1
|
Adebayo O, Bhatnagar S, Webb J, Campbell C, Fowler M, MacAdam NM, Macdonald A, Li C, Hubert CRJ. Hydrocarbon-degrading microbial populations in permanently cold deep-sea sediments in the NW Atlantic. MARINE POLLUTION BULLETIN 2024; 208:117052. [PMID: 39357372 DOI: 10.1016/j.marpolbul.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Permanently cold deep-sea sediments (2500-3500 m water depth) with and without indications of thermogenic hydrocarbon seepage were exposed to naphtha to examine the presence and potential of cold-adapted aerobic hydrocarbon-degrading microbial populations. Monitoring these microcosms for volatile hydrocarbons by GC-MS revealed sediments without in situ hydrocarbons responded more rapidly to naphtha amendment than hydrocarbon seep sediments overall, but seep sediments removed aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene (BTEX) more readily. Naphtha-driven aerobic respiration was more evident in surface sediment (0-20 cmbsf) than deeper anoxic layers (>130 cmbsf) that responded less rapidly. In all cases, enrichment of Gammaproteobacteria included lineages of Oleispira, Pseudomonas, and Alteromonas known to be associated with marine oil spills. On the other hand, taxa known to be prevalent in situ and diagnostic for thermogenic hydrocarbon seepage in deep sea sediment, did not respond to naphtha amendment. This suggests a limited role for these prevalent seep-associated populations in the context of aerobic hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Oyeboade Adebayo
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada.
| | - Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada; Faculty of Science and Technology, Athabasca University, Athabasca, AB T9S 3A3, Canada
| | - Jamie Webb
- Applied Petroleum Technology (Canada), Calgary, AB T2N 1Z6, Canada
| | - Calvin Campbell
- Geological Survey of Canada-Atlantic, Dartmouth, NS B3B 1A6, Canada
| | - Martin Fowler
- Applied Petroleum Technology (Canada), Calgary, AB T2N 1Z6, Canada
| | - Natasha M MacAdam
- Nova Scotia Department of Natural Resources and Renewables, Halifax, NS B2H 4G8, Canada
| | - Adam Macdonald
- Nova Scotia Department of Natural Resources and Renewables, Halifax, NS B2H 4G8, Canada
| | - Carmen Li
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
2
|
Neog PR, Saini S, Konwar BK. Purification, and characterization of detergent-compatible serine protease from Bacillussafensis strain PRN1: A sustainable alternative to hazardous chemicals in detergent industry. Protein Expr Purif 2024; 219:106479. [PMID: 38574878 DOI: 10.1016/j.pep.2024.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates. The protease-positive isolates were characterized morphologically, biochemically, and molecularly. Out of the 20 isolated strains,6 belonging to five different genera viz.Bacillus,Priestia,Aeromonas,Staphylococcus, and Serratia demonstrated proteolytic activity. Bacillussafensis strain PRN1 demonstrated the highest protease production and, thus, the largest hydrolytic clear zones in both skim milk agar (15 ± 1 mm) and gelatin (16 ± 1 mm) plates. The optimized parameters (time, pH, temperature, carbon, nitrogen) for highest protease activity and microbial growth of B.safensis strain PRN1 includes 72 h (OD600 = 0.56,1303 U/mL), pH 8 (OD600 = 0.83, 403.29 U/mL), 40 °C (OD600 = 1.75, 1849.11 U/mL), fructose (OD600 = 1.22, 1502 U/mL), and gelatin (OD600 = 1.88, 1015.33 U/mL). The enzyme was purified to homogeneity using salt-precipitation and gel filtration chromatography. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the purified enzyme was a monomer of a molecular weight of ∼33 kDa. The protease demonstrated optimal activity at pH 8 and 60 °C. It was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), demonstrating that it belongs to the serine-proteases family. The compatibility of the enzyme with surfactants and commercial detergents demonstrates its potential use in the detergent industry. Furthermore, the purified enzyme showed antibacterial and blood-stain removal properties.
Collapse
Affiliation(s)
- Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Shubhangi Saini
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Bolin Kumar Konwar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
3
|
Feng J, Cao L, Du X, Zhang Y, Cong Y, He J, Zhang W. Biological Detoxification of Aflatoxin B 1 by Enterococcus faecium HB2-2. Foods 2024; 13:1887. [PMID: 38928828 PMCID: PMC11202875 DOI: 10.3390/foods13121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Aflatoxin B1 (AFB1) contamination in food and feed is a global health and economic threat, necessitating the immediate development of effective strategies to mitigate its negative effects. This study focuses on the isolation and characterization of Enterococcus faecium HB2-2 (E. faecium HB2-2) as a potent AFB1-degrading microorganism, using morphological observation, biochemical profiling, and 16S rRNA sequence analysis. An incubation of E. faecium HB2-2 at 32 °C for 96 h in a pH 10 nutrient broth (NB) medium resulted in a remarkable degradation rate of 90.0% for AFB1. Furthermore, E. faecium HB2-2 demonstrated 82.9% AFB1 degradation rate in the peanut meal, reducing AFB1 levels from 105.1 to 17.9 μg/kg. The AFB1 degradation ability of E. faecium HB2-2 was found to be dependent on the fermentation supernatant. The products of AFB1 degradation by E. faecium HB2-2 were analyzed by liquid chromatography-mass spectrometry (LC-MS), and a possible degradation mechanism was proposed based on the identified degradation products. Additionally, cytotoxicity assays revealed a significant reduction in the toxicity of the degradation products compared to the parent AFB1. These findings highlight the potential of E. faecium HB2-2 as a safe and effective method for mitigating AFB1 contamination in food and feed.
Collapse
Affiliation(s)
- Jiangtao Feng
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan 430023, China
| | - Ling Cao
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyan Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
| | - Yvying Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
| | - Yanxia Cong
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junbo He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan 430023, China
| | - Weinong Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan 430023, China
| |
Collapse
|
4
|
Gomez NCF, Onda DFL. Potential of sediment bacterial communities from Manila Bay (Philippines) to degrade low-density polyethylene (LDPE). Arch Microbiol 2022; 205:38. [PMID: 36565350 DOI: 10.1007/s00203-022-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/02/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022]
Abstract
The persistence of plastics and its effects in different environments where they accumulate, particularly in coastal areas, is of serious concern. These plastics exhibit signs of degradation, possibly mediated by microorganisms. In this study, we investigated the potential of sediment microbial communities from Manila Bay, Philippines, which has a severe plastics problem, to degrade low-density polyethylene (LDPE). Plastics in selected sites were quantified and sediment samples from sites with the lowest and highest plastic accumulation were collected. These sediments were then introduced and incubated with LDPE in vitro for a period of 91 days. Fourier transform infrared spectroscopy detected the appearance of carbonyl and vinyl products on the plastic surface, indicating structural surface modifications attributed to polymer degradation. Communities attached to the plastics were profiled using high-throughput sequencing of the V4-V5 region of the 16S rRNA gene. Members of the phylum Proteobacteria dominated the plastic surface throughout the experiment. Several bacterial taxa associated with hydrocarbon degradation were also enriched, with some taxa positively correlating with the biodegradation indices, suggesting potential active roles in the partial biodegradation of plastics. Other taxa were also present, which might be consuming by-products or providing nourishment for other groups, indicating synergy in utilizing the plastic as the main carbon source and creation of a microenvironment within the plastics biofilm. This study showed that sediment microbes from Manila Bay may have naturally occurring microbial groups potentially capable of partially degrading plastics, supporting previous studies that the biodegradation potential for plastics is ubiquitously present in marine microbial assemblages.
Collapse
Affiliation(s)
- Norchel Corcia F Gomez
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines Diliman, Velasquez St., 1101, Quezon City, Philippines
| | - Deo Florence L Onda
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines Diliman, Velasquez St., 1101, Quezon City, Philippines.
| |
Collapse
|
5
|
Kelly MR, Whitworth P, Jamieson A, Burgess JG. Bacterial colonisation of plastic in the Rockall Trough, North-East Atlantic: An improved understanding of the deep-sea plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119314. [PMID: 35447252 DOI: 10.1016/j.envpol.2022.119314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 05/12/2023]
Abstract
Plastic pollution has now been found within multiple ecosystems across the globe. Characterisation of microbial assemblages associated with marine plastic, or the so-called 'plastisphere', has focused predominantly on plastic in the epipelagic zone. Whether this community includes taxa that are consistently enriched on plastic compared to surrounding non plastic surfaces is unresolved, as are the ecological implications. The deep sea is likely a final sink for most of the plastic entering the ocean, yet there is limited information on microbial colonisation of plastic at depth. The aim of this study was to investigate deep-sea microbial communities associated with polystyrene (PS) and polyurethane (PU) with Bath stone used as a control. The substrates (n = 15) were deployed in the Rockall Trough (Atlantic), and recovered 420 days later from a depth of 1796 m. To characterise the bacterial communities, 16S rRNA genes were sequenced using the Illumina MiSeq platform. A dominant core microbiome (taxa shared across all substrates) comprised 8% of total ASVs (amplicon sequence variant) and accounted for 92% of the total community reads. This suggests that many commonly reported members of the plastisphere are simply opportunistic which freely colonise any hard surface. Transiently associated species consisted of approximately 7% of the total community. Thirty genera were enriched on plastic (P < 0.05), representing 1% of the total community. The discovery of novel deep-sea enriched taxa included Aurantivirga, Algivirga, IheB3-7, Spirosoma, HTCC5015, Ekhidna and Calorithrix on PS and Candidatus Obscuribacter, Haloferula, Marine Methylotrophic Group 3, Aliivibrio, Tibeticola and Dethiosulfatarculus on PU. This small fraction of the microbiome include taxa with unique metabolic abilities and show how bacterial communities can be shaped by plastic pollution at depth. This study outlines a novel approach in categorising the plastisphere to elucidate the ecological implications of enriched taxa that show an affinity for colonising plastic.
Collapse
Affiliation(s)
- Max R Kelly
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Paul Whitworth
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Alan Jamieson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom; Minderoo-UWA Deep Sea Research Centre, University of Western Australia, Oceans Institute, IOMRC Building, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
6
|
Martinez-Varela A, Casas G, Berrojalbiz N, Piña B, Dachs J, Vila-Costa M. Polycyclic Aromatic Hydrocarbon Degradation in the Sea-Surface Microlayer at Coastal Antarctica. Front Microbiol 2022; 13:907265. [PMID: 35910648 PMCID: PMC9329070 DOI: 10.3389/fmicb.2022.907265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
As much as 400 Tg of carbon from airborne semivolatile aromatic hydrocarbons is deposited to the oceans every year, the largest identified source of anthropogenic organic carbon to the ocean. Microbial degradation is a key sink of these pollutants in surface waters, but has received little attention in polar environments. We have challenged Antarctic microbial communities from the sea-surface microlayer (SML) and the subsurface layer (SSL) with polycyclic aromatic hydrocarbons (PAHs) at environmentally relevant concentrations. PAH degradation rates and the microbial responses at both taxonomical and functional levels were assessed. Evidence for faster removal rates was observed in the SML, with rates 2.6-fold higher than in the SSL. In the SML, the highest removal rates were observed for the more hydrophobic and particle-bound PAHs. After 24 h of PAHs exposure, particle-associated bacteria in the SML showed the highest number of significant changes in their composition. These included significant enrichments of several hydrocarbonoclastic bacteria, especially the fast-growing genera Pseudoalteromonas, which increased their relative abundances by eightfold. Simultaneous metatranscriptomic analysis showed that the free-living fraction of SML was the most active fraction, especially for members of the order Alteromonadales, which includes Pseudoalteromonas. Their key role in PAHs biodegradation in polar environments should be elucidated in further studies. This study highlights the relevant role of bacterial populations inhabiting the sea-surface microlayer, especially the particle-associated habitat, as relevant bioreactors for the removal of aromatic hydrocarbons in the oceans.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
7
|
From Organic Wastes and Hydrocarbons Pollutants to Polyhydroxyalkanoates: Bioconversion by Terrestrial and Marine Bacteria. SUSTAINABILITY 2022. [DOI: 10.3390/su14148241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of fossil-based plastics has become unsustainable because of the polluting production processes, difficulties for waste management sectors, and high environmental impact. Polyhydroxyalkanoates (PHA) are bio-based biodegradable polymers derived from renewable resources and synthesized by bacteria as intracellular energy and carbon storage materials under nutrients or oxygen limitation and through the optimization of cultivation conditions with both pure and mixed culture systems. The PHA properties are affected by the same principles of oil-derived polyolefins, with a broad range of compositions, due to the incorporation of different monomers into the polymer matrix. As a consequence, the properties of such materials are represented by a broad range depending on tunable PHA composition. Producing waste-derived PHA is technically feasible with mixed microbial cultures (MMC), since no sterilization is required; this technology may represent a solution for waste treatment and valorization, and it has recently been developed at the pilot scale level with different process configurations where aerobic microorganisms are usually subjected to a dynamic feeding regime for their selection and to a high organic load for the intracellular accumulation of PHA. In this review, we report on studies on terrestrial and marine bacteria PHA-producers. The available knowledge on PHA production from the use of different kinds of organic wastes, and otherwise, petroleum-polluted natural matrices coupling bioremediation treatment has been explored. The advancements in these areas have been significant; they generally concern the terrestrial environment, where pilot and industrial processes are already established. Recently, marine bacteria have also offered interesting perspectives due to their advantageous effects on production practices, which they can relieve several constraints. Studies on the use of hydrocarbons as carbon sources offer evidence for the feasibility of the bioconversion of fossil-derived plastics into bioplastics.
Collapse
|
8
|
Song J, Beule L, Jongmans-Hochschulz E, Wichels A, Gerdts G. The travelling particles: community dynamics of biofilms on microplastics transferred along a salinity gradient. ISME COMMUNICATIONS 2022; 2:35. [PMID: 37938248 PMCID: PMC9723596 DOI: 10.1038/s43705-022-00117-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/28/2023]
Abstract
Microplastics (MP), as novel substrata for microbial colonization within aquatic ecosystems, are a matter of growing concern due to their potential to propagate foreign or invasive species across different environments. MP are known to harbour a diversity of microorganisms, yet little is understood of the dynamics of their biofilms and their capacity to successfully displace these microorganisms across different aquatic ecosystems typically marked by steep salinity gradients. To address this, we performed an in situ sequential incubation experiment to simulate MP transport from riverine to coastal seawaters using synthetic (high-density polyethylene, HDPE and tyre wear, TW) and natural (Wood) substrata. Bacterial communities on incubated particles were compared to each other as well as to those in surrounding waters, and their dynamics along the gradient investigated. All communities differed significantly from each other in their overall structure along the salinity gradient and were shaped by different ecological processes. While HDPE communities were governed by environmental selection, those on TW and Wood were dominated by stochastic events of dispersal and drift. Upon transfer into coastal seawaters, an almost complete turnover was observed among HDPE and TW communities. While synthetic particles displaced a minor proportion of communities across the salinity gradient, some of these comprised putatively pathogenic and resistant taxa. Our findings present an extensive assessment of MP biofilms and their dynamics upon displacement across different aquatic systems, presenting new insights into the role of MP as transport vectors.
Collapse
Affiliation(s)
- Jessica Song
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany.
| | - Lukas Beule
- Julius Kühn Institute-Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Strasse 19, 14195, Berlin, Germany
| | - Elanor Jongmans-Hochschulz
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| |
Collapse
|
9
|
Young RB, Marcelino VR, Chonwerawong M, Gulliver EL, Forster SC. Key Technologies for Progressing Discovery of Microbiome-Based Medicines. Front Microbiol 2021; 12:685935. [PMID: 34239510 PMCID: PMC8258393 DOI: 10.3389/fmicb.2021.685935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022] Open
Abstract
A growing number of experimental and computational approaches are illuminating the “microbial dark matter” and uncovering the integral role of commensal microbes in human health. Through this work, it is now clear that the human microbiome presents great potential as a therapeutic target for a plethora of diseases, including inflammatory bowel disease, diabetes and obesity. The development of more efficacious and targeted treatments relies on identification of causal links between the microbiome and disease; with future progress dependent on effective links between state-of-the-art sequencing approaches, computational analyses and experimental assays. We argue determining causation is essential, which can be attained by generating hypotheses using multi-omic functional analyses and validating these hypotheses in complex, biologically relevant experimental models. In this review we discuss existing analysis and validation methods, and propose best-practice approaches required to enable the next phase of microbiome research.
Collapse
Affiliation(s)
- Remy B Young
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Emily L Gulliver
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Desmond DS, Saltymakova D, Smith A, Wolfe T, Snyder N, Polcwiartek K, Bautista M, Lemes M, Hubert CRJ, Barber DG, Isleifson D, Stern GA. Photooxidation and biodegradation potential of a light crude oil in first-year sea ice. MARINE POLLUTION BULLETIN 2021; 165:112154. [PMID: 33735684 DOI: 10.1016/j.marpolbul.2021.112154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Disappearing sea ice in the Arctic region results in a pressing need to develop oil spill mitigation techniques suitable for ice-covered waters. The uncertainty around the nature of an oil spill in the Arctic arises from the ice-covered waters and sub-zero temperatures, and how they may influence natural attenuation efficiency. The Sea-ice Environmental Research Facility was used to create a simulated Arctic marine setting. This paper focuses on the potential for biodegradation of the bulk crude oil content (encapsulated in the upper regions of the ice), to provide insight regarding the possible fate of crude oil in an Arctic marine setting. Cheaper and faster methods of chemical composition analysis were applied to the samples to assess for weathering and transformation effects. Results suggest that brine volume in ice may not be sufficient at low temperatures to encompass biodegradation and that seawater is more suitable for biodegradation.
Collapse
|
11
|
Carboxymethyl Cellulase (CMCase) from UV-irradiation Mutated Bacillus cereus FOA-2 cultivated on Plantain (Musa parasidiaca) Stalk-based Medium: Production, Purification and Characterization. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2020.e00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Louime CJ, Vazquez-Sanchez F, Derilus D, Godoy-Vitorino F. Divergent Microbiota Dynamics along the Coastal Marine Ecosystem of Puerto Rico. MICROBIOLOGY RESEARCH 2020; 11:45-55. [PMID: 39175946 PMCID: PMC11340205 DOI: 10.3390/microbiolres11020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Understanding the different factors shaping the spatial and temporal distribution of marine microorganisms is fundamental in predicting their responses to future environmental disturbances. There has been, however, little effort to characterize the microbial diversity including the microbiome dynamics among regions in the Caribbean Sea. Toward this end, this study was designed to gain some critical insights into microbial diversity within the coastal marine ecosystem off the coast of Puerto Rico. Using Illumina MiSeq, the V4 region of the 16S rRNA gene was sequenced with the goal of characterizing the microbial diversity representative of different coastal sites around the island of Puerto Rico. This study provided valuable insights in terms of the local bacterial taxonomic abundance, α and β diversity, and the environmental factors shaping microbial community composition and structure. The most dominant phyla across all 11 sampling sites were the Proteobacteria, Bacteroidetes, and Planctomycetes, while the least dominant taxonomic groups were the NKB19, Tenericutes, OP3, Lentisphaerae, and SAR406. The geographical area (Caribbean and Atlantic seas) and salinity gradients were the main drivers shaping the marine microbial community around the island. Despite stable physical and chemical features of the different sites, a highly dynamic microbiome was observed. This highlights Caribbean waters as one of the richest marine sources for a microbial biodiversity hotspot. The data presented here provide a basis for further temporal evaluations aiming at deciphering microbial taxonomic diversity around the island, while determining how microbes adapt to changes in the climate.
Collapse
Affiliation(s)
- Clifford Jaylen Louime
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00931, USA
| | - Frances Vazquez-Sanchez
- Department of Microbiology & Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| | - Dieunel Derilus
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00931, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology & Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| |
Collapse
|
13
|
Wright RJ, Langille MGI, Walker TR. Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere. ISME JOURNAL 2020; 15:789-806. [PMID: 33139870 PMCID: PMC8027867 DOI: 10.1038/s41396-020-00814-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
It is now indisputable that plastics are ubiquitous and problematic in ecosystems globally. Many suggestions have been made about the role that biofilms colonizing plastics in the environment—termed the “Plastisphere”—may play in the transportation and ecological impact of these plastics. By collecting and re-analyzing all raw 16S rRNA gene sequencing and metadata from 2,229 samples within 35 studies, we have performed the first meta-analysis of the Plastisphere in marine, freshwater, other aquatic (e.g., brackish or aquaculture) and terrestrial environments. We show that random forest models can be trained to differentiate between groupings of environmental factors as well as aspects of study design, but—crucially—also between plastics when compared with control biofilms and between different plastic types and community successional stages. Our meta-analysis confirms that potentially biodegrading Plastisphere members, the hydrocarbonoclastic Oceanospirillales and Alteromonadales are consistently more abundant in plastic than control biofilm samples across multiple studies and environments. This indicates the predilection of these organisms for plastics and confirms the urgent need for their ability to biodegrade plastics to be comprehensively tested. We also identified key knowledge gaps that should be addressed by future studies.
Collapse
Affiliation(s)
- Robyn J Wright
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada. .,Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada.
| | - Morgan G I Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada
| |
Collapse
|
14
|
Hamdan HZ, Salam DA. Microbial community evolution during the aerobic biodegradation of petroleum hydrocarbons in marine sediment microcosms: Effect of biostimulation and seasonal variations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114858. [PMID: 32497947 DOI: 10.1016/j.envpol.2020.114858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Evolution of the microbial community structure in crude oil contaminated marine sediments was assessed under aerobic biodegradation during wet (18 °C) and dry (28 °C) seasons experiments, to account for seasonal variations in nutrients and temperature, under biostimulation and natural attenuation conditions. NMDS showed significant variation in the microbial communities between the wet and the dry season experiments, and between the biostimulation and the natural attenuation treatments in the dry season microcosms. No significant variation in the microbial community and oil biodegradation was observed during the wet season experiments due to high background nitrogen levels eliminating the effect of biostimulation. Larger variations were observed in the dry season experiments and were correlated to enhanced alkanes removal in the biostimulated microcosms, where Alphaproteobacteria dominated the total microbial community by the end of biodegradation (54%). Many hydrocarbonoclastic bacterial genera showed successive dominance during the operation affecting the ultimate performance of the microcosms.
Collapse
Affiliation(s)
- Hamdan Z Hamdan
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Darine A Salam
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
15
|
Martinez-Varela A, Casas G, Piña B, Dachs J, Vila-Costa M. Large Enrichment of Anthropogenic Organic Matter Degrading Bacteria in the Sea-Surface Microlayer at Coastal Livingston Island (Antarctica). Front Microbiol 2020; 11:571983. [PMID: 33013806 PMCID: PMC7516020 DOI: 10.3389/fmicb.2020.571983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023] Open
Abstract
The composition of bacteria inhabiting the sea-surface microlayer (SML) is poorly characterized globally and yet undescribed for the Southern Ocean, despite their relevance for the biogeochemistry of the surface ocean. We report the abundances and diversity of bacteria inhabiting the SML and the subsurface waters (SSL) determined from a unique sample set from a polar coastal ecosystem (Livingston Island, Antarctica). From early to late austral summer (January–March 2018), we consistently found a higher abundance of bacteria in the SML than in the SSL. The SML was enriched in some Gammaproteobacteria genus such as Pseudoalteromonas, Pseudomonas, and Colwellia, known to degrade a wide range of semivolatile, hydrophobic, and surfactant-like organic pollutants. Hydrocarbons and other synthetic chemicals including surfactants, such as perfluoroalkyl substances (PFAS), reach remote marine environments by atmospheric transport and deposition and by oceanic currents, and are known to accumulate in the SML. Relative abundances of specific SML-enriched bacterial groups were significantly correlated to concentrations of PFASs, taken as a proxy of hydrophobic anthropogenic pollutants present in the SML and its stability. Our observations provide evidence for an important pollutant-bacteria interaction in the marine SML. Given that pollutant emissions have increased during the Anthropocene, our results point to the need to assess chemical pollution as a factor modulating marine microbiomes in the contemporaneous and future oceans.
Collapse
Affiliation(s)
- Alícia Martinez-Varela
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Gemma Casas
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
16
|
Zhang L, Zhang Y, Patterson J, Arslan M, Zhang Y, Gamal El-Din M. Biofiltration of oil sands process water in fixed-bed biofilm reactors shapes microbial community structure for enhanced degradation of naphthenic acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137028. [PMID: 32109809 DOI: 10.1016/j.scitotenv.2020.137028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Naphthenic acids (NAs) are a complex mixture of carboxylic acids present in oil sands process water (OSPW). Their recalcitrant nature makes them difficult to be removed from the environment using conventional remediation strategies. This study hypothesized that, upon continuous operation, biofiltration of OSPW in fixed-bed biofilm reactors would allow the development of NA-degrading microbial community within the biofilter following successful removal. Both raw and ozonated OSPW were treated in the biofilters and changes in microbial community were tested via 16S/18S amplicon sequencing and metatranscriptomics. Through switch from suspended growth to attached growth, a shift in indigenous microbial community was seen following by an increase in alpha diversity. Concomitantly, improved degradation of NAs was monitored, i.e., 35.8% and 69.4% of NAs were removed from raw and ozonated OSPW, respectively. Metatranscriptomics analysis suggested the presence of genes involved in the degradation of organic acids and petroleum-related compounds. Specifically, functional abundance of aromatic compounds' metabolism improved from 0.05% to 0.76%; whereas abundance of benzoate transport and degradation pathway increased from 0.04% to 0.64%. These changes conclude that continuous operation of OSPW in the bioreactors was in favor of shaping the overall microbiome towards better NA degradation.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, PR China
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Jordan Patterson
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, PR China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
17
|
Erni-Cassola G, Wright RJ, Gibson MI, Christie-Oleza JA. Early Colonization of Weathered Polyethylene by Distinct Bacteria in Marine Coastal Seawater. MICROBIAL ECOLOGY 2020; 79:517-526. [PMID: 31463664 PMCID: PMC7176602 DOI: 10.1007/s00248-019-01424-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/06/2019] [Indexed: 05/19/2023]
Abstract
Plastic debris in aquatic environments is rapidly colonized by a diverse community of microorganisms, often referred to as the "Plastisphere." Given that common plastics are derived from fossil fuels, one would expect that Plastispheres should be enriched with obligate hydrocarbon-degrading bacteria (OHCB). So far, though, different polymer types do not seem to exert a strong effect on determining the composition of the Plastisphere, and putative biodegrading bacteria are only found as rare taxa within these biofilms. Here, we show through 16S rRNA gene sequencing that the enrichment of a prominent OHCB member on weathered and non-weathered polyethylene only occurred at early stages of colonization (i.e., after 2 days of incubation in coastal marine water; 5.8% and 3.7% of relative abundance, respectively, vs. 0.6% on glass controls). As biofilms matured, these bacteria decreased in relative abundance on all materials (< 0.3% after 9 days). Apart from OHCB, weathered polyethylene strongly enriched for other distinct organisms during early stages of colonization, such as a specific member of the Roseobacter group and a member of the genus Aestuariibacter (median 26.9% and 1.8% of the community, respectively), possibly as a consequence of the availability of short-oxidized chains generated from weathering. Our results demonstrate that Plastispheres can vary in accordance with the weathering state of the material and that very early colonizing communities are enriched with taxa that can potentially degrade hydrocarbons. Given the lack of persistent enrichment and overall community convergence between materials over time, common non-hydrolysable polymers might not serve as an important source of carbon for mature Plastispheres once the labile substrates generated from weathering have been depleted.
Collapse
Affiliation(s)
| | - Robyn J Wright
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
18
|
Yang J, Zhang Q, Fu X, Chen H, Hu P, Wang L. Natural attenuation mechanism and health risk assessment of 1,1,2-trichloroethane in contaminated groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:457-464. [PMID: 31071622 DOI: 10.1016/j.jenvman.2019.04.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
1,1,2-trichloroethane (TCA) is a contaminant in many pesticide and chemical fields. This study mainly described the potential effectiveness of the natural attenuation of 1,1,2-TCA in groundwater in a typical pesticide-contaminated field in east China. In this study, six typical 1,1,2-TCA-contaminated sites (MW14, MW21, MW25, MW31, MW36 and MW41) were selected, and the field investigation results indicated that there was an obvious decline in the concentrations of 1,1,2-TCA over time in all selected sites. Furthermore, the attenuation rate of 1,1,2-TCA concentration in sites MW14, MW21, MW25, MW31 and MW41 followed the first-order kinetic equation, and the first-order attenuation rate constants were calculated. The health risks of 1,1,2-TCA and its degradation product dichloroethane (DCA) were assessed and compared in site MW14. The result showed that the health risks of 1,1,2-TCA were much higher than those of DCA, and 1,1,2-TCA was the contamination source in this site. 16S rRNA sequencing was also conducted to investigate the diversity of the bacterial community in 1,1,2-trichloroethane (TCA)-contaminated groundwater, and Geobacter, Thauera, Pseudomonas, Diaphorobacter were the main species in the bacterial community.
Collapse
Affiliation(s)
- Jin Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China; SEP Analytical Services Co., Ltd., China
| | | | | | - Haibo Chen
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou, 510655, China
| | - Peilei Hu
- SEP Analytical Services Co., Ltd., China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
19
|
Reyes-Sosa MB, Apodaca-Hernández JE, Arena-Ortiz ML. Bioprospecting for microbes with potential hydrocarbon remediation activity on the northwest coast of the Yucatan Peninsula, Mexico, using DNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1060-1074. [PMID: 30045488 DOI: 10.1016/j.scitotenv.2018.06.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 05/16/2023]
Abstract
Coastal environments harbor diverse microbial communities, which can contain genera with potential bioremediation activity. Next-generation DNA sequencing was used to identify bacteria to the genus level in water and sediment samples collected from the open ocean, shoreline, wetlands and freshwater upwellings on the northwest coast of the Yucatan Peninsula. Supported by an extensive literature review, a phylogenetic investigation of the communities was done using reconstruction of unobserved states software (PICRUSt) to predict metagenome functional content from the sequenced 16S gene in all the samples. Bacterial genera were identified for their potential hydrocarbon bioremediation activity. These included generalist genera commonly reported in hydrocarbon-polluted areas and petroleum reservoirs, as well as specialists such as Alcanivorax and Cycloclasticus. The highest readings for bacteria with potential hydrocarbon bioremediation activity were for the genera Vibrio, Alteromonas, Pseudomonas, Acinetobacter, Burkholderia, Acidovorax and Pseudoalteromonas from different environments in the study area. Some genera were identified only in specific sites; for example, Aquabacterium and Polaromonas were found only in freshwater upwellings. Variation in genera distribution was probably due to differences in environmental conditions in the sampled zones. Bacterial diversity was high in the study area and included numerous genera with known bioremediation activity. Functional prediction of the metagenome indicated that the studied bacterial communities would most probably degrade toluene, naphthalene, chloroalkane and chloroalkene, with lower degradation proportions for aromatic hydrocarbons, fluorobenzoate and xylene. Differences in predicted degradation existed between sediments and water, and between different locations.
Collapse
Affiliation(s)
| | | | - María Leticia Arena-Ortiz
- Posgrado en Ciencias del Mar y Limnología UNAM, Mérida, Yucatán, Mexico; Laboratorio de Ecogenonomica Universidad Nacional Autonoma de Mexico.
| |
Collapse
|
20
|
Yu C, Hou L, Zheng Y, Liu M, Yin G, Gao J, Liu C, Chang Y, Han P. Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments. Appl Microbiol Biotechnol 2018; 102:9363-9377. [PMID: 30094589 DOI: 10.1007/s00253-018-9274-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 11/27/2022]
Abstract
Complete ammonia oxidizers (comammox), as novel microbial communities, are predicted to play an important role in the nitrogen cycle. Here we reported the presence of complete nitrification in tidal sediments and examined the diversity and abundance of comammox in natural ecosystems. Metagenome and metatranscriptome of the enrichment culture from tidal sediments harbored the genes of comammox. Near-complete comammox AmoA/B/C- and Hao-like sequences showed close relationships to the known comammox (with sequence identity from 79 to 99%) rather than classical betaproteobacterial ammonia-oxidizing bacteria (β-AOB) (57 to 66%) and ammonia-oxidizing archaea (AOA) (24 to 38%). To analyze the diversity of comammox in natural environments, a new primer set targeting clade A comammox Nitrospira (COM-A) amoA genes was designed based on sequences obtained in this study and sequences from published database. In silico evaluation of the primers showed the high coverage of 89 and 100% in the COM-A amoA database. Application of the primers in six different ecosystems proved their strong availability. Community composition of COM-A suggested a relatively higher diversity than β-AOB in similar environments. Quantification results showed that COM-A amoA genes accounted for about 0.4-5.6% in total amoA genes. These results provide novel insight into our perception of the enigmatic comammox and have significant implications for profound understanding of complex nitrification process.
Collapse
Affiliation(s)
- Chendi Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Cheng Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Yongkai Chang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|