1
|
Curtsinger HD, Martínez-Absalón S, Liu Y, Lopatkin AJ. The metabolic burden associated with plasmid acquisition: An assessment of the unrecognized benefits to host cells. Bioessays 2024:e2400164. [PMID: 39529437 DOI: 10.1002/bies.202400164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bacterial conjugation, wherein DNA is transferred between cells through direct contact, is highly prevalent in complex microbial communities and is responsible for spreading myriad genes related to human and environmental health. Despite their importance, much remains unknown regarding the mechanisms driving the spread and persistence of these plasmids in situ. Studies have demonstrated that transferring, acquiring, and maintaining a plasmid imposes a significant metabolic burden on the host. Simultaneously, emerging evidence suggests that the presence of a conjugative plasmid can also provide both obvious and unexpected benefits to their host and local community. Combined, this highlights a continuous cost-benefit tradeoff at the population level, likely contributing to overall plasmid abundance and long-term persistence. Yet, while the metabolic burdens of plasmid conjugation, and their causes, are widely studied, their attendant potential advantages are less clear. Here, we summarize current perspectives on conjugative plasmids' metabolic burden and then highlight the lesser-appreciated yet critical benefits that plasmid-mediated metabolic burdens may provide. We argue that this largely unexplored tradeoff is critical to both a fundamental theory of microbial populations and engineering applications and therefore warrants further detailed study.
Collapse
Affiliation(s)
- Heather D Curtsinger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Yuchang Liu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison J Lopatkin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Verma A, Amnebrink D, Lee CC, Wai SN, Sandblad L, Pinhassi J, Wikner J. Prokaryotic morphological features and maintenance activities governed by seasonal productivity conditions. FEMS Microbiol Ecol 2024; 100:fiae121. [PMID: 39264060 PMCID: PMC11556340 DOI: 10.1093/femsec/fiae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024] Open
Abstract
Prokaryotic maintenance respiration and associated metabolic activities constitute a considerable proportion of the total respiration of carbon to CO2 in the ocean's mixed layer. However, seasonal influences on prokaryotic maintenance activities in terms of morphological and metabolic adaptations at low (winter) and high productivity (summer) are still unclear. To address this, we examined the natural prokaryotic communities at the mesocosm scale to analyse the differences in their morphological features and gene expression at low and high maintenance respiration, experimentally manipulated with the specific growth rate. Here, we showed that morphological features including membrane blebbing, membrane vesicles, and cell‒cell connections occurred under high productivity. Metabolic adaptations associated with maintenance activities were observed under low productivity. Several Kyoto Encyclopedia of Genes and Genomes categories related to signal transduction, energy metabolism, and translational machinery supported maintenance activities under simulated winter conditions. Differential abundances of genes related to transporters, osmoregulation, nitrogen metabolism, ribosome biogenesis, and cold stress were observed. Our results demonstrate how specific growth rate in different seasons can influence resource allocation at the levels of morphological features and metabolic adaptations. This motivates further study of morphological features and their ecological role during high productivity, while investigations of metabolic adaptations during low productivity can advance our knowledge about maintenance activities.
Collapse
Affiliation(s)
- Ashish Verma
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, Norrbyn 557, SE-905 71 Hörnefors, Sweden
| | - Dennis Amnebrink
- Centre for Ecology and Evolution in Microbial Model Systems – EEMiS, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Cheng Choo Lee
- Umeå Centre for Electron Microscopy, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Linda Sandblad
- Umeå Centre for Electron Microscopy, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems – EEMiS, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, Norrbyn 557, SE-905 71 Hörnefors, Sweden
| |
Collapse
|
3
|
Paulchamy C, Vakkattuthundi Premji S, Shanmugam S. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol 2024; 59:337-362. [PMID: 39488737 DOI: 10.1080/10409238.2024.2418639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.
Collapse
Affiliation(s)
- Chellapandi Paulchamy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sreekutty Vakkattuthundi Premji
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Saranya Shanmugam
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
4
|
Wray AC, Downey AR, Nodal AA, Park KK, Gorman-Lewis D. Bioenergetic characterization of hyperthermophilic archaean Methanocaldococcus sp. FS406-22. Extremophiles 2024; 28:32. [PMID: 39023751 DOI: 10.1007/s00792-024-01349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Hyperthermophilic archaean Methanocaldococcus sp. FS406-22 (hereafter FS406) is a hydrogenotrophic methanogen isolated from a deep-sea hydrothermal vent. To better understand the energetic requirements of hydrogen oxidation under extreme conditions, the thermodynamic characterization of FS406 incubations is necessary and notably underexplored. In this work, we quantified the bioenergetics of FS406 incubations at a range of temperatures (65, 76, and 85 ℃) and hydrogen concentrations (1.1, 1.4, and 2.1 mm). The biomass yields (C-mol of biomass per mol of H2 consumed) ranged from 0.02 to 0.19. Growth rates ranged from 0.4 to 1.5 h-1. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from - 198 kJ/C-mol to - 1840 kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from - 4150 kJ/C-mol to - 36333 kJ/C-mol. FS406 growth rates were most comparable to hyperthermophilic methanogen Methanocaldococcus jannaschii. Maintenance energy calculations from the thermodynamic parameters of FS406 and previously determined heterotrophic methanogen data revealed that temperature is a primary determinant rather than an electron donor. This work provides new insights into the thermodynamic underpinnings of a hyperthermophilic hydrothermal vent methanogen and helps to better constrain the energetic requirements of life in extreme environments.
Collapse
Affiliation(s)
- Addien C Wray
- Earth and Space Sciences, University of Washington, Seattle, WA, USA.
| | - Autum R Downey
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Andrea A Nodal
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Katherine K Park
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Drew Gorman-Lewis
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential. mBio 2024; 15:e0291823. [PMID: 38380943 PMCID: PMC10936187 DOI: 10.1128/mbio.02918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Archaea belonging to the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have been found in an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise a sizeable fraction of the archaeal community within marine oxygen-deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes (MAGs) belonging to the DPANN phyla Nanoarchaeota, Pacearchaeota, Woesearchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and the Arabian Sea. We find these archaea to be permanent, stable residents of all three major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25%-50% of archaea as estimated from read mapping to MAGs. ODZ DPANN appear to be capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs. IMPORTANCE Archaea from the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have diverse metabolic capabilities and participate in multiple biogeochemical cycles. While metagenomics and enrichments have revealed that many DPANN are characterized by ultrasmall genomes, few biosynthetic genes, and episymbiotic lifestyles, much remains unknown about their biology. We report 33 new DPANN metagenome-assembled genomes originating from the three global marine oxygen-deficient zones (ODZs), the first from these regions. We survey DPANN abundance and distribution within the ODZ water column, investigate their biosynthetic capabilities, and report potential roles in the cycling of organic carbon, methane, and nitrogen. We test the hypothesis that nitrous oxide reductases found within several ODZ DPANN genomes may enable ultrasmall episymbionts to serve as nitrous oxide consumers when attached to a host nitrous oxide producer. Our results indicate DPANN archaea as ubiquitous residents within the anoxic core of ODZs with the potential to produce or consume key compounds.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven Wilbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Aduru SV, Szenkiel K, Rahman A, Ahmad M, Fabozzi M, Smith RP, Lopatkin AJ. Sub-inhibitory antibiotic treatment selects for enhanced metabolic efficiency. Microbiol Spectr 2024; 12:e0324123. [PMID: 38226801 PMCID: PMC10846238 DOI: 10.1128/spectrum.03241-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Bacterial growth and metabolic rates are often closely related. However, under antibiotic selection, a paradox in this relationship arises: antibiotic efficacy decreases when bacteria are metabolically dormant, yet antibiotics select for resistant cells that grow fastest during treatment. That is, antibiotic selection counterintuitively favors bacteria with fast growth but slow metabolism. Despite this apparent contradiction, antibiotic resistant cells have historically been characterized primarily in the context of growth, whereas the extent of analogous changes in metabolism is comparatively unknown. Here, we observed that previously evolved antibiotic-resistant strains exhibited a unique relationship between growth and metabolism whereby nutrient utilization became more efficient, regardless of the growth rate. To better understand this unexpected phenomenon, we used a simplified model to simulate bacterial populations adapting to sub-inhibitory antibiotic selection through successive bottlenecking events. Simulations predicted that sub-inhibitory bactericidal antibiotic concentrations could select for enhanced metabolic efficiency, defined based on nutrient utilization: drug-adapted cells are able to achieve the same biomass while utilizing less substrate, even in the absence of treatment. Moreover, simulations predicted that restoring metabolic efficiency would re-sensitize resistant bacteria exhibiting metabolic-dependent resistance; we confirmed this result using adaptive laboratory evolutions of Escherichia coli under carbenicillin treatment. Overall, these results indicate that metabolic efficiency is under direct selective pressure during antibiotic treatment and that differences in evolutionary context may determine both the efficacy of different antibiotics and corresponding re-sensitization approaches.IMPORTANCEThe sustained emergence of antibiotic-resistant pathogens combined with the stalled drug discovery pipelines highlights the critical need to better understand the underlying evolution mechanisms of antibiotic resistance. To this end, bacterial growth and metabolic rates are often closely related, and resistant cells have historically been characterized exclusively in the context of growth. However, under antibiotic selection, antibiotics counterintuitively favor cells with fast growth, and slow metabolism. Through an integrated approach of mathematical modeling and experiments, this study thereby addresses the significant knowledge gap of whether antibiotic selection drives changes in metabolism that complement, and/or act independently, of antibiotic resistance phenotypes.
Collapse
Affiliation(s)
- Sai Varun Aduru
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
| | | | - Anika Rahman
- Department of Biology, Barnard College, New York, New York, USA
| | - Mehrose Ahmad
- Department of Biology, Barnard College, New York, New York, USA
| | - Maya Fabozzi
- Department of Biology, Barnard College, New York, New York, USA
| | - Robert P. Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Allison J. Lopatkin
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Department of Biology, Barnard College, New York, New York, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
- Data Science Institute, Columbia University, New York, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
7
|
Karaś P, Kochanowicz K, Pitek M, Domanski P, Obuchowski I, Tomiczek B, Liberek K. Evolution towards simplicity in bacterial small heat shock protein system. eLife 2023; 12:RP89813. [PMID: 38063373 PMCID: PMC10708888 DOI: 10.7554/elife.89813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Evolution can tinker with multi-protein machines and replace them with simpler single-protein systems performing equivalent functions in an equally efficient manner. It is unclear how, on a molecular level, such simplification can arise. With ancestral reconstruction and biochemical analysis, we have traced the evolution of bacterial small heat shock proteins (sHsp), which help to refold proteins from aggregates using either two proteins with different functions (IbpA and IbpB) or a secondarily single sHsp that performs both functions in an equally efficient way. Secondarily single sHsp evolved from IbpA, an ancestor specialized in strong substrate binding. Evolution of an intermolecular binding site drove the alteration of substrate binding properties, as well as the formation of higher-order oligomers. Upon two mutations in the α-crystallin domain, secondarily single sHsp interacts with aggregated substrates less tightly. Paradoxically, less efficient binding positively influences the ability of sHsp to stimulate substrate refolding, since the dissociation of sHps from aggregates is required to initiate Hsp70-Hsp100-dependent substrate refolding. After the loss of a partner, IbpA took over its role in facilitating the sHsp dissociation from an aggregate by weakening the interaction with the substrate, which became beneficial for the refolding process. We show that the same two amino acids introduced in modern-day systems define whether the IbpA acts as a single sHsp or obligatorily cooperates with an IbpB partner. Our discoveries illuminate how one sequence has evolved to encode functions previously performed by two distinct proteins.
Collapse
Affiliation(s)
- Piotr Karaś
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Klaudia Kochanowicz
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Marcin Pitek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Przemyslaw Domanski
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Igor Obuchowski
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Barlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| |
Collapse
|
8
|
Gondhalekar R, Kempes CP, McGlynn SE. Scaling of Protein Function across the Tree of Life. Genome Biol Evol 2023; 15:evad214. [PMID: 38007693 PMCID: PMC10715193 DOI: 10.1093/gbe/evad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/28/2023] Open
Abstract
Scaling laws are a powerful way to compare genomes because they put all organisms onto a single curve and reveal nontrivial generalities as genomes change in size. The abundance of functional categories across genomes has previously been found to show power law scaling with respect to the total number of functional categories, suggesting that universal constraints shape genomic category abundance. Here, we look across the tree of life to understand how genome evolution may be related to functional scaling. We revisit previous observations of functional genome scaling with an expanded taxonomy by analyzing 3,726 bacterial, 220 archaeal, and 79 unicellular eukaryotic genomes. We find that for some functional classes, scaling is best described by multiple exponents, revealing previously unobserved shifts in scaling as genome-encoded protein annotations increase or decrease. Furthermore, we find that scaling varies between phyletic groups at both the domain and phyla levels and is less universal than previously thought. This variability in functional scaling is not related to taxonomic phylogeny resolved at the phyla level, suggesting that differences in cell plan or physiology outweigh broad patterns of taxonomic evolution. Since genomes are maintained and replicated by the functional proteins encoded by them, these results point to functional degeneracy between taxonomic groups and unique evolutionary trajectories toward these. We also find that individual phyla frequently span scaling exponents of functional classes, revealing that individual clades can move across scaling exponents. Together, our results reveal unique shifts in functions across the tree of life and highlight that as genomes grow or shrink, proteins of various functions may be added or lost.
Collapse
Affiliation(s)
- Riddhi Gondhalekar
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- School of Life Sciences and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Shawn Erin McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- School of Life Sciences and Technology, Tokyo Institute of Technology, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| |
Collapse
|
9
|
Wang C, Kuzyakov Y. Energy use efficiency of soil microorganisms: Driven by carbon recycling and reduction. GLOBAL CHANGE BIOLOGY 2023; 29:6170-6187. [PMID: 37646316 DOI: 10.1111/gcb.16925] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Carbon use efficiency (CUE) is being intensively applied to quantify carbon (C) cycling processes from microbial cell to global scales. Energy use efficiency (EUE) is at least as important as the CUE because (i) microorganisms use organic C mainly as an energy source and not as elemental C per se, and (ii) microbial growth and maintenance are limited by energy, but not by C as a structural element. We conceptualize and review the importance of EUE by soil microorganisms and focus on (i) the energy content in organic compounds depending on the nominal oxidation state of carbon (NOSC), (ii) approaches to assess EUE, (iii) similarities and differences between CUE and EUE, and (iv) discuss mechanisms responsible for lower EUE compared to CUE. The energy content per C atom (enthalpy of combustion, the total energy stored in a compound) in organic compounds is very closely (R2 = 0.98) positively related to NOSC and increases by 108 kJ mol-1 C per one NOSC unit. For the first time we assessed the NOSC of microbial biomass in soil (-0.52) and calculated the corresponding energy content of -510 kJ mol-1 C. We linked CUE and EUE considering the NOSC of microbial biomass and element compositions of substrates utilized by microorganisms. The mean microbial EUE (0.32-0.35) is 18% lower than CUE (0.41) using glucose as a substrate. This definitely indicates that microbial growth is limited by energy relative to C. Based on the comparison of a broad range of processes of C and energy utilization for cell growth and maintenance, as well as database of experimental CUE from various compounds, we clearly explained five mechanisms and main factors why EUE is lower than CUE. The two main mechanisms behind lower EUE versus CUE are: (i) microbial recycling: C can be microbially recycled, whereas energy is always utilized only once, and (ii) chemical reduction of organic and inorganic compounds: Energy is used for reduction, which is ongoing without C utilization.
Collapse
Affiliation(s)
- Chaoqun Wang
- Biogeochemistry of Agroecosystems, University of Goettingen, Goettingen, Germany
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen, Germany
| |
Collapse
|
10
|
Westerhoff HV. On paradoxes between optimal growth, metabolic control analysis, and flux balance analysis. Biosystems 2023; 233:104998. [PMID: 37591451 DOI: 10.1016/j.biosystems.2023.104998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
In Microbiology it is often assumed that growth rate is maximal. This may be taken to suggest that the dependence of the growth rate on every enzyme activity is at the top of an inverse-parabolic function, i.e. that all flux control coefficients should equal zero. This might seem to imply that the sum of these flux control coefficients equals zero. According to the summation law of Metabolic Control Analysis (MCA) the sum of flux control coefficients should equal 1 however. And in Flux Balance Analysis (FBA) catabolism is often limited by a hard bound, causing catabolism to fully control the fluxes, again in apparent contrast with a flux control coefficient of zero. Here we resolve these paradoxes (apparent contradictions) in an analysis that uses the 'Edinburgh pathway', the 'Amsterdam pathway', as well as a generic metabolic network providing the building blocks or Gibbs energy for microbial growth. We review and show that (i) optimization depends on so-called enzyme control coefficients rather than the 'catalytic control coefficients' of MCA's summation law, (ii) when optimization occurs at fixed total protein, the former differ from the latter to the extent that they may all become equal to zero in the optimum state, (iii) in more realistic scenarios of optimization where catalytically inert biomass is compensating or maintenance metabolism is taken into consideration, the optimum enzyme concentrations should not be expected to equal those that maximize the specific growth rate, (iv) optimization may be in terms of yield rather than specific growth rate, which resolves the paradox because the sum of catalytic control coefficients on yield equals 0, (v) FBA effectively maximizes growth yield, and for yield the summation law states 0 rather than 1, thereby removing the paradox, (vi) furthermore, FBA then comes more often to a 'hard optimum' defined by a maximum catabolic flux and a catabolic-enzyme control coefficient of 1. The trade-off between maintenance metabolism and growth is highlighted as worthy of further analysis.
Collapse
Affiliation(s)
- Hans V Westerhoff
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, A-Life, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands; School of Biological Sciences, Medicine and Health, University of Manchester, Manchester, United Kingdom; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
11
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen deficient zones with diverse metabolic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564641. [PMID: 37961710 PMCID: PMC10634959 DOI: 10.1101/2023.10.30.564641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Archaea belonging to the DPANN superphylum have been found within an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise 15-26% of the archaeal community within marine oxygen deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes belonging to DPANN phyla Nanoarchaeota, Pacearchaeota, Woesarchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and Arabian Sea. We find these archaea to be permanent, stable residents of all 3 major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25-50% of archaea. ODZ DPANN appear capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Wilbert
- Divisions of Biology and Biological Engineering and Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Divisions of Biology and Biological Engineering and Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
12
|
Butterworth SJ, Barton F, Lloyd JR. Extremophilic microbial metabolism and radioactive waste disposal. Extremophiles 2023; 27:27. [PMID: 37839067 PMCID: PMC10577106 DOI: 10.1007/s00792-023-01312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.
Collapse
Affiliation(s)
- Sarah Jane Butterworth
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK
| | - Franky Barton
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| | - Jonathan Richard Lloyd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
13
|
Abner K, Šverns P, Arold J, Morell I, Lints T, Medri S, Seiman A, Adamberg K, Vilu R. Self-reproduction and doubling time limits of different cellular subsystems. NPJ Syst Biol Appl 2023; 9:44. [PMID: 37730753 PMCID: PMC10511633 DOI: 10.1038/s41540-023-00306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Ribosomes which can self-replicate themselves practically autonomously in beneficial physicochemical conditions have been recognized as the central organelles of cellular self-reproduction processes. The challenge of cell design is to understand and describe the rates and mechanisms of self-reproduction processes of cells as of coordinated functioning of ribosomes and the enzymatic networks of different functional complexity that support those ribosomes. We show that doubling times of proto-cells (ranging from simplest replicators up to those reaching the size of E. coli) increase rather with the number of different cell component species than with the total numbers of cell components. However, certain differences were observed between cell components in increasing the doubling times depending on the types of relationships between those cell components and ribosomes. Theoretical limits of doubling times of the self-reproducing proto-cells determined by the molecular parameters of cell components and cell processes were in the range between 6-40 min.
Collapse
Affiliation(s)
- Kristo Abner
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Peter Šverns
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Janar Arold
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Indrek Morell
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Taivo Lints
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Sander Medri
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Andrus Seiman
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kaarel Adamberg
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Raivo Vilu
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia.
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
14
|
Gonzalez JM, Aranda B. Microbial Growth under Limiting Conditions-Future Perspectives. Microorganisms 2023; 11:1641. [PMID: 37512814 PMCID: PMC10383181 DOI: 10.3390/microorganisms11071641] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms rule the functioning of our planet and each one of the individual macroscopic living creature. Nevertheless, microbial activity and growth status have always been challenging tasks to determine both in situ and in vivo. Microbial activity is generally related to growth, and the growth rate is a result of the availability of nutrients under adequate or adverse conditions faced by microbial cells in a changing environment. Most studies on microorganisms have been carried out under optimum or near-optimum growth conditions, but scarce information is available about microorganisms at slow-growing states (i.e., near-zero growth and maintenance metabolism). This study aims to better understand microorganisms under growth-limiting conditions. This is expected to provide new perspectives on the functions and relevance of the microbial world. This is because (i) microorganisms in nature frequently face conditions of severe growth limitation, (ii) microorganisms activate singular pathways (mostly genes remaining to be functionally annotated), resulting in a broad range of secondary metabolites, and (iii) the response of microorganisms to slow-growth conditions remains to be understood, including persistence strategies, gene expression, and cell differentiation both within clonal populations and due to the complexity of the environment.
Collapse
Affiliation(s)
- Juan M Gonzalez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, E-41012 Sevilla, Spain
| | - Beatriz Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, E-41012 Sevilla, Spain
| |
Collapse
|
15
|
Karadagli F, Marcus A, Rittmann BE. Microbiological hydrogen (H 2 ) thresholds in anaerobic continuous-flow systems: Effects of system characteristics. Biotechnol Bioeng 2023. [PMID: 37148477 DOI: 10.1002/bit.28415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Hydrogen (H2 ) concentrations that were associated with microbiological respiratory processes (RPs) such as sulfate reduction and methanogenesis were quantified in continuous-flow systems (CFSs) (e.g., bioreactors, sediments). Gibbs free energy yield (ΔǴ ~ 0) of the relevant RP has been proposed to control the observed H2 concentrations, but most of the reported values do not align with the proposed energetic trends. Alternatively, we postulate that system characteristics of each experimental design influence all system components including H2 concentrations. To analyze this proposal, a Monod-based mathematical model was developed and used to design a gas-liquid bioreactor for hydrogenotrophic methanogenesis with Methanobacterium bryantii M.o.H. Gas-to-liquid H2 mass transfer, microbiological H2 consumption, biomass growth, methane formation, and Gibbs free energy yields were evaluated systematically. Combining model predictions and experimental results revealed that an initially large biomass concentration created transients during which biomass consumed [H2 ]L rapidly to the thermodynamic H2 -threshold (≤1 nM) that triggerred the microorganisms to stop H2 oxidation. With no H2 oxidation, continuous gas-to-liquid H2 transfer increased [H2 ]L to a level that signaled the methanogens to resume H2 oxidation. Thus, an oscillatory H2 -concentration profile developed between the thermodynamic H2 -threshold (≤1 nM) and a low [H2 ]L (~10 nM) that relied on the rate of gas-to-liquid H2 -transfer. The transient [H2 ]L values were too low to support biomass synthesis that could balance biomass losses through endogenous oxidation and advection; thus, biomass declined continuously and disappeared. A stable [H2 ]L (1807 nM) emerged as a result of abiotic H2 -balance between gas-to-liquid H2 transfer and H2 removal via advection of liquid-phase.
Collapse
Affiliation(s)
- Fatih Karadagli
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Andrew Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
- Skyology Inc., San Francisco, California, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
16
|
Caro TA, McFarlin J, Jech S, Fierer N, Kopf S. Hydrogen stable isotope probing of lipids demonstrates slow rates of microbial growth in soil. Proc Natl Acad Sci U S A 2023; 120:e2211625120. [PMID: 37036980 PMCID: PMC10120080 DOI: 10.1073/pnas.2211625120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
The rate at which microorganisms grow and reproduce is fundamental to our understanding of microbial physiology and ecology. While soil microbiologists routinely quantify soil microbial biomass levels and the growth rates of individual taxa in culture, there is a limited understanding of how quickly microbes actually grow in soil. For this work, we posed the simple question: what are the growth rates of soil microorganisms? In this study, we measure these rates in three distinct soil environments using hydrogen-stable isotope probing of lipids with 2H-enriched water. This technique provides a taxa-agnostic quantification of in situ microbial growth from the degree of 2H enrichment of intact polar lipid compounds ascribed to bacteria and fungi. We find that growth rates in soil are quite slow and correspond to average generation times of 14 to 45 d but are also highly variable at the compound-specific level (4 to 402 d), suggesting differential growth rates among community subsets. We observe that low-biomass microbial communities exhibit more rapid growth rates than high-biomass communities, highlighting that biomass quantity alone does not predict microbial productivity in soil. Furthermore, within a given soil, the rates at which specific lipids are being synthesized do not relate to their quantity, suggesting a general decoupling of microbial abundance and growth in soil microbiomes. More generally, we demonstrate the utility of lipid-stable isotope probing for measuring microbial growth rates in soil and highlight the importance of measuring growth rates to complement more standard analyses of soil microbial communities.
Collapse
Affiliation(s)
- Tristan A. Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Jamie McFarlin
- Department of Geology and Geophysics, University of Wyoming, Laramie, WY82071
| | - Sierra Jech
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO80309
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO80309
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Sebastian Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
17
|
Palomino A, Gewurz D, DeVine L, Zajmi U, Moralez J, Abu-Rumman F, Smith RP, Lopatkin AJ. Metabolic genes on conjugative plasmids are highly prevalent in Escherichia coli and can protect against antibiotic treatment. THE ISME JOURNAL 2023; 17:151-162. [PMID: 36261510 PMCID: PMC9750983 DOI: 10.1038/s41396-022-01329-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022]
Abstract
Conjugative plasmids often encode antibiotic resistance genes that provide selective advantages to their bacterial hosts during antibiotic treatment. Previous studies have predominantly considered these established genes as the primary benefit of antibiotic-mediated plasmid dissemination. However, many genes involved in cellular metabolic processes may also protect against antibiotic treatment and provide selective advantages. Despite the diversity of such metabolic genes and their potential ecological impact, their plasmid-borne prevalence, co-occurrence with canonical antibiotic resistance genes, and phenotypic effects remain widely understudied. To address this gap, we focused on Escherichia coli, which can often act as a pathogen, and is known to spread antibiotic resistance genes via conjugation. We characterized the presence of metabolic genes on 1,775 transferrable plasmids and compared their distribution to that of known antibiotic resistance genes. We found high abundance of genes involved in cellular metabolism and stress response. Several of these genes demonstrated statistically significant associations or disassociations with known antibiotic resistance genes at the strain level, indicating that each gene type may impact the spread of the other across hosts. Indeed, in vitro characterization of 13 statistically relevant metabolic genes confirmed that their phenotypic impact on antibiotic susceptibility was largely consistent with in situ relationships. These results emphasize the ecological importance of metabolic genes on conjugal plasmids, and that selection dynamics of E. coli pathogens arises as a complex consequence of both canonical mechanisms and their interactions with metabolic pathways.
Collapse
Affiliation(s)
- Alana Palomino
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA
| | - Danya Gewurz
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA
| | - Lela DeVine
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA
| | - Ujana Zajmi
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA
| | - Jenifer Moralez
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA
| | - Fatima Abu-Rumman
- grid.261241.20000 0001 2168 8324Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL 33314 USA
| | - Robert P. Smith
- grid.261241.20000 0001 2168 8324Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL 33314 USA ,grid.261241.20000 0001 2168 8324Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314 USA
| | - Allison J. Lopatkin
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA ,grid.21729.3f0000000419368729Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027 USA ,grid.21729.3f0000000419368729Data Science Institute, Columbia University, New York, NY 10027 USA ,grid.21729.3f0000000419368729Department of Systems Biology, Columbia University, New York, NY 10027 USA ,grid.16416.340000 0004 1936 9174Department of Chemical Engineering, University of Rochester, Rochester, NY 14627 USA
| |
Collapse
|
18
|
Straathof AJ. Modelling of end-product inhibition in fermentation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Deutzmann JS, Kracke F, Gu W, Spormann AM. Microbial Electrosynthesis of Acetate Powered by Intermittent Electricity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16073-16081. [PMID: 36260660 DOI: 10.1021/acs.est.2c05085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbial electrosynthesis (MES) of acetate is a process using electrical energy to reduce CO2 to acetic acid in an integrated bioelectrochemical system. MES powered by excess renewable electricity produces carbon-neutral acetate while benefitting from inexpensive but intermittent energy sources. Interruptions in electricity supply also cause energy limitation and starvation of the microbial cells performing MES. Here, we studied the effect of intermittent electricity supply on the performance of hydrogen-mediated MES of acetate. Thermoanaerobacter kivui produced acetic acid for more than 4 months from intermittent electricity supplied in 12 h on-off cycles in a semicontinuously-fed MES system. After current interruptions, hydrogen utilization and acetate synthesis rates were severely diminished. They did not recover to the steady-state rates of continuous MES within the 12 h current-on period under most conditions. Accumulating high product (acetate) concentration exacerbated this effect and prolonged recovery. However, supply of a low background current of 1-5% of the maximum current during "off-times" reduced the impact of current interruptions on subsequent MES performance. This study presents sustained MES at a rate of up to 2 mM h-1 acetate at an average concentration of 60-90 mM by a pure thermophilic microbial culture powered by intermittent electricity. We identified product inhibition of accumulating acetic acid as a key challenge to improving the efficiency of intermittently powered MES.
Collapse
Affiliation(s)
- Jörg S Deutzmann
- Department of Civil and Environmental Engineering, Stanford University, Stanford94305-4020, United States
| | - Frauke Kracke
- Department of Civil and Environmental Engineering, Stanford University, Stanford94305-4020, United States
| | - Wenyu Gu
- Department of Civil and Environmental Engineering, Stanford University, Stanford94305-4020, United States
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, Stanford University, Stanford94305-4020, United States
- Department of Chemical Engineering, Stanford University, Stanford94305-4020California, United States
- Novo Nordisk Foundation CO2 Research Center, Aarhus University, Aarhus8000, Denmark
| |
Collapse
|
20
|
Echavarri-Bravo V, Amari H, Hartley J, Maddalena G, Kirk C, Tuijtel MW, Browning ND, Horsfall LE. Selective bacterial separation of critical metals: towards a sustainable method for recycling lithium ion batteries. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:8512-8522. [PMID: 36353209 PMCID: PMC9621301 DOI: 10.1039/d2gc02450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The large scale recycling of lithium ion batteries (LIBs) is essential to satisfy global demands for the raw materials required to implement this technology as part of a clean energy strategy. However, despite what is rapidly becoming a critical need, an efficient and sustainable recycling process for LIBs has yet to be developed. Biological reactions occur with great selectivity under mild conditions, offering new avenues for the implementation of more environmentally sustainable processes. Here, we demonstrate a sequential process employing two bacterial species to recover Mn, Co and Ni, from vehicular LIBs through the biosynthesis of metallic nanoparticles, whilst Li remains within the leachate. Moreover the feasibility of Mn recovery from polymetallic solutions was demonstrated at semi-pilot scale in a 30 L bioreactor. Additionally, to provide insight into the biological process occurring, we investigated selectivity between Co and Ni using proteomics to identify the biological response and confirm the potential of a bio-based method to separate these two essential metals. Our approach determines the principles and first steps of a practical bio-separation and recovery system, underlining the relevance of harnessing biological specificity for recycling and up-cycling critical materials.
Collapse
Affiliation(s)
- Virginia Echavarri-Bravo
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Houari Amari
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool Liverpool L69 3GQ UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Jennifer Hartley
- School of Chemistry, University of Leicester Leicester LE1 7RH UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Giovanni Maddalena
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Caroline Kirk
- School of Chemistry, University of Edinburgh Edinburgh EH9 3FJ UK
| | - Maarten W Tuijtel
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
| | - Nigel D Browning
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool Liverpool L69 3GQ UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
- Sivananthan Laboratories 590 Territorial Drive Bolingbrook IL 60440 USA
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Louise E Horsfall
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| |
Collapse
|
21
|
Barcenilla C, Álvarez-Ordóñez A, López M, Alvseike O, Prieto M. Microbiological Safety and Shelf-Life of Low-Salt Meat Products-A Review. Foods 2022; 11:2331. [PMID: 35954097 PMCID: PMC9367943 DOI: 10.3390/foods11152331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Salt is widely employed in different foods, especially in meat products, due to its very diverse and extended functionality. However, the high intake of sodium chloride in human diet has been under consideration for the last years, because it is related to serious health problems. The meat-processing industry and research institutions are evaluating different strategies to overcome the elevated salt concentrations in products without a quality reduction. Several properties could be directly or indirectly affected by a sodium chloride decrease. Among them, microbial stability could be shifted towards pathogen growth, posing a serious public health threat. Nonetheless, the majority of the literature available focuses attention on the sensorial and technological challenges that salt reduction implies. Thereafter, the need to discuss the consequences for shelf-life and microbial safety should be considered. Hence, this review aims to merge all the available knowledge regarding salt reduction in meat products, providing an assessment on how to obtain low salt products that are sensorily accepted by the consumer, technologically feasible from the perspective of the industry, and, in particular, safe with respect to microbial stability.
Collapse
Affiliation(s)
- Coral Barcenilla
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24007 León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24007 León, Spain
| | - Ole Alvseike
- Animalia—Norwegian Meat and Poultry Research Centre, NO-0513 Oslo, Norway
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24007 León, Spain
| |
Collapse
|
22
|
Zhao P, Zhao S, Wang HG, Lu M, Li ZH. Encapsulation of bacteria in different stratified extracellular polymeric substances and its implications for performance enhancement and resource recovery. WATER RESEARCH 2022; 220:118684. [PMID: 35661510 DOI: 10.1016/j.watres.2022.118684] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 05/06/2023]
Abstract
Simultaneous recovery of biopolymers and enhanced bio-reactor performance are promising options for sustainable wastewater treatment, and the bioactivity of sludge after biopolymer extraction is thus critical for the performance of the system. To this end, stratified extracellular polymeric substances (EPS), including slime, loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS), were extracted, and the bioactivities of the consequent extraction residues were assessed using aerobic respirogram, kinetic, and flow cytometry (FCM). After the initial weak extraction of slime, the particle size distribution of the sludge significantly decreased, and subsequent extractions of LB-EPS and TB-EPS produced an equivalent size distribution. In contrast, the fractal dimension decreased after each extraction, suggesting that LB-EPS and TB-EPS affected the compactness of flocs rather than the size. The aerobic bacteria distribution estimated using respirogram shows that slime mainly encapsulated heterotrophs while LB-EPS mainly encapsulated nitrifiers. In addition, the ammonia-nitrogen affinity coefficient decreased from 1.79 to 0.28 mg/L when slime was removed, thereby encouraging the activities of autotrophic nitrifiers. Further removal of LB-EPS induced high energy dispersion as the maintenance coefficient m and the metabolic dispersion index μ/m increased from 0.11 to 0.22 and 0.44 to 0.63, respectively. Meanwhile, the yield rate decreased from 0.77 to 0.66. Although pellets that resulted from TB-EPS extraction were not aerobically active as described by respirogram and growth curves, they were still metabolically active as measured by live/dead cell counting and redox sensor green signal. These pellets used more energy for maintenance as indicated by the high maintenance coefficient than those residual after either slime or LB-EPS extraction. In addition, the variation in bacteria community distribution across flocs was related to the variation in temperatures, suggesting that the inner part of a floc might be hotter than the outer side. Therefore, compared to bacteria in the raw sludge, the viable bacteria bounded in LB-EPS and TB-EPS convert more energy to heat rather than growth. These results indicate that energy was dispersed as metabolic heat for the LB-EPS extracted sludge, and removal of LB-EPS favored thermogenesis and sludge reduction. Based on the above findings, a simultaneously EPS-recovery and performance enhancement configuration is thus proposed, which holds great promise for the integration of next-generation wastewater treatment plants.
Collapse
Affiliation(s)
- Pian Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Song Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hai-Guang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Meng Lu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
23
|
Bradley JA, Arndt S, Amend JP, Burwicz-Galerne E, LaRowe DE. Sources and Fluxes of Organic Carbon and Energy to Microorganisms in Global Marine Sediments. Front Microbiol 2022; 13:910694. [PMID: 35875517 PMCID: PMC9301249 DOI: 10.3389/fmicb.2022.910694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Marine sediments comprise one of the largest microbial habitats and organic carbon sinks on the planet. However, it is unclear how variations in sediment physicochemical properties impact microorganisms on a global scale. Here we investigate patterns in the distribution of microbial cells, organic carbon, and the amounts of power used by microorganisms in global sediments. Our results show that sediment on continental shelves and margins is predominantly anoxic and contains cells whose power utilization decreases with sediment depth and age. Sediment in abyssal zones contains microbes that use low amounts of power on a per cell basis, across large gradients in sediment depth and age. We find that trends in cell abundance, POC storage and degradation, and microbial power utilization are mainly structured by depositional setting and redox conditions, rather than sediment depth and age. We also reveal distinct trends in per-cell power regime across different depositional settings, from maxima of ∼10–16 W cell–1 in recently deposited shelf sediments to minima of <10–20 W cell–1 in deeper and ancient sediments. Overall, we demonstrate broad global-scale connections between the depositional setting and redox conditions of global sediment, and the amounts of organic carbon and activity of deep biosphere microorganisms.
Collapse
Affiliation(s)
- James A. Bradley
- School of Geography, Queen Mary University of London, London, United Kingdom
- GFZ German Research Center for Geosciences, Potsdam, Germany
- *Correspondence: James A. Bradley,
| | - Sandra Arndt
- BGeosys, Department of Earth and Environmental Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Jan P. Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ewa Burwicz-Galerne
- MARUM Center for Marine Environmental Sciences, Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Douglas E. LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Wang Y, Gao X, Yang H. Integrated metabolomics of "big six" Escherichia coli on pea sprouts to organic acid treatments. Food Res Int 2022; 157:111354. [PMID: 35761617 DOI: 10.1016/j.foodres.2022.111354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Naturally occurring organic acids (OAs) have demonstrated satisfactory effects in inhibiting common pathogens on fresh produce; however, their effectiveness on "big six" Escherichia coli serotypes, comprised of E. coli O26:H11, O45:H2, O103:H11, O111, O121:H19 and O145, remained unaddressed. Regarding this, using nuclear magnetic resonance (NMR) spectroscopy and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS), the sanitising efficacy and the underlying antimicrobial mechanisms of 10-min treatments with 0.2 mol/L ascorbic acid (AA), citric acid (CA) and malic acid (MA) against the "big six" strains on pea sprouts were thoroughly investigated in this study. Despite the varying antimicrobial efficacy (AA: 0.12-0.99, CA: 0.36-1.72, MA: 0.75-3.28 log CFU/g reductions), the three OAs induced consistent metabolic changes in the E. coli strains, particularly in the metabolism of membrane lipids, nucleotide derivatives and amino acids. Comparing all strains, the most OA-resistant strain, O26 (0.36-1.12 log CFU/g reductions), had the largest total amino acids accumulated to resist osmotic stress; its ulteriorly suppressed cell activity further strengthened its endurance. In contrast, the lowest OA-resistance of O121 (0.99-3.28 log CFU/g reductions) might be explained by the depletion of putrescine, an oxidative stress regulator. Overall, the study sheds light on the effectiveness of a dual-platform metabolomics investigation in elucidating the metabolic responses of "big six" E. coli to OAs. The manifested antimicrobial effects of OAs, especially MA, together with the underlying metabolic perturbations detected in the "big six" strains, provided scientific basis for applying OA treatments to future fresh produce sanitisation.
Collapse
Affiliation(s)
- Yue Wang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Xianfu Gao
- Shanghai Profleader Biotech Co., Ltd, Jiading District, Shanghai 201805, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
25
|
Schnitzer B, Österberg L, Skopa I, Cvijovic M. Multi-scale model suggests the trade-off between protein and ATP demand as a driver of metabolic changes during yeast replicative ageing. PLoS Comput Biol 2022; 18:e1010261. [PMID: 35797415 PMCID: PMC9295998 DOI: 10.1371/journal.pcbi.1010261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/19/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell's reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell's metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iro Skopa
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Calabrese L, Grilli J, Osella M, Kempes CP, Lagomarsino MC, Ciandrini L. Protein degradation sets the fraction of active ribosomes at vanishing growth. PLoS Comput Biol 2022; 18:e1010059. [PMID: 35500024 PMCID: PMC9098079 DOI: 10.1371/journal.pcbi.1010059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/12/2022] [Accepted: 03/26/2022] [Indexed: 11/19/2022] Open
Abstract
Growing cells adopt common basic strategies to achieve optimal resource allocation under limited resource availability. Our current understanding of such “growth laws” neglects degradation, assuming that it occurs slowly compared to the cell cycle duration. Here we argue that this assumption cannot hold at slow growth, leading to important consequences. We propose a simple framework showing that at slow growth protein degradation is balanced by a fraction of “maintenance” ribosomes. Consequently, active ribosomes do not drop to zero at vanishing growth, but as growth rate diminishes, an increasing fraction of active ribosomes performs maintenance. Through a detailed analysis of compiled data, we show that the predictions of this model agree with data from E. coli and S. cerevisiae. Intriguingly, we also find that protein degradation increases at slow growth, which we interpret as a consequence of active waste management and/or recycling. Our results highlight protein turnover as an underrated factor for our understanding of growth laws across kingdoms. The idea that simple quantitative relationships relate cell physiology to cellular composition dates back to the 1950s, but the recent years saw a leap in our understanding of such “growth laws”, with relevant implications regarding the interdependence between growth, metabolism and biochemical networks. However, recent works on nutrient-limited growth mainly focused on laboratory conditions that are favourable to growth. Thus, our current mathematical understanding of the growth laws neglects protein degradation, under the argument that it occurs slowly compared to the timescale of the cell cycle. Instead, at slow growth the timescales of mass loss from protein degradation and dilution become comparable. In this work, we propose that protein degradation shapes the quantitative relationships between ribosome allocation and growth rate, and determines a fraction of ribosomes that do not contribute to growth and need to remain active to balance degradation.
Collapse
Affiliation(s)
- Ludovico Calabrese
- IFOM Foundation, FIRC Institute for Molecular Oncology, Milan, Italy
- * E-mail: (LCa); (MCL); (LCi)
| | - Jacopo Grilli
- Quantitative Life Sciences section, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Matteo Osella
- Dipartimento di Fisica, Università di Torino and INFN, Turin, Italy
- INFN sezione di Torino, Turin, Italy
| | | | - Marco Cosentino Lagomarsino
- IFOM Foundation, FIRC Institute for Molecular Oncology, Milan, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy
- INFN sezione di Milano, Milan, Italy
- * E-mail: (LCa); (MCL); (LCi)
| | - Luca Ciandrini
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
- * E-mail: (LCa); (MCL); (LCi)
| |
Collapse
|
27
|
Keegstra JM, Carrara F, Stocker R. The ecological roles of bacterial chemotaxis. Nat Rev Microbiol 2022; 20:491-504. [PMID: 35292761 DOI: 10.1038/s41579-022-00709-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
How bacterial chemotaxis is performed is much better understood than why. Traditionally, chemotaxis has been understood as a foraging strategy by which bacteria enhance their uptake of nutrients and energy, yet it has remained puzzling why certain less nutritious compounds are strong chemoattractants and vice versa. Recently, we have gained increased understanding of alternative ecological roles of chemotaxis, such as navigational guidance in colony expansion, localization of hosts or symbiotic partners and contribution to microbial diversity by the generation of spatial segregation in bacterial communities. Although bacterial chemotaxis has been observed in a wide range of environmental settings, insights into the phenomenon are mostly based on laboratory studies of model organisms. In this Review, we highlight how observing individual and collective migratory behaviour of bacteria in different settings informs the quantification of trade-offs, including between chemotaxis and growth. We argue that systematically mapping when and where bacteria are motile, in particular by transgenerational bacterial tracking in dynamic environments and in situ approaches from guts to oceans, will open the door to understanding the rich interplay between metabolism and growth and the contribution of chemotaxis to microbial life.
Collapse
Affiliation(s)
| | - Francesco Carrara
- Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
28
|
Cockell CS, Samuels T, Stevens AH. Habitability Is Binary, But It Is Used by Astrobiologists to Encompass Continuous Ecological Questions. ASTROBIOLOGY 2022; 22:7-13. [PMID: 34756098 DOI: 10.1089/ast.2021.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The term "habitability" is pervasive throughout the space sciences and astrobiology literature and is broadly used to describe an environment's ability to support life. Here, we argue that, while it is fundamentally a binary matter whether an organism can persist in an environment or not, these binary assessments lead to continuous ecological measurements that are often collected under the umbrella term "habitability" by astrobiologists. Although the use of habitability in this way has provided a framework for those studying the potential of environments to support life, including comparative analyses between terrestrial and extraterrestrial environments, it can also generate confusion and limit interdisciplinary understanding. Namely, differing ecological metrics used as proxies for habitability can yield differing conclusions depending upon the metrics chosen. Therefore, we suggest that in this continuous sense, the terms habitable and habitability lose meaning unless the specific scientific question and biological metric chosen to address it are defined. As a corollary, the search for universal single metrics to make habitability assessments is not to be encouraged, and as we argue, attempting to do so would oversimply analyses of the ability of environments to support life.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Toby Samuels
- Geomicrobiology Group, Centre for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Adam H Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Okabe S, Kamigaito A, Kobayashi K. Maintenance power requirements of anammox bacteria "Candidatus Brocadia sinica" and "Candidatus Scalindua sp.". THE ISME JOURNAL 2021; 15:3566-3575. [PMID: 34145389 PMCID: PMC8629980 DOI: 10.1038/s41396-021-01031-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
Little is known about the cell physiology of anammox bacteria growing at extremely low growth rates. Here, "Candidatus Brocadia sinica" and "Candidatus Scalindua sp." were grown in continuous anaerobic membrane bioreactors (MBRs) with complete biomass retention to determine maintenance energy (i.e., power) requirements at near-zero growth rates. After prolonged retentostat cultivations, the specific growth rates (μ) of "Ca. B. sinica" and "Ca. Scalindua sp." decreased to 0.000023 h-1 (doubling time of 1255 days) and 0.000157 h-1 (184 days), respectively. Under these near-zero growth conditions, substrate was continuously utilized to meet maintenance energy demands (me) of 6.7 ± 0.7 and 4.3 ± 0.7 kJ mole of biomass-C-1 h-1 for "Ca. B. sinica" and "Ca. Scalindua sp.", which accorded with the theoretically predicted values of all anaerobic microorganisms (9.7 and 4.4 kJ mole of biomass-C-1 h-1at 37 °C and 28 °C, respectively). These me values correspond to 13.4 × 10-15 and 8.6 × 10-15 watts cell-1 for "Ca. B. sinica" and "Ca. Scalindua sp.", which were five orders of magnitude higher than the basal power limit for natural settings (1.9 × 10-19 watts cells-1). Furthermore, the minimum substrate concentrations required for growth (Smin) were calculated to be 3.69 ± 0.21 and 0.09 ± 0.05 μM NO2- for "Ca. B. sinica" and "Ca. Scalindua sp.", respectively. These results match the evidence that "Ca. Scalindua sp." with lower maintenance power requirement and Smin are better adapted to energy-limited natural environments than "Ca. B. sinica", suggesting the importance of these parameters on ecological niche differentiation in natural environments.
Collapse
Affiliation(s)
- Satoshi Okabe
- grid.39158.360000 0001 2173 7691Department of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido, 060-8628 Japan
| | - Atsushi Kamigaito
- grid.39158.360000 0001 2173 7691Department of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido, 060-8628 Japan
| | - Kanae Kobayashi
- grid.39158.360000 0001 2173 7691Department of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido, 060-8628 Japan
| |
Collapse
|
30
|
Bay SK, Waite DW, Dong X, Gillor O, Chown SL, Hugenholtz P, Greening C. Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. THE ISME JOURNAL 2021; 15:3339-3356. [PMID: 34035443 PMCID: PMC8528921 DOI: 10.1038/s41396-021-01001-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Desert soils harbour diverse communities of aerobic bacteria despite lacking substantial organic carbon inputs from vegetation. A major question is therefore how these communities maintain their biodiversity and biomass in these resource-limiting ecosystems. Here, we investigated desert topsoils and biological soil crusts collected along an aridity gradient traversing four climatic regions (sub-humid, semi-arid, arid, and hyper-arid). Metagenomic analysis indicated these communities vary in their capacity to use sunlight, organic compounds, and inorganic compounds as energy sources. Thermoleophilia, Actinobacteria, and Acidimicrobiia were the most abundant and prevalent bacterial classes across the aridity gradient in both topsoils and biocrusts. Contrary to the classical view that these taxa are obligate organoheterotrophs, genome-resolved analysis suggested they are metabolically flexible, with the capacity to also use atmospheric H2 to support aerobic respiration and often carbon fixation. In contrast, Cyanobacteria were patchily distributed and only abundant in certain biocrusts. Activity measurements profiled how aerobic H2 oxidation, chemosynthetic CO2 fixation, and photosynthesis varied with aridity. Cell-specific rates of atmospheric H2 consumption increased 143-fold along the aridity gradient, correlating with increased abundance of high-affinity hydrogenases. Photosynthetic and chemosynthetic primary production co-occurred throughout the gradient, with photosynthesis dominant in biocrusts and chemosynthesis dominant in arid and hyper-arid soils. Altogether, these findings suggest that the major bacterial lineages inhabiting hot deserts use different strategies for energy and carbon acquisition depending on resource availability. Moreover, they highlight the previously overlooked roles of Actinobacteriota as abundant primary producers and trace gases as critical energy sources supporting productivity and resilience of desert ecosystems.
Collapse
Affiliation(s)
- Sean K Bay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
| | - David W Waite
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker, Israel
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
31
|
Schnorr SL, Berry D. Lipid synthesis at the trophic base as the source for energy management to build complex structures. Curr Opin Biotechnol 2021; 73:364-373. [PMID: 34735986 DOI: 10.1016/j.copbio.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
The review explores the ecological basis for bacterial lipid metabolism in marine and terrestrial ecosystems. We discuss ecosystem stressors that provoked early organisms to modify their lipid membrane structures, and where these stressors are found across a variety of environments. A major role of lipid membranes is to manage cellular energy utility, including how energy is used for signal propagation. As different environments are imbued with properties that necessitate variation in energy regulation, bacterial lipid synthesis has undergone incalculable permutations of functional trial and error. This may hold clues for how biotechnology can improvise a short-hand version of the evolutionary gauntlet to stimulate latent functional competences for the synthesis of rare lipids. Reducing human reliance on marine resources and deriving solutions for production of essential nutrients is a pressing problem in sustainable agriculture and aquaculture, as well as timely considering the increasing fragility of human health in an aging population.
Collapse
Affiliation(s)
- Stephanie L Schnorr
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria; Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Shoemaker WR, Jones SE, Muscarella ME, Behringer MG, Lehmkuhl BK, Lennon JT. Microbial population dynamics and evolutionary outcomes under extreme energy limitation. Proc Natl Acad Sci U S A 2021; 118:e2101691118. [PMID: 34385301 PMCID: PMC8379937 DOI: 10.1073/pnas.2101691118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microorganisms commonly inhabit energy-limited ecosystems where cellular maintenance and reproduction is highly constrained. To gain insight into how individuals persist under such conditions, we derived demographic parameters from a collection of 21 heterotrophic bacterial taxa by censusing 100 populations in an effectively closed system for 1,000 d. All but one taxon survived prolonged resource scarcity, yielding estimated times to extinction ranging over four orders of magnitude from 100 to 105 y. Our findings corroborate reports of long-lived bacteria recovered from ancient environmental samples, while providing insight into mechanisms of persistence. As death rates declined over time, lifespan was extended through the scavenging of dead cells. Although reproduction was suppressed in the absence of exogenous resources, populations continued to evolve. Hundreds of mutations were acquired, contributing to genome-wide signatures of purifying selection as well as molecular signals of adaptation. Consistent ecological and evolutionary dynamics indicate that distantly related bacteria respond to energy limitation in a similar and predictable manner, which likely contributes to the stability and robustness of microbial life.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN, 47405;
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | | | | | - Brent K Lehmkuhl
- Department of Biology, Indiana University, Bloomington, IN, 47405
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405;
| |
Collapse
|
33
|
Turkarslan S, Stopnisek N, Thompson AW, Arens CE, Valenzuela JJ, Wilson J, Hunt KA, Hardwicke J, de Lomana ALG, Lim S, Seah YM, Fu Y, Wu L, Zhou J, Hillesland KL, Stahl DA, Baliga NS. Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions. THE ISME JOURNAL 2021; 15:2233-2247. [PMID: 33612833 PMCID: PMC8319347 DOI: 10.1038/s41396-021-00919-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/18/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Early evolution of mutualism is characterized by big and predictable adaptive changes, including the specialization of interacting partners, such as through deleterious mutations in genes not required for metabolic cross-feeding. We sought to investigate whether these early mutations improve cooperativity by manifesting in synergistic epistasis between genomes of the mutually interacting species. Specifically, we have characterized evolutionary trajectories of syntrophic interactions of Desulfovibrio vulgaris (Dv) with Methanococcus maripaludis (Mm) by longitudinally monitoring mutations accumulated over 1000 generations of nine independently evolved communities with analysis of the genotypic structure of one community down to the single-cell level. We discovered extensive parallelism across communities despite considerable variance in their evolutionary trajectories and the perseverance within many evolution lines of a rare lineage of Dv that retained sulfate-respiration (SR+) capability, which is not required for metabolic cross-feeding. An in-depth investigation revealed that synergistic epistasis across pairings of Dv and Mm genotypes had enhanced cooperativity within SR- and SR+ assemblages, enabling their coexistence within the same community. Thus, our findings demonstrate that cooperativity of a mutualism can improve through synergistic epistasis between genomes of the interacting species, enabling the coexistence of mutualistic assemblages of generalists and their specialized variants.
Collapse
Affiliation(s)
- Serdar Turkarslan
- grid.64212.330000 0004 0463 2320Institute for Systems Biology, Seattle, WA 98109 USA
| | - Nejc Stopnisek
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, Seattle, WA 98195 USA
| | - Anne W. Thompson
- grid.262075.40000 0001 1087 1481Department of Biology, Portland State University, Portland, OR 97201 USA
| | - Christina E. Arens
- grid.64212.330000 0004 0463 2320Institute for Systems Biology, Seattle, WA 98109 USA
| | - Jacob J. Valenzuela
- grid.64212.330000 0004 0463 2320Institute for Systems Biology, Seattle, WA 98109 USA
| | - James Wilson
- grid.64212.330000 0004 0463 2320Institute for Systems Biology, Seattle, WA 98109 USA
| | - Kristopher A. Hunt
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, Seattle, WA 98195 USA
| | - Jessica Hardwicke
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, Seattle, WA 98195 USA
| | | | - Sujung Lim
- grid.20861.3d0000000107068890Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 USA
| | - Yee Mey Seah
- grid.462982.30000 0000 8883 2602Biological Sciences, University of Washington Bothell, Bothell, WA 98011 USA
| | - Ying Fu
- grid.266900.b0000 0004 0447 0018Institute for Environmental Genomics and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK 73072 USA
| | - Liyou Wu
- grid.266900.b0000 0004 0447 0018Institute for Environmental Genomics and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK 73072 USA
| | - Jizhong Zhou
- grid.266900.b0000 0004 0447 0018Institute for Environmental Genomics and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK 73072 USA
| | - Kristina L. Hillesland
- grid.462982.30000 0000 8883 2602Biological Sciences, University of Washington Bothell, Bothell, WA 98011 USA
| | - David A. Stahl
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, Seattle, WA 98195 USA
| | - Nitin S. Baliga
- grid.64212.330000 0004 0463 2320Institute for Systems Biology, Seattle, WA 98109 USA
| |
Collapse
|
34
|
Lingam M. Theoretical Constraints Imposed by Gradient Detection and Dispersal on Microbial Size in Astrobiological Environments. ASTROBIOLOGY 2021; 21:813-830. [PMID: 33902321 DOI: 10.1089/ast.2020.2392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The capacity to sense gradients efficiently and acquire information about the ambient environment confers many advantages such as facilitating movement toward nutrient sources or away from toxic chemicals. The amplified dispersal evinced by organisms endowed with motility is possibly beneficial in related contexts. Hence, the connections between information acquisition, motility, and microbial size are explored from an explicitly astrobiological standpoint. By using prior theoretical models, the constraints on organism size imposed by gradient detection and motility are elucidated in the form of simple heuristic scaling relations. It is argued that environments such as alkaline hydrothermal vents, which are distinguished by the presence of steep gradients, might be conducive to the existence of "small" microbes (with radii of ≳0.1 μm) in principle, when only the above two factors are considered; other biological functions (e.g., metabolism and genetic exchange) could, however, regulate the lower bound on microbial size and elevate it. The derived expressions are potentially applicable to a diverse array of settings, including those entailing solvents other than water; for example, the lakes and seas of Titan. The article concludes with a brief exposition of how this formalism may be of practical and theoretical value to astrobiology.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Science, Florida Institute of Technology, Melbourne, Florida, USA
- Institute for Theory and Computation, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Schwendner P, Nguyen AN, Schuerger AC. Use of NanoSIMS to Identify the Lower Limits of Metabolic Activity and Growth by Serratia liquefaciens Exposed to Sub-Zero Temperatures. Life (Basel) 2021; 11:life11050459. [PMID: 34065549 PMCID: PMC8161314 DOI: 10.3390/life11050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Serratia liquefaciens is a cold-adapted facultative anaerobic astrobiology model organism with the ability to grow at a Martian atmospheric pressure of 7 hPa. Currently there is a lack of data on its limits of growth and metabolic activity at sub-zero temperatures found in potential habitable regions on Mars. Growth curves and nano-scale secondary ion mass spectrometry (NanoSIMS) were used to characterize the growth and metabolic threshold for S. liquefaciens ATCC 27,592 grown at and below 0 °C. Cells were incubated in Spizizen medium containing three stable isotopes substituting their unlabeled counterparts; i.e., 13C-glucose, (15NH4)2SO4, and H218O; at 0, −1.5, −3, −5, −10, or −15 °C. The isotopic ratios of 13C/12C, 15N/14N, and 18O/16O and their corresponding fractions were determined for 240 cells. NanoSIMS results revealed that with decreasing temperature the cellular amounts of labeled ions decreased indicating slower metabolic rates for isotope uptake and incorporation. Metabolism was significantly reduced at −1.5 and −3 °C, almost halted at −5 °C, and shut-down completely at or below −10 °C. While growth was observed at 0 °C after 5 days, samples incubated at −1.5 and −3 °C exhibited significantly slower growth rates until growth was detected at 70 days. In contrast, cell densities decreased by at least half an order of magnitude over 70 days in cultures incubated at ≤ −5 °C. Results suggest that S. liquefaciens, if transported to Mars, might be able to metabolize and grow in shallow sub-surface niches at temperatures above −5 °C and might survive—but not grow—at temperatures below −5 °C.
Collapse
Affiliation(s)
- Petra Schwendner
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
- Correspondence:
| | - Ann N. Nguyen
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Andrew C. Schuerger
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
| |
Collapse
|
36
|
Kempes CP, Follows MJ, Smith H, Graham H, House CH, Levin SA. Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications. Bull Math Biol 2021; 83:73. [PMID: 34008062 PMCID: PMC8131296 DOI: 10.1007/s11538-021-00877-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/25/2021] [Indexed: 11/03/2022]
Abstract
A central need in the field of astrobiology is generalized perspectives on life that make it possible to differentiate abiotic and biotic chemical systems McKay (2008). A key component of many past and future astrobiological measurements is the elemental ratio of various samples. Classic work on Earth's oceans has shown that life displays a striking regularity in the ratio of elements as originally characterized by Redfield (Redfield 1958; Geider and La Roche 2002; Eighty years of Redfield 2014). The body of work since the original observations has connected this ratio with basic ecological dynamics and cell physiology, while also documenting the range of elemental ratios found in a variety of environments. Several key questions remain in considering how to best apply this knowledge to astrobiological contexts: How can the observed variation of the elemental ratios be more formally systematized using basic biological physiology and ecological or environmental dynamics? How can these elemental ratios be generalized beyond the life that we have observed on our own planet? Here, we expand recently developed generalized physiological models (Kempes et al. 2012, 2016, 2017, 2019) to create a simple framework for predicting the variation of elemental ratios found in various environments. We then discuss further generalizing the physiology for astrobiological applications. Much of our theoretical treatment is designed for in situ measurements applicable to future planetary missions. We imagine scenarios where three measurements can be made-particle/cell sizes, particle/cell stoichiometry, and fluid or environmental stoichiometry-and develop our theory in connection with these often deployed measurements.
Collapse
Affiliation(s)
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hillary Smith
- Department of Geosciences, Pennsylvania State University, University Park, PA, USA
| | - Heather Graham
- NASA Goddard Spaceflight Center, Greenbelt, MD, USA
- Catholic University of America, Washington, DC, USA
| | - Christopher H House
- Department of Geosciences, Pennsylvania State University, University Park, PA, USA
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
37
|
Kleerebezem M, Bachmann H, van Pelt-KleinJan E, Douwenga S, Smid EJ, Teusink B, van Mastrigt O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol Rev 2021; 44:804-820. [PMID: 32990728 DOI: 10.1093/femsre/fuaa033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactococcus lactis serves as a paradigm organism for the lactic acid bacteria (LAB). Extensive research into the molecular biology, metabolism and physiology of several model strains of this species has been fundamental for our understanding of the LAB. Genomic studies have provided new insights into the species L. lactis, including the resolution of the genetic basis of its subspecies division, as well as the control mechanisms involved in the fine-tuning of growth rate and energy metabolism. In addition, it has enabled novel approaches to study lactococcal lifestyle adaptations to the dairy application environment, including its adjustment to near-zero growth rates that are particularly relevant in the context of cheese ripening. This review highlights various insights in these areas and exemplifies the strength of combining experimental evolution with functional genomics and bacterial physiology research to expand our fundamental understanding of the L. lactis lifestyle under different environmental conditions.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Herwig Bachmann
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands
| | - Eunice van Pelt-KleinJan
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Sieze Douwenga
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Eddy J Smid
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Oscar van Mastrigt
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
38
|
Prensky H, Gomez‐Simmonds A, Uhlemann A, Lopatkin AJ. Conjugation dynamics depend on both the plasmid acquisition cost and the fitness cost. Mol Syst Biol 2021; 17:e9913. [PMID: 33646643 PMCID: PMC7919528 DOI: 10.15252/msb.20209913] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmid conjugation is a major mechanism responsible for the spread of antibiotic resistance. Plasmid fitness costs are known to impact long-term growth dynamics of microbial populations by providing plasmid-carrying cells a relative (dis)advantage compared to plasmid-free counterparts. Separately, plasmid acquisition introduces an immediate, but transient, metabolic perturbation. However, the impact of these short-term effects on subsequent growth dynamics has not previously been established. Here, we observed that de novo transconjugants grew significantly slower and/or with overall prolonged lag times, compared to lineages that had been replicating for several generations, indicating the presence of a plasmid acquisition cost. These effects were general to diverse incompatibility groups, well-characterized and clinically captured plasmids, Gram-negative recipient strains and species, and experimental conditions. Modeling revealed that both fitness and acquisition costs modulate overall conjugation dynamics, validated with previously published data. These results suggest that the hours immediately following conjugation may play a critical role in both short- and long-term plasmid prevalence. This time frame is particularly relevant to microbiomes with high plasmid/strain diversity considered to be hot spots for conjugation.
Collapse
Affiliation(s)
| | - Angela Gomez‐Simmonds
- Division of Infectious DiseasesDepartment of MedicineColumbia University Irving Medical CenterNew YorkNYUSA
| | - Anne‐Catrin Uhlemann
- Division of Infectious DiseasesDepartment of MedicineColumbia University Irving Medical CenterNew YorkNYUSA
| | - Allison J Lopatkin
- Department of BiologyBarnard CollegeNew YorkNYUSA
- Department of Ecology, Evolution, and Environmental BiologyColumbia UniversityNew YorkNYUSA
- Data Science InstituteColumbia UniversityNew YorkNYUSA
| |
Collapse
|
39
|
Bernstein DB, Sulheim S, Almaas E, Segrè D. Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol 2021; 22:64. [PMID: 33602294 PMCID: PMC7890832 DOI: 10.1186/s13059-021-02289-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The reconstruction and analysis of genome-scale metabolic models constitutes a powerful systems biology approach, with applications ranging from basic understanding of genotype-phenotype mapping to solving biomedical and environmental problems. However, the biological insight obtained from these models is limited by multiple heterogeneous sources of uncertainty, which are often difficult to quantify. Here we review the major sources of uncertainty and survey existing approaches developed for representing and addressing them. A unified formal characterization of these uncertainties through probabilistic approaches and ensemble modeling will facilitate convergence towards consistent reconstruction pipelines, improved data integration algorithms, and more accurate assessment of predictive capacity.
Collapse
Affiliation(s)
- David B Bernstein
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Snorre Sulheim
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Daniel Segrè
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA.
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology and Department of Physics, Boston University, Boston, MA, USA.
| |
Collapse
|
40
|
Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol 2021; 6:246-256. [PMID: 33398096 DOI: 10.1038/s41564-020-00811-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/08/2020] [Indexed: 01/24/2023]
Abstract
Soil microorganisms globally are thought to be sustained primarily by organic carbon sources. Certain bacteria also consume inorganic energy sources such as trace gases, but they are presumed to be rare community members, except within some oligotrophic soils. Here we combined metagenomic, biogeochemical and modelling approaches to determine how soil microbial communities meet energy and carbon needs. Analysis of 40 metagenomes and 757 derived genomes indicated that over 70% of soil bacterial taxa encode enzymes to consume inorganic energy sources. Bacteria from 19 phyla encoded enzymes to use the trace gases hydrogen and carbon monoxide as supplemental electron donors for aerobic respiration. In addition, we identified a fourth phylum (Gemmatimonadota) potentially capable of aerobic methanotrophy. Consistent with the metagenomic profiling, communities within soil profiles from diverse habitats rapidly oxidized hydrogen, carbon monoxide and to a lesser extent methane below atmospheric concentrations. Thermodynamic modelling indicated that the power generated by oxidation of these three gases is sufficient to meet the maintenance needs of the bacterial cells capable of consuming them. Diverse bacteria also encode enzymes to use trace gases as electron donors to support carbon fixation. Altogether, these findings indicate that trace gas oxidation confers a major selective advantage in soil ecosystems, where availability of preferred organic substrates limits microbial growth. The observation that inorganic energy sources may sustain most soil bacteria also has broad implications for understanding atmospheric chemistry and microbial biodiversity in a changing world.
Collapse
|
41
|
Higgins PM, Cockell CS. A bioenergetic model to predict habitability, biomass and biosignatures in astrobiology and extreme conditions. J R Soc Interface 2020; 17:20200588. [PMID: 33081642 PMCID: PMC7653372 DOI: 10.1098/rsif.2020.0588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022] Open
Abstract
In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ([Formula: see text]) and total methane production ([Formula: see text]) despite an increase in peak growth rates ([Formula: see text]) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Collapse
Affiliation(s)
- P. M. Higgins
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - C. S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
42
|
In vitro ileal and caecal fermentation of fibre substrates in the growing pig given a human-type diet. Br J Nutr 2020; 125:998-1006. [DOI: 10.1017/s0007114520003542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractThis study characterised the in vitro ileal fermentability of different substrates in the growing pig, adopted as an animal model for the adult human, and compared in vitro ileal and caecal fermentation in the pig. Substrates (arabinogalactan (AG), cellulose, fructo-oligosaccharide (FOS), inulin, mucin, citrus pectin and resistant starch) were fermented in vitro (ileal 2 h and caecal 24 h) with an ileal or caecal inoculum prepared from ileal or caecal digesta collected from growing pigs (n 5) fed a human-type diet for 15 d. The organic matter (OM) fermentability and production of organic acids were determined. In general, there was considerable in vitro ileal fermentation of fibre, and the substrates differed (P < 0·001) for both in vitro ileal and caecal OM fermentability and for organic acid production. Pectin had the greatest in vitro ileal OM fermentability (26 %) followed by AG, FOS and resistant starch (15 % on average), and cellulose, inulin and mucin (3 % on average). The fermentation of FOS, inulin and mucin was greater for in vitro caecal fermentation compared with the ileal counterpart (P ≤ 0·05). In general, the organic acid production was higher for in vitro caecal fermentation (P ≤ 0·05). For instance, the in vitro ileal acetic acid production represented 4–46 % of in vitro caecal production. Energy from fibre fermentation of 0·6–11 kJ/g substrate fermented could be expected in the ileum of the pig. In conclusion, substrates are fermented in both the ileum and caecum. The degree of fermentation varies among substrates, especially for in vitro ileal fermentation.
Collapse
|
43
|
Kundu K, Weber N, Griebler C, Elsner M. Phenotypic heterogeneity as key factor for growth and survival under oligotrophic conditions. Environ Microbiol 2020; 22:3339-3356. [PMID: 32500958 DOI: 10.1111/1462-2920.15106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/09/2020] [Accepted: 05/28/2020] [Indexed: 11/26/2022]
Abstract
Productivity-poor oligotrophic environments are plentiful on earth. Yet it is not well understood how organisms maintain population sizes under these extreme conditions. Most scenarios consider the adaptation of a single microorganism (isogenic) at the cellular level, which increases their fitness in such an environment. However, in oligotrophic environments, the adaptation of microorganisms at population level - that is, the ability of living cells to differentiate into subtypes with specialized attributes leading to the coexistence of different phenotypes in isogenic populations - remains a little-explored area of microbiology research. In this study, we performed experiments to demonstrate that an isogenic population differentiated to two subpopulations under low energy-flux in chemostats. Fluorescence cytometry and turnover rates revealed that these subpopulations differ in their nucleic acid content and metabolic activity. A mechanistic modelling framework for the dynamic adaptation of microorganisms with the consideration of their ability to switch between different phenotypes was experimentally calibrated and validated. Simulation of hypothetical scenarios suggests that responsive diversification upon a change in energy availability offers a competitive advantage over homogenous adaptation for maintaining viability and metabolic activity with time.
Collapse
Affiliation(s)
- Kankana Kundu
- Institute of Groundwater Ecology, Helmholtz Zentrum Munchen, Ingolstadter Landstraße 1, 85764 Neuherberg, Bavaria, Germany.,Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Nina Weber
- Institute of Groundwater Ecology, Helmholtz Zentrum Munchen, Ingolstadter Landstraße 1, 85764 Neuherberg, Bavaria, Germany
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum Munchen, Ingolstadter Landstraße 1, 85764 Neuherberg, Bavaria, Germany.,Division of Limnology, University of Vienna, Department of Functional and Evolutionary Ecology, Althanstrasse 14, Vienna, 1090, Austria
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum Munchen, Ingolstadter Landstraße 1, 85764 Neuherberg, Bavaria, Germany.,Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, D-81377 Munich, Germany
| |
Collapse
|
44
|
Lopatkin AJ, Collins JJ. Predictive biology: modelling, understanding and harnessing microbial complexity. Nat Rev Microbiol 2020; 18:507-520. [DOI: 10.1038/s41579-020-0372-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
|
45
|
Vasilakou E, van Loosdrecht MCM, Wahl SA. Escherichia coli metabolism under short-term repetitive substrate dynamics: adaptation and trade-offs. Microb Cell Fact 2020; 19:116. [PMID: 32471427 PMCID: PMC7260802 DOI: 10.1186/s12934-020-01379-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/25/2020] [Indexed: 12/04/2022] Open
Abstract
Background Microbial metabolism is highly dependent on the environmental conditions. Especially, the substrate concentration, as well as oxygen availability, determine the metabolic rates. In large-scale bioreactors, microorganisms encounter dynamic conditions in substrate and oxygen availability (mixing limitations), which influence their metabolism and subsequently their physiology. Earlier, single substrate pulse experiments were not able to explain the observed physiological changes generated under large-scale industrial fermentation conditions. Results In this study we applied a repetitive feast–famine regime in an aerobic Escherichia coli culture in a time-scale of seconds. The regime was applied for several generations, allowing cells to adapt to the (repetitive) dynamic environment. The observed response was highly reproducible over the cycles, indicating that cells were indeed fully adapted to the regime. We observed an increase of the specific substrate and oxygen consumption (average) rates during the feast–famine regime, compared to a steady-state (chemostat) reference environment. The increased rates at same (average) growth rate led to a reduced biomass yield (30% lower). Interestingly, this drop was not followed by increased by-product formation, pointing to the existence of energy-spilling reactions. During the feast–famine cycle, the cells rapidly increased their uptake rate. Within 10 s after the beginning of the feeding, the substrate uptake rate was higher (4.68 μmol/gCDW/s) than reported during batch growth (3.3 μmol/gCDW/s). The high uptake led to an accumulation of several intracellular metabolites, during the feast phase, accounting for up to 34% of the carbon supplied. Although the metabolite concentrations changed rapidly, the cellular energy charge remained unaffected, suggesting well-controlled balance between ATP producing and ATP consuming reactions. Conclusions The adaptation of the physiology and metabolism of E. coli under substrate dynamics, representative for large-scale fermenters, revealed the existence of several cellular mechanisms coping with stress. Changes in the substrate uptake system, storage potential and energy-spilling processes resulted to be of great importance. These metabolic strategies consist a meaningful step to further tackle reduced microbial performance, observed under large-scale cultivations.
Collapse
Affiliation(s)
- Eleni Vasilakou
- Department of Biotechnology, Delft University of Technology, Van der Maasweg, 2629 HZ, Delft, The Netherlands.
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg, 2629 HZ, Delft, The Netherlands
| | - S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Van der Maasweg, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
46
|
Ciemniecki JA, Newman DK. The Potential for Redox-Active Metabolites To Enhance or Unlock Anaerobic Survival Metabolisms in Aerobes. J Bacteriol 2020; 202:e00797-19. [PMID: 32071098 PMCID: PMC7221258 DOI: 10.1128/jb.00797-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Classifying microorganisms as "obligate" aerobes has colloquially implied death without air, leading to the erroneous assumption that, without oxygen, they are unable to survive. However, over the past few decades, more than a few obligate aerobes have been found to possess anaerobic energy conservation strategies that sustain metabolic activity in the absence of growth or at very low growth rates. Similarly, studies emphasizing the aerobic prowess of certain facultative aerobes have sometimes led to underrecognition of their anaerobic capabilities. Yet an inescapable consequence of the affinity both obligate and facultative aerobes have for oxygen is that the metabolism of these organisms may drive this substrate to scarcity, making anoxic survival an essential skill. To illustrate this, we highlight the importance of anaerobic survival strategies for Pseudomonas aeruginosa and Streptomyces coelicolor, representative facultative and obligate aerobes, respectively. Included among these strategies, we describe a role for redox-active secondary metabolites (RAMs), such as phenazines made by P. aeruginosa, in enhancing substrate-level phosphorylation. Importantly, RAMs are made by diverse bacteria, often during stationary phase in the absence of oxygen, and can sustain anoxic survival. We present a hypothesis for how RAMs may enhance or even unlock energy conservation pathways that facilitate the anaerobic survival of both RAM producers and nonproducers.
Collapse
Affiliation(s)
- John A Ciemniecki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
47
|
Delattre H, Chen J, Wade MJ, Soyer OS. Thermodynamic modelling of synthetic communities predicts minimum free energy requirements for sulfate reduction and methanogenesis. J R Soc Interface 2020; 17:20200053. [PMID: 32370691 PMCID: PMC7276542 DOI: 10.1098/rsif.2020.0053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microbial communities are complex dynamical systems harbouring many species interacting together to implement higher-level functions. Among these higher-level functions, conversion of organic matter into simpler building blocks by microbial communities underpins biogeochemical cycles and animal and plant nutrition, and is exploited in biotechnology. A prerequisite to predicting the dynamics and stability of community-mediated metabolic conversions is the development and calibration of appropriate mathematical models. Here, we present a generic, extendable thermodynamic model for community dynamics and calibrate a key parameter of this thermodynamic model, the minimum energy requirement associated with growth-supporting metabolic pathways, using experimental population dynamics data from synthetic communities composed of a sulfate reducer and two methanogens. Our findings show that accounting for thermodynamics is necessary in capturing the experimental population dynamics of these synthetic communities that feature relevant species using low energy growth pathways. Furthermore, they provide the first estimates for minimum energy requirements of methanogenesis (in the range of −30 kJ mol−1) and elaborate on previous estimates of lactate fermentation by sulfate reducers (in the range of −30 to −17 kJ mol−1 depending on the culture conditions). The open-source nature of the developed model and demonstration of its use for estimating a key thermodynamic parameter should facilitate further thermodynamic modelling of microbial communities.
Collapse
Affiliation(s)
| | - Jing Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Matthew J Wade
- School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
48
|
Bertran E, Waldeck A, Wing BA, Halevy I, Leavitt WD, Bradley AS, Johnston DT. Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances. ISME JOURNAL 2020; 14:1508-1519. [PMID: 32152390 PMCID: PMC7242377 DOI: 10.1038/s41396-020-0618-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of anaerobic biogeochemical cycling occurs within marine sediments. To understand these processes, quantifying the distribution of active cells and gross metabolic activity is essential. We present an isotope model rooted in thermodynamics to draw quantitative links between cell-specific sulfate reduction rates and active sedimentary cell abundances. This model is calibrated using data from a series of continuous culture experiments with two strains of sulfate reducing bacteria (freshwater bacterium Desulfovibrio vulgaris strain Hildenborough, and marine bacterium Desulfovibrio alaskensis strain G-20) grown on lactate across a range of metabolic rates and ambient sulfate concentrations. We use a combination of experimental sulfate oxygen isotope data and nonlinear regression fitting tools to solve for unknown kinetic, step-specific oxygen isotope effects. This approach enables identification of key isotopic reactions within the metabolic pathway, and defines a new, calibrated framework for understanding oxygen isotope variability in sulfate. This approach is then combined with porewater sulfate/sulfide concentration data and diagenetic modeling to reproduce measured 18O/16O in porewater sulfate. From here, we infer cell-specific sulfate reduction rates and predict abundance of active cells of sulfate reducing bacteria, the result of which is consistent with direct biological measurements.
Collapse
Affiliation(s)
- E Bertran
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
| | - A Waldeck
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - B A Wing
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - I Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - W D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA.,Department of Chemistry, Dartmouth College, Hanover, NH, USA.,Department of Biological Science, Dartmouth College, Hanover, NH, USA
| | - A S Bradley
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - D T Johnston
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
49
|
On the Habitable Lifetime of Terrestrial Worlds with High Radionuclide Abundances. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/2041-8213/ab68e5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Pold G, Domeignoz-Horta LA, Morrison EW, Frey SD, Sistla SA, DeAngelis KM. Carbon Use Efficiency and Its Temperature Sensitivity Covary in Soil Bacteria. mBio 2020; 11:e02293-19. [PMID: 31964725 PMCID: PMC6974560 DOI: 10.1128/mbio.02293-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
The strategy that microbial decomposers take with respect to using substrate for growth versus maintenance is one essential biological determinant of the propensity of carbon to remain in soil. To quantify the environmental sensitivity of this key physiological trade-off, we characterized the carbon use efficiency (CUE) of 23 soil bacterial isolates across seven phyla at three temperatures and with up to four substrates. Temperature altered CUE in both an isolate-specific manner and a substrate-specific manner. We searched for genes correlated with the temperature sensitivity of CUE on glucose and deemed those functional genes which were similarly correlated with CUE on other substrates to be validated as markers of CUE. Ultimately, we did not identify any such robust functional gene markers of CUE or its temperature sensitivity. However, we found a positive correlation between rRNA operon copy number and CUE, opposite what was expected. We also found that inefficient taxa increased their CUE with temperature, while those with high CUE showed a decrease in CUE with temperature. Together, our results indicate that CUE is a flexible parameter within bacterial taxa and that the temperature sensitivity of CUE is better explained by observed physiology than by genomic composition across diverse taxa. We conclude that the bacterial CUE response to temperature and substrate is more variable than previously thought.IMPORTANCE Soil microbes respond to environmental change by altering how they allocate carbon to growth versus respiration-or carbon use efficiency (CUE). Ecosystem and Earth System models, used to project how global soil C stocks will continue to respond to the climate crisis, often assume that microbes respond homogeneously to changes in the environment. In this study, we quantified how CUE varies with changes in temperature and substrate quality in soil bacteria and evaluated why CUE characteristics may differ between bacterial isolates and in response to altered growth conditions. We found that bacterial taxa capable of rapid growth were more efficient than those limited to slow growth and that taxa with high CUE were more likely to become less efficient at higher temperatures than those that were less efficient to begin with. Together, our results support the idea that the CUE temperature response is constrained by both growth rate and CUE and that this partly explains how bacteria acclimate to a warming world.
Collapse
Affiliation(s)
- Grace Pold
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Luiz A Domeignoz-Horta
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Eric W Morrison
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Serita D Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Seeta A Sistla
- Natural Resources Management and Environmental Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Kristen M DeAngelis
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|