1
|
Valentin-Alvarado LE, Fakra SC, Probst AJ, Giska JR, Jaffe AL, Oltrogge LM, West-Roberts J, Rowland J, Manga M, Savage DF, Greening C, Baker BJ, Banfield JF. Autotrophic biofilms sustained by deeply sourced groundwater host diverse bacteria implicated in sulfur and hydrogen metabolism. MICROBIOME 2024; 12:15. [PMID: 38273328 PMCID: PMC10811913 DOI: 10.1186/s40168-023-01704-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/18/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Graduate Group in Microbiology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexander J Probst
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry,, University of Duisburg-Essen, Essen, Essen, Germany
| | - Jonathan R Giska
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Cleaner Air Oregon Program, Oregon Department of Environmental Quality, Portland, USA
| | - Alexander L Jaffe
- Graduate Group in Microbiology, University of California, Berkeley, CA, USA
| | - Luke M Oltrogge
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Joel Rowland
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Earth and Env. Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michael Manga
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Brett J Baker
- Department of Integrative Biology, University of Texas, Austin, USA
- Department of Marine Science, University of Texas, Austin, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Marine Science, University of Texas, Austin, USA.
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Geelhoed JS, Thorup CA, Bjerg JJ, Schreiber L, Nielsen LP, Schramm A, Meysman FJR, Marshall IPG. Indications for a genetic basis for big bacteria and description of the giant cable bacterium Candidatus Electrothrix gigas sp. nov. Microbiol Spectr 2023; 11:e0053823. [PMID: 37732806 PMCID: PMC10580974 DOI: 10.1128/spectrum.00538-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Bacterial cells can vary greatly in size, from a few hundred nanometers to hundreds of micrometers in diameter. Filamentous cable bacteria also display substantial size differences, with filament diameters ranging from 0.4 to 8 µm. We analyzed the genomes of cable bacterium filaments from 11 coastal environments of which the resulting 23 new genomes represent 10 novel species-level clades of Candidatus Electrothrix and two clades that putatively represent novel genus-level diversity. Fluorescence in situ hybridization with a species-level probe showed that large-sized cable bacteria belong to a novel species with the proposed name Ca. Electrothrix gigas. Comparative genome analysis suggests genes that play a role in the construction or functioning of large cable bacteria cells: the genomes of Ca. Electrothrix gigas encode a novel actin-like protein as well as a species-specific gene cluster encoding four putative pilin proteins and a putative type II secretion platform protein, which are not present in other cable bacteria. The novel actin-like protein was also found in a number of other giant bacteria, suggesting there could be a genetic basis for large cell size. This actin-like protein (denoted big bacteria protein, Bbp) may have a function analogous to other actin proteins in cell structure or intracellular transport. We contend that Bbp may help overcome the challenges of diffusion limitation and/or morphological complexity presented by the large cells of Ca. Electrothrix gigas and other giant bacteria. IMPORTANCE In this study, we substantially expand the known diversity of marine cable bacteria and describe cable bacteria with a large diameter as a novel species with the proposed name Candidatus Electrothrix gigas. In the genomes of this species, we identified a gene that encodes a novel actin-like protein [denoted big bacteria protein (Bbp)]. The bbp gene was also found in a number of other giant bacteria, predominantly affiliated to Desulfobacterota and Gammaproteobacteria, indicating that there may be a genetic basis for large cell size. Thus far, mostly structural adaptations of giant bacteria, vacuoles, and other inclusions or organelles have been observed, which are employed to overcome nutrient diffusion limitation in their environment. In analogy to other actin proteins, Bbp could fulfill a structural role in the cell or potentially facilitate intracellular transport.
Collapse
Affiliation(s)
- Jeanine S. Geelhoed
- Department of Biology, Research Group Geobiology, University of Antwerp, Wilrijk, Belgium
| | - Casper A. Thorup
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Jesper J. Bjerg
- Department of Biology, Research Group Geobiology, University of Antwerp, Wilrijk, Belgium
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Lars Schreiber
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Lars Peter Nielsen
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Filip J. R. Meysman
- Department of Biology, Research Group Geobiology, University of Antwerp, Wilrijk, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ian P. G. Marshall
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Esser SP, Rahlff J, Zhao W, Predl M, Plewka J, Sures K, Wimmer F, Lee J, Adam PS, McGonigle J, Turzynski V, Banas I, Schwank K, Krupovic M, Bornemann TLV, Figueroa-Gonzalez PA, Jarett J, Rattei T, Amano Y, Blaby IK, Cheng JF, Brazelton WJ, Beisel CL, Woyke T, Zhang Y, Probst AJ. A predicted CRISPR-mediated symbiosis between uncultivated archaea. Nat Microbiol 2023; 8:1619-1633. [PMID: 37500801 DOI: 10.1038/s41564-023-01439-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts' genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host-episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR-Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.
Collapse
Affiliation(s)
- Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Janina Rahlff
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Weishu Zhao
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
- Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Michael Predl
- Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Julia Plewka
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Katharina Sures
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Janey Lee
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Panagiotis S Adam
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Julia McGonigle
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Victoria Turzynski
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Indra Banas
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Schwank
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
- University of Regensburg, Biochemistry III, Regensburg, Germany
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Till L V Bornemann
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Jessica Jarett
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Rattei
- Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai, Japan
| | - Ian K Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
- Medical faculty, University of Würzburg, Würzburg, Germany
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
- Centre of Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Gonzalez-Nayeck AC, Grim SL, Waldbauer J, Dick GJ, Pearson A. Isotopic Signatures of Carbon Transfer in a Proterozoic Analogue Microbial Mat. Appl Environ Microbiol 2023; 89:e0187022. [PMID: 37093010 PMCID: PMC10231192 DOI: 10.1128/aem.01870-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Modern microbial mats are potential analogues for Proterozoic ecosystems, yet only a few studies have characterized mats under low-oxygen conditions that are relevant to Proterozoic environments. Here, we use protein-stable isotope fingerprinting (P-SIF) to determine the protein carbon isotope (δ13C) values of autotrophic, heterotrophic, and mixotrophic organisms in a benthic microbial mat from the low-oxygen Middle Island Sinkhole, Lake Huron, USA (MIS). We also measure the δ13C values of the sugar moieties of exopolysaccharides (EPS) within the mat to explore the relationships between cyanobacterial exudates and heterotrophic anabolic carbon uptake. Our results show that Cyanobacteria (autotrophs) are 13C-depleted, relative to sulfate-reducing bacteria (heterotrophs), and 13C-enriched, relative to sulfur oxidizing bacteria (autotrophs or mixotrophs). We also find that the pentose moieties of EPS are systematically enriched in 13C, relative to the hexose moieties of EPS. We hypothesize that these isotopic patterns reflect cyanobacterial metabolic pathways, particularly phosphoketolase, that are relatively more active in low-oxygen mat environments, rather than oxygenated mat environments. This results in isotopically more heterogeneous C sources in low-oxygen mats. While this might partially explain the isotopic variability observed in Proterozoic mat facies, further work is necessary to systematically characterize the isotopic fractionations that are associated with the synthesis of cyanobacterial exudates. IMPORTANCE The δ13C compositions of heterotrophic microorganisms are dictated by the δ13C compositions of their organic carbon sources. In both modern and ancient photosynthetic microbial mats, photosynthetic exudates are the most likely source of organic carbon for heterotrophs. We measured the δ13C values of autotrophic, heterotrophic, and mixotrophic bacteria as well as the δ13C value of the most abundant photosynthetic exudate (exopolysaccharide) in a modern analogue for a Proterozoic environment. Given these data, future studies will be better equipped to estimate the most likely carbon source for heterotrophs in both modern environments as well as in Proterozoic environments preserved in the rock record.
Collapse
Affiliation(s)
- Ana C. Gonzalez-Nayeck
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Moreira VA, Cravo-Laureau C, de Carvalho ACB, Baldy A, Bidone ED, Sabadini-Santos E, Duran R. Microbial indicators along a metallic contamination gradient in tropical coastal sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130244. [PMID: 36327839 DOI: 10.1016/j.jhazmat.2022.130244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The structure and diversity of microbial community inhabiting coastal sediments reflect the exposition to contaminants. Aiming to assess the changes in the microbiota from Sepetiba Bay (SB, Brazil) sediments, correlations between the 16S rRNA gene data (V4-V5 region), metal contamination factors (CF), and the ecological risk classification provided by the Quality Ratio (QR) index were considered. The results show that microbial diversity differs significantly between the less (SB external sector) and the most (SB internal sector) polluted sectors. Also, differences in the microbial community structure regarding the ecological risk classifications validated the QR index as a reliable tool to report the SB chronic contamination. Microbial indicator genera resistant to metals (Desulfatiglans, SEEP-SRB1, Spirochaeta 2, among others) presented mainly anaerobic metabolisms. These genera are related to the sulfate reducing and methanogenic metabolisms probably participating in the natural attenuation processes but also associated with greenhouse gas emissions. In contrast, microbial indicator genera sensitive to metals (Rubripirellula, Blastopirellula, Aquibacter, among others) presented mainly aerobic metabolisms. It is suggested that future works should investigate the metabolic functions to evaluate the influence of metallic contaminants on microbial community inhabiting SB sediment.
Collapse
Affiliation(s)
- Vanessa Almeida Moreira
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Angelo Cezar Borges de Carvalho
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Alice Baldy
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Edison Dausacker Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
6
|
Aronson HS, Monteverde DR, Barnes BD, Johnson BR, Zawaski MJ, Speth DR, Wang XT, Wu F, Webb SM, Trower EJ, Magyar JS, Sessions AL, Orphan VJ, Fischer WW. Sulfur cycling at natural hydrocarbon and sulfur seeps in Santa Paula Creek, CA. GEOBIOLOGY 2022; 20:707-725. [PMID: 35894090 DOI: 10.1111/gbi.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/31/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Biogeochemical cycling of sulfur is relatively understudied in terrestrial environments compared to marine environments. However, the comparative ease of access, observation, and sampling of terrestrial settings can expand our understanding of organisms and processes important in the modern sulfur cycle. Furthermore, these sites may allow for the discovery of useful process analogs for ancient sulfur-metabolizing microbial communities at times in Earth's past when atmospheric O2 concentrations were lower and sulfide was more prevalent in Earth surface environments. We identified a new site at Santa Paula Creek (SPC) in Ventura County, CA-a remarkable freshwater, gravel-bedded mountain stream charged with a range of oxidized and reduced sulfur species and heavy hydrocarbons from the emergence of subsurface fluids within the underlying sulfur- and organic-rich Miocene-age Monterey Formation. SPC hosts a suite of morphologically distinct microbial biofacies that form in association with the naturally occurring hydrocarbon seeps and sulfur springs. We characterized the geology, stream geochemistry, and microbial facies and diversity of the Santa Paula Creek ecosystem. Using geochemical analyses and 16S rRNA gene sequencing, we found that SPC supports a dynamic sulfur cycle that is largely driven by sulfide-oxidizing microbial taxa, with contributions from smaller populations of sulfate-reducing and sulfur-disproportionating taxa. This preliminary characterization of SPC revealed an intriguing site in which to study geological and geochemical controls on microbial community composition and to expand our understanding of sulfur cycling in terrestrial environments.
Collapse
Affiliation(s)
- Heidi S Aronson
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Danielle R Monteverde
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Ben Davis Barnes
- Department of Geosciences, Pennsylvania State University, Pennsylvania, USA
| | - Brooke R Johnson
- Early Life Traces & Evolution-Astrobiology, University of Liège, Liège, Belgium
- Department of Earth Sciences, Oxford University, Oxford, UK
| | - Mike J Zawaski
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Daan R Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Xingchen Tony Wang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, Massachusetts, USA
| | - Fenfang Wu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Samuel M Webb
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California, USA
| | | | - John S Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Alex L Sessions
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
7
|
Gomes ML, Klatt JM, Dick GJ, Grim SL, Rico KI, Medina M, Ziebis W, Kinsman-Costello L, Sheldon ND, Fike DA. Sedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low-oxygen cyanobacterial mats. GEOBIOLOGY 2022; 20:60-78. [PMID: 34331395 DOI: 10.1111/gbi.12466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The sedimentary pyrite sulfur isotope (δ34 S) record is an archive of ancient microbial sulfur cycling and environmental conditions. Interpretations of pyrite δ34 S signatures in sediments deposited in microbial mat ecosystems are based on studies of modern microbial mat porewater sulfide δ34 S geochemistry. Pyrite δ34 S values often capture δ34 S signatures of porewater sulfide at the location of pyrite formation. However, microbial mats are dynamic environments in which biogeochemical cycling shifts vertically on diurnal cycles. Therefore, there is a need to study how the location of pyrite formation impacts pyrite δ34 S patterns in these dynamic systems. Here, we present diurnal porewater sulfide δ34 S trends and δ34 S values of pyrite and iron monosulfides from Middle Island Sinkhole, Lake Huron. The sediment-water interface of this sinkhole hosts a low-oxygen cyanobacterial mat ecosystem, which serves as a useful location to explore preservation of sedimentary pyrite δ34 S signatures in early Earth environments. Porewater sulfide δ34 S values vary by up to ~25‰ throughout the day due to light-driven changes in surface microbial community activity that propagate downwards, affecting porewater geochemistry as deep as 7.5 cm in the sediment. Progressive consumption of the sulfate reservoir drives δ34 S variability, instead of variations in average cell-specific sulfate reduction rates and/or sulfide oxidation at different depths in the sediment. The δ34 S values of pyrite are similar to porewater sulfide δ34 S values near the mat surface. We suggest that oxidative sulfur cycling and other microbial activity promote pyrite formation in and immediately adjacent to the microbial mat and that iron geochemistry limits further pyrite formation with depth in the sediment. These results imply that primary δ34 S signatures of pyrite deposited in organic-rich, iron-poor microbial mat environments capture information about microbial sulfur cycling and environmental conditions at the mat surface and are only minimally affected by deeper sedimentary processes during early diagenesis.
Collapse
Affiliation(s)
- Maya L Gomes
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Judith M Klatt
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
| | - Gregory J Dick
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L Grim
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
- Exobiology Branch, National Aeronautics and Space Administration Ames Research Center, Mountain View, CA, USA
| | - Kathryn I Rico
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada
| | - Matthew Medina
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
| | - Wiebke Ziebis
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Nathan D Sheldon
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
| | - David A Fike
- Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA
| |
Collapse
|
8
|
Grim SL, Voorhies AA, Biddanda BA, Jain S, Nold SC, Green R, Dick GJ. Omics-Inferred Partitioning and Expression of Diverse Biogeochemical Functions in a Low-O 2 Cyanobacterial Mat Community. mSystems 2021; 6:e0104221. [PMID: 34874776 PMCID: PMC8651085 DOI: 10.1128/msystems.01042-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial mats profoundly influenced Earth's biological and geochemical evolution and still play important ecological roles in the modern world. However, the biogeochemical functioning of cyanobacterial mats under persistent low-O2 conditions, which dominated their evolutionary history, is not well understood. To investigate how different metabolic and biogeochemical functions are partitioned among community members, we conducted metagenomics and metatranscriptomics on cyanobacterial mats in the low-O2, sulfidic Middle Island sinkhole (MIS) in Lake Huron. Metagenomic assembly and binning yielded 144 draft metagenome assembled genomes, including 61 of medium quality or better, and the dominant cyanobacteria and numerous Proteobacteria involved in sulfur cycling. Strains of a Phormidium autumnale-like cyanobacterium dominated the metagenome and metatranscriptome. Transcripts for the photosynthetic reaction core genes psaA and psbA were abundant in both day and night. Multiple types of psbA genes were expressed from each cyanobacterium, and the dominant psbA transcripts were from an atypical microaerobic type of D1 protein from Phormidium. Further, cyanobacterial transcripts for photosystem I genes were more abundant than those for photosystem II, and two types of Phormidium sulfide quinone reductase were recovered, consistent with anoxygenic photosynthesis via photosystem I in the presence of sulfide. Transcripts indicate active sulfur oxidation and reduction within the cyanobacterial mat, predominately by Gammaproteobacteria and Deltaproteobacteria, respectively. Overall, these genomic and transcriptomic results link specific microbial groups to metabolic processes that underpin primary production and biogeochemical cycling in a low-O2 cyanobacterial mat and suggest mechanisms for tightly coupled cycling of oxygen and sulfur compounds in the mat ecosystem. IMPORTANCE Cyanobacterial mats are dense communities of microorganisms that contain photosynthetic cyanobacteria along with a host of other bacterial species that play important yet still poorly understood roles in this ecosystem. Although such cyanobacterial mats were critical agents of Earth's biological and chemical evolution through geological time, little is known about how they function under the low-oxygen conditions that characterized most of their natural history. Here, we performed sequencing of the DNA and RNA of modern cyanobacterial mat communities under low-oxygen and sulfur-rich conditions from the Middle Island sinkhole in Lake Huron. The results reveal the organisms and metabolic pathways that are responsible for both oxygen-producing and non-oxygen-producing photosynthesis as well as interconversions of sulfur that likely shape how much O2 is produced in such ecosystems. These findings indicate tight metabolic reactions between community members that help to explain the limited the amount of O2 produced in cyanobacterial mat ecosystems.
Collapse
Affiliation(s)
- Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander A. Voorhies
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Bopaiah A. Biddanda
- Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen C. Nold
- Biology Department, University of Wisconsin—Stout, Menomonie, Wisconsin, USA
| | - Russ Green
- Thunder Bay National Marine Sanctuary, National Oceanic and Atmospheric Administration, Alpena, Michigan, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Flood BE, Louw DC, Van der Plas AK, Bailey JV. Giant sulfur bacteria (Beggiatoaceae) from sediments underlying the Benguela upwelling system host diverse microbiomes. PLoS One 2021; 16:e0258124. [PMID: 34818329 PMCID: PMC8612568 DOI: 10.1371/journal.pone.0258124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Due to their lithotrophic metabolisms, morphological complexity and conspicuous appearance, members of the Beggiatoaceae have been extensively studied for more than 100 years. These bacteria are known to be primarily sulfur-oxidizing autotrophs that commonly occur in dense mats at redox interfaces. Their large size and the presence of a mucous sheath allows these cells to serve as sites of attachment for communities of other microorganisms. But little is known about their individual niche preferences and attached microbiomes, particularly in marine environments, due to a paucity of cultivars and their prevalence in habitats that are difficult to access and study. Therefore, in this study, we compare Beggiatoaceae strain composition, community composition, and geochemical profiles collected from sulfidic sediments at four marine stations off the coast of Namibia. To elucidate community members that were directly attached and enriched in both filamentous Beggiatoaceae, namely Ca. Marithioploca spp. and Ca. Maribeggiatoa spp., as well as non-filamentous Beggiatoaceae, Ca. Thiomargarita spp., the Beggiatoaceae were pooled by morphotype for community analysis. The Beggiatoaceae samples collected from a highly sulfidic site were enriched in strains of sulfur-oxidizing Campylobacterota, that may promote a more hospitable setting for the Beggiatoaceae, which are known to have a lower tolerance for high sulfide to oxygen ratios. We found just a few host-specific associations with the motile filamentous morphotypes. Conversely, we detected 123 host specific enrichments with non-motile chain forming Beggiatoaceae. Potential metabolisms of the enriched strains include fermentation of host sheath material, syntrophic exchange of H2 and acetate, inorganic sulfur metabolism, and nitrite oxidation. Surprisingly, we did not detect any enrichments of anaerobic ammonium oxidizing bacteria as previously suggested and postulate that less well-studied anaerobic ammonium oxidation pathways may be occurring instead.
Collapse
Affiliation(s)
- Beverly E. Flood
- Department of Earth and Environmental Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
- * E-mail:
| | - Deon C. Louw
- National Marine Information and Research Centre, Swakopmund, Namibia
| | | | - Jake V. Bailey
- Department of Earth and Environmental Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| |
Collapse
|
10
|
Wang Y, Wei D, Li P, Jiang Z, Liu H, Qing C, Wang H. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1680-1688. [PMID: 33196984 DOI: 10.1007/s10646-020-02305-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Dissimilatory arsenate reduction from arsenic (As)-bearing minerals into highly mobile arsenite is one of the key mechanisms of As release into groundwater. To detect the microbial diversity and As-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high As groundwater in the Hetao Plain of Inner Mongolia, China, three anaerobic arsenate-reducing bacteria were isolated and arrA and arsC gene-based clone libraries of four in situ groundwater samples were constructed. The strains IMARCUG-11(G-11), IMARCUG-C1(G-C1) and IMARCUG-12(G-12) were phylogenetically belonged to genera Paraclostridium, Citrobacter and Klebsiella, respectively. They could reduce >99% of 1 mM arsenate under anoxic conditions with lactate as a carbon source in 60 h, 72 h and 84 h, respectively. As far as we know, this was the first report of arsenate reduction by genus Paraclostridium. Compared with strain G-11 (arsC) and G-C1 (arsRBC), strain G-12 contained two incomplete ars operons (operon1: arsABC, operon2: arsBC), indicating that these strains might present different strategies to resist As toxicity. Phylogenetic analysis illuminating by the arrA genes showed that in situ arsenate-reducing bacterial communities were diverse and mainly composed of Desulfobacterales (53%, dominated by Geobacter), Betaproteobacteria (12%), and unidentified groups (35%). Based on the arsC gene analysis, the indigenous arsenate-reducing bacterial communities were mainly affiliated with Omnitrophica (88%) and Deltaproteobacteria (11%, dominated by Geobacter and Syntrophobacterales). Results of this study expanded our understanding of indigenous arsenic-reducing bacteria in high As groundwater aquifers.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Dazhun Wei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
11
|
Extant Earthly Microbial Mats and Microbialites as Models for Exploration of Life in Extraterrestrial Mat Worlds. Life (Basel) 2021; 11:life11090883. [PMID: 34575032 PMCID: PMC8468739 DOI: 10.3390/life11090883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
As we expand the search for life beyond Earth, a water-dominated planet, we turn our eyes to other aquatic worlds. Microbial life found in Earth's many extreme habitats are considered useful analogs to life forms we are likely to find in extraterrestrial bodies of water. Modern-day benthic microbial mats inhabiting the low-oxygen, high-sulfur submerged sinkholes of temperate Lake Huron (Michigan, USA) and microbialites inhabiting the shallow, high-carbonate waters of subtropical Laguna Bacalar (Yucatan Peninsula, Mexico) serve as potential working models for exploration of extraterrestrial life. In Lake Huron, delicate mats comprising motile filaments of purple-pigmented cyanobacteria capable of oxygenic and anoxygenic photosynthesis and pigment-free chemosynthetic sulfur-oxidizing bacteria lie atop soft, organic-rich sediments. In Laguna Bacalar, lithification by cyanobacteria forms massive carbonate reef structures along the shoreline. Herein, we document studies of these two distinct earthly microbial mat ecosystems and ponder how similar or modified methods of study (e.g., robotics) would be applicable to prospective mat worlds in other planets and their moons (e.g., subsurface Mars and under-ice oceans of Europa). Further studies of modern-day microbial mat and microbialite ecosystems can add to the knowledge of Earth's biodiversity and guide the search for life in extraterrestrial hydrospheres.
Collapse
|
12
|
Rahlff J, Turzynski V, Esser SP, Monsees I, Bornemann TLV, Figueroa-Gonzalez PA, Schulz F, Woyke T, Klingl A, Moraru C, Probst AJ. Lytic archaeal viruses infect abundant primary producers in Earth's crust. Nat Commun 2021; 12:4642. [PMID: 34330907 PMCID: PMC8324899 DOI: 10.1038/s41467-021-24803-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The continental subsurface houses a major portion of life's abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems.
Collapse
Affiliation(s)
- Janina Rahlff
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Victoria Turzynski
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Sarah P Esser
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Indra Monsees
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Andreas Klingl
- Plant Development & Electron Microscopy, Biocenter LMU Munich, Planegg-Martinsried, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Oldenburg, Germany
| | - Alexander J Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
13
|
Patwardhan S, Smedile F, Giovannelli D, Vetriani C. Metaproteogenomic Profiling of Chemosynthetic Microbial Biofilms Reveals Metabolic Flexibility During Colonization of a Shallow-Water Gas Vent. Front Microbiol 2021; 12:638300. [PMID: 33889140 PMCID: PMC8056087 DOI: 10.3389/fmicb.2021.638300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tor Caldara is a shallow-water gas vent located in the Mediterranean Sea, with active venting of CO2 and H2S. At Tor Caldara, filamentous microbial biofilms, mainly composed of Epsilon- and Gammaproteobacteria, grow on substrates exposed to the gas venting. In this study, we took a metaproteogenomic approach to identify the metabolic potential and in situ expression of central metabolic pathways at two stages of biofilm maturation. Our findings indicate that inorganic reduced sulfur species are the main electron donors and CO2 the main carbon source for the filamentous biofilms, which conserve energy by oxygen and nitrate respiration, fix dinitrogen gas and detoxify heavy metals. Three metagenome-assembled genomes (MAGs), representative of key members in the biofilm community, were also recovered. Metaproteomic data show that metabolically active chemoautotrophic sulfide-oxidizing members of the Epsilonproteobacteria dominated the young microbial biofilms, while Gammaproteobacteria become prevalent in the established community. The co-expression of different pathways for sulfide oxidation by these two classes of bacteria suggests exposure to different sulfide concentrations within the biofilms, as well as fine-tuned adaptations of the enzymatic complexes. Taken together, our findings demonstrate a shift in the taxonomic composition and associated metabolic activity of these biofilms in the course of the colonization process.
Collapse
Affiliation(s)
- Sushmita Patwardhan
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Francesco Smedile
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States.,National Research Council, Institute for Coastal Marine Environment, Messina, Italy
| | - Donato Giovannelli
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States.,Department of Biology, University of Naples "Federico II," Naples, Italy.,National Research Council, Institute for Marine Biological and Biotechnological Resources, Ancona, Italy.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States.,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
14
|
Chen Y, Nishihara A, Haruta S. Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor. Microbes Environ 2021; 36. [PMID: 34108360 PMCID: PMC8209448 DOI: 10.1264/jsme2.me21018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fermentative nitrogen-fixing bacteria have not yet been examined in detail in thermal environments. In the present study, we isolated the thermophilic fermentative bacterium, strain YA01 from a hot spring. This strain grew at temperatures up to 78°C. A phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain YA01 belonged to the genus Caldicellulosiruptor, which are fermentative bacteria in the phylum Firmicutes, with 97.7–98.0% sequence identity to its closest relatives. Strain YA01 clearly exhibited N2-dependent growth at 70°C. We also confirmed N2-dependent growth in the relatives of strain YA01, Caldicellulosiruptor hydrothermalis 108 and Caldicellulosiruptor kronotskyensis 2002. The nitrogenase activities of these three strains were examined using the acetylene reduction assay. Similar activities were detected for all tested strains, and were slightly suppressed by the addition of ammonium. A genome analysis revealed that strain YA01, as well as other Caldicellulosiruptor, possessed a gene set for nitrogen fixation, but lacked the nifN gene, which encodes a nitrogenase iron-molybdenum cofactor biosynthesis protein that is commonly detected in nitrogen-fixing bacteria. The amino acid sequences of nitrogenase encoded by nifH, nifD, and nifK shared 92–98% similarity in Caldicellulosiruptor. A phylogenetic tree of concatenated NifHDK sequences showed that NifHDK of Caldicellulosiruptor was in the deepest clade. To the best of our knowledge, this is the first study to demonstrate the nitrogen-fixing ability of fermentative bacteria at 70°C. Caldicellulosiruptor may have retained an ancient nitrogen-fixing enzyme system.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
15
|
Merz E, Dick GJ, de Beer D, Grim S, Hübener T, Littmann S, Olsen K, Stuart D, Lavik G, Marchant HK, Klatt JM. Nitrate respiration and diel migration patterns of diatoms are linked in sediments underneath a microbial mat. Environ Microbiol 2020; 23:1422-1435. [PMID: 33264477 DOI: 10.1111/1462-2920.15345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Diatoms are among the few eukaryotes known to store nitrate (NO3 - ) and to use it as an electron acceptor for respiration in the absence of light and O2 . Using microscopy and 15 N stable isotope incubations, we studied the relationship between dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and diel vertical migration of diatoms in phototrophic microbial mats and the underlying sediment of a sinkhole in Lake Huron (USA). We found that the diatoms rapidly accumulated NO3 - at the mat-water interface in the afternoon and 40% of the population migrated deep into the sediment, where they were exposed to dark and anoxic conditions for ~75% of the day. The vertical distribution of DNRA rates and diatom abundance maxima coincided, suggesting that DNRA was the main energy generating metabolism of the diatom population. We conclude that the illuminated redox-dynamic ecosystem selects for migratory diatoms that can store nitrate for respiration in the absence of light. A major implication of this study is that the dominance of DNRA over denitrification is not explained by kinetics or thermodynamics. Rather, the dynamic conditions select for migratory diatoms that perform DNRA and can outcompete sessile denitrifiers.
Collapse
Affiliation(s)
- Elisa Merz
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Gregory J Dick
- Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Sharon Grim
- Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas Hübener
- Department of Botany and Botanical Garden, University of Rostock, Institute of Biosciences, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Kirk Olsen
- Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Dack Stuart
- University of Michigan, Cooperative Institute for Great Lakes Research, Ann Arbor, Michigan, USA
| | - Gaute Lavik
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Hannah K Marchant
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Judith M Klatt
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany.,Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Genomic and Metabolic Insights into Two Novel Thiothrix Species from Enhanced Biological Phosphorus Removal Systems. Microorganisms 2020; 8:microorganisms8122030. [PMID: 33353182 PMCID: PMC7767063 DOI: 10.3390/microorganisms8122030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Two metagenome-assembled genomes (MAGs), obtained from laboratory-scale enhanced biological phosphorus removal bioreactors, were analyzed. The values of 16S rRNA gene sequence identity, average nucleotide identity, and average amino acid identity indicated that these genomes, designated as RT and SSD2, represented two novel species within the genus Thiothrix, 'Candidatus Thiothrix moscowensis' and 'Candidatus Thiothrix singaporensis'. A complete set of genes for the tricarboxylic acid cycle and electron transport chain indicates a respiratory type of metabolism. A notable feature of RT and SSD2, as well as other Thiothrix species, is the presence of a flavin adenine dinucleotide (FAD)-dependent malate:quinone oxidoreductase instead of nicotinamide adenine dinucleotide (NAD)-dependent malate dehydrogenase. Both MAGs contained genes for CO2 assimilation through the Calvin-Benson-Bassam cycle; sulfide oxidation (sqr, fccAB), sulfur oxidation (rDsr complex), direct (soeABC) and indirect (aprBA, sat) sulfite oxidation, and the branched Sox pathway (SoxAXBYZ) of thiosulfate oxidation to sulfur and sulfate. All these features indicate a chemoorganoheterotrophic, chemolithoautotrophic, and chemolithoheterotrophic lifestyle. Both MAGs comprise genes for nitrate reductase and NO-reductase, while SSD2 also contains genes for nitrite reductase. The presence of polyphosphate kinase and exopolyphosphatase suggests that RT and SSD2 could accumulate and degrade polyhosphates during the oxic-anoxic growth cycle in the bioreactors, such as typical phosphate-accumulating microorganisms.
Collapse
|
17
|
Díaz-Sánchez ÁG, Terrazas-López M, Aguirre-Reyes LG, Lobo-Galo N, Álvarez-Parrilla E, Martínez-Martínez A. Aspectos estructurales y funcionales de la N-Succinil-L, L-diaminopimelato desuccinilasa, una enzima clave para el crecimiento bacteriano y un blanco para el control antimicrobiano. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
La N-Succinil-L, L-diaminopimelato desuccinilasa (DapE) es una amidohidrolasa dependiente de iones de zinc, homodimérica estricta, que cataliza la descomposición del N-succinil-L, L-2,6-diaminopimelato (NSDAP), en succinato y diaminopimelato (DAP). Reacción que constituye la única fuente de meso-diaminopimelato (mDAP) y L-Lys en la mayoría de las bacterias. DapE es esencial para el crecimiento bacteriano y un blanco farmacológico antimicrobiano. El desarrollo de los inhibidores anti-DapE debe tener en cuenta las propiedades dinámicas de la enzima. Se buscan compuestos que interfieran con la formación del agujero del oxianión, en donde participan grupos de ambas subunidades del dímero, que se acomoda en posición catalítica mediante el cambio conformacional de la enzima de un estado abierto a uno cerrado, después de la unión del sustrato; estabilizando a los intermediarios de reacción y produciendo un descenso en la energía de activación. Con base en el análisis cristalográfico y el acoplamiento del sustrato en DapE que se presenta en este trabajo, se discute el papel de la flexibilidad conformacional de la enzima en la hidrólisis del sustrato. Se observa que tanto el grupo carbonilo del sustrato es susceptible al ataque como una molécula de agua ubicada en el sitio activo y se encuentran cercanos a la trayectoria de ataque, en el ángulo de Bürgi-Dunitz.
Collapse
|
18
|
Endosymbiont genomes yield clues of tubeworm success. ISME JOURNAL 2018; 12:2785-2795. [PMID: 30022157 PMCID: PMC6194059 DOI: 10.1038/s41396-018-0220-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/23/2018] [Accepted: 06/11/2018] [Indexed: 11/17/2022]
Abstract
Forty years after discovery of chemosynthetic symbiosis in the tubeworm Riftia pachyptila, how organisms maintain their unique host–symbiont associations at the cellular level is still largely unknown. Previous studies primarily focus on symbionts associated with host lineages living in hydrothermal vents. To understand physiological adaptations and evolution in these holobiont systems in markedly different habitats, we characterized four novel siboglinid-symbiont genomes spanning deep-sea seep and sedimented environments. Our comparative analyses suggest that all sampled siboglinid chemoautotrophic symbionts, except for frenulate symbionts, can use both rTCA and Calvin cycle for carbon fixation. We hypothesize that over evolutionary time siboglinids have been able to utilize different bacterial lineages allowing greater metabolic flexibility of carbon fixation (e.g., rTCA) enabling tubeworms to thrive in more reducing habitats, such as vents and seeps. Moreover, we show that sulfur metabolism and molecular mechanisms related to initial infection are remarkably conserved across chemoautotrophic symbionts in different habitats. Unexpectedly, we find that the ability to use hydrogen, as an additional energy source, is potentially more widespread than previously recognized. Our comparative genomic results help elucidate potential mechanisms used to allow chemosynthetically dependent holobionts adapt to, and evolve in, different environments.
Collapse
|
19
|
Abstract
The largest known bacteria, Thiomargarita spp., have yet to be isolated in pure culture, but their large size allows for individual cells to be monitored in time course experiments or to be individually sorted for omics-based investigations. Here we investigated the metabolism of individual cells of Thiomargarita spp. by using a novel application of a tetrazolium-based dye that measures oxidoreductase activity. When coupled with microscopy, staining of the cells with a tetrazolium-formazan dye allows metabolic responses in Thiomargarita spp. to be to be tracked in the absence of observable cell division. Additionally, the metabolic activity of Thiomargarita sp. cells can be differentiated from the metabolism of other microbes in specimens that contain adherent bacteria. The results of our redox dye-based assay suggest that Thiomargarita is the most metabolically versatile under anoxic conditions, where it appears to express cellular oxidoreductase activity in response to the electron donors succinate, acetate, citrate, formate, thiosulfate, H2, and H2S. Under hypoxic conditions, formazan staining results suggest the metabolism of succinate and likely acetate, citrate, and H2S. Cells incubated under oxic conditions showed the weakest formazan staining response, and then only to H2S, citrate, and perhaps succinate. These results provide experimental validation of recent genomic studies of Candidatus Thiomargarita nelsonii that suggest metabolic plasticity and mixotrophic metabolism. The cellular oxidoreductase response of bacteria attached to the exterior of Thiomargarita also supports the possibility of trophic interactions between these largest of known bacteria and attached epibionts. The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon degradation. Our use of a redox-sensitive tetrazolium dye to query the metabolism of these bacteria provides an independent line of evidence that corroborates the apparent metabolic plasticity of Thiomargarita observed in recently produced genomes. Finding new cultivation-independent means of testing genomic results is critical to testing genome-derived hypotheses on the metabolic potentials of uncultivated microorganisms.
Collapse
|