji Yoon Kim
- Department of Biological Science, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India.
| |
Collapse
|
9
|
Mai Y, Peng S, Lai Z, Wang X. Seasonal and inter-annual variability of bacterioplankton communities in the subtropical Pearl River Estuary, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21981-21997. [PMID: 34775557 DOI: 10.1007/s11356-021-17449-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
It is widely recognized that environmental factors substantially influence on the seasonal and inter-annual variability of bacterioplankton communities, yet little is known about the seasonality of bacterioplankton communities in subtropical estuaries at longer-term time scales. Here, the bacterioplankton communities from the eight major outlets of the subtropical Pearl River Estuary were investigated across 3 years (2017-2019) using full-length 16S rRNA gene sequencing. Significant seasonal and inter-annual variation was observed in bacterioplankton community compositions across the 3 years (p < 0.05). In addition, the inferred functional composition of the communities varied with seasons, although not significantly, suggesting that functional redundancy existed among communities and across seasons that could help to cope with environmental changes. Five evaluated environmental parameters (temperature, salinity, pH, total dissolved solids (TDS), total phosphorus (TP)) were significantly correlated with community composition variation, while only three environmental parameters (temperature, pH, and TDS) were correlated with variation in inferred functional composition. Moreover, community composition tracked the seasonal temperature gradients, indicating that temperature was a key environmental factor that affected bacterioplankton community's variation along with seasonal succession patterns. Gammaproteobacteria and Alphaproteobacteria were the most dominant classes in the surface waters of Pearl River Estuary, and their members exhibited divergent responses to temperature changes, while several taxa within these group could be indicators of low and high temperatures that are associated with seasonal changes. These results strengthen our understanding of bacterioplankton community variation in association with temperature-dependent seasonal changes in subtropical estuarine ecosystems.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510070, China.
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 100 Xianlie Middle Road, 510070, China.
| |
Collapse
|
10
|
Geng M, Zhang W, Hu T, Wang R, Cheng X, Wang J. Eutrophication causes microbial community homogenization via modulating generalist species. WATER RESEARCH 2022; 210:118003. [PMID: 34982976 DOI: 10.1016/j.watres.2021.118003] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 05/27/2023]
Abstract
Eutrophication substantially influences the community structure of aquatic organisms and has become a major threat to biodiversity. However, whether eutrophication is linked to homogenization of microbial communities and the possible underlying mechanisms are poorly understood. Here, we studied bacterial and fungal communities from water and sediments of 40 shallow lakes in the Yangtze-Huaihe River basin, a representative area characterized by intensifying eutrophication in China, and further examined the beta diversity patterns and underlying mechanisms under eutrophication conditions. Our results indicate that eutrophication generally caused biotic homogenization of bacterial and fungal communities in both habitats showing decreased community variations for the sites with a higher trophic state index (TSI). In the two habitats, community dissimilarities were positively correlated with TSI changes for both taxonomic groups, while the local contribution to beta diversity (LCBD) remarkably declined with increasing TSI for the fungal community. These phenomena were consistent with the pivotal importance of the TSI in statistically accounting for beta diversity of bacterial and fungal communities in both habitats. In addition, we found that physicochemical factors such as water temperature and pH were also important for bacterial and fungal communities in water, while heavy metal elements were important for the communities in sediments. Interestingly, generalist species, rather than specialist species, were revealed to more dominantly affect the variations in beta diversity along the trophic gradient, which were quantified by Bray-Curtis dissimilarity and LCBD. Collectively, our findings reveal the importance of generalist species in contributing to the change of beta diversity of microbial communities along trophic gradients, which have profound implications for a comprehensive understanding of the effects of eutrophication on microbial community.
Collapse
Affiliation(s)
- Mengdie Geng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Nanjing 210008, China
| | - Weizhen Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Nanjing 210008, China; Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Ting Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Nanjing 210008, China
| | - Rong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoying Cheng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Wang JT, Shen JP, Zhang LM, Singh BK, Delgado-Baquerizo M, Hu HW, Han LL, Wei WX, Fang YT, He JZ. Generalist Taxa Shape Fungal Community Structure in Cropping Ecosystems. Front Microbiol 2021; 12:678290. [PMID: 34305842 PMCID: PMC8299105 DOI: 10.3389/fmicb.2021.678290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022] Open
Abstract
Fungi regulate nutrient cycling, decomposition, symbiosis, and pathogenicity in cropland soils. However, the relative importance of generalist and specialist taxa in structuring soil fungal community remains largely unresolved. We hypothesized that generalist fungi, which are adaptable to various environmental conditions, could potentially dominate the community and become the basis for fungal coexisting networks in cropping systems. In this study, we identified the generalist and habitat specialist fungi in cropland soils across a 2,200 kms environmental gradient, including three bioclimatic regions (subtropical, warm temperate, and temperate). A few fungal taxa in our database were classified as generalist taxa (~1%). These generalists accounted for >35% of the relative abundance of all fungal populations, and most of them are Ascomycota and potentially pathotrophic. Compared to the specialist taxa (5–17% of all phylotypes in three regions), generalists had a higher degree of connectivity and were often identified as hub within the network. Structural equation modeling provided further evidence that after accounting for spatial and climatic/edaphic factors, generalists had larger contributions to the fungal coexistence pattern than habitat specialists. Taken together, our study provided evidence that generalist taxa are crucial components for fungal community structure. The knowledge of generalists can provide important implication for understanding the ecological preference of fungal groups in cropland systems.
Collapse
Affiliation(s)
- Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Ju-Pei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Manuel Delgado-Baquerizo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, United States
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wen-Xue Wei
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yun-Ting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| |
Collapse
|
12
|
Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q, Sun S. Distinct Assembly Mechanisms Underlie Similar Biogeographic Patterns of Rare and Abundant Bacterioplankton in Cascade Reservoirs of a Large River. Front Microbiol 2020; 11:158. [PMID: 32117173 PMCID: PMC7020914 DOI: 10.3389/fmicb.2020.00158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Bacterioplankton communities commonly consist of few highly abundant species and a large number of rare species that play key roles in biogeochemical cycles of aquatic ecosystems. However, little is known about the biogeographic assemblies of these communities, especially in large rivers suffering from cascade dam regulation. Here, we used a 16S rRNA gene amplicon sequencing approach to investigate the biogeographic patterns and underlying assembly mechanisms of abundant and rare bacterioplankton taxa in cascade reservoirs of the Jinsha River in China. The results revealed species loss of bacterioplankton due to dam construction, which was more significant for rare taxa than for abundant ones. The distributions of abundant and rare taxa exhibited similar spatial and temporal patterns, which were significantly distinct between winter and summer and between upstream and downstream reservoirs. Both spatial (dispersal-related process) and environmental (selection process) factors seemed to together govern the assembly and biogeography of abundant and rare taxa, although both factors explained only a small fraction of variation in the rare taxa. More importantly, environmental factors explained more community variation in abundant sub-community than that in rare sub-community. Co-occurrence network analysis revealed that abundant species with closer interactions were more often located in a central position of the network compared with rare species. Nevertheless, half of the keystone species were rare species and may play important roles in maintaining the network stability. Overall, these findings indicate that distinct assembly mechanisms underlie the similar biogeography of rare and abundant bacteria in cascade reservoirs of a large river.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Shenghao Sun
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
13
|
Hu A, Wang H, Cao M, Rashid A, Li M, Yu CP. Environmental Filtering Drives the Assembly of Habitat Generalists and Specialists in the Coastal Sand Microbial Communities of Southern China. Microorganisms 2019; 7:microorganisms7120598. [PMID: 31766562 PMCID: PMC6955893 DOI: 10.3390/microorganisms7120598] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Coastal sands harbor diverse microbial assemblages that play a critical role in the biogeochemical cycling of beach ecosystems. However, little is known about the relative importance of the different ecological processes underlying the assembly of communities of sand microbiota. Here, we employed 16S rDNA amplicon sequencing to investigate the sand microbiota of two coastal beaches, in southern China. The results showed that sand microbial assemblages at intertidal and supratidal zones exhibited contrasting compositions that can be attributed to environmental filtering by electric conductivity. A consistent pattern of habitat generalists and specialists of sand microbiota was observed among different beach zones. Null and neutral model analyses indicated that the environmental filtering was mainly responsible for supratidal microbial communities, while the neutral processes could partially influence the assembly of intertidal communities. Moreover, environmental filtering was found to shape the habitat specialists, while random dispersal played a major role in shaping generalists. The neutral model analysis revealed that the habitat generalists exceeding the neutral prediction harbored a relatively higher proportion of microbial taxa than the specialist counterparts. An opposite pattern was observed for taxa falling below the neutral prediction. Collectively, these findings offer a novel insight into the assembly mechanisms of coastal sand microbiota.
Collapse
Affiliation(s)
- Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (H.W.); (M.C.); (A.R.); (C.-P.Y.)
- Correspondence: (A.H.); (M.L.); Tel.: +86-592-6190582 (A.H.); +86-596-2591356 (M.L.)
| | - Hongjie Wang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (H.W.); (M.C.); (A.R.); (C.-P.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixian Cao
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (H.W.); (M.C.); (A.R.); (C.-P.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (H.W.); (M.C.); (A.R.); (C.-P.Y.)
- Nuclear Institute for Food and Agriculture, Tarnab, Peshawar 446, Pakistan
| | - Mingfeng Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
- Correspondence: (A.H.); (M.L.); Tel.: +86-592-6190582 (A.H.); +86-596-2591356 (M.L.)
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (H.W.); (M.C.); (A.R.); (C.-P.Y.)
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
14
|
Yan YW, Yang HC, Tang L, Li J, Mao YX, Mo ZL. Compositional Shifts of Bacterial Communities Associated With Pyropia yezoensis and Surrounding Seawater Co-occurring With Red Rot Disease. Front Microbiol 2019; 10:1666. [PMID: 31396184 PMCID: PMC6664831 DOI: 10.3389/fmicb.2019.01666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Pyropia yezoensis is commercially the most important edible red alga in China, and red rot disease is viewed as one of the major constraints for its cultivation. Microbes within the oomycetic genus Pythium have been reported as the causative agents for this disease; however, little is known about the interactions between the disease and the epiphytic and planktonic bacterial communities. In the present study, bacterial communities associated with uninfected, locally infected, and seriously infected thalli collected from cultivation farms, and within seawater adjacent to the thalli, were investigated using in-depth 16S ribosomal RNA (rRNA) gene sequencing in conjunction with assessing multiple environmental factors. For both thalli and seawater, uninfected and infected communities were significantly different though alpha diversity was similar. Phylogenetic differences between epiphytic bacterial communities associated with P. yezoensis were mainly reflected by the relative changes in the dominant operational taxonomic units (OTUs) assigned as genus Flavirhabdus, genus Sulfitobacter, and family Rhodobacteraceae. The prevalent OTUs in seawater also differed in relative abundance across the communities and were affiliated with diverse taxa, including the phyla Actinobacteria, Verrucomicrobia, and Bacteroidetes, and the classes Alpha- and Gamma-proteobacteria. The differentiation of bacterial communities associated with P. yezoensis and seawater was primarily shaped by reactive silicate (RS) content and salinity, respectively. In particular, 14 potential indicators (two OTUs on P. yezoensis and twelve OTUs in seawater) were identified that significantly differentiated P. yezoensis health statuses and correlated with environmental changes. Overall, the present study provides insights into the alterations of bacterial communities associated with P. yezoensis and surrounding seawater co-occurring with red rot disease. Observed changes were closely associated with health status of algal host, and highlight the potential of using community differentiation to forecast disease occurrence.
Collapse
Affiliation(s)
- Yong-Wei Yan
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Hui-Chao Yang
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Lei Tang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Li
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yun-Xiang Mao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhao-Lan Mo
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
15
|
Phycosphere Microbial Succession Patterns and Assembly Mechanisms in a Marine Dinoflagellate Bloom. Appl Environ Microbiol 2019; 85:AEM.00349-19. [PMID: 31126952 DOI: 10.1128/aem.00349-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/25/2019] [Indexed: 02/02/2023] Open
Abstract
Given the ecological significance of microorganisms in algal blooming events, it is critical to understand the mechanisms regarding their distribution under different conditions. We tested the hypothesis that microbial community succession is strongly associated with algal bloom stages, and that the assembly mechanisms are cocontrolled by deterministic and stochastic processes. Community structures and underlying ecological processes of microbial populations (attached and free-living bacteria) at three algal bloom stages (pre-, during, and postbloom) over a complete dinoflagellate Scrippsiella trochoidea bloom were investigated. Both attached and free-living taxa had a strong response to the bloom event, and the latter was more sensitive than the former. The contribution of environmental parameters to microbial variability was 40.2%. Interaction analysis showed that complex positive or negative correlation networks exist in phycosphere microbes. These relationships were the potential drivers of mutualist and competitive interactions that impacted bacterial succession. Null model analysis showed that the attached bacterial community primarily exhibited deterministic processes at pre- and during-bloom stages, while dispersal-related processes contributed to a greater extent at the postbloom stage. In the free-living bacterial community, homogeneous selection and dispersal limitation dominated in the initial phase, which gave way to more deterministic processes at the two later stages. Relative contribution analyses further demonstrated that the community turnover of attached bacteria was mainly driven by environmental selection, while stochastic factors had partial effects on the assembly of free-living bacteria. Taken together, these data demonstrated that a robust link exists between bacterioplankton community structure and bloom progression, and phycosphere microbial succession trajectories are cogoverned by both deterministic and random processes.IMPORTANCE Disentangling the mechanisms shaping bacterioplankton communities during a marine ecological event is a core concern for ecologists. Harmful algal bloom (HAB) is a typical ecological disaster, and its formation is significantly influenced by alga-bacterium interactions. Microbial community shifts during the HAB process are relatively well known. However, the assembly processes of microbial communities in an HAB are not fully understood, especially the relative influences of deterministic and stochastic processes. We therefore analyzed the relative contributions of deterministic and stochastic processes during an HAB event. Both free-living and attached bacterial groups had a dramatic response to the HAB, and the relative importance of determinism versus stochasticity varied between the two bacterial groups at various bloom stages. Environmental factors and biotic interactions were the main drivers impacting the microbial shift process. Our results strengthen the understanding of the ecological mechanisms controlling microbial community patterns during the HAB process.
Collapse
|
16
|
Jordaan K, Comeau AM, Khasa DP, Bezuidenhout CC. An integrated insight into the response of bacterial communities to anthropogenic contaminants in a river: A case study of the Wonderfonteinspruit catchment area, South Africa. PLoS One 2019; 14:e0216758. [PMID: 31112559 PMCID: PMC6528982 DOI: 10.1371/journal.pone.0216758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023] Open
Abstract
Bacterial communities in human-impacted rivers and streams are exposed to multiple anthropogenic contaminants, which can eventually lead to biodiversity loss and function. The Wonderfonteinspruit catchment area is impacted by operational and abandoned gold mines, farms, and formal and informal settlements. In this study, we used 16S rRNA gene high-throughput sequencing to characterize bacterial communities in the lower Wonderfonteinspruit and their response to various contaminant sources. The results showed that composition and structure of bacterial communities differed significantly (P<0.05) between less (downstream) and more (upstream) polluted sites. The taxonomic and functional gene dissimilarities significantly correlated with each other, while downstream sites had more distinct functional genes. The relative abundance of Proteobacteria, Bacteroidetes and Actinobacteria was higher at upstream sites, while Acidobacteria, Cyanobacteria, Firmicutes and Verrucomicrobia were prominent at downstream sites. In addition, upstream sites were rich in genera pathogenic and/or potentially pathogenic to humans. Multivariate and correlation analyses suggest that bacterial diversity was significantly (P<0.05) impacted by pH and heavy metals (cobalt, arsenic, chromium, nickel and uranium). A significant fraction (~14%) of the compositional variation was explained by a combination of anthropogenic inputs, of which mining (~6%) was the main contributor to bacterial community variation. Network analysis indicated that bacterial communities had non-random inter- and intra-phyla associations and that the main taxa showed both positive and negative linkages to environmental parameters. Our results suggest that species sorting, due to environmental parameters, was the main process that structured bacterial communities. Furthermore, upstream sites had higher relative abundances of genes involved in xenobiotic degradation, suggesting stronger removal of polycyclic aromatic hydrocarbons and other organic compounds. This study provides insights into the influences of anthropogenic land use on bacterial community structure and functions in the lower Wonderfonteinspruit.
Collapse
Affiliation(s)
- K. Jordaan
- Unit for Environmental Sciences and Management, Microbiology, North-West University, South Africa, Potchefstroom, South Africa
- * E-mail:
| | - A. M. Comeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - D. P. Khasa
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - C. C. Bezuidenhout
- Unit for Environmental Sciences and Management, Microbiology, North-West University, South Africa, Potchefstroom, South Africa
| |
Collapse
|
17
|
Hou L, Hu A, Chen S, Zhang K, Orlić S, Rashid A, Yu CP. Deciphering the Assembly Processes of the Key Ecological Assemblages of Microbial Communities in Thirteen Full-Scale Wastewater Treatment Plants. Microbes Environ 2019; 34:169-179. [PMID: 30996148 PMCID: PMC6594736 DOI: 10.1264/jsme2.me18107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Limited information is currently available on the assembly processes (deterministic vs. stochastic) shaping the compositions of key microbial communities in activated sludge (AS). The relative importance of deterministic and stochastic processes for key bacterial and archaeal assemblages (i.e., core-satellite and habitat generalist-specialist) in AS from 13 wastewater treatment plants in China was investigated using 16S rDNA amplicon sequencing. The results obtained indicated 1,388 and 369 core operational taxonomic units (OTUs), 1,038 and 1,683 satellite OTUs, 255 and 48 habitat generalist OTUs, and 192 and 111 habitat specialist OTUs for Bacteria and Archaea, respectively. The proportions of shared OTUs between core and habitat specialist communities were similar to or higher than those between core and habitat generalist communities, suggesting a stronger inter-linkage between the former two groups. Deterministic processes, indicated by abundance-based β-null models, were responsible for shaping core communities, in which NH4-N, OrgC/OrgN, Cr, and Ni were the main controlling factors. In contrast, satellite communities were predominantly influenced by stochastic processes. Moreover, we found that deterministic and stochastic processes were mainly responsible for shaping the assembly of habitat specialists and generalists, respectively. However, the influence of deterministic factors on habitat specialists remains unclear. The present study provides novel insights into the assembly mechanisms of AS microbial communities.
Collapse
Affiliation(s)
- Liyuan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences.,Department of Civil and Environmental Engineering, University of Missouri
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences
| | - Kaisong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences
| | - Sandi Orlić
- Ruđer Bošković Institute.,Center of Excellence for Science and Technology-integration of Mediterranean region- STIM
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences.,Nuclear Institute for Food and Agriculture
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences.,Graduate Institute of Environmental Engineering, National Taiwan University
| |
Collapse
|
18
|
Rodríguez J, Gallampois CMJ, Timonen S, Andersson A, Sinkko H, Haglund P, Berglund ÅMM, Ripszam M, Figueroa D, Tysklind M, Rowe O. Effects of Organic Pollutants on Bacterial Communities Under Future Climate Change Scenarios. Front Microbiol 2018; 9:2926. [PMID: 30555447 PMCID: PMC6284067 DOI: 10.3389/fmicb.2018.02926] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/14/2018] [Indexed: 01/28/2023] Open
Abstract
Coastal ecosystems are highly dynamic and can be strongly influenced by climate change, anthropogenic activities (e.g., pollution), and a combination of the two pressures. As a result of climate change, the northern hemisphere is predicted to undergo an increased precipitation regime, leading in turn to higher terrestrial runoff and increased river inflow. This increased runoff will transfer terrestrial dissolved organic matter (tDOM) and anthropogenic contaminants to coastal waters. Such changes can directly influence the resident biology, particularly at the base of the food web, and can influence the partitioning of contaminants and thus their potential impact on the food web. Bacteria have been shown to respond to high tDOM concentration and organic pollutants loads, and could represent the entry of some pollutants into coastal food webs. We carried out a mesocosm experiment to determine the effects of: (1) increased tDOM concentration, (2) organic pollutant exposure, and (3) the combined effect of these two factors, on pelagic bacterial communities. This study showed significant responses in bacterial community composition under the three environmental perturbations tested. The addition of tDOM increased bacterial activity and diversity, while the addition of organic pollutants led to an overall reduction of these parameters, particularly under concurrent elevated tDOM concentration. Furthermore, we identified 33 bacterial taxa contributing to the significant differences observed in community composition, as well as 35 bacterial taxa which responded differently to extended exposure to organic pollutants. These findings point to the potential impact of organic pollutants under future climate change conditions on the basal coastal ecosystem, as well as to the potential utility of natural bacterial communities as efficient indicators of environmental disturbance.
Collapse
Affiliation(s)
- Juanjo Rodríguez
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | | | - Sari Timonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Agneta Andersson
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
- Umeå Marine Research Centre (UMF), Umeå University, Hörnefors, Sweden
| | - Hanna Sinkko
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Peter Haglund
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Åsa M. M. Berglund
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | | | - Daniela Figueroa
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Owen Rowe
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Helsinki Commission (HELCOM), Baltic Marine Environment Protection Commission, Helsinki, Finland
| |
Collapse
|
19
|
Lindh MV, Maillot BM, Smith CR, Church MJ. Habitat filtering of bacterioplankton communities above polymetallic nodule fields and sediments in the Clarion-Clipperton zone of the Pacific Ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:113-122. [PMID: 29411533 DOI: 10.1111/1758-2229.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Deep-sea mining of commercially valuable polymetallic nodule fields will generate a seabed sediment plume into the water column. Yet, the response of bacterioplankton communities, critical in regulating energy and matter fluxes in marine ecosystems, to such disturbances is unknown. Metacommunity theory, traditionally used in general ecology for macroorganisms, offers mechanistic understanding on the relative role of spatial differences compared with local environmental conditions (habitat filtering) for community assembly. We examined bacterioplankton metacommunities using 16S rRNA amplicons from the Clarion-Clipperton Zone (CCZ) in the eastern Pacific Ocean and in global ocean transect samples to determine sensitivity of these assemblages to environmental perturbations. Habitat filtering was the main assembly mechanism of bacterioplankton community composition in the epi- and mesopelagic waters of the CCZ and the Tara Oceans transect. Bathy- and abyssopelagic bacterioplankton assemblages were mainly assembled by undetermined metacommunity types or neutral and dispersal-driven patch-dynamics for the CCZ and the Malaspina transect. Environmental disturbances may alter the structure of upper-ocean microbial assemblages, with potentially even more substantial, yet unknown, impact on deep-sea communities. Predicting such responses in bacterioplankton assemblage dynamics can improve our understanding of microbially-mediated regulation of ecosystem services in the abyssal seabed likely to be exploited by future deep-sea mining operations.
Collapse
Affiliation(s)
- Markus V Lindh
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA
| | - Brianne M Maillot
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at Mānoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| | - Matthew J Church
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA
- Department of Oceanography, University of Hawai'i at Mānoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| |
Collapse
|