1
|
Wu XR, He XH, Xie YF. Characteristics of gut microbiota dysbiosis in patients with colorectal polyps. World J Gastrointest Oncol 2025; 17:98872. [PMID: 39817124 PMCID: PMC11664624 DOI: 10.4251/wjgo.v17.i1.98872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 12/12/2024] Open
Abstract
This editorial, inspired by a recent study published in the World Journal of Gastrointestinal Oncology, covers the research findings on microbiota changes in various diseases. In recurrent colorectal polyps, the abundances of Klebsiella, Parvimonas, and Clostridium increase, while those of Bifidobacterium and Lactobacillus decrease. This dysbiosis may promote the formation and recurrence of polyps. Similar microbial changes have also been observed in colorectal cancer, inflammatory bowel disease, autism spectrum disorder, and metabolic syndrome, indicating the role of increased pathogens and decreased probiotics in these conditions. Regulating the gut microbiota, particularly by increasing probiotic levels, may help prevent polyp recurrence and promote gut health. This microbial intervention strategy holds promise as an adjunctive treatment for patients with colorectal polyps.
Collapse
Affiliation(s)
- Xian-Rong Wu
- School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China
| | - Xiao-Hong He
- School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China
| | - Yong-Fang Xie
- School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China
| |
Collapse
|
2
|
Conacher CG, Watson BW, Bauer FF. Gradient boosted regression as a tool to reveal key drivers of temporal dynamics in a synthetic yeast community. FEMS Microbiol Ecol 2024; 100:fiae080. [PMID: 38777744 PMCID: PMC11212668 DOI: 10.1093/femsec/fiae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Microbial communities are vital to our lives, yet their ecological functioning and dynamics remain poorly understood. This understanding is crucial for assessing threats to these systems and leveraging their biotechnological applications. Given that temporal dynamics are linked to community functioning, this study investigated the drivers of community succession in the wine yeast community. We experimentally generated population dynamics data and used it to create an interpretable model with a gradient boosted regression tree approach. The model was trained on temporal data of viable species populations in various combinations, including pairs, triplets, and quadruplets, and was evaluated for predictive accuracy and input feature importance. Key findings revealed that the inoculation dosage of non-Saccharomyces species significantly influences their performance in mixed cultures, while Saccharomyces cerevisiae consistently dominates regardless of initial abundance. Additionally, we observed multispecies interactions where the dynamics of Wickerhamomyces anomalus were influenced by Torulaspora delbrueckii in pairwise cultures, but this interaction was altered by the inclusion of S. cerevisiae. This study provides insights into yeast community succession and offers valuable machine learning-based analysis techniques applicable to other microbial communities, opening new avenues for harnessing microbial communities.
Collapse
Affiliation(s)
- Cleo Gertrud Conacher
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Artificial Intelligence Research (CAIR), School for Data-Science & Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Bruce William Watson
- Centre for Artificial Intelligence Research (CAIR), School for Data-Science & Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Florian Franz Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Liang Y, Ma A. Investigating the degradation potential of microbial consortia for perfluorooctane sulfonate through a functional "top-down" screening approach. PLoS One 2024; 19:e0303904. [PMID: 38758752 PMCID: PMC11101035 DOI: 10.1371/journal.pone.0303904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
Perfluorooctane sulfonate (PFOS) is a prominent perfluorinated compound commonly found in the environment, known to pose various risks to human health. However, the removal of PFOS presents significant challenges, primarily due to the limited discovery of bacteria capable of effectively degrading PFOS. Moreover, single degradation bacteria often encounter obstacles in individual cultivation and the breakdown of complex pollutants. In contrast, microbial consortia have shown promise in pollutant degradation. This study employed a continuous enrichment method, combined with multiple co-metabolic substrates, to investigate a microbial consortium with the potential for PFOS degradation. By employing this methodology, we effectively identified a microbial consortium that demonstrated the capacity to reduce PFOS when exposed to an optimal concentration of methanol. The consortium predominantly comprised of Hyphomicrobium species (46.7%) along with unclassified microorganisms (53.0%). Over a duration of 20 days, the PFOS concentration exhibited a notable decrease of 56.7% in comparison to the initial level, while considering the exclusion of adsorption effects. Furthermore, by comparing the predicted metabolic pathways of the microbial consortium with the genome of a known chloromethane-degrading bacterium, Hyphomicrobium sp. MC1, using the KEGG database, we observed distinct variations in the metabolic pathways, suggesting the potential role of the unclassified microorganisms. These findings underscore the potential effectiveness of a "top-down" functional microbial screening approach in the degradation of stubborn pollutants.
Collapse
Affiliation(s)
- Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Liu Y, Xue B, Liu H, Wang S, Su H. Rational construction of synthetic consortia: Key considerations and model-based methods for guiding the development of a novel biosynthesis platform. Biotechnol Adv 2024; 72:108348. [PMID: 38531490 DOI: 10.1016/j.biotechadv.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The rapid development of synthetic biology has significantly improved the capabilities of mono-culture systems in converting different substrates into various value-added bio-chemicals through metabolic engineering. However, overexpression of biosynthetic pathways in recombinant strains can impose a heavy metabolic burden on the host, resulting in imbalanced energy distribution and negatively affecting both cell growth and biosynthesis capacity. Synthetic consortia, consisting of two or more microbial species or strains with complementary functions, have emerged as a promising and efficient platform to alleviate the metabolic burden and increase product yield. However, research on synthetic consortia is still in its infancy, with numerous challenges regarding the design and construction of stable synthetic consortia. This review provides a comprehensive comparison of the advantages and disadvantages of mono-culture systems and synthetic consortia. Key considerations for engineering synthetic consortia based on recent advances are summarized, and simulation and computational tools for guiding the advancement of synthetic consortia are discussed. Moreover, further development of more efficient and cost-effective synthetic consortia with emerging technologies such as artificial intelligence and machine learning is highlighted.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Boyuan Xue
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hao Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
5
|
Darvishi F, Rafatiyan S, Abbaspour Motlagh Moghaddam MH, Atkinson E, Ledesma-Amaro R. Applications of synthetic yeast consortia for the production of native and non-native chemicals. Crit Rev Biotechnol 2024; 44:15-30. [PMID: 36130800 DOI: 10.1080/07388551.2022.2118569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
Abstract
The application of microbial consortia is a new approach in synthetic biology. Synthetic yeast consortia, simple or complex synthetic mixed cultures, have been used for the production of various metabolites. Cooperation between the members of a consortium and cross-feeding can be applied to create stable microbial communication. These consortia can: consume a variety of substrates, perform more complex functions, produce metabolites in high titer, rate, and yield (TRY), and show higher stability during industrial fermentations. Due to the new research context of synthetic consortia, few yeasts were used to build these consortia, including Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. Here, application of the yeasts for design of synthetic microbial consortia and their advantages and bottlenecks for effective and robust production of valuable metabolites from bioresource, including: cellulose, xylose, glycerol and so on, have been reviewed. Key trends and challenges are also discussed for the future development of synthetic yeast consortia.
Collapse
Affiliation(s)
- Farshad Darvishi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran
| | - Sajad Rafatiyan
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Eliza Atkinson
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| |
Collapse
|
6
|
Hosoda K, Seno S, Murakami N, Matsuda H, Osada Y, Kamiura R, Kondoh M. Synthetic model ecosystem of 12 cryopreservable microbial species allowing for a noninvasive approach. Biosystems 2024; 235:105087. [PMID: 37989470 DOI: 10.1016/j.biosystems.2023.105087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Simultaneous understanding of both population and ecosystem dynamics is crucial in an era marked by the degradation of ecosystem services. Experimental ecosystems are a powerful tool for understanding these dynamics; however, they often face technical challenges, typically falling into two categories: "complex but with limited replicability microcosms" and "highly replicable but overly simplistic microcosms." Herein, we present a high-throughput synthetic microcosm system comprising 12 functionally and phylogenetically diverse microbial species. These species are axenically culturable, cryopreservable, and can be measured noninvasively via microscopy, aided by machine learning. This system includes prokaryotic and eukaryotic producers and decomposers, and eukaryotic consumers to ensure functional redundancy. Our model system exhibited key features of a complex ecosystem: (i) various positive and negative interspecific interactions, (ii) higher-order interactions beyond two-species dynamics, (iii) probabilistic dynamics leading to divergent outcomes, and (iv) stable nonlinear transitions. We identified several conditions under which at least one species from each of the three functional groups-producers, consumers, and decomposers-and one functionally redundant species, persisted for over six months. These conditions set the stage for detailed investigations in the future. Given its designability and experimental replicability, our model ecosystem offers a promising platform for deeper insights integrating both population and ecosystem dynamics.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan; Institute for Transdisciplinary Graduate Degree Programs, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan; Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naomi Murakami
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yutaka Osada
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Rikuto Kamiura
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
7
|
Benninghaus L, Schwardmann LS, Jilg T, Wendisch VF. Establishment of synthetic microbial consortia with Corynebacterium glutamicum and Pseudomonas putida: Design, construction, and application to production of γ-glutamylisopropylamide and l-theanine. Microb Biotechnol 2024; 17:e14400. [PMID: 38206115 PMCID: PMC10832564 DOI: 10.1111/1751-7915.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Microbial synthetic consortia are a promising alternative to classical monoculture for biotechnological applications and fermentative processes. Their versatile use offers advantages in the degradation of complex substrates, the allocation of the metabolic burden between individual partners, or the division of labour in energy utilisation, substrate supply or product formation. Here, stable synthetic consortia between the two industrially relevant production hosts, Pseudomonas putida KT2440 and Corynebacterium glutamicum ATCC13032, were established for the first time. By applying arginine auxotrophy/overproduction and/or formamidase-based utilisation of the rare nitrogen source formamide, different types of interaction were realised, such as commensal relationships (+/0 and 0/+) and mutualistic cross-feeding (+/+). These consortia did not only show stable growth but could also be used for fermentative production of the γ-glutamylated amines theanine and γ-glutamyl-isopropylamide (GIPA). The consortia produced up to 2.8 g L-1 of GIPA and up to 2.6 g L-1 of theanine, a taste-enhancing constituent of green tea leaves. Thus, the advantageous approach of using synthetic microbial consortia for fermentative production of value-added compounds was successfully demonstrated.
Collapse
Affiliation(s)
- Leonie Benninghaus
- Genetics of Prokaryotes, Faculty of Biology and CeBiTecBielefeld UniversityBielefeldGermany
| | - Lynn S. Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTecBielefeld UniversityBielefeldGermany
- Present address:
Aminoverse B.V.Daelderweg 9Nuth6361 HKthe Netherlands
| | - Tatjana Jilg
- Genetics of Prokaryotes, Faculty of Biology and CeBiTecBielefeld UniversityBielefeldGermany
- Present address:
Symrise AGMühlenfeldstraße 1Holzminden37603Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTecBielefeld UniversityBielefeldGermany
| |
Collapse
|
8
|
Wu D, Wang W, Yao Y, Li H, Wang Q, Niu B. Microbial interactions within beneficial consortia promote soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165801. [PMID: 37499809 DOI: 10.1016/j.scitotenv.2023.165801] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
By ecologically interacting with various biotic and abiotic agents acting in soil ecosystems, highly diverse soil microorganisms establish complex and stable assemblages and survive in a community context in natural settings. Besides facilitating soil microbiome to maintain great levels of population homeostasis, such microbial interactions drive soil microbes to function as the major engine of terrestrial biogeochemical cycling. It is verified that the regulative effect of microbe-microbe interplay plays an instrumental role in microbial-mediated promotion of soil health, including bioremediation of soil pollutants and biocontrol of soil-borne phytopathogens, which is considered an environmentally friendly strategy for ensuring the healthy condition of soils. Specifically, in microbial consortia, it has been proven that microorganism-microorganism interactions are involved in enhancing the soil health-promoting effectiveness (i.e., efficacies of pollution reduction and disease inhibition) of the beneficial microbes, here defined as soil health-promoting agents. These microbial interactions can positively regulate the soil health-enhancing effect by supporting those soil health-promoting agents utilized in combination, as multi-strain soil health-promoting agents, to overcome three main obstacles: inadequate soil colonization, insufficient soil contaminant eradication and inefficient soil-borne pathogen suppression, all of which can restrict their probiotic functionality. Yet the mechanisms underlying such beneficial interaction-related adjustments and how to efficiently assemble soil health-enhancing consortia with the guidance of microbe-microbe communications remain incompletely understood. In this review, we focus on bacterial and fungal soil health-promoting agents to summarize current research progress on the utilization of multi-strain soil health-promoting agents in the control of soil pollution and soil-borne plant diseases. We discuss potential microbial interaction-relevant mechanisms deployed by the probiotic microorganisms to upgrade their functions in managing soil health. We emphasize the interplay-related factors that should be taken into account when building soil health-promoting consortia, and propose a workflow for assembling them by employing a reductionist synthetic community approach.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Weixiong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongtao Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
9
|
Navarrete-Bolaños JL, Serrato-Joya O. A novel strategy to construct multi-strain starter cultures: an insight to evolve from natural to directed fermentation. Prep Biochem Biotechnol 2023; 53:1199-1209. [PMID: 36799653 DOI: 10.1080/10826068.2023.2177870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Some biotechnological strategies have succeeded in the attempt to imitate natural fermentation, and bioprocesses have been efficiently designed when the product is the result of a unique biological reaction. However, when the process requires more than one biological reaction, few bioprocesses have been successfully designed because the available tools to construct multi-strain starter cultures are not yet well defined. In this work, a novel experimental strategy to construct multi-strain starter cultures with selected native microorganisms from natural fermentation is proposed. The strategy analyses, selects, and defines the number and proportion of each strain that should form a starter culture to be used in directed fermentations. It was applied to evolve natural fermentation to directed fermentation in distilled agave production. The results showed that a starter culture integrated by Kluyveromyces marxianus, Clavispora lusitaniae, and Kluyveromyces marxianus var. drosophilarum in proportions of 35, 32, and 33%, respectively, allows obtaining fermented agave juice containing a 2.1% alcohol yield and a distilled product with a broad profile of aromatic compounds. Hence, the results show, for the first time, a tool that addresses the technical challenge for multi-strain starter culture construction, offering the possibility of preserving the typicity and genuineness of the original traditional product.
Collapse
Affiliation(s)
- J L Navarrete-Bolaños
- Biochemistry and Engineering Sciences Department, Tecnológico Nacional de México en Celaya, México
| | - O Serrato-Joya
- Biochemistry and Engineering Sciences Department, Tecnológico Nacional de México en Celaya, México
| |
Collapse
|
10
|
Jaiswal DK, Verma JP, Belwal T, Pereira APDA, Ade AB. Editorial: Microbial co-cultures: a new era of synthetic biology and metabolic engineering. Front Microbiol 2023; 14:1235565. [PMID: 37426012 PMCID: PMC10328387 DOI: 10.3389/fmicb.2023.1235565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
| | - Jay Prakash Verma
- Plant-Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tarun Belwal
- Texas A&M University, College Station, TX, United States
| | | | - Avinash Bapurao Ade
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
11
|
Chen J, Ke Y, Zhu Y, Chen X, Xie S. Deciphering of sulfonamide biodegradation mechanism in wetland sediments: from microbial community and individual populations to pathway and functional genes. WATER RESEARCH 2023; 240:120132. [PMID: 37257294 DOI: 10.1016/j.watres.2023.120132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Figuring out the comprehensive metabolic mechanism of sulfonamide antibiotics (SA) is critical to improve and optimize SA removal in the bioremediation process, but relevant studies are still lacking. Here, an approach integrating metagenomic analysis, degraders' isolation, reverse transcriptional quantification and targeted metabolite determination was used to decipher microbial interactions and functional genes' characteristics in SA-degrading microbial consortia enriched from wetland sediments. The SA-degrading consortia could rapidly catalyze ipso-hydroxylation and subsequent reactions of SA to achieve the complete mineralization of sulfadiazine and partial mineralization of the other two typical SA (sulfamethoxazole and sulfamethazine). Paenarthrobacter, Achromobacter, Pseudomonas and Methylobacterium were identified as the primary participants for the initial transformation of SA. Among them, Methylobacterium could metabolize the heterocyclic intermediate of sulfadiazine (2-aminopyrimidine), and the owning of sadABC genes (SA degradation genes) made Paenarthrobacter have relatively higher SA-degrading activity. Besides, the coexistence of sadABC genes and sul1 gene (SA resistance gene) gave Paenarthrobacter a dual resistance mechanism to SA. The results of reverse transcription quantification further demonstrated that the activity of sadA gene was related to the biodegradation of SA. Additionally, sadABC genes were relatively conserved in a few Microbacteriaceae and Micrococcaceae SA-degraders, but the multiple recombination events caused by densely nested transposase encoding genes resulted in the differential sequence of sadAB genes in Paenarthrobacter genome. These new findings provide valuable information for the selection and construction of engineered microbiomes.
Collapse
Affiliation(s)
- Jianfei Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Park I, Seo YS, Mannaa M. Recruitment of the rhizo-microbiome army: assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front Microbiol 2023; 14:1163832. [PMID: 37213524 PMCID: PMC10196466 DOI: 10.3389/fmicb.2023.1163832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
The viable community of microorganisms in the rhizosphere significantly impacts the physiological development and vitality of plants. The assembly and functional capacity of the rhizosphere microbiome are greatly influenced by various factors within the rhizosphere. The primary factors are the host plant genotype, developmental stage and status, soil properties, and resident microbiota. These factors drive the composition, dynamics, and activity of the rhizosphere microbiome. This review addresses the intricate interplay between these factors and how it facilitates the recruitment of specific microbes by the host plant to support plant growth and resilience under stress. This review also explores current methods for engineering and manipulating the rhizosphere microbiome, including host plant-mediated manipulation, soil-related methods, and microbe-mediated methods. Advanced techniques to harness the plant's ability to recruit useful microbes and the promising use of rhizo-microbiome transplantation are highlighted. The goal of this review is to provide valuable insights into the current knowledge, which will facilitate the development of cutting-edge strategies for manipulating the rhizosphere microbiome for enhanced plant growth and stress tolerance. The article also indicates promising avenues for future research in this field.
Collapse
Affiliation(s)
- Inmyoung Park
- School of Food and Culinary Arts, Youngsan University, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Chen X, Ke Y, Zhu Y, Xu M, Chen C, Xie S. Enrichment of tetracycline-degrading bacterial consortia: Microbial community succession and degradation characteristics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130984. [PMID: 36860056 DOI: 10.1016/j.jhazmat.2023.130984] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Tetracycline (TC) is an antibiotic that is recently found as an emerging pollutant with low biodegradability. Biodegradation shows great potential for TC dissipation. In this study, two TC-degrading microbial consortia (named SL and SI) were respectively enriched from activated sludge and soil. Bacterial diversity decreased in these finally enriched consortia compared with the original microbiota. Moreover, most ARGs quantified during the acclimation process became less abundant in the finally enriched microbial consortia. Microbial compositions of the two consortia as revealed by 16 S rRNA sequencing were similar to some extent, and the dominant genera Pseudomonas, Sphingobacterium, and Achromobacter were identified as the potential TC degraders. In addition, consortia SL and SI were capable of biodegrading TC (initial 50 mg/L) by 82.92% and 86.83% within 7 days, respectively. They could retain high degradation capabilities under a wide pH range (4-10) and at moderate/high temperatures (25-40 °C). Peptone with concentrations of 4-10 g/L could serve as a desirable primary growth substrate for consortia to remove TC through co-metabolism. A total of 16 possible intermediates including a novel biodegradation product TP245 were detected during TC degradation. Peroxidase genes, tetX-like genes and the enriched genes related to aromatic compound degradation as revealed by metagenomic sequencing were likely responsible for TC biodegradation.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mingbang Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Silverstein MR, Segrè D, Bhatnagar JM. Environmental microbiome engineering for the mitigation of climate change. GLOBAL CHANGE BIOLOGY 2023; 29:2050-2066. [PMID: 36661406 DOI: 10.1111/gcb.16609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/15/2022] [Indexed: 05/28/2023]
Abstract
Environmental microbiome engineering is emerging as a potential avenue for climate change mitigation. In this process, microbial inocula are introduced to natural microbial communities to tune activities that regulate the long-term stabilization of carbon in ecosystems. In this review, we outline the process of environmental engineering and synthesize key considerations about ecosystem functions to target, means of sourcing microorganisms, strategies for designing microbial inocula, methods to deliver inocula, and the factors that enable inocula to establish within a resident community and modify an ecosystem function target. Recent work, enabled by high-throughput technologies and modeling approaches, indicate that microbial inocula designed from the top-down, particularly through directed evolution, may generally have a higher chance of establishing within existing microbial communities than other historical approaches to microbiome engineering. We address outstanding questions about the determinants of inocula establishment and provide suggestions for further research about the possibilities and challenges of environmental microbiome engineering as a tool to combat climate change.
Collapse
Affiliation(s)
- Michael R Silverstein
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Physics, Boston University, Boston, Massachusetts, USA
| | - Jennifer M Bhatnagar
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Singh A, Yadav VK, Chundawat RS, Soltane R, Awwad NS, Ibrahium HA, Yadav KK, Vicas SI. Enhancing plant growth promoting rhizobacterial activities through consortium exposure: A review. Front Bioeng Biotechnol 2023; 11:1099999. [PMID: 36865031 PMCID: PMC9972119 DOI: 10.3389/fbioe.2023.1099999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Plant Growth Promoting Rhizobacteria (PGPR) has gained immense importance in the last decade due to its in-depth study and the role of the rhizosphere as an ecological unit in the biosphere. A putative PGPR is considered PGPR only when it may have a positive impact on the plant after inoculation. From the various pieces of literature, it has been found that these bacteria improve the growth of plants and their products through their plant growth-promoting activities. A microbial consortium has a positive effect on plant growth-promoting (PGP) activities evident by the literature. In the natural ecosystem, rhizobacteria interact synergistically and antagonistically with each other in the form of a consortium, but in a natural consortium, there are various oscillating environmental conditions that affect the potential mechanism of the consortium. For the sustainable development of our ecological environment, it is our utmost necessity to maintain the stability of the rhizobacterial consortium in fluctuating environmental conditions. In the last decade, various studies have been conducted to design synthetic rhizobacterial consortium that helps to integrate cross-feeding over microbial strains and reveal their social interactions. In this review, the authors have emphasized covering all the studies on designing synthetic rhizobacterial consortiums, their strategies, mechanism, and their application in the field of environmental ecology and biotechnology.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Rajendra Singh Chundawat
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, Egypt
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
| | | |
Collapse
|
16
|
Zhang Y, Shi K, Cui H, Han J, Wang H, Ma X, Li Z, Zhang L, Nie S, Ma C, Wang A, Liang B. Efficient biodegradation of acetoacetanilide in hypersaline wastewater with a synthetic halotolerant bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129926. [PMID: 36099740 DOI: 10.1016/j.jhazmat.2022.129926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The high concentrations of salt and refractory toxic organics in industrial wastewater seriously restrict biological treatment efficiency and functional stability. However, how to construct a salt-tolerant biocatalytic community and realize the decarbonization coupled with detoxification toward green bio-enhanced treatment, has yet to be well elucidated. Here, acetoacetanilide (AAA), an important intermediate for many dyes and medicine synthesis, was used as the model amide pollutant to elucidate the directional enrichment of halotolerant degradative communities and the corresponding bacterial interaction mechanism. Combining microbial community composition and molecular ecological network analyses as well as the biodegradation efficiencies of AAA and its hydrolysis product aniline (AN) of pure strains, the core degradative bacteria were identified during the hypersaline AAA degradation process. A synthetic bacterial consortium composed of Paenarthrobacter, Rhizobium, Rhodococcus, Delftia and Nitratireductor was constructed based on the top-down strategy to treat AAA wastewater with different water quality characteristics. The synthetic halotolerant consortium showed promising treatment ability toward the simulated AAA wastewater (AAA 100-500 mg/L, 1-5% salinity) and actual AAA mother liquor. Additionally, the comprehensive toxicity of AAA mother liquor significantly reduced after biological treatment. This study provides a green biological approach for the treatment of hypersaline and high concentration of organics wastewater.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinglong Han
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodan Ma
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shichen Nie
- Shandong Hynar Water Environmental Protection Co., Ltd., Caoxian, China
| | - Changshui Ma
- Tai'an Hospital of Chinese Medicine, Tai'an 271000, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
17
|
Kurt F, Leventhal GE, Spalinger MR, Anthamatten L, Rogalla von Bieberstein P, Menzi C, Reichlin M, Meola M, Rosenthal F, Rogler G, Lacroix C, de Wouters T. Co-cultivation is a powerful approach to produce a robust functionally designed synthetic consortium as a live biotherapeutic product (LBP). Gut Microbes 2023; 15:2177486. [PMID: 36794804 PMCID: PMC9980632 DOI: 10.1080/19490976.2023.2177486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The success of fecal microbiota transplants (FMT) has provided the necessary proof-of-concept for microbiome therapeutics. Yet, feces-based therapies have many associated risks and uncertainties, and hence defined microbial consortia that modify the microbiome in a targeted manner have emerged as a promising safer alternative to FMT. The development of such live biotherapeutic products has important challenges, including the selection of appropriate strains and the controlled production of the consortia at scale. Here, we report on an ecology- and biotechnology-based approach to microbial consortium construction that overcomes these issues. We selected nine strains that form a consortium to emulate the central metabolic pathways of carbohydrate fermentation in the healthy human gut microbiota. Continuous co-culturing of the bacteria produces a stable and reproducible consortium whose growth and metabolic activity are distinct from an equivalent mix of individually cultured strains. Further, we showed that our function-based consortium is as effective as FMT in counteracting dysbiosis in a dextran sodium sulfate mouse model of acute colitis, while an equivalent mix of strains failed to match FMT. Finally, we showed robustness and general applicability of our approach by designing and producing additional stable consortia of controlled composition. We propose that combining a bottom-up functional design with continuous co-cultivation is a powerful strategy to produce robust functionally designed synthetic consortia for therapeutic use.
Collapse
Affiliation(s)
- Fabienne Kurt
- PharmaBiome AG, Schlieren, Switzerland
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Marianne Rebecca Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Anthamatten
- PharmaBiome AG, Schlieren, Switzerland
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
18
|
Kratzl F, Kremling A, Pflüger‐Grau K. Streamlining of a synthetic co-culture towards an individually controllable one-pot process for polyhydroxyalkanoate production from light and CO 2. Eng Life Sci 2023; 23:e2100156. [PMID: 36619884 PMCID: PMC9815089 DOI: 10.1002/elsc.202100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Rationally designed synthetic microbial consortia carry a vast potential for biotechnological applications. The application of such a consortium in a bioprocess, however, requires tight and individual controllability of the involved microbes. Here, we present the streamlining of a co-cultivation process consisting of Synechococcus elongatus cscB and Pseudomonas putida for the production of polyhydroxyalkanoates (PHA) from light and CO2. First, the process was improved by employing P. putida cscRABY, a strain with a higher metabolic activity towards sucrose. Next, the individual controllability of the co-culture partners was addressed by providing different nitrogen sources, each exclusively available for one strain. By this, the growth rate of the co-culture partners could be regulated individually, and defined conditions could be set. The molC/molN ratio, a key value for PHA accumulation, was estimated from the experimental data, and the necessary feeding rates to obtain a specific ratio could be predicted. This information was then implemented in the co-cultivation process, following the concept of a DBTL-cycle. In total, the streamlining of the process resulted in an increased maximal PHA titer of 393 mg/L and a PHA production rate of 42.1 mg/(L•day).
Collapse
Affiliation(s)
- Franziska Kratzl
- Professorship of Systems BiotechnologyTechnical University of MunichGarchingGermany
| | - Andreas Kremling
- Professorship of Systems BiotechnologyTechnical University of MunichGarchingGermany
| | | |
Collapse
|
19
|
Cao Z, Yan W, Ding M, Yuan Y. Construction of microbial consortia for microbial degradation of complex compounds. Front Bioeng Biotechnol 2022; 10:1051233. [PMID: 36561050 PMCID: PMC9763274 DOI: 10.3389/fbioe.2022.1051233] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Increasingly complex synthetic environmental pollutants are prompting further research into bioremediation, which is one of the most economical and safest means of environmental restoration. From the current research, using microbial consortia to degrade complex compounds is more advantageous compared to using isolated bacteria, as the former is more adaptable and stable within the growth environment and can provide a suitable catalytic environment for each enzyme required by the biodegradation pathway. With the development of synthetic biology and gene-editing tools, artificial microbial consortia systems can be designed to be more efficient, stable, and robust, and they can be used to produce high-value-added products with their strong degradation ability. Furthermore, microbial consortia systems are shown to be promising in the degradation of complex compounds. In this review, the strategies for constructing stable and robust microbial consortia are discussed. The current advances in the degradation of complex compounds by microbial consortia are also classified and detailed, including plastics, petroleum, antibiotics, azo dyes, and some pollutants present in sewage. Thus, this paper aims to support some helps to those who focus on the degradation of complex compounds by microbial consortia.
Collapse
Affiliation(s)
- Zhibei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Wenlong Yan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China,*Correspondence: Mingzhu Ding,
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Synthetic periphyton as a model system to understand species dynamics in complex microbial freshwater communities. NPJ Biofilms Microbiomes 2022; 8:61. [PMID: 35869094 PMCID: PMC9307524 DOI: 10.1038/s41522-022-00322-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPhototrophic biofilms, also known as periphyton, are microbial freshwater communities that drive crucial ecological processes in streams and lakes. Gaining a deep mechanistic understanding of the biological processes occurring in natural periphyton remains challenging due to the high complexity and variability of such communities. To address this challenge, we rationally developed a workflow to construct a synthetic community by co-culturing 26 phototrophic species (i.e., diatoms, green algae, and cyanobacteria) that were inoculated in a successional sequence to create a periphytic biofilm on glass slides. We show that this community is diverse, stable, and highly reproducible in terms of microbial composition, function, and 3D spatial structure of the biofilm. We also demonstrate the ability to monitor microbial dynamics at the single species level during periphyton development and how their abundances are impacted by stressors such as increased temperature and a herbicide, singly and in combination. Overall, such a synthetic periphyton, grown under controlled conditions, can be used as a model system for theory testing through targeted manipulation.
Collapse
|
21
|
Pham LHP, Colon-Ascanio M, Ou J, Ly K, Hu P, Choy JS, Luo X. Probing mutual interactions between Pseudomonas aeruginosa and Candida albicans in a biofabricated membrane-based microfluidic platform. LAB ON A CHIP 2022; 22:4349-4358. [PMID: 36239125 PMCID: PMC9756269 DOI: 10.1039/d2lc00728b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbes are typically found in multi-species (polymicrobial) communities. Cooperative and competitive interactions between species, mediated by diffusible factors and physical contact, leads to highly dynamic communities that undergo changes in composition diversity and size. Infections can be more severe or more difficult to treat when caused by multiple species. Interactions between species can improve the ability of one or more species to tolerate anti-microbial treatments and host defenses. Pseudomonas aeruginosa (Pa), a ubiquitous bacterium, and the opportunistic pathogenic yeast, Candida albicans (Ca), are frequently found together in cystic fibrosis lung infections and wound infections. While significant progress has been made in determining interactions between Pa and Ca, there are still important questions that remain unanswered. Here, we probe the mutual interactions between Pa and Ca in a custom-made microfluidic device using biopolymer chitosan membranes that support cross-species communication. By assembling microbes in physically separated, chemically communicating populations or bringing into direct interactions in a mixed culture, in situ polymicrobial growth and biofilm morphology were qualitatively characterized and quantified. Our work reveals new dynamic details of their mutual interactions including cooperation, competition, invasion, and biofilm formation. The membrane-based microfluidic platform can be further developed to understand the polymicrobial interactions within a controlled interactive microenvironment to improve microbial infection prevention and treatment.
Collapse
Affiliation(s)
- Le Hoang Phu Pham
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| | - Mariliz Colon-Ascanio
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Jin Ou
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Khanh Ly
- Department of Biomedical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA
| | - Piao Hu
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| | - John S Choy
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Xiaolong Luo
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
22
|
Kang CW, Lim HG, Won J, Cha S, Shin G, Yang JS, Sung J, Jung GY. Circuit-guided population acclimation of a synthetic microbial consortium for improved biochemical production. Nat Commun 2022; 13:6506. [PMID: 36344561 PMCID: PMC9640620 DOI: 10.1038/s41467-022-34190-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial consortia have been considered potential platforms for bioprocessing applications. However, the complexity in process control owing to the use of multiple strains necessitates the use of an efficient population control strategy. Herein, we report circuit-guided synthetic acclimation as a strategy to improve biochemical production by a microbial consortium. We designed a consortium comprising alginate-utilizing Vibrio sp. dhg and 3-hydroxypropionic acid (3-HP)-producing Escherichia coli strains for the direct conversion of alginate to 3-HP. We introduced a genetic circuit, named "Population guider", in the E. coli strain, which degrades ampicillin only when 3-HP is produced. In the presence of ampicillin as a selection pressure, the consortium was successfully acclimated for increased 3-HP production by 4.3-fold compared to that by a simple co-culturing consortium during a 48-h fermentation. We believe this concept is a useful strategy for the development of robust consortium-based bioprocesses.
Collapse
Affiliation(s)
- Chae Won Kang
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Hyun Gyu Lim
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Jaehyuk Won
- grid.254224.70000 0001 0789 9563Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea ,grid.254224.70000 0001 0789 9563Department of Chemistry, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea
| | - Sanghak Cha
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Giyoung Shin
- grid.49100.3c0000 0001 0742 4007School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Jae-Seong Yang
- grid.423637.70000 0004 1763 5862Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193 Spain
| | - Jaeyoung Sung
- grid.254224.70000 0001 0789 9563Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea ,grid.254224.70000 0001 0789 9563Department of Chemistry, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea
| | - Gyoo Yeol Jung
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea ,grid.49100.3c0000 0001 0742 4007School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| |
Collapse
|
23
|
Oliveira SMD, Densmore D. Hardware, Software, and Wetware Codesign Environment for Synthetic Biology. BIODESIGN RESEARCH 2022; 2022:9794510. [PMID: 37850136 PMCID: PMC10521664 DOI: 10.34133/2022/9794510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/10/2022] [Indexed: 10/19/2023] Open
Abstract
Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstraction, standards, modularity, automated design, and formal semantic models of computation. Together, these elements form the foundation of "biodesign automation," where software, robotics, and microfluidic devices combine to create exciting biological systems of the future. This paper describes a "hardware, software, wetware" codesign vision where software tools can be made to act as "genetic compilers" that transform high-level specifications into engineered "genetic circuits" (wetware). This is followed by a process where automation equipment, well-defined experimental workflows, and microfluidic devices are explicitly designed to house, execute, and test these circuits (hardware). These systems can be used as either massively parallel experimental platforms or distributed bioremediation and biosensing devices. Next, scheduling and control algorithms (software) manage these systems' actual execution and data analysis tasks. A distinguishing feature of this approach is how all three of these aspects (hardware, software, and wetware) may be derived from the same basic specification in parallel and generated to fulfill specific cost, performance, and structural requirements.
Collapse
Affiliation(s)
- Samuel M. D. Oliveira
- Department of Electrical and Computer Engineering, Boston University, MA 02215, USA
- Biological Design Center, Boston University, MA 02215, USA
| | - Douglas Densmore
- Department of Electrical and Computer Engineering, Boston University, MA 02215, USA
- Biological Design Center, Boston University, MA 02215, USA
| |
Collapse
|
24
|
Dose–Response Effect of Nitrogen on Microbial Community during Hydrocarbon Biodegradation in Simplified Model System. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Knowledge about the influence of C:N ratio on the biodegradation process of hydrocarbon compounds is of significant importance in the development of biostimulation techniques. The purpose of this study was to assess the impact of nitrogen compounds on the environmental consortium during the process of biological decomposition of hydrocarbons. The experimental variants represented low, moderate, and excessive biostimulation with nitrogen compounds. The metabolic activity of the consortium was tested using the flow cytometry technique. The efficiency of the biodegradation of hydrocarbons of the consortium, based on the gas chromatography method, and metapopulation changes, based on the analysis of V4 16srRNA sequencing data, were assessed. The results of the research confirm the positive effect of properly optimized biostimulation with nitrogen compounds on the biological decomposition of polycyclic aromatic hydrocarbons. The negative impact of excessive biostimulation on the biodegradation efficiency and metabolic activity of microorganisms is also proven. Low resistance to changes in the supply of nitrogen compounds is demonstrated among the orders Xanthomonadales, Burkholderiales, Sphingomonadales, Flavobacteriales, and Sphingobacteriales. It is proven that quantitative analysis of the order of Rhizobiales, characterized by a high-predicted potential for the decomposition of polycyclic aromatic hydrocarbons, may be helpful during biostimulation optimization processes in areas with a high nitrogen deficiency.
Collapse
|
25
|
Suman A, Govindasamy V, Ramakrishnan B, Aswini K, SaiPrasad J, Sharma P, Pathak D, Annapurna K. Microbial Community and Function-Based Synthetic Bioinoculants: A Perspective for Sustainable Agriculture. Front Microbiol 2022; 12:805498. [PMID: 35360654 PMCID: PMC8963471 DOI: 10.3389/fmicb.2021.805498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Interactions among the plant microbiome and its host are dynamic, both spatially and temporally, leading to beneficial or pathogenic relationships in the rhizosphere, phyllosphere, and endosphere. These interactions range from cellular to molecular and genomic levels, exemplified by many complementing and coevolutionary relationships. The host plants acquire many metabolic and developmental traits such as alteration in their exudation pattern, acquisition of systemic tolerance, and coordination of signaling metabolites to interact with the microbial partners including bacteria, fungi, archaea, protists, and viruses. The microbiome responds by gaining or losing its traits to various molecular signals from the host plants and the environment. Such adaptive traits in the host and microbial partners make way for their coexistence, living together on, around, or inside the plants. The beneficial plant microbiome interactions have been exploited using traditional culturable approaches by isolating microbes with target functions, clearly contributing toward the host plants' growth, fitness, and stress resilience. The new knowledge gained on the unculturable members of the plant microbiome using metagenome research has clearly indicated the predominance of particular phyla/genera with presumptive functions. Practically, the culturable approach gives beneficial microbes in hand for direct use, whereas the unculturable approach gives the perfect theoretical information about the taxonomy and metabolic potential of well-colonized major microbial groups associated with the plants. To capitalize on such beneficial, endemic, and functionally diverse microbiome, the strategic approach of concomitant use of culture-dependent and culture-independent techniques would help in designing novel "biologicals" for various crops. The designed biologicals (or bioinoculants) should ensure the community's persistence due to their genomic and functional abilities. Here, we discuss the current paradigm on plant-microbiome-induced adaptive functions for the host and the strategies for synthesizing novel bioinoculants based on functions or phylum predominance of microbial communities using culturable and unculturable approaches. The effective crop-specific inclusive microbial community bioinoculants may lead to reduction in the cost of cultivation and improvement in soil and plant health for sustainable agriculture.
Collapse
Affiliation(s)
- Archna Suman
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lin L. Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:14. [PMID: 35418100 PMCID: PMC8822760 DOI: 10.1186/s13068-022-02113-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/28/2022] [Indexed: 01/21/2023]
Abstract
Lignocellulose is the most abundant organic carbon polymer on the earth. Its decomposition and conversion greatly impact the global carbon cycle. Furthermore, it provides feedstock for sustainable fuel and other value-added products. However, it continues to be underutilized, due to its highly recalcitrant and heterogeneric structure. Microorganisms, which have evolved versatile pathways to convert lignocellulose, undoubtedly are at the heart of lignocellulose conversion. Numerous studies that have reported successful metabolic engineering of individual strains to improve biological lignin valorization. Meanwhile, the bottleneck of single strain modification is becoming increasingly urgent in the conversion of complex substrates. Alternatively, increased attention has been paid to microbial consortia, as they show advantages over pure cultures, e.g., high efficiency and robustness. Here, we first review recent developments in microbial communities for lignocellulose bioconversion. Furthermore, the emerging area of synthetic ecology, which is an integration of synthetic biology, ecology, and computational biology, provides an opportunity for the bottom-up construction of microbial consortia. Then, we review different modes of microbial interaction and their molecular mechanisms, and discuss considerations of how to employ these interactions to construct synthetic consortia via synthetic ecology, as well as highlight emerging trends in engineering microbial communities for lignocellulose bioconversion.
Collapse
Affiliation(s)
- Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
27
|
Understanding Interaction Patterns within Deep-Sea Microbial Communities and Their Potential Applications. Mar Drugs 2022; 20:md20020108. [PMID: 35200637 PMCID: PMC8874374 DOI: 10.3390/md20020108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental microbes living in communities engage in complex interspecies interactions that are challenging to decipher. Nevertheless, the interactions provide the basis for shaping community structure and functioning, which is crucial for ecosystem service. In addition, microbial interactions facilitate specific adaptation and ecological evolution processes particularly essential for microbial communities dwelling in resource-limiting habitats, such as the deep oceans. Recent technological and knowledge advancements provide an opportunity for the study of interactions within complex microbial communities, such as those inhabiting deep-sea waters and sediments. The microbial interaction studies provide insights into developing new strategies for biotechnical applications. For example, cooperative microbial interactions drive the degradation of complex organic matter such as chitins and celluloses. Such microbiologically-driven biogeochemical processes stimulate creative designs in many applied sciences. Understanding the interaction processes and mechanisms provides the basis for the development of synthetic communities and consequently the achievement of specific community functions. Microbial community engineering has many application potentials, including the production of novel antibiotics, biofuels, and other valuable chemicals and biomaterials. It can also be developed into biotechniques for waste processing and environmental contaminant bioremediation. This review summarizes our current understanding of the microbial interaction mechanisms and emerging techniques for inferring interactions in deep-sea microbial communities, aiding in future biotechnological and therapeutic applications.
Collapse
|
28
|
Liao YL, Niu FX, Liu JZ. Recent Progress in Microbial Biosynthesis by Coculture Engineering. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Sun Y, Li X, Wu L, Li Y, Li F, Xiu Z, Tong Y. The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:233. [PMID: 34876182 PMCID: PMC8650463 DOI: 10.1186/s13068-021-02085-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/26/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Lignocellulosic feedstocks have attracted much attention as a potential carbon source for lactic acid (LA) production because of their ready availability, sustainability, and renewability. However, there are at least two major technical challenges to producing LA from lignocellulose. Inhibitors derived from lignocellulose pretreatment have a negative impact on the growth of cells producing LA. Furthermore, pentose sugars produced from the pretreatment are difficultly utilized by most LA producers, which is known as the carbon catabolite repression (CCR) effect. This complex feedstock can be utilized by a robust microbial consortium with high bioconversion efficiency. RESULTS In this study, a thermophilic consortium DUT50 producing LA was enriched and employed to improve corn stover (CS) utilization. Enterococcus was the dominant family in the consortium DUT50, accounting for 93.66% of the total abundance, with Lactobacillus, Bacillus, Lactococcus, and Trichococcus accounted for the remaining 2.68%. This consortium could be resistant to inhibitors concentration up to 9.74 g/L (2.88 g/L acetic acid, 2.46 g/L furfural, 2.20 g/L 5-HMF, and 2.20 g/L vanillin derived from pretreatment of CS), and simultaneously metabolizes hexose and pentose without CCR effect. Based on the promising consortium features, an efficient process of simultaneous saccharification and co-fermentation (SSCF) was developed to produce LA from acid pretreated corn stover, in which solid-liquid separation and detoxification were avoided. The key influencing factors were investigated and optimized, including dry biomass and cellulase loading, corn steep liquor powder concentration, and the pre-hydrolysis time. The highest LA titer of 71.04 g/L with a yield of 0.49 g/g-CS was achieved at a dry biomass loading of 20% (w/v), which is the highest LA production from non-detoxified acid pretreated corn stover via the SSCF process without wastewater generation reported to date. The simultaneous metabolism of hexose and pentose revealed collaboration between Enterococcus in the consortium, whereas xylose may be efficiently metabolized by Lactobacillus and Bacillus with low abundance via the pentose phosphate pathway. CONCLUSIONS The experimental results demonstrated the potential advantage of symbiosis in microbial consortia used for LA production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yaqin Sun
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, 116024, People's Republic of China.
| | - Xiaoying Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, 116024, People's Republic of China
| | - Lida Wu
- COFCO Biochemistry Co., Ltd. (National Engineering Research Center of Corn Deep Processing), Changchun City, Jilin Province, 130033, People's Republic of China
| | - Yi Li
- COFCO Biochemistry Co., Ltd. (National Engineering Research Center of Corn Deep Processing), Changchun City, Jilin Province, 130033, People's Republic of China
| | - Fan Li
- COFCO Biochemistry Co., Ltd. (National Engineering Research Center of Corn Deep Processing), Changchun City, Jilin Province, 130033, People's Republic of China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, 116024, People's Republic of China
| | - Yi Tong
- COFCO Biochemistry Co., Ltd. (National Engineering Research Center of Corn Deep Processing), Changchun City, Jilin Province, 130033, People's Republic of China.
| |
Collapse
|
30
|
Wen J, Rapp K, Dahlin LR, Li CT, Sebesta J, Barry AN, Guarnieri MT, Peebles C, Betenbaugh M. Mapping the path forward to next generation algal technologies: Workshop on understanding the rules of life and complexity in algal systems. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:373-407. [PMID: 34811579 DOI: 10.1007/10_2021_180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Syngas, a gaseous mixture of CO, H2 and CO2, can be produced by gasification of carbon-containing materials, including organic waste materials or lignocellulosic biomass. The conversion of bio-based syngas to chemicals is foreseen as an important process in circular bioeconomy. Carbon monoxide is also produced as a waste gas in many industrial sectors (e.g., chemical, energy, steel). Often, the purity level of bio-based syngas and waste gases is low and/or the ratios of syngas components are not adequate for chemical conversion (e.g., by Fischer-Tropsch). Microbes are robust catalysts to transform impure syngas into a broad spectrum of products. Fermentation of CO-rich waste gases to ethanol has reached commercial scale (by axenic cultures of Clostridium species), but production of other chemical building blocks is underexplored. Currently, genetic engineering of carboxydotrophic acetogens is applied to increase the portfolio of products from syngas/CO, but the limited energy metabolism of these microbes limits product yields and applications (for example, only products requiring low levels of ATP for synthesis can be produced). An alternative approach is to explore microbial consortia, including open mixed cultures and synthetic co-cultures, to create a metabolic network based on CO conversion that can yield products such as medium-chain carboxylic acids, higher alcohols and other added-value chemicals.
Collapse
|
32
|
The Threat of Pests and Pathogens and the Potential for Biological Control in Forest Ecosystems. FORESTS 2021. [DOI: 10.3390/f12111579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Forests are an essential component of the natural environment, as they support biodiversity, sequester carbon, and play a crucial role in biogeochemical cycles—in addition to producing organic matter that is necessary for the function of terrestrial organisms. Forests today are subject to threats ranging from natural occurrences, such as lightning-ignited fires, storms, and some forms of pollution, to those caused by human beings, such as land-use conversion (deforestation or intensive agriculture). In recent years, threats from pests and pathogens, particularly non-native species, have intensified in forests. The damage, decline, and mortality caused by insects, fungi, pathogens, and combinations of pests can lead to sizable ecological, economic, and social losses. To combat forest pests and pathogens, biocontrol may be an effective alternative to chemical pesticides and fertilizers. This review of forest pests and potential adversaries in the natural world highlights microbial inoculants, as well as research efforts to further develop biological control agents against forest pests and pathogens. Recent studies have shown promising results for the application of microbial inoculants as preventive measures. Other studies suggest that these species have potential as fertilizers.
Collapse
|
33
|
Li J, Jia C, Lu Q, Hungate BA, Dijkstra P, Wang S, Wu C, Chen S, Li D, Shim H. Mechanistic insights into the success of xenobiotic degraders resolved from metagenomes of microbial enrichment cultures. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126384. [PMID: 34329005 DOI: 10.1016/j.jhazmat.2021.126384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Even though microbial communities can be more effective at degrading xenobiotics than cultured micro-organisms, yet little is known about the microbial strategies that underpin xenobiotic biodegradation by microbial communities. Here, we employ metagenomic community sequencing to explore the mechanisms that drive the development of 49 xenobiotic-degrading microbial communities, which were enriched from 7 contaminated soils or sediments with a range of xenobiotic compounds. We show that multiple microbial strategies likely drive the development of xenobiotic degrading communities, notably (i) presence of genes encoding catabolic enzymes to degrade xenobiotics; (ii) presence of genes encoding efflux pumps; (iii) auxiliary catabolic genes on plasmids; and (iv) positive interactions dominate microbial communities with efficient degradation. Overall, the integrated analyses of microbial ecological strategies advance our understanding of microbial processes driving the biodegradation of xenobiotics and promote the design of bioremediation systems.
Collapse
Affiliation(s)
- Junhui Li
- Vanderbilt Microbiome Initiative, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - Chongjian Jia
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cuiyu Wu
- College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou 510642, China
| | - Shaohua Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Deqiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
34
|
Szeinbaum N, Toporek Y, Reinhard CT, Glass JB. Microbial helpers allow cyanobacteria to thrive in ferruginous waters. GEOBIOLOGY 2021; 19:510-520. [PMID: 33871172 PMCID: PMC8349797 DOI: 10.1111/gbi.12443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The Great Oxidation Event (GOE) was a rapid accumulation of oxygen in the atmosphere as a result of the photosynthetic activity of cyanobacteria. This accumulation reflected the pervasiveness of O2 on the planet's surface, indicating that cyanobacteria had become ecologically successful in Archean oceans. Micromolar concentrations of Fe2+ in Archean oceans would have reacted with hydrogen peroxide, a byproduct of oxygenic photosynthesis, to produce hydroxyl radicals, which cause cellular damage. Yet, cyanobacteria colonized Archean oceans extensively enough to oxygenate the atmosphere, which likely required protection mechanisms against the negative impacts of hydroxyl radical production in Fe2+ -rich seas. We identify several factors that could have acted to protect early cyanobacteria from the impacts of hydroxyl radical production and hypothesize that microbial cooperation may have played an important role in protecting cyanobacteria from Fe2+ toxicity before the GOE. We found that several strains of facultative anaerobic heterotrophic bacteria (Shewanella) with ROS defence mechanisms increase the fitness of cyanobacteria (Synechococcus) in ferruginous waters. Shewanella species with manganese transporters provided the most protection. Our results suggest that a tightly regulated response to prevent Fe2+ toxicity could have been important for the colonization of ancient ferruginous oceans, particularly in the presence of high manganese concentrations and may expand the upper bound for tolerable Fe2+ concentrations for cyanobacteria.
Collapse
Affiliation(s)
- Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Yael Toporek
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | | - Jennifer B. Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
35
|
Espinosa-Ortiz EJ, Rene ER, Gerlach R. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Crit Rev Biotechnol 2021; 42:361-383. [PMID: 34325585 DOI: 10.1080/07388551.2021.1940831] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungi and bacteria coexist in a wide variety of natural and artificial environments which can lead to their association and interaction - ranging from antagonism to cooperation - that can affect the survival, colonization, spatial distribution and stress resistance of the interacting partners. The use of polymicrobial cultivation approaches has facilitated a more thorough understanding of microbial dynamics in mixed microbial communities, such as those composed of fungi and bacteria, and their influence on ecosystem functions. Mixed (multi-domain) microbial communities exhibit unique associations and interactions that could result in more efficient systems for the degradation and removal of organic pollutants. Several previous studies have reported enhanced biodegradation of certain pollutants when using combined fungal-bacterial treatments compared to pure cultures or communities of either fungi or bacteria (single domain systems). This article reviews: (i) the mechanisms of pollutant degradation that can occur in fungal-bacterial systems (e.g.: co-degradation, production of secondary metabolites, enhancement of degradative enzyme production, and transport of bacteria by fungal mycelia); (ii) case studies using fungal-bacterial co-cultures for the removal of various organic pollutants (synthetic dyes, polycyclic aromatic hydrocarbons, pesticides, and other trace or volatile organic compounds) in different environmental matrices (e.g. water, gas/vapors, soil); (iii) the key aspects of engineering artificial fungal-bacterial co-cultures, and (iv) the current challenges and future perspectives of using fungal-bacterial co-cultures for environmental remediation.
Collapse
Affiliation(s)
- Erika J Espinosa-Ortiz
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Eldon R Rene
- Department of Water Supply, Sanitary and Environmental Engineering, IHE Delft Institute for Water Education, 2601DA Delft, The Netherlands
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
36
|
An aptly industrialized bioprocess for lactic acid production from corn stover using thermotolerant microbial consortia. Bioprocess Biosyst Eng 2021; 44:2445-2454. [PMID: 34304345 DOI: 10.1007/s00449-021-02616-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Chemical pretreatment of lignocellulosic biomass is a critical step in the conversion of lignocellulose to biofuels and biochemical. The main drawback of this pretreatment process is the formation of inhibitors which exhibit combined toxicity to microorganisms and result to low product concentrations and yields. In this study, the selection of microbial consortia by enrichment on hydrolysate of H2SO4-pretreated corn stover (pre-CS) without detoxification has been investigated as an efficient way to develop new strategies for lignocellulose utilization. The analysis of cattle stomach-dervied microbial consortia domesticated to degrade hydrolysate of pre-CS to produce lactic acid (LA) at different temperatures was investigated. Bacterial 16S rRNA gene amplicon sequencing analyses indicated that the three microbial consortia were taxonomically distinct and Enterococcus became dominant at high temperature. The highest glucose consumption rate was observed at 45 °C, while the three microbial consortia showed similar consumption rates of xylose and arabinose. The selected microbial consortia DUT37, DUT45 and DUT47 showed preferable resistances to inhibitors in hydrolysate of pre-CS and abilities of xylose utilization. A batch simultaneous saccharification and fermentation (SSF) process was developed by microbial consortium DUT47 at 47 °C to produce LA from pre-CS under non-detoxified and non-sterile conditions. The LA concentration and yield were 43.73 g/L and 0.50 g/g-corn stover (CS), respectively. Microbial consortium DUT47 has been shown to be suitable for LA production from H2SO4-pretreated corn stover without detoxification due to its thermophilic growth characteristics, robust tolerance of inhibitors, and the simultaneous utilization of glucose and xylose.
Collapse
|
37
|
Pacheco AR, Segrè D. An evolutionary algorithm for designing microbial communities via environmental modification. J R Soc Interface 2021; 18:20210348. [PMID: 34157894 PMCID: PMC8220269 DOI: 10.1098/rsif.2021.0348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite a growing understanding of how environmental composition affects microbial communities, it remains difficult to apply this knowledge to the rational design of synthetic multispecies consortia. This is because natural microbial communities can harbour thousands of different organisms and environmental substrates, making up a vast combinatorial space that precludes exhaustive experimental testing and computational prediction. Here, we present a method based on the combination of machine learning and metabolic modelling that selects optimal environmental compositions to produce target community phenotypes. In this framework, dynamic flux balance analysis is used to model the growth of a community in candidate environments. A genetic algorithm is then used to evaluate the behaviour of the community relative to a target phenotype, and subsequently adjust the environment to allow the organisms to approach this target. We apply this iterative process to thousands of in silico communities of varying sizes, showing how it can rapidly identify environments that yield desired taxonomic compositions and patterns of metabolic exchange. Moreover, this combination of approaches produces testable predictions for the assembly of experimental microbial communities with specific properties and can facilitate rational environmental design processes for complex microbiomes.
Collapse
Affiliation(s)
- Alan R Pacheco
- Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Daniel Segrè
- Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, MA 02215, USA.,Department of Biology, Boston University, Boston, MA 02215, USA.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.,Department of Physics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
38
|
Kelly EE, Fischer AM, Collins CH. Drawing up a collaborative contract: Amino acid cross-feeding between interspecies bacterial pairs. Biotechnol Bioeng 2021; 118:3138-3149. [PMID: 34027999 DOI: 10.1002/bit.27837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023]
Abstract
Synthetic microbial communities have the potential to enable new platforms for bioproduction of biofuels and biopharmaceuticals. However, using engineered communities is often assumed to be difficult because of anticipated challenges in establishing and controlling community composition. Cross-feeding between microbial auxotrophs has the potential to facilitate coculture growth and stability through a mutualistic ecological interaction. We assessed cross-feeding between 13 Escherichia coli amino acid auxotrophs paired with a leucine auxotroph of Bacillus megaterium. We developed a minimal medium capable of supporting the growth of both bacteria and used the media to study coculture growth of the 13 interspecies pairs of auxotrophs in batch and continuous culture, as well as on semi-solid media. In batch culture, 8 of 13 pairs of auxotrophs were observed to grow in coculture. We developed a new metric to quantify the impact of cross-feeding on coculture growth. Six pairs also showed long-term stability in continuous culture, where coculture growth at different dilution rates highlighted differences in cross-feeding amongst the pairs. Finally, we found that cross-feeding-dependent growth on semi-solid media is highly stringent and enables identification of the most efficient pairs. These results demonstrate that cross-feeding is a viable approach for controlling community composition within diverse synthetic communities.
Collapse
Affiliation(s)
- Erin E Kelly
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Alexandria M Fischer
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Cynthia H Collins
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
39
|
Qian W, Lu ZM, Chai LJ, Zhang XJ, Li Q, Wang ST, Shen CH, Shi JS, Xu ZH. Cooperation within the microbial consortia of fermented grains and pit mud drives organic acid synthesis in strong-flavor Baijiu production. Food Res Int 2021; 147:110449. [PMID: 34399451 DOI: 10.1016/j.foodres.2021.110449] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/09/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Mud cellars have long been used as anaerobic bioreactors for the fermentation of Chinese strong-flavor Baijiu, where starchy raw materials (mainly sorghum) are metabolized to ethanol and various flavor compounds by multi-species microorganisms. Jiupei (fermented grains) and pit mud are two spatially linked microbial habitats in the mud cellar, yet their metabolic division of labor remains unclear. Here, we investigated the changes in environmental variables (e.g., temperature, oxygen, pH), key metabolites (e.g., ethanol, organic acids) and microbial communities in jiupei and pit mud during fermentation. Jiupei (low pH, high ethanol) and pit mud (neutral pH) provided two habitats with distinctly different environmental conditions for microbial growth. Lactic acid accumulated in jiupei, while butyric and hexanoic acids were mainly produced by microbes inhabiting the pit mud. Biomass analysis using quantitative real-time PCR showed that bacteria dominated the microbial consortia during fermentation, moreover cluster and principal coordinate analysis (PCoA) analysis showed that the bacterial communities of jiupei and pit mud were significantly divergent. The bacterial community diversity of jiupei decreased significantly during the fermentation process, and was relatively stable in pit mud. Lactobacillus dominated the jiupei bacterial community, and its relative abundance reached 98.0% at the end of fermentation. Clostridia (relative abundance: 42.9-85.5%) was the most abundant bacteria in pit mud, mainly distributed in the genus Hydrogenispora (5.3-68.4%). Fungal communities of jiupei and pit mud showed a similar succession pattern, and Kazachstania, Aspergillus and Thermoascus were the predominant genera. PICRUSt analysis demonstrated that enzymes participating in the biosynthesis of acetic and lactic acid were mainly enriched in jiupei samples, while the bacterial community in the pit mud displayed greater potential for butyric and hexanoic acid synthesis. Assays from an in vitro simulated fermentation further validated the roles of jiupei microbiota in acetic and lactic acid production, and these acids were subsequently metabolized to butyric and hexanoic acid by the pit mud microbiota. This work has demonstrated the synergistic cooperation between the microbial communities of jiupei and pit mud for the representative flavor formation of strong-flavor Baijiu.
Collapse
Affiliation(s)
- Wei Qian
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Li-Juan Chai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China.
| |
Collapse
|
40
|
Conacher CG, Luyt NA, Naidoo-Blassoples RK, Rossouw D, Setati ME, Bauer FF. The ecology of wine fermentation: a model for the study of complex microbial ecosystems. Appl Microbiol Biotechnol 2021; 105:3027-3043. [PMID: 33834254 DOI: 10.1007/s00253-021-11270-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022]
Abstract
The general interest in microbial ecology has skyrocketed over the past decade, driven by technical advances and by the rapidly increasing appreciation of the fundamental services that these ecosystems provide. In biotechnology, ecosystems have many more functionalities than single species, and, if properly understood and harnessed, will be able to deliver better outcomes for almost all imaginable applications. However, the complexity of microbial ecosystems and of the interactions between species has limited their applicability. In research, next generation sequencing allows accurate mapping of the microbiomes that characterise ecosystems of biotechnological and/or medical relevance. But the gap between mapping and understanding, to be filled by "functional microbiomics", requires the collection and integration of many different layers of complex data sets, from molecular multi-omics to spatial imaging technologies to online ecosystem monitoring tools. Holistically, studying the complexity of most microbial ecosystems, consisting of hundreds of species in specific spatial arrangements, is beyond our current technical capabilities, and simpler model systems with fewer species and reduced spatial complexity are required to establish the fundamental rules of ecosystem functioning. One such ecosystem, the ecosystem responsible for natural alcoholic fermentation, can provide an excellent tool to study evolutionarily relevant interactions between multiple species within a relatively easily controlled environment. This review will critically evaluate the approaches that are currently implemented to dissect the cellular and molecular networks that govern this ecosystem. KEY POINTS: • Evolutionarily isolated fermentation ecosystem can be used as an ecological model. • Experimental toolbox is gearing towards mechanistic understanding of this ecosystem. • Integration of multidisciplinary datasets is key to predictive understanding.
Collapse
Affiliation(s)
- C G Conacher
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - N A Luyt
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - R K Naidoo-Blassoples
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - D Rossouw
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - M E Setati
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - F F Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa.
| |
Collapse
|
41
|
Qi M, Liang B, Zhang L, Ma X, Yan L, Dong W, Kong D, Zhang L, Zhu H, Gao SH, Jiang J, Liu SJ, Corvini PFX, Wang A. Microbial Interactions Drive the Complete Catabolism of the Antibiotic Sulfamethoxazole in Activated Sludge Microbiomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3270-3282. [PMID: 33566597 DOI: 10.1021/acs.est.0c06687] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbial communities are believed to outperform monocultures in the complete catabolism of organic pollutants via reduced metabolic burden and increased robustness to environmental challenges; however, the interaction mechanism in functional microbiomes remains poorly understood. Here, three functionally differentiated activated sludge microbiomes (S1: complete catabolism of sulfamethoxazole (SMX); S2: complete catabolism of the phenyl part of SMX ([phenyl]-SMX) with stable accumulation of its heterocyclic product 3-amino-5-methylisoxazole (3A5MI); A: complete catabolism of 3A5MI rather than [phenyl]-SMX) were enriched. Combining time-series cultivation-independent microbial community analysis, DNA-stable isotope probing, molecular ecological network analysis, and cultivation-dependent function verification, we identified key players involved in the SMX degradation process. Paenarthrobacter and Nocardioides were primary degraders for the initial cleavage of the sulfonamide functional group (-C-S-N- bond) and 3A5MI degradation, respectively. Complete catabolism of SMX was achieved by their cross-feeding. The co-culture of Nocardioides, Acidovorax, and Sphingobium demonstrated that the nondegraders Acidovorax and Sphingobium were involved in the enhancement of 3A5MI degradation. Moreover, we unraveled the internal labor division patterns and connections among the active members centered on the two primary degraders. Overall, the proposed methodology is promisingly applicable and would help generate mechanistic, predictive, and operational understanding of the collaborative biodegradation of various contaminants. This study provides useful information for synthetic activated sludge microbiomes with optimized environmental functions.
Collapse
Affiliation(s)
- Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchen Dong
- Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhen Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
42
|
Macchi M, Festa S, Nieto E, Irazoqui JM, Vega-Vela NE, Junca H, Valacco MP, Amadio AF, Morelli IS, Coppotelli BM. Design and evaluation of synthetic bacterial consortia for optimized phenanthrene degradation through the integration of genomics and shotgun proteomics. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00588. [PMID: 33489789 PMCID: PMC7809168 DOI: 10.1016/j.btre.2021.e00588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 01/15/2023]
Abstract
Two synthetic bacterial consortia (SC) composed of bacterial strains Sphingobium sp. (AM), Klebsiella aerogenes (B), Pseudomonas sp. (Bc-h and T), Burkholderia sp. (Bk) and Inquilinus limosus (Inq) isolated from a natural phenanthrene (PHN)-degrading consortium (CON) were developed and evaluated as an alternative approach to PHN biodegradation in bioremediation processes. A metabolic network showing the potential role of strains was reconstructed by in silico study of the six genomes and classification of dioxygenase enzymes using RHObase and AromaDeg databases. Network analysis suggested that AM and Bk were responsible for PHN initial attack, while Inq, B, T and Bc-h would degrade PHN metabolites. The predicted roles were further confirmed by physiological, RT-qPCR and metaproteomic assays. SC-1 with AM as the sole PHN degrader was the most efficient. The ecological roles inferred in this study can be applied to optimize the design of bacterial consortia and tackle the biodegradation of complex environmental pollutants.
Collapse
Affiliation(s)
- Marianela Macchi
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata, Argentina
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata, Argentina
| | - Esteban Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata, Argentina
| | - José M. Irazoqui
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), CCT Santa Fe, CONICET, Rafaela, Argentina
| | - Nelson E. Vega-Vela
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Universidad de Bogotá Jorge Tadeo Lozano, Bogotá, Colombia
| | - Howard Junca
- Microbiomas Foundation, Div. Ecogenomics & Holobionts, RG Microbial Ecology: Metabolism, Genomics & Evolution, Chía, Colombia
| | | | - Ariel F. Amadio
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), CCT Santa Fe, CONICET, Rafaela, Argentina
| | - Irma S. Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana M. Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata, Argentina
| |
Collapse
|
43
|
García-Jiménez B, Torres-Bacete J, Nogales J. Metabolic modelling approaches for describing and engineering microbial communities. Comput Struct Biotechnol J 2020; 19:226-246. [PMID: 33425254 PMCID: PMC7773532 DOI: 10.1016/j.csbj.2020.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022] Open
Abstract
Microbes do not live in isolation but in microbial communities. The relevance of microbial communities is increasing due to growing awareness of their influence on a huge number of environmental, health and industrial processes. Hence, being able to control and engineer the output of both natural and synthetic communities would be of great interest. However, most of the available methods and biotechnological applications involving microorganisms, both in vivo and in silico, have been developed in the context of isolated microbes. In vivo microbial consortia development is extremely difficult and costly because it implies replicating suitable environments in the wet-lab. Computational approaches are thus a good, cost-effective alternative to study microbial communities, mainly via descriptive modelling, but also via engineering modelling. In this review we provide a detailed compilation of examples of engineered microbial communities and a comprehensive, historical revision of available computational metabolic modelling methods to better understand, and rationally engineer wild and synthetic microbial communities.
Collapse
Affiliation(s)
- Beatriz García-Jiménez
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| |
Collapse
|
44
|
Sharma B, Shukla P. Futuristic avenues of metabolic engineering techniques in bioremediation. Biotechnol Appl Biochem 2020; 69:51-60. [PMID: 33242354 DOI: 10.1002/bab.2080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
Bioremediation is a promising technology for the treatment of environmental contaminants and paving new avenues for the betterment of the environment. Over the last some years, several approaches have been employed to optimize the genetic machinery of microorganisms relevant to bioremediation. Metabolic engineering is one of them that provides a new insight for bioremediation. This review envisages the critical role of these techniques toward exploring the possibilities of the creation of a new pathway, leading to pathway expansion to new substrates by assembling of catabolic modules from different origins in the same microbial cell. The recombinant DNA technology and gene editing tools were also explored for the construction of metabolically engineered microbial strains for the degradation of complex pollutants. Moreover, the importance of CRISPR-Cas system for knock-in and knock-out of genes was described by using recent studies. Further, the idea of the cocultivation of more than one metabolic engineered microbial communities is also discussed, which can be crucial in the bioremediation of multiple and complex pollutants. Finally, this review also elucidates the effective application of metabolic engineering in bioremediation through these techniques and tools.
Collapse
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
45
|
French KE, Zhou Z, Terry N. Horizontal 'gene drives' harness indigenous bacteria for bioremediation. Sci Rep 2020; 10:15091. [PMID: 32934307 PMCID: PMC7492276 DOI: 10.1038/s41598-020-72138-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
Engineering bacteria to clean-up oil spills is rapidly advancing but faces regulatory hurdles and environmental concerns. Here, we develop a new technology to harness indigenous soil microbial communities for bioremediation by flooding local populations with catabolic genes for petroleum hydrocarbon degradation. Overexpressing three enzymes (almA, xylE, p450cam) in Escherichia coli led to degradation of 60-99% of target hydrocarbon substrates. Mating experiments, fluorescence microscopy and TEM revealed indigenous bacteria could obtain these vectors from E. coli through several mechanisms of horizontal gene transfer (HGT), including conjugation and cytoplasmic exchange through nanotubes. Inoculating petroleum-polluted sediments with E. coli carrying the vector pSF-OXB15-p450camfusion showed that the E. coli cells died after five days but a variety of bacteria received and carried the vector for over 60 days after inoculation. Within 60 days, the total petroleum hydrocarbon content of the polluted soil was reduced by 46%. Pilot experiments show that vectors only persist in indigenous populations when under selection pressure, disappearing when this carbon source is removed. This approach to remediation could prime indigenous bacteria for degrading pollutants while providing minimal ecosystem disturbance.
Collapse
Affiliation(s)
- Katherine E French
- Department of Plant and Microbial Biology, University of California Berkeley, Koshland Hall, Berkeley, CA, 94720, USA.
| | - Zhongrui Zhou
- QB3, University of California Berkeley, Stanley Hall, Berkeley, CA, 94720, USA
| | - Norman Terry
- Department of Plant and Microbial Biology, University of California Berkeley, Koshland Hall, Berkeley, CA, 94720, USA
| |
Collapse
|
46
|
Sharma B, Shukla P. Designing synthetic microbial communities for effectual bioremediation: A review. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1813727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Haryana, India
| |
Collapse
|
47
|
Hernández-Melchor DJ, Camacho-Pérez B, Ríos-Leal E, Alarcón-Bonilla J, López-Pérez PA. Modelling and multi-objective optimization for simulation of hydrogen production using a photosynthetic consortium. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2020-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis study was aimed at finding the optimal conditions for hydrogen production based on statistical experiments and using a simulation approach. A Plackett–Burman design and steepest ascent were used to screen the key factors to obtain the best hydrogen concentration. According to the regression analysis, cysteine, acetate, and aeration had the best effect. The optimal conditions, using the method of steepest ascent, were aeration (0.125 L/min), acetate (200 mg/L), cysteine (498 mg/L). Once this was determined, an experiment with more than two factors was considered. The combinations: acetate + cysteine without aeration and cysteine without aeration increased hydrogen concentration. These last two criteria were used to validate the dynamic model based on unstructured kinetics. Biomass, nitrogen, acetate, and hydrogen concentrations were monitored. The proposed model was used to perform the multi-objective optimization for various desired combinations. The simultaneous optimization for a minimum ratio of cysteine-acetate improved the concentration of hydrogen to 20 mg/L. Biomass optimized the concentration of hydrogen to 11.5 mg/L. The simultaneous optimization of reaction time (RT) and cysteine improved hydrogen concentration to 28.19 mg/L. The experimental hydrogen production was 11.4 mg/L at 24 h under discontinuous operation. Finally, the proposed model and the optimization methodology calculated a higher hydrogen concentration than the experimental data.
Collapse
Affiliation(s)
- Dulce J. Hernández-Melchor
- Colegio de Postgraduados campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco, 56230, Estado de México, México
| | - Beni Camacho-Pérez
- Universidad Tecnológica de Tecámac, A5 Químico-Biológicas, Carretera Federal México – Pachuca Km 37.5, C.P. 55740, Col. Sierra Hermosa, Tecámac, Estado de México, México
| | - Elvira Ríos-Leal
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, No. 2508, San Pedro Zacatenco, Ciudad de Mexico, D.F., México
| | - Jesus Alarcón-Bonilla
- Universidad Tecnológica de Tecámac, A5 Químico-Biológicas, Carretera Federal México – Pachuca Km 37.5, C.P. 55740, Col. Sierra Hermosa, Tecámac, Estado de México, México
| | - Pablo A. López-Pérez
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior Apan, Carretera Apan-Calpulalpan Km.8, Col. Chimalpa, 43920, Apan, Hgo, México
| |
Collapse
|
48
|
Alnahhas RN, Sadeghpour M, Chen Y, Frey AA, Ott W, Josić K, Bennett MR. Majority sensing in synthetic microbial consortia. Nat Commun 2020; 11:3659. [PMID: 32694598 PMCID: PMC7374166 DOI: 10.1038/s41467-020-17475-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/25/2020] [Indexed: 01/26/2023] Open
Abstract
As synthetic biocircuits become more complex, distributing computations within multi-strain microbial consortia becomes increasingly beneficial. However, designing distributed circuits that respond predictably to variation in consortium composition remains a challenge. Here we develop a two-strain gene circuit that senses and responds to which strain is in the majority. This involves a co-repressive system in which each strain produces a signaling molecule that signals the other strain to down-regulate production of its own, orthogonal signaling molecule. This co-repressive consortium links gene expression to ratio of the strains rather than population size. Further, we control the cross-over point for majority via external induction. We elucidate the mechanisms driving these dynamics by developing a mathematical model that captures consortia response as strain fractions and external induction are varied. These results show that simple gene circuits can be used within multicellular synthetic systems to sense and respond to the state of the population.
Collapse
Affiliation(s)
| | - Mehdi Sadeghpour
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - Ye Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Alexis A Frey
- Department of Biosciences, Rice University, Houston, TX, USA
| | - William Ott
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
49
|
Tosi M, Mitter EK, Gaiero J, Dunfield K. It takes three to tango: the importance of microbes, host plant, and soil management to elucidate manipulation strategies for the plant microbiome. Can J Microbiol 2020; 66:413-433. [DOI: 10.1139/cjm-2020-0085] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The world’s population is expected to grow to almost 10 billion by 2050, placing unprecedented demands on agriculture and natural resources. The risk in food security is also aggravated by climate change and land degradation, which compromise agricultural productivity. In recent years, our understanding of the role of microbial communities on ecosystem functioning, including plant-associated microbes, has advanced considerably. Yet, translating this knowledge into practical agricultural technologies is challenged by the intrinsic complexity of agroecosystems. Here, we review current strategies for plant microbiome manipulation, classifying them into three main pillars: (i) introducing and engineering microbiomes, (ii) breeding and engineering the host plant, and (iii) selecting agricultural practices that enhance resident soil and plant-associated microbial communities. In each of these areas, we analyze current trends in research, as well as research priorities and future perspectives.
Collapse
Affiliation(s)
- Micaela Tosi
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Jonathan Gaiero
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kari Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
50
|
Gorochowski TE, Hauert S, Kreft JU, Marucci L, Stillman NR, Tang TYD, Bandiera L, Bartoli V, Dixon DOR, Fedorec AJH, Fellermann H, Fletcher AG, Foster T, Giuggioli L, Matyjaszkiewicz A, McCormick S, Montes Olivas S, Naylor J, Rubio Denniss A, Ward D. Toward Engineering Biosystems With Emergent Collective Functions. Front Bioeng Biotechnol 2020; 8:705. [PMID: 32671054 PMCID: PMC7332988 DOI: 10.3389/fbioe.2020.00705] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Many complex behaviors in biological systems emerge from large populations of interacting molecules or cells, generating functions that go beyond the capabilities of the individual parts. Such collective phenomena are of great interest to bioengineers due to their robustness and scalability. However, engineering emergent collective functions is difficult because they arise as a consequence of complex multi-level feedback, which often spans many length-scales. Here, we present a perspective on how some of these challenges could be overcome by using multi-agent modeling as a design framework within synthetic biology. Using case studies covering the construction of synthetic ecologies to biological computation and synthetic cellularity, we show how multi-agent modeling can capture the core features of complex multi-scale systems and provide novel insights into the underlying mechanisms which guide emergent functionalities across scales. The ability to unravel design rules underpinning these behaviors offers a means to take synthetic biology beyond single molecules or cells and toward the creation of systems with functions that can only emerge from collectives at multiple scales.
Collapse
Affiliation(s)
| | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Jan-Ulrich Kreft
- School of Biosciences and Institute of Microbiology and Infection and Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Namid R. Stillman
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - T.-Y. Dora Tang
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Physics of Life, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - Lucia Bandiera
- School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Vittorio Bartoli
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | | | - Alex J. H. Fedorec
- Division of Biosciences, University College London, London, United Kingdom
| | - Harold Fellermann
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander G. Fletcher
- Bateson Centre and School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Tim Foster
- School of Biosciences and Institute of Microbiology and Infection and Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Luca Giuggioli
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | | | - Scott McCormick
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Sandra Montes Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Jonathan Naylor
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Rubio Denniss
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Daniel Ward
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|