1
|
Li Y, Che X, Chen H, Meng Z, Li X, Wang X, Zhu L, Zhao Y. Effects of filter-feeding fish faeces on microbial driving mechanism of lake sediment carbon transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175594. [PMID: 39154991 DOI: 10.1016/j.scitotenv.2024.175594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silver carp (Hypophthalmichthys molitrix) can filter the carbon in the food taken up by phytoplankton and plays an important role in carbon fixation. In this study, the faeces of silver carp, the dominant fish species in Qiandao Lake, China, were collected and subjected to a closed incubation and transformation experiment for three months. The physical and chemical indices of water and sediment mixture, carbon metabolic enzyme activity, and microbial sequences were analyzed to identify the key microbial strains that affect carbon transformation as well as the main factors influencing carbon transformation. The results showed maximum CO2 and CH4 emission fluxes on day 15 of fish faeces and sediment interaction. In the faeces addition group, the contents of soluble organic carbon, soluble inorganic carbon, SO42-, and PO43- were significantly increased, while the dissolved oxygen content was significantly decreased. Furthermore, the pH, total carbon content, volatile suspended solids content, and activities of four carbon-metabolizing enzymes were significantly increased in the faeces addition group. The 16sRNA analysis of methanogenic and methane-oxidizing bacteria showed that Euryarchaea and Pseudomonas accounted for the highest proportion respectively. The most significant differences expression were found for Methylbacterium in the methanogenic bacteria and Methylobacter in the methane oxidizing bacteria. Structural variance model showed that interaction of fish faeces and sediments mainly caused changes in sulfate content, leading to variations in methanogens and methanotrophs and promotion of CH4 emission. The results of this study can provide a theoretical reference for the mechanism of carbon reduction and emission reduction of lake filter-feeding fish.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| | - Hongyuan Chen
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Zhanpeng Meng
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinfeng Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xiaodong Wang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Lin Zhu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
2
|
Dong W, Zhou J, Zhang CJ, Yang Q, Li M. Methylotrophic substrates stimulated higher methane production than competitive substrates in mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175677. [PMID: 39181265 DOI: 10.1016/j.scitotenv.2024.175677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Although mangrove forests can uptake atmospheric CO2 and store carbon as organic matter called "blue carbon", it is also an important natural source of greenhouse gas methane. Methanogens are major contributors to methane and play important roles in the global carbon cycle. However, our understanding of the key microbes and metabolic pathways responsible for methanogenesis under specific substrates in mangrove sediments is still very limited. Here, we set an anaerobic incubation to evaluate the responses of methanogens in mangrove sediments from South China to the addition of diverse methanogenic substrates (H2/CO2, acetate, trimethylamine (TMA), and methanethiol (MT)) and further investigated the dynamics of the whole microbial community. Our results showed that diverse substrates stimulated methanogenic activities at different times. The stimulation of methanogenesis was more pronounced at early and late periods by the addition of methylotrophic substrates TMA and MT, respectively. The amplicon sequencing analysis showed that genus Methanococcoides was mainly responsible for TMA-utilized methanogenesis in mangrove sediment, while the multitrophic Methanococcus was most abundant in H2/CO2 and MT treatments. Apart from that, the bacteria enrichments of Syntrophotalea, Clostridium_sensu_stricto_12, Fusibacter in MT treatments might also be associated with the stimulation of methane production. In addition, the metagenomic analysis suggested that Methanosarcinaceae was also one of the key methanogens in MT treatments with different genomic information compared to that in TMA treatments. Finally, the total relative abundances of methanogenesis-related genes were also highest in TMA and MT treatments. These results will help advance our understanding of the contributions of different methanogenesis pathways and methanogens to methane emissions in mangrove sediments.
Collapse
Affiliation(s)
- Weiling Dong
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinjie Zhou
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Cui-Jing Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qin Yang
- Department of Biological Information, Shenzhen GenDow Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Meng Li
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Tsola SL, Prevodnik AA, Sinclair LF, Sanders IA, Economou CK, Eyice Ö. Methanomethylovorans are the dominant dimethylsulfide-degrading methanogens in gravel and sandy river sediment microcosms. ENVIRONMENTAL MICROBIOME 2024; 19:51. [PMID: 39033282 PMCID: PMC11264916 DOI: 10.1186/s40793-024-00591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Rivers and streams are important components of the global carbon cycle and methane budget. However, our understanding of the microbial diversity and the metabolic pathways underpinning methylotrophic methane production in river sediments is limited. Dimethylsulfide is an important methylated compound, found in freshwater sediments. Yet, the magnitude of DMS-dependent methanogenesis nor the methanogens carrying out this process in river sediments have been explored before. This study addressed this knowledge gap in DMS-dependent methanogenesis in gravel and sandy river sediments. RESULTS Significant methane production via DMS degradation was found in all sediment microcosms. Sandy, less permeable river sediments had higher methane yields (83 and 92%) than gravel, permeable sediments (40 and 48%). There was no significant difference between the methanogen diversity in DMS-amended gravel and sandy sediment microcosms, which Methanomethylovorans dominated. Metagenomics data analysis also showed the dominance of Methanomethylovorans and Methanosarcina. DMS-specific methyltransferase genes (mts) were found in very low relative abundances whilst the methanol-, trimethylamine- and dimethylamine-specific methyltransferase genes (mtaA, mttB and mtbB) had the highest relative abundances, suggesting their involvement in DMS-dependent methanogenesis. CONCLUSIONS This is the first study demonstrating a significant potential for DMS-dependent methanogenesis in river sediments with contrasting geologies. Methanomethylovorans were the dominant methylotrophic methanogen in all river sediment microcosms. Methyltransferases specific to methylotrophic substrates other than DMS are likely key enzymes in DMS-dependent methanogenesis, highlighting their versatility and importance in the methane cycle in freshwater sediments, which would warrant further study.
Collapse
Affiliation(s)
- S L Tsola
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - A A Prevodnik
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - L F Sinclair
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - I A Sanders
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - C K Economou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ö Eyice
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Ou Y, Ren Z, Chen X, Jiang Z, Liu Q, Li X, Zheng Y, Liang X, Liu M, Hou L, Dong H. Global Atlas of Methane Metabolism Marker Genes in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9261-9271. [PMID: 38739716 DOI: 10.1021/acs.est.4c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Methane, a greenhouse gas, plays a pivotal role in the global carbon cycle, influencing the Earth's climate. Only a limited number of microorganisms control the flux of biologically produced methane in nature, including methane-oxidizing bacteria, anaerobic methanotrophic archaea, and methanogenic archaea. Although previous studies have revealed the spatial and temporal distribution characteristics of methane-metabolizing microorganisms in local regions by using the marker genes pmoA or mcrA, their biogeographical patterns and environmental drivers remain largely unknown at a global scale. Here, we used 3419 metagenomes generated from georeferenced soil samples to examine the global patterns of methane metabolism marker gene abundances in soil, which generally represent the global distribution of methane-metabolizing microorganisms. The resulting maps revealed notable latitudinal trends in the abundances of methane-metabolizing microorganisms across global soils, with higher abundances in the sub-Arctic, sub-Antarctic, and tropical rainforest regions than in temperate regions. The variations in global abundances of methane-metabolizing microorganisms were primarily governed by vegetation cover. Our high-resolution global maps of methane-metabolizing microorganisms will provide valuable information for the prediction of biogenic methane emissions under current and future climate scenarios.
Collapse
Affiliation(s)
- Yafei Ou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zhongda Ren
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xi Chen
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Zhenran Jiang
- Department of Computer Science and Technology, East China Normal University, Shanghai 200062, China
| | - Qiancai Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Méndez-Sánchez D, Schrecengost A, Rotterová J, Koštířová K, Beinart RA, Čepička I. Methanogenic symbionts of anaerobic ciliates are host and habitat specific. THE ISME JOURNAL 2024; 18:wrae164. [PMID: 39163261 PMCID: PMC11378729 DOI: 10.1093/ismejo/wrae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/29/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
The association between anaerobic ciliates and methanogenic archaea has been recognized for over a century. Nevertheless, knowledge of these associations is limited to a few ciliate species, and so the identification of patterns of host-symbiont specificity has been largely speculative. In this study, we integrated microscopy and genetic identification to survey the methanogenic symbionts of 32 free-living anaerobic ciliate species, mainly from the order Metopida. Based on Sanger and Illumina sequencing of the 16S rRNA gene, our results show that a single methanogenic symbiont population, belonging to Methanobacterium, Methanoregula, or Methanocorpusculum, is dominant in each host strain. Moreover, the host's taxonomy (genus and above) and environment (i.e. endobiotic, marine/brackish, or freshwater) are linked with the methanogen identity at the genus level, demonstrating a strong specificity and fidelity in the association. We also established cultures containing artificially co-occurring anaerobic ciliate species harboring different methanogenic symbionts. This revealed that the host-methanogen relationship is stable over short timescales in cultures without evidence of methanogenic symbiont exchanges, although our intraspecific survey indicated that metopids also tend to replace their methanogens over longer evolutionary timescales. Therefore, anaerobic ciliates have adapted a mixed transmission mode to maintain and replace their methanogenic symbionts, allowing them to thrive in oxygen-depleted environments.
Collapse
Affiliation(s)
- Daniel Méndez-Sánchez
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| | - Anna Schrecengost
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, United States
| | - Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, United States
- Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, PR 00680, United States
| | - Kateřina Koštířová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, United States
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| |
Collapse
|
6
|
Meier D, van Grinsven S, Michel A, Eickenbusch P, Glombitza C, Han X, Fiskal A, Bernasconi S, Schubert CJ, Lever MA. Hydrogen-independent CO 2 reduction dominates methanogenesis in five temperate lakes that differ in trophic states. ISME COMMUNICATIONS 2024; 4:ycae089. [PMID: 38988698 PMCID: PMC11235125 DOI: 10.1093/ismeco/ycae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Emissions of microbially produced methane (CH4) from lake sediments are a major source of this potent greenhouse gas to the atmosphere. The rates of CH4 production and emission are believed to be influenced by electron acceptor distributions and organic carbon contents, which in turn are affected by anthropogenic inputs of nutrients leading to eutrophication. Here, we investigate how eutrophication influences the abundance and community structure of CH4 producing Archaea and methanogenesis pathways across time-resolved sedimentary records of five Swiss lakes with well-characterized trophic histories. Despite higher CH4 concentrations which suggest higher methanogenic activity in sediments of eutrophic lakes, abundances of methanogens were highest in oligotrophic lake sediments. Moreover, while the methanogenic community composition differed significantly at the lowest taxonomic levels (OTU), depending on whether sediment layers had been deposited under oligotrophic or eutrophic conditions, it showed no clear trend in relation to in situ distributions of electron acceptors. Remarkably, even though methanogenesis from CO2-reduction was the dominant pathway in all sediments based on carbon isotope fractionation values, taxonomic identities, and genomes of resident methanogens, CO2-reduction with hydrogen (H2) was thermodynamically unfavorable based on measured reactant and product concentrations. Instead, strong correlations between genomic abundances of CO2-reducing methanogens and anaerobic bacteria with potential for extracellular electron transfer suggest that methanogenic CO2-reduction in lake sediments is largely powered by direct electron transfer from syntrophic bacteria without involvement of H2 as an electron shuttle.
Collapse
Affiliation(s)
- Dimitri Meier
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
| | - Sigrid van Grinsven
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Seestrasse 79, 6047 Kastanienbaum, Switzerland
- Geomicrobiology, Department of Geosciences, Eberhard Karls Universität Tübingen (Tübingen University), Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Anja Michel
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Philip Eickenbusch
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Clemens Glombitza
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Xingguo Han
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Annika Fiskal
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Stefano Bernasconi
- Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Geological Institute, Sonneggstrasse 5, 8092 Zurich, Switzerland
| | - Carsten J Schubert
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Mark A Lever
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
- Marine Science Institute, Department of Marine Sciences, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, United States
| |
Collapse
|
7
|
Chawla M, Lavania M, Sahu N, Shekhar S, Singh N, More A, Iyer M, Kumar S, Singh K, Lal B. Culture-independent assessment of the indigenous microbial diversity of Raniganj coal bed methane block, Durgapur. Front Microbiol 2023; 14:1233605. [PMID: 37731928 PMCID: PMC10507629 DOI: 10.3389/fmicb.2023.1233605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
It is widely acknowledged that conventional mining and extraction techniques have left many parts of the world with depleting coal reserves. A sustainable method for improving the recovery of natural gas from coalbeds involves enhancing the production of biogenic methane in coal mines. By taking a culture-independent approach, the diversity of the microbial community present in the formation water of an Indian reservoir was examined using 16S rRNA gene amplification in order to study the potential of microbial-enhanced coal bed methane (CBM) production from the deep thermogenic wells at a depth of 800-1200 m. Physicochemical characterization of formation water and coal samples was performed with the aim of understanding the in situ reservoir conditions that are most favorable for microbial CBM production. Microbial community analysis of formation water showed that bacteria were more abundant than archaea. Proteobacteria, Firmicutes, and Bacteroidetes were found as the most prevalent phyla in all the samples. These phyla play a crucial role in providing substrate for the process of methanogenesis by performing fermentative, hydrolytic, and syntrophic functions. Considerable variation in the abundance of microbial genera was observed amongst the selected CBM wells, potentially due to variable local geochemical conditions within the reservoir. The results of our study provide insights into the impact of geochemical factors on microbial distribution within the reservoir. Further, the study demonstrates lab-scale enhancement in methane production through nutrient amendment. It also focuses on understanding the microbial diversity of the Raniganj coalbed methane block using amplicon sequencing and further recognizing the potential of biogenic methane enhancement through microbial stimulation. The findings of the study will help as a reference for better strategization and implementation of on-site microbial stimulation for enhanced biogenic methane production in the future.
Collapse
Affiliation(s)
- Mansi Chawla
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Meeta Lavania
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Nishi Sahu
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | | | - Nimmi Singh
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Anand More
- Essar Oil and Gas Exploration and Production Limited, Durgapur, West Bengal, India
| | - Magesh Iyer
- Essar Oil and Gas Exploration and Production Limited, Durgapur, West Bengal, India
| | - Sanjay Kumar
- Essar Oil and Gas Exploration and Production Limited, Durgapur, West Bengal, India
| | | | - Banwari Lal
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
8
|
Lin X, Zhang C, Xie W. Deterministic processes dominate archaeal community assembly from the Pearl River to the northern South China Sea. Front Microbiol 2023; 14:1185436. [PMID: 37426005 PMCID: PMC10324572 DOI: 10.3389/fmicb.2023.1185436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Archaea play a significant role in the biogeochemical cycling of nutrients in estuaries. However, comprehensive researches about their assembly processes remain notably insufficient. In this study, we systematically examined archaeal community dynamics distinguished between low-salinity and high-salinity groups in water and surface sediments over a 600-kilometer range from the upper Pearl River (PR) to the northern South China Sea (NSCS). Neutral community model analysis together with null model analysis showed that their C-score values were greater than 2, suggesting that deterministic processes could dominate the assembly of those planktonic or benthic archaeal communities at both the low-salinity and high-salinity sites. And deterministic processes contributed more in the low-salinity than high-salinity environments from the PR to the NSCS. Furthermore, through the co-occurrence network analysis, we found that the archaeal communities in the low-salinity groups possessed closer interactions and higher proportions of negative interactions than those in the high-salinity groups, which might be due to the larger environmental heterogeneities reflected by the nutrient concentrations of those low-salinity samples. Collectively, our work systematically investigated the composition and co-occurrence networks of archaeal communities in water as well as sediments from the PR to the NSCS, yielding new insights into the estuary's archaeal community assembly mechanisms.
Collapse
Affiliation(s)
- Xizheng Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China
| |
Collapse
|
9
|
Gao P, Wang P, Ding M, Zhang H, Huang G, Nie M, Wang G. A meta-analysis reveals that geographical factors drive the bacterial community variation in Chinese lakes. ENVIRONMENTAL RESEARCH 2023; 224:115561. [PMID: 36828247 DOI: 10.1016/j.envres.2023.115561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The biogeographical distribution of plants and animals has been extensively studied, however, the biogeographical patterns and the factors that influence bacterial communities in lakes over large scales are yet to be fully understood, even though they play critical roles in biogeochemical cycles. Here, bacterial community compositional data, geographic information, and environmental factors were integrated for 326 Chinese lakes based on previously published studies to determine the underlying factors that shape bacterial diversity among Chinese lakes. The composition of bacterial communities significantly varied among the three primary climatic regions of China (Northern China, NC; Southern China, SC; and the Tibetan Plateau, TIP), and across two different lake habitats (waters and sediments). Sediment bacterial communities exhibited significantly higher alpha-diversity and distance-decay relationships compared to water communities. The results indicate that the "scale-dependent patterns" of controlling factors, primarily influenced by geographical factors, become increasingly pronounced as the spatial scale increases. At a national scale, geographical factors exerted a dominant influence on both the water and sediment communities across all lakes, as geographical barriers restrict the dispersal of individuals. At smaller spatial scales, temperature-driven selection effects played a greater role in shaping water bacterial community variation in the NC, SC, and TIP, while geographical factors had a stronger association with sediment bacterial community variation in the lakes of the three regions. This synthesis offers novel insights into the ecological factors that determine the distribution of bacteria in Chinese lakes.
Collapse
Affiliation(s)
- Pengfei Gao
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China.
| | - Mingjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Guangwei Wang
- Graduate School of Horticulture, Chiba University, Chiba, 648 Matsudo, Matsudo-City, 271-8510, Japan; Guangzhou South Surveying & Mapping Technology Co., Ltd., South Geo-information Industrial Park, No.39 Si Cheng Rd, Guangzhou, China
| |
Collapse
|
10
|
Qian L, Yu X, Gu H, Liu F, Fan Y, Wang C, He Q, Tian Y, Peng Y, Shu L, Wang S, Huang Z, Yan Q, He J, Liu G, Tu Q, He Z. Vertically stratified methane, nitrogen and sulphur cycling and coupling mechanisms in mangrove sediment microbiomes. MICROBIOME 2023; 11:71. [PMID: 37020239 PMCID: PMC10074775 DOI: 10.1186/s40168-023-01501-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Mangrove ecosystems are considered as hot spots of biogeochemical cycling, yet the diversity, function and coupling mechanism of microbially driven biogeochemical cycling along the sediment depth of mangrove wetlands remain elusive. Here we investigated the vertical profile of methane (CH4), nitrogen (N) and sulphur (S) cycling genes/pathways and their potential coupling mechanisms using metagenome sequencing approaches. RESULTS Our results showed that the metabolic pathways involved in CH4, N and S cycling were mainly shaped by pH and acid volatile sulphide (AVS) along a sediment depth, and AVS was a critical electron donor impacting mangrove sediment S oxidation and denitrification. Gene families involved in S oxidation and denitrification significantly (P < 0.05) decreased along the sediment depth and could be coupled by S-driven denitrifiers, such as Burkholderiaceae and Sulfurifustis in the surface sediment (0-15 cm). Interestingly, all S-driven denitrifier metagenome-assembled genomes (MAGs) appeared to be incomplete denitrifiers with nitrate/nitrite/nitric oxide reductases (Nar/Nir/Nor) but without nitrous oxide reductase (Nos), suggesting such sulphide-utilizing groups might be an important contributor to N2O production in the surface mangrove sediment. Gene families involved in methanogenesis and S reduction significantly (P < 0.05) increased along the sediment depth. Based on both network and MAG analyses, sulphate-reducing bacteria (SRB) might develop syntrophic relationships with anaerobic CH4 oxidizers (ANMEs) by direct electron transfer or zero-valent sulphur, which would pull forward the co-existence of methanogens and SRB in the middle and deep layer sediments. CONCLUSIONS In addition to offering a perspective on the vertical distribution of microbially driven CH4, N and S cycling genes/pathways, this study emphasizes the important role of S-driven denitrifiers on N2O emissions and various possible coupling mechanisms of ANMEs and SRB along the mangrove sediment depth. The exploration of potential coupling mechanisms provides novel insights into future synthetic microbial community construction and analysis. This study also has important implications for predicting ecosystem functions within the context of environmental and global change. Video Abstract.
Collapse
Affiliation(s)
- Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Hang Gu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yijun Fan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qiang He
- Department of Civil and Environmental Engineering, the University of Tennessee, Knoxville, TN 37996 USA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yisheng Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhijian Huang
- School of Marine Science, Sun Yat-Sen University, Zhuhai, 519080 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jianguo He
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Guangli Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
11
|
Ren Z, Ma K, Jia X, Wang Q, Zhang C, Li X. Metagenomics Unveils Microbial Diversity and Their Biogeochemical Roles in Water and Sediment of Thermokarst Lakes in the Yellow River Source Area. MICROBIAL ECOLOGY 2023; 85:904-915. [PMID: 35650293 DOI: 10.1007/s00248-022-02053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/25/2022] [Indexed: 05/04/2023]
Abstract
Thermokarst lakes have long been recognized as biogeochemical hotspots, especially as sources of greenhouse gases. On the Qinghai-Tibet Plateau, thermokarst lakes are experiencing extensive changes due to faster warming. For a deep understanding of internal lake biogeochemical processes, we applied metagenomic analyses to investigate the microbial diversity and their biogeochemical roles in sediment and water of thermokarst lakes in the Yellow River Source Area (YRSA). Sediment microbial communities (SMCs) had lower species and gene richness than water microbial communities (WMCs). Bacteria were the most abundant component in both SMCs and WMCs with significantly different abundant genera. The functional analyses showed that both SMCs and WMCs had low potential in methanogenesis but strong in aerobic respiration, nitrogen assimilation, exopolyphosphatase, glycerophosphodiester phosphodiesterases, and polyphosphate kinase. Moreover, SMCs were enriched in genes involved in anaerobic carbon fixation, aerobic carbon fixation, fermentation, most nitrogen metabolism pathways, dissimilatory sulfate reduction, sulfide oxidation, polysulfide reduction, 2-phosphonopropionate transporter, and phosphate regulation. WMCs were enriched in genes involved in assimilatory sulfate reduction, sulfur mineralization, phosphonoacetate hydrolase, and phosphonate transport. Functional potentials suggest the differences of greenhouse gas emission, nutrient cycling, and living strategies between SMCs and WMCs. This study provides insight into the main biogeochemical processes and their properties in thermokarst lakes in YRSA, improving our understanding of the roles and fates of these lakes in a warming world.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China.
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Kang Ma
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xuan Jia
- College of Education for the Future, Beijing Normal University, Zhuhai, 519087, China
| | - Qing Wang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Engineering Technology, Beijing Normal University, Zhuhai, 519087, China
| | - Xia Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
12
|
Effects of Water Potential on Anaerobic Methane Production and a Microbial Consortium. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
This study probed the effect of the water potential (Ψ) on anaerobic methane production and a microbial consortium. The Ψ level of the investigated anaerobic digester (n = 20) was in the range from −0.10 to −2.09 MPa with a mean value of −1.23 MPa, and the Ψ level of the anaerobic digester was significantly correlated with the SCOD, TKN, NH4+-N, alkalinity, salinity (SPS), NH4+, Na+, K+, Cl−, NO3−, and PO43− (p < 0.001). The maximum methane production rate (Rm) of the Control (−0.40 MPa) was 8.11 mL day−1 and decreased to 1.70 mL day−1 at −3.91 MPa (K5), and the lag growth phase time (λ) was delayed to 35.96 and 25.34 days at −2.85 MPa (K4) and −3.91 MPa (K5), respectively. The ultimate methane potential (Bu) was 0.264 Nm3 kg−1-VSadded for the Control, and when Ψ was adjusted, Bu increased to 0.278 Nm3 kg−1-VSadded at −1.49 MPa (K3) but decreased to 0.203 and 0.172 Nm3 kg−1-VSadded at −2.85 MPa (K4) and −3.91 MPa (K5), respectively. Therefore, the methane yield was inhibited due to the decrease in Ψ, and the methane yield is predicted to be inhibited from about −1.65 MPa. In the genus-level taxonomic classification of the microbial community, the relative abundance of Methanosarcina decreased significantly to 36.76% at −3.91 MPa (K5) compared to 58.15% for the Control; however, the relative abundance of Methanoculleus significantly increased to 35.16% at −3.91 MPa (K5) compared to 14.85% for the Control.
Collapse
|
13
|
Zhao J, Chakrabarti S, Chambers R, Weisenhorn P, Travieso R, Stumpf S, Standen E, Briceno H, Troxler T, Gaiser E, Kominoski J, Dhillon B, Martens-Habbena W. Year-around survey and manipulation experiments reveal differential sensitivities of soil prokaryotic and fungal communities to saltwater intrusion in Florida Everglades wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159865. [PMID: 36461566 DOI: 10.1016/j.scitotenv.2022.159865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Global sea-level rise is transforming coastal ecosystems, especially freshwater wetlands, in part due to increased episodic or chronic saltwater exposure, leading to shifts in biogeochemistry, plant- and microbial communities, as well as ecological services. Yet, it is still difficult to predict how soil microbial communities respond to the saltwater exposure because of poorly understood microbial sensitivity within complex wetland soil microbial communities, as well as the high spatial and temporal heterogeneity of wetland soils and saltwater exposure. To address this, we first conducted a two-year survey of microbial community structure and bottom water chemistry in submerged surface soils from 14 wetland sites across the Florida Everglades. We identified ecosystem-specific microbial biomarker taxa primarily associated with variation in salinity. Bacterial, archaeal and fungal community composition differed between freshwater, mangrove, and marine seagrass meadow sites, irrespective of soil type or season. Especially, methanogens, putative denitrifying methanotrophs and sulfate reducers shifted in relative abundance and/or composition between wetland types. Methanogens and putative denitrifying methanotrophs declined in relative abundance from freshwater to marine wetlands, whereas sulfate reducers showed the opposite trend. A four-year experimental simulation of saltwater intrusion in a pristine freshwater site and a previously saltwater-impacted site corroborated the highest sensitivity and relative increase of sulfate reducers, as well as taxon-specific sensitivity of methanogens, in response to continuously pulsing of saltwater treatment. Collectively, these results suggest that besides increased salinity, saltwater-mediated increased sulfate availability leads to displacement of methanogens by sulfate reducers even at low or temporal salt exposure. These changes of microbial composition could affect organic matter degradation pathways in coastal freshwater wetlands exposed to sea-level rise, with potential consequences, such as loss of stored soil organic carbon.
Collapse
Affiliation(s)
- Jun Zhao
- Fort Lauderdale Research and Education Center and Department of Microbiology & Cell Science, University of Florida, Davie, FL, USA
| | - Seemanti Chakrabarti
- Fort Lauderdale Research and Education Center and Department of Microbiology & Cell Science, University of Florida, Davie, FL, USA
| | - Randolph Chambers
- College of William and Mary, W.M. Keck Environmental Field Laboratory, P.O. Box 8795, Williamsburg, VA, USA
| | | | - Rafael Travieso
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Sandro Stumpf
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Emily Standen
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Henry Briceno
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, USA
| | - Tiffany Troxler
- Department of Earth and Environment and Sea Level Solutions Center in the Institute of Environment, Florida International University, Miami, FL, USA
| | - Evelyn Gaiser
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, USA
| | - John Kominoski
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, USA
| | - Braham Dhillon
- Fort Lauderdale Research and Education Center and Department of Plant Pathology, University of Florida, Davie, FL, USA
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center and Department of Microbiology & Cell Science, University of Florida, Davie, FL, USA.
| |
Collapse
|
14
|
Guo Y, Song B, Li A, Wu Q, Huang H, Li N, Yang Y, Adams JM, Yang L. Higher pH is associated with enhanced co-occurrence network complexity, stability and nutrient cycling functions in the rice rhizosphere microbiome. Environ Microbiol 2022; 24:6200-6219. [PMID: 36076153 DOI: 10.1111/1462-2920.16185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023]
Abstract
The rice rhizosphere microbiota is crucial for crop yields and nutrient use efficiency. However, little is known about how co-occurrence patterns, keystone taxa and functional gene assemblages relate to soil pH in the rice rhizosphere soils. Using shotgun metagenome analysis, the rice rhizosphere microbiome was investigated across 28 rice fields in east-central China. At higher pH sites, the taxonomic co-occurrence network of rhizosphere soils was more complex and compact, as defined by higher average degree, graph density and complexity. Network stability was greatest at medium pH (6.5 < pH < 7.5), followed by high pH (7.5 < pH). Keystone taxa were more abundant at higher pH and correlated significantly with key ecosystem functions. Overall functional genes involved in C, N, P and S cycling were at a higher relative abundance in higher pH rhizosphere soils, excepting C degradation genes (e.g. key genes involved in starch, cellulose, chitin and lignin degradation). Our results suggest that the rice rhizosphere soil microbial network is more complex and stable at higher pH, possibly indicating increased efficiency of nutrient cycling. These observations may indicate routes towards more efficient soil management and understanding of the potential effects of soil acidification on the rice rhizosphere system.
Collapse
Affiliation(s)
- Yaping Guo
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Anqi Li
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Qi Wu
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Haili Huang
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Na Li
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Ying Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Jonathan Miles Adams
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| | - Lin Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Singh AK, Nakhate SP, Gupta RK, Chavan AR, Poddar BJ, Prakash O, Shouche YS, Purohit HJ, Khardenavis AA. Mining the landfill soil metagenome for denitrifying methanotrophic taxa and validation of methane oxidation in microcosm. ENVIRONMENTAL RESEARCH 2022; 215:114199. [PMID: 36058281 DOI: 10.1016/j.envres.2022.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/21/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the microbial community residing at different depths of the landfill was characterized to assess their roles in serving as a methane sink. Physico-chemical characterization revealed the characteristic signatures of anaerobic degradation of organic matter in the bottom soil (50-60 cm) and, active process of aerobic denitrification in the top soil (0-10 cm). This was also reflected from the higher abundance of bacterial domain in the top soil metagenome represented by dominant phyla Proteobacteria and Actinobacteria which are prime decomposers of organic matter in landfill soils. The multiple fold higher relative abundances of the two most abundant genera; Streptomyces and Intrasporangium in the top soil depicted greater denitrifying taxa in top soil than the bottom soil. Amongst the aerobic methanotrophs, the genera Methylomonas, Methylococcus, Methylocella, and Methylacidiphilum were abundantly found in the top soil metagenome that were essential for oxidizing methane generated in the landfill. On the other hand, the dominance of archaeal domain represented by Methanosarcina and Methanoculleus in the bottom soil highlighted the complete anaerobic digestion of organic components via acetoclasty, carboxydotrophy, hydrogenotrophy, methylotrophy. Functional characterization revealed a higher abundance of methane monooxygenase gene in the top soil and methyl coenzyme M reductase gene in the bottom soil that correlated with the higher relative abundance of aerobic methanotrophs in the top soil while methane generation being the active process in the highly anaerobic bottom soil in the landfill. The activity dependent abundance of endogenous microbial communities in the different zones of the landfill was further validated by microcosm studies in serum bottles which established the ability of the methanotrophic community for methane metabolism in the top soil and their potential to serve as sink for methane. The study provides a better understanding about the methanotrophs in correlation with their endogenous environment, so that these bacteria can be used in resolving the environmental issues related to methane and nitrogen management at landfill site.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Om Prakash
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Differences in the methanogen community between the nearshore and offshore sediments of the South Yellow Sea. J Microbiol 2022; 60:814-822. [DOI: 10.1007/s12275-022-2022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 10/17/2022]
|
17
|
Bertolet BL, Louden SI, Jones SE. Microbial community composition, and not
pH
, influences lake sediment function. Ecosphere 2022. [DOI: 10.1002/ecs2.4091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Brittni L. Bertolet
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana USA
| | - Sydney I. Louden
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana USA
| | - Stuart E. Jones
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana USA
| |
Collapse
|
18
|
Costa OYA, de Hollander M, Kuramae EE, Bodelier PLE. PhyloFunDB: A Pipeline to Create and Update Functional Gene Taxonomic Databases. Microorganisms 2022; 10:microorganisms10061093. [PMID: 35744611 PMCID: PMC9229802 DOI: 10.3390/microorganisms10061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
The increase in sequencing capacity has amplified the number of taxonomically unclassified sequences in most databases. The classification of such sequences demands phylogenetic tree construction and comparison to currently classified sequences, a process that demands the processing of large amounts of data and use of several different software. Here, we present PhyloFunDB, a pipeline for extracting, processing, and inferring phylogenetic trees from specific functional genes. The goal of our work is to decrease processing time and facilitate the grouping of sequences that can be used for improved taxonomic classification of functional gene datasets.
Collapse
Affiliation(s)
- Ohana Y. A. Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (O.Y.A.C.); (M.d.H.); (E.E.K.)
| | - Mattias de Hollander
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (O.Y.A.C.); (M.d.H.); (E.E.K.)
- Department of Terrestrial Ecology Bioinformatics Unit, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Eiko E. Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (O.Y.A.C.); (M.d.H.); (E.E.K.)
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (O.Y.A.C.); (M.d.H.); (E.E.K.)
- Correspondence:
| |
Collapse
|
19
|
Chen Y, Wu N, Liu C, Mi T, Li J, He X, Li S, Sun Z, Zhen Y. Methanogenesis pathways of methanogens and their responses to substrates and temperature in sediments from the South Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152645. [PMID: 34998777 DOI: 10.1016/j.scitotenv.2021.152645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Although coastal sediments are major contributors to the production of atmospheric methane, the effects of environmental conditions on methanogenesis and the community of methanogenic archaea are not well understood. Here, we investigated the methanogenesis pathways in nearshore and offshore sediments from the South Yellow Sea (SYS). Moreover, the effects of the supply of methanogenic substrates (H2/CO2, acetate, trimethylamine (TMA), and methanol) and temperature on methanogenesis and the community of methanogenic archaea were further determined. Methylotrophic, hydrogenotrophic and acetotrophic methanogenesis were found to be responsible for biogenic methane production in nearshore sediments. In the offshore sediments, methylotrophic methanogenesis was the predominant methanogenic pathway. The changes in methanogenic community structure under different substrate amendments were characterized. Lower diversities were detected in substrate-amended samples with methanogenic activity. Hydrogenotrophic Methanogenium, multitrophic Methanosarcina, methylotrophic Methanococcoide, Methanococcoide or methylotrophic Methanolobus were dominant in H2/CO2-, acetate-, TMA- and methanol-amended sediment slurries, respectively. PCoA showed that the methanogen community in H2/CO2 and acetate amendments exhibited greater differences than those in other treatments. Lower temperature (10 °C) limits hydrogenotrophic and acetoclastic methanogenesis, but methylotrophic methanogenesis is much less affected. The response of methanogen diversity to the incubation temperature varied among the different substrate-amended slurries. The multitrophic methanogen Methanosarcina became increasingly abundant in H2/CO2- and acetate-amended sediment slurries when the temperature increased from 10 to 30 °C.
Collapse
Affiliation(s)
- Ye Chen
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Nengyou Wu
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Changling Liu
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Tiezhu Mi
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jing Li
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xingliang He
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Siqi Li
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Zhilei Sun
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yu Zhen
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
20
|
Zhang Q, Tang J, Angel R, Wang D, Hu X, Gao S, Zhang L, Tang Y, Zhang X, Koide RT, Yang H, Sun Q. Soil Properties Interacting With Microbial Metagenome in Decreasing CH 4 Emission From Seasonally Flooded Marshland Following Different Stages of Afforestation. Front Microbiol 2022; 13:830019. [PMID: 35283824 PMCID: PMC8905362 DOI: 10.3389/fmicb.2022.830019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Wetlands are the largest natural source of terrestrial CH4 emissions. Afforestation can enhance soil CH4 oxidation and decrease methanogenesis, yet the driving mechanisms leading to these effects remain unclear. We analyzed the structures of communities of methanogenic and methanotrophic microbes, quantification of mcrA and pmoA genes, the soil microbial metagenome, soil properties and CH4 fluxes in afforested and non-afforested areas in the marshland of the Yangtze River. Compared to the non-afforested land use types, net CH4 emission decreased from bare land, natural vegetation and 5-year forest plantation and transitioned to net CH4 sinks in the 10- and 20-year forest plantations. Both abundances of mcrA and pmoA genes decreased significantly with increasing plantation age. By combining random forest analysis and structural equation modeling, our results provide evidence for an important role of the abundance of functional genes related to methane production in explaining the net CH4 flux in this ecosystem. The structures of methanogenic and methanotrophic microbial communities were of lower importance as explanatory factors than functional genes in terms of in situ CH4 flux. We also found a substantial interaction between functional genes and soil properties in the control of CH4 flux, particularly soil particle size. Our study provides empirical evidence that microbial community function has more explanatory power than taxonomic microbial community structure with respect to in situ CH4 fluxes. This suggests that focusing on gene abundances obtained, e.g., through metagenomics or quantitative/digital PCR could be more effective than community profiling in predicting CH4 fluxes, and such data should be considered for ecosystem modeling.
Collapse
Affiliation(s)
- Qian Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jie Tang
- Hunan Academy of Forestry, Changsha, China
| | - Roey Angel
- Soil and Water Research Infrastructure and Institute of Soil Biology, Biology Centre, Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Dong Wang
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China
| | - Xingyi Hu
- Hubei Academy of Forestry, Wuhan, China
| | - Shenghua Gao
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lei Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yuxi Tang
- Hunan Academy of Forestry, Changsha, China
| | - Xudong Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Roger T. Koide
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Qixiang Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
21
|
Pelsma KAJ, In 't Zandt MH, Op den Camp HJM, Jetten MSM, Dean JF, Welte CU. Amsterdam urban canals contain novel niches for methane-cycling microorganisms. Environ Microbiol 2021; 24:82-97. [PMID: 34863018 PMCID: PMC9299808 DOI: 10.1111/1462-2920.15864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023]
Abstract
Urbanised environments have been identified as hotspots of anthropogenic methane emissions. Especially urban aquatic ecosystems are increasingly recognised as important sources of methane. However, the microbiology behind these emissions remains unexplored. Here, we applied microcosm incubations and molecular analyses to investigate the methane‐cycling community of the Amsterdam canal system in the Netherlands. The sediment methanogenic communities were dominated by Methanoregulaceae and Methanosaetaceae, with co‐occurring methanotrophic Methanoperedenaceae and Methylomirabilaceae indicating the potential for anaerobic methane oxidation. Methane was readily produced after substrate amendment, suggesting an active but substrate‐limited methanogenic community. Bacterial 16S rRNA gene amplicon sequencing of the sediment revealed a high relative abundance of Thermodesulfovibrionia. Canal wall biofilms showed the highest initial methanotrophic potential under oxic conditions compared to the sediment. During prolonged incubations the maximum methanotrophic rate increased to 8.08 mmol gDW−1 d−1 that was concomitant with an enrichment of Methylomonadaceae bacteria. Metagenomic analysis of the canal wall biofilm lead to the recovery of a single methanotroph metagenome‐assembled genome. Taxonomic analysis showed that this methanotroph belongs to the genus Methyloglobulus. Our results underline the importance of previously unidentified and specialised environmental niches at the nexus of the natural and human‐impacted carbon cycle.
Collapse
Affiliation(s)
- Koen A J Pelsma
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands
| | - Michiel H In 't Zandt
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Joshua F Dean
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
22
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
23
|
Gondwe MJ, Helfter C, Murray-Hudson M, Levy PE, Mosimanyana E, Makati A, Mfundisi KB, Skiba UM. Methane flux measurements along a floodplain soil moisture gradient in the Okavango Delta, Botswana. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200448. [PMID: 34565229 PMCID: PMC8754158 DOI: 10.1098/rsta.2020.0448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Data-poor tropical wetlands constitute an important source of atmospheric CH4 in the world. We studied CH4 fluxes using closed chambers along a soil moisture gradient in a tropical seasonal swamp in the Okavango Delta, Botswana, the sixth largest tropical wetland in the world. The objective of the study was to assess net CH4 fluxes and controlling environmental factors in the Delta's seasonal floodplains. Net CH4 emissions from seasonal floodplains in the wetland were estimated at 0.072 ± 0.016 Tg a-1. Microbial CH4 oxidation of approximately 2.817 × 10-3 ± 0.307 × 10-3 Tg a-1 in adjacent dry soils of the occasional floodplains accounted for the sink of 4% of the total soil CH4 emissions from seasonal floodplains. The observed microbial CH4 sink in the Delta's dry soils is, therefore, comparable to the global average sink of 4-6%. Soil water content (SWC) and soil organic matter were the main environmental factors controlling CH4 fluxes in both the seasonal and occasional floodplains. The optimum SWC for soil CH4 emissions and oxidation in the Delta were estimated at 50% and 15%, respectively. Electrical conductivity and pH were poorly correlated (r2 ≤ 0.11, p < 0.05) with CH4 fluxes in the seasonal floodplain at Nxaraga. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part1)'.
Collapse
Affiliation(s)
- M. J. Gondwe
- Okavango Research Institute, University of Botswana, P/Bag 285, Maun, Botswana
| | - C. Helfter
- UK Centre for Ecology and Hydrology, Atmospheric Chemistry and Effects, Bush Estate, Penicuik EH26 0QB, UK
| | - M. Murray-Hudson
- Okavango Research Institute, University of Botswana, P/Bag 285, Maun, Botswana
| | - P. E. Levy
- UK Centre for Ecology and Hydrology, Atmospheric Chemistry and Effects, Bush Estate, Penicuik EH26 0QB, UK
| | - E. Mosimanyana
- Okavango Research Institute, University of Botswana, P/Bag 285, Maun, Botswana
| | - A. Makati
- Okavango Research Institute, University of Botswana, P/Bag 285, Maun, Botswana
| | - K. B. Mfundisi
- Okavango Research Institute, University of Botswana, P/Bag 285, Maun, Botswana
| | - U. M. Skiba
- UK Centre for Ecology and Hydrology, Atmospheric Chemistry and Effects, Bush Estate, Penicuik EH26 0QB, UK
| |
Collapse
|
24
|
Kim H, Jeon J, Lee KK, Lee YH. Compositional Shift of Bacterial, Archaeal, and Fungal Communities Is Dependent on Trophic Lifestyles in Rice Paddy Soil. Front Microbiol 2021; 12:719486. [PMID: 34539610 PMCID: PMC8440912 DOI: 10.3389/fmicb.2021.719486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
The soil environment determines plants’ health and performance during their life cycle. Therefore, ecological understanding on variations in soil environments, including physical, chemical, and biological properties, is crucial for managing agricultural fields. Here, we present a comprehensive and extensive blueprint of the bacterial, archaeal, and fungal communities in rice paddy soils with differing soil types and chemical properties. We discovered that natural variations of soil nutrients are important factors shaping microbial diversity. The responses of microbial diversity to soil nutrients were related to the distribution of microbial trophic lifestyles (oligotrophy and copiotrophy) in each community. The compositional changes of bacterial and archaeal communities in response to soil nutrients were mainly governed by oligotrophs, whereas copiotrophs were mainly involved in fungal compositional changes. Compositional shift of microbial communities by fertilization is linked to switching of microbial trophic lifestyles. Random forest models demonstrated that depletion of prokaryotic oligotrophs and enrichment of fungal copiotrophs are the dominant responses to fertilization in low-nutrient conditions, whereas enrichment of putative copiotrophs was important in high-nutrient conditions. Network inference also revealed that trophic lifestyle switching appertains to decreases in intra- and inter-kingdom microbial associations, diminished network connectivity, and switching of hub nodes from oligotrophs to copiotrophs. Our work provides ecological insight into how soil nutrient-driven variations in microbial communities affect soil health in modern agricultural systems.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Kiseok Keith Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Zemskaya TI, Bukin SV, Lomakina AV, Pavlova ON. Microorganisms in the Sediments of Lake Baikal, the Deepest and Oldest Lake in the World. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Wallenius AJ, Dalcin Martins P, Slomp CP, Jetten MSM. Anthropogenic and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments. Front Microbiol 2021; 12:631621. [PMID: 33679659 PMCID: PMC7935538 DOI: 10.3389/fmicb.2021.631621] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/05/2022] Open
Abstract
Large amounts of methane, a potent greenhouse gas, are produced in anoxic sediments by methanogenic archaea. Nonetheless, over 90% of the produced methane is oxidized via sulfate-dependent anaerobic oxidation of methane (S-AOM) in the sulfate-methane transition zone (SMTZ) by consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Coastal systems account for the majority of total marine methane emissions and typically have lower sulfate concentrations, hence S-AOM is less significant. However, alternative electron acceptors such as metal oxides or nitrate could be used for AOM instead of sulfate. The availability of electron acceptors is determined by the redox zonation in the sediment, which may vary due to changes in oxygen availability and the type and rate of organic matter inputs. Additionally, eutrophication and climate change can affect the microbiome, biogeochemical zonation, and methane cycling in coastal sediments. This review summarizes the current knowledge on the processes and microorganisms involved in methane cycling in coastal sediments and the factors influencing methane emissions from these systems. In eutrophic coastal areas, organic matter inputs are a key driver of bottom water hypoxia. Global warming can reduce the solubility of oxygen in surface waters, enhancing water column stratification, increasing primary production, and favoring methanogenesis. ANME are notoriously slow growers and may not be able to effectively oxidize methane upon rapid sedimentation and shoaling of the SMTZ. In such settings, ANME-2d (Methanoperedenaceae) and ANME-2a may couple iron- and/or manganese reduction to AOM, while ANME-2d and NC10 bacteria (Methylomirabilota) could couple AOM to nitrate or nitrite reduction. Ultimately, methane may be oxidized by aerobic methanotrophs in the upper millimeters of the sediment or in the water column. The role of these processes in mitigating methane emissions from eutrophic coastal sediments, including the exact pathways and microorganisms involved, are still underexplored, and factors controlling these processes are unclear. Further studies are needed in order to understand the factors driving methane-cycling pathways and to identify the responsible microorganisms. Integration of the knowledge on microbial pathways and geochemical processes is expected to lead to more accurate predictions of methane emissions from coastal zones in the future.
Collapse
Affiliation(s)
- Anna J. Wallenius
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Paula Dalcin Martins
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Caroline P. Slomp
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
27
|
Li D, Ni H, Jiao S, Lu Y, Zhou J, Sun B, Liang Y. Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies. MICROBIOME 2021; 9:20. [PMID: 33482926 PMCID: PMC7825242 DOI: 10.1186/s40168-020-00978-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/07/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Soil methanogens participate in complex interactions, which determine the community structures and functions. Studies continue to seek the coexistence patterns of soil methanogens, influencing factors and the contribution to methane (CH4) production, which are regulated primarily by species interactions, and the functional significance of these interactions. Here, methane emissions were measured in rice paddies across the Asian continent, and the complex interactions involved in coexistence patterns of methanogenic archaeal communities were represented as pairwise links in co-occurrence networks. RESULTS The network topological properties, which were positively correlated with mean annual temperature, were the most important predictor of CH4 emissions among all the biotic and abiotic factors. The methanogenic groups involved in commonly co-occurring links among the 39 local networks contributed most to CH4 emission (53.3%), much higher than the contribution of methanogenic groups with endemic links (36.8%). The potential keystone taxa, belonging to Methanobacterium, Methanocella, Methanothrix, and Methanosarcina, possessed high linkages with the methane generation functional genes mcrA, fwdB, mtbA, and mtbC. Moreover, the commonly coexisting taxa showed a very different assembly pattern, with ~ 30% determinism and ~ 70% stochasticity. In contrast, a higher proportion of stochasticity (93~99%) characterized the assembly of endemically coexisting taxa. CONCLUSIONS These results suggest that the coexistence patterns of microbes are closely tied to their functional significance, and the potential importance of common coexistence further imply that complex networks of interactions may contribute more than species diversity to soil functions. Video abstract.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Haowei Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Tveit AT, Kiss A, Winkel M, Horn F, Hájek T, Svenning MM, Wagner D, Liebner S. Environmental patterns of brown moss- and Sphagnum-associated microbial communities. Sci Rep 2020; 10:22412. [PMID: 33376244 PMCID: PMC7772339 DOI: 10.1038/s41598-020-79773-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/02/2020] [Indexed: 11/08/2022] Open
Abstract
Northern peatlands typically develop through succession from fens dominated by the moss family Amblystegiaceae to bogs dominated by the moss genus Sphagnum. How the different plants and abiotic environmental conditions provided in Amblystegiaceae and Sphagnum peat shape the respective moss associated microbial communities is unknown. Through a large-scale molecular and biogeochemical study spanning Arctic, sub-Arctic and temperate regions we assessed how the endo- and epiphytic microbial communities of natural northern peatland mosses relate to peatland type (Sphagnum and Amblystegiaceae), location, moss taxa and abiotic environmental variables. Microbial diversity and community structure were distinctly different between Amblystegiaceae and Sphagnum peatlands, and within each of these two peatland types moss taxon explained the largest part of microbial community variation. Sphagnum and Amblystegiaceae shared few (< 1% of all operational taxonomic units (OTUs)) but strikingly abundant (up to 65% of relative abundance) OTUs. This core community overlapped by one third with the Sphagnum-specific core-community. Thus, the most abundant microorganisms in Sphagnum that are also found in all the Sphagnum plants studied, are the same OTUs as those few shared with Amblystegiaceae. Finally, we could confirm that these highly abundant OTUs were endophytes in Sphagnum, but epiphytes on Amblystegiaceae. We conclude that moss taxa and abiotic environmental variables associate with particular microbial communities. While moss taxon was the most influential parameter, hydrology, pH and temperature also had significant effects on the microbial communities. A small though highly abundant core community is shared between Sphagnum and Amblystegiaceae.
Collapse
Affiliation(s)
- Alexander Tøsdal Tveit
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | - Andrea Kiss
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Matthias Winkel
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Fabian Horn
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Tomáš Hájek
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Mette Marianne Svenning
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | - Dirk Wagner
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
- University of Potsdam, Institute of Geosciences, Potsdam, Germany
| | - Susanne Liebner
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany.
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany.
| |
Collapse
|
29
|
Wang P, Qiao Z, Li X, Su Y, Xie B. Functional characteristic of microbial communities in large-scale biotreatment systems of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141086. [PMID: 32750579 DOI: 10.1016/j.scitotenv.2020.141086] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
In order to evaluate microbial community structure dominated metabolic function profiles in large-scale food waste (FW) biotreatment systems, bacterial, archaeal and fungal community associated with metabolic function in high-temperature aerobic fermentation (AF) and anaerobic co-digestion (AcoD) processes were comprehensively investigated in this study. The qPCR results showed the higher gene copies of bacteria and fungi in initial and AF-treated FW compared with AcoD-treated FW, as well as bacteria and archaea in AcoD-treated FW were highly abundant among detected samples. Furthermore, the total abundances of archaea ((1.18-4.88) × 106 copies/ng DNA) in AcoD system were 2-3 orders of magnitude higher than that in other samples (P < 0.01), indicating active archaeal activity in AcoD system. Correlation analysis of microbial community and metabolic function indicated that the higher abundances of Kazachstania, Pyrobaculum, Sulfophobococcus, Lactobacillus and Candida in initial FW had close linkages with lipid metabolism (P < 0.05). Abundant Aspergillus, Staphylococcus, Pelomonas, Corynebacterium, Faecalibacterium, Methanobacterium and Xeromyces in AF system were positively and significantly correlated with high metabolic activities of energy metabolism, carbohydrate metabolism, amino acid metabolism, fatty acid metabolism, glycosaminoglycan degradation, sulfur metabolism and nitrogen metabolism. As for AcoD system, dominant genera Methanosaeta, Methanoculleus, Methanobacterium, Fastidiosipila, Rikenellaceae RC9, Bifidobacterium and Xeromyces had close relationships with metabolism of cofactors and vitamins, energy metabolism, methane metabolism, carbohydrate metabolism and glycosaminoglycan degradation (P < 0.05). These results are expected to improve the metabolic efficiency by functional microorganism in different large-scale FW treatment systems.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ziru Qiao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
30
|
Holm S, Walz J, Horn F, Yang S, Grigoriev MN, Wagner D, Knoblauch C, Liebner S. Methanogenic response to long-term permafrost thaw is determined by paleoenvironment. FEMS Microbiol Ecol 2020; 96:5729939. [PMID: 32031215 PMCID: PMC7046019 DOI: 10.1093/femsec/fiaa021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
Methane production in thawing permafrost can be substantial, yet often evolves after long lag phases or is even lacking. A central question is to which extent the production of methane after permafrost thaw is determined by the initial methanogenic community. We quantified the production of methane relative to carbon dioxide (CO2) and enumerated methanogenic (mcrA) gene copies in long-term (2-7 years) anoxic incubations at 4 °C using interglacial and glacial permafrost samples of Holocene and Pleistocene, including Eemian, origin. Changes in archaeal community composition were determined by sequencing of the archaeal 16S rRNA gene. Long-term thaw stimulated methanogenesis where methanogens initially dominated the archaeal community. Deposits of interstadial and interglacial (Eemian) origin, formed under higher temperatures and precipitation, displayed the greatest response to thaw. At the end of the incubations, a substantial shift in methanogenic community composition and a relative increase in hydrogenotrophic methanogens had occurred except for Eemian deposits in which a high abundance of potential acetoclastic methanogens were present. This study shows that only anaerobic CO2 production but not methane production correlates significantly with carbon and nitrogen content and that the methanogenic response to permafrost thaw is mainly constrained by the paleoenvironmental conditions during soil formation.
Collapse
Affiliation(s)
- Stine Holm
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Josefine Walz
- Universität Hamburg, Institute of Soil Science, 20146 Hamburg, Germany.,Universität Hamburg, Center for Earth System Research and Sustainability, 20146 Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Mikhail N Grigoriev
- Russian Academy of Sciences, Siberian Branch, Melnikov Permafrost Institute, 677007 Yakutsk, Russia
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.,Potsdam University, Institute of Geosciences, 14476 Potsdam, Germany
| | - Christian Knoblauch
- Universität Hamburg, Institute of Soil Science, 20146 Hamburg, Germany.,Universität Hamburg, Center for Earth System Research and Sustainability, 20146 Germany
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.,Potsdam University, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
| |
Collapse
|
31
|
Moopantakath J, Imchen M, Siddhardha B, Kumavath R. 16s rRNA metagenomic analysis reveals predominance of Crtl and CruF genes in Arabian Sea coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140699. [PMID: 32679495 DOI: 10.1016/j.scitotenv.2020.140699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Microbial communities perform crucial biogeochemical cycles in distinct ecosystems. Halophilic microbial communities are enriched in the saline areas. Hence, haloarchaea have been primarily studied in salterns and marine biosystems with the aim to harness haloarcheal carotenoids biosynthesis. In this study, sediment from several distinct biosystems (mangrove, seashore, estuary, river, lake, salt pan and island) across the Arabian coastal region of India were collected and analyzed though 16s rRNA metagenomic and whole genome approach to elucidated the dominant representative genre, haloarcheal diversity, and the prevalence of Crtl and CruF genes. We found that the microbial diversity in mangrove sediment (794 OTUs) was highest and lowest in lake and river (558-560 OTUs). Moreover, the bacterial domain dominated in all biosystems (96.00-99.45%). Top 10 abundant genera were involved in biochemical cycles such as sulfur, methane, ammonia, hydrocarbon degradation, and antibiotics production. The Archaea was mainly composed of Haloarchaea, Methanobacteria, Methanococci, Methanomicrobia and Crenarchaeota. Carotenoid gene, Crtl, was observed in a major portion (abundance 60%; diversity 45%) of microbial community. Interestingly, we found that all species under haloarcheal class that were represented in fresh as well as marine biosystems encodes CruF gene (bacterioruberin carotenoid). Our study demonstrates the high microbial diversity in various ecosystems, enrichment of Crtl gene, and also shows that Crtl and CruF genes are highly abundant in haloarcheal genera. The finding of ecosystems specific Crtl and CruF encoding genera opens up a promising area in bioprospecting the carotenoid derivatives from the wide range of natural biosystems.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Madangchanok Imchen
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India.
| |
Collapse
|
32
|
Lai D, Hedlund BP, Xie W, Liu J, Phelps TJ, Zhang C, Wang P. Impact of Terrestrial Input on Deep-Sea Benthic Archaeal Community Structure in South China Sea Sediments. Front Microbiol 2020; 11:572017. [PMID: 33224115 PMCID: PMC7674655 DOI: 10.3389/fmicb.2020.572017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Archaea are widespread in marine sediments and play important roles in the cycling of sedimentary organic carbon. However, factors controlling the distribution of archaea in marine sediments are not well understood. Here we investigated benthic archaeal communities over glacial-interglacial cycles in the northern South China Sea and evaluated their responses to sediment organic matter sources and inter-species interactions. Archaea in sediments deposited during the interglacial period Marine Isotope Stage (MIS) 1 (Holocene) were significantly different from those in sediments deposited in MIS 2 and MIS 3 of the Last Glacial Period when terrestrial input to the South China Sea was enhanced based on analysis of the long-chain n-alkane C31. The absolute archaeal 16S rRNA gene abundance in subsurface sediments was highest in MIS 2, coincident with high sedimentation rates and high concentrations of total organic carbon. Soil Crenarchaeotic Group (SCG; Nitrososphaerales) species, the most abundant ammonia-oxidizing archaea in soils, increased dramatically during MIS 2, likely reflecting transport of terrestrial archaea during glacial periods with high sedimentation rates. Co-occurrence network analyses indicated significant association of SCG archaea with benthic deep-sea microbes such as Bathyarchaeota and Thermoprofundales in MIS 2 and MIS 3, suggesting potential interactions among these archaeal groups. Meanwhile, Thermoprofundales abundance was positively correlated with total organic carbon (TOC), along with n-alkane C31 and sedimentation rate, indicating that Thermoprofundales may be particularly important in processing of organic carbon in deep-sea sediments. Collectively, these results demonstrate that the composition of heterotrophic benthic archaea in the South China Sea may be influenced by terrestrial organic input in tune with glacial-interglacial cycles, suggesting a plausible link between global climate change and microbial population dynamics in deep-sea marine sediments.
Collapse
Affiliation(s)
- Dengxun Lai
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China.,School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jingjing Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Tommy J Phelps
- Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Peng Wang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
33
|
Wang H, Bier R, Zgleszewski L, Peipoch M, Omondi E, Mukherjee A, Chen F, Zhang C, Kan J. Distinct Distribution of Archaea From Soil to Freshwater to Estuary: Implications of Archaeal Composition and Function in Different Environments. Front Microbiol 2020; 11:576661. [PMID: 33193193 PMCID: PMC7642518 DOI: 10.3389/fmicb.2020.576661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
In addition to inhabiting extreme territories, Archaea are widely distributed in common environments spanning from terrestrial to aquatic environments. This study investigated and compared archaeal community structures from three different habitats (representing distinct environments): agriculture soils (from farming system trials FST, PA, United States), freshwater biofilms (from White Clay Creek, PA, United States), and estuary water (Chesapeake Bay, United States). High-throughput sequencing of 16S rRNA genes indicated that Thaumarchaeota, Euryarchaeota, Nanoarchaeota, Crenarchaeota, and Diapherotrites were the commonly found dominant phyla across these three environments. Similar to Bacteria, distinct community structure and distribution patterns for Archaea were observed in soils vs. freshwater vs. estuary. However, the abundance, richness, evenness, and diversity of archaeal communities were significantly greater in soils than it was in freshwater and estuarine environments. Indicator species (or amplicon sequence variants, ASVs) were identified from different nitrogen and carbon cycling archaeal groups in soils (Nitrososphaerales, Nitrosotaleales, Nitrosopumilales, Methanomassiliicoccales, Lainarchaeales), freshwater biofilms (Methanobacteria, Nitrososphaerales) and Chesapeake Bay (Marine Group II, Nitrosopumilales), suggesting the habitat-specificity of their biogeochemical contributions to different environments. Distinct functional aspects of Archaea were also confirmed by functional predictions (PICRUSt2 analysis). Further, co-occurrence network analysis indicated that only soil Archaea formed stable modules. Keystone species (ASVs) were identified mainly from Methanomassiliicoccales, Nitrososphaerales, Nitrosopumilales. Overall, these results indicate a strong habitat-dependent distribution of Archaea and their functional partitions within the local environments.
Collapse
Affiliation(s)
- Hualong Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Raven Bier
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
| | - Laura Zgleszewski
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
| | - Marc Peipoch
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
| | | | | | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
34
|
Blake LI, Sherry A, Mejeha OK, Leary P, Coombs H, Stone W, Head IM, Gray ND. An Unexpectedly Broad Thermal and Salinity-Tolerant Estuarine Methanogen Community. Microorganisms 2020; 8:microorganisms8101467. [PMID: 32987846 PMCID: PMC7600826 DOI: 10.3390/microorganisms8101467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Moderately thermophilic (Tmax, ~55 °C) methanogens are identified after extended enrichments from temperate, tropical and low-temperature environments. However, thermophilic methanogens with higher growth temperatures (Topt ≥ 60 °C) are only reported from high-temperature environments. A microcosm-based approach was used to measure the rate of methane production and methanogen community structure over a range of temperatures and salinities in sediment from a temperate estuary. We report short-term incubations (<48 h) revealing methanogens with optimal activity reaching 70 °C in a temperate estuary sediment (in situ temperature 4–5 °C). While 30 °C enrichments amended with acetate, H2 or methanol selected for corresponding mesophilic trophic groups, at 60 °C, only hydrogenotrophs (genus Methanothermobacter) were observed. Since these methanogens are not known to be active under in situ temperatures, we conclude constant dispersal from high temperature habitats. The likely provenance of the thermophilic methanogens was studied by enrichments covering a range of temperatures and salinities. These enrichments indicated that the estuarine sediment hosted methanogens encompassing the global activity envelope of most cultured species. We suggest that estuaries are fascinating sink and source environments for microbial function study.
Collapse
Affiliation(s)
- Lynsay I. Blake
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Department of Biosciences, Durham University, Lower Mount Joy, South Road, Durham DH1 3LE, UK
- Correspondence: (L.I.B.); (N.D.G.)
| | - Angela Sherry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Obioma K. Mejeha
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Department of Microbiology, Federal University of Technology, Owerri P.M.B. 1526, Nigeria
| | - Peter Leary
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
| | - Henry Coombs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
| | - Wendy Stone
- Water Institute and Department of Microbiology, University of Stellenbosch, Stellenbosch 7602, South Africa;
| | - Ian M. Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
| | - Neil D. Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Correspondence: (L.I.B.); (N.D.G.)
| |
Collapse
|
35
|
Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020; 11:2060. [PMID: 32983044 PMCID: PMC7484942 DOI: 10.3389/fmicb.2020.02060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
36
|
Yang Y, Chen J, Tong T, Xie S, Liu Y. Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114106. [PMID: 32041086 DOI: 10.1016/j.envpol.2020.114106] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Freshwater lakes, especially eutrophic ones, have become a hotspot of methanogenesis. However, the effects of eutrophication and seasonality on methanogenesis activity and methanogenic microbial community remain unclear. In the current study, for two adjacent lakes at different trophic status, their methanogenesis potential in different seasons was evaluated using incubation experiments. The density, diversity, and community structure of methanogens were analyzed based on the mcrA gene. Correlation analysis and redundancy analysis were carried out to identify the environmental factors driving the variations of methanogenesis potential and methanogen community. The results showed that eutrophication could result in active methanogenesis with relatively high seasonal variance. The methanogenesis variation could be well explained by carbon input in association with algal growth, as well as the change of methanogen population density. With the dominance of Methanomicrobiales in both lakes, the hydrogenotrophic pathway had a major contribution to total methane production. The considerable proportion of Methanomassiliicocales in eutrophic lake implied that methylotrophic methanogenesis might be previously underestimated. These results added new insights towards methanogenesis process in eutrophic freshwater lakes.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
37
|
Zhang CJ, Chen YL, Pan J, Wang YM, Li M. Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl Microbiol Biotechnol 2020; 104:4593-4603. [PMID: 32306050 DOI: 10.1007/s00253-020-10613-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
Abstract
River-bay system is a transitional zone connecting land and ocean and an important natural source for methane emission. Methanogens play important roles in the global greenhouse gas budget and carbon cycle since they produce methane. The abundance and community assemblage of methanogens in such a dynamic system are not well understood. Here, we used quantitative PCR and high-throughput sequencing of the mcrA gene to investigate the abundance and community composition of methanogens in the Shenzhen River-Bay system, a typical subtropical river-bay system in Southern of China, during the wet and dry seasons. Results showed that mcrA gene abundance was significantly higher in the sediments of river than those of estuary, and was higher in wet season than dry season. Sequences of mcrA gene were mostly assigned to three orders, including Methanosarcinales, Methanomicrobiales, and Methanobacteriales. Specifically, Methanosarcina, Methanosaeta, and Methanobacterium were the most abundant and ubiquitous genera. Methanogenic communities generally clustered according to habitat (river vs. estuary), and salinity was the major factor driving the methanogenic community assemblage. Furthermore, the indicator groups for two habitats were identified. For example, Methanococcoides, Methanoculleus, and Methanogenium preferentially existed in estuarine sediments, whereas Methanomethylovorans, Methanolinea, Methanoregula, and Methanomassiliicoccales were more abundant in riverine sediments, indicating distinct ecological niches. Overall, these findings reveal the distribution patterns of methanogens and expand our understanding of methanogenic community assemblage in the river-bay system. Key Points • Abundance of methanogens was relatively higher in riverine sediments. • Methanogenic community in estuarine habitat separated from that in riverine habitat. • Salinity played a vital role in regulating methanogenic community assemblage.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu-Lian Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yong-Ming Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
38
|
Chen S, Wang P, Liu H, Xie W, Wan XS, Kao SJ, Phelps TJ, Zhang C. Population dynamics of methanogens and methanotrophs along the salinity gradient in Pearl River Estuary: implications for methane metabolism. Appl Microbiol Biotechnol 2019; 104:1331-1346. [DOI: 10.1007/s00253-019-10221-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/11/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
|
39
|
Heslop JK, Walter Anthony KM, Grosse G, Liebner S, Winkel M. Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:124-134. [PMID: 31319250 DOI: 10.1016/j.scitotenv.2019.06.402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 05/20/2023]
Abstract
Permafrost thaw subjects previously frozen soil organic carbon (SOC) to microbial degradation to the greenhouse gases carbon dioxide (CO2) and methane (CH4). Emission of these gases constitutes a positive feedback to climate warming. Among numerous uncertainties in estimating the strength of this permafrost carbon feedback (PCF), two are: (i) how mineralization of permafrost SOC thawed in saturated anaerobic conditions responds to changes in temperature and (ii) how microbial communities and temperature sensitivities change over time since thaw. To address these uncertainties, we utilized a thermokarst-lake sediment core as a natural chronosequence where SOC thawed and incubated in situ under saturated anaerobic conditions for up to 400 years following permafrost thaw. Initial microbial communities were characterized, and sediments were anaerobically incubated in the lab at four temperatures (0 °C, 3 °C, 10 °C, and 25 °C) bracketing those observed in the lake's talik. Net CH4 production in freshly-thawed sediments near the downward-expanding thaw boundary at the base of the talik were most sensitive to warming at the lower incubation temperatures (0 °C to 3 °C), while the overlying sediments which had been thawed for centuries had initial low abundant methanogenic communities (< 0.02%) and did not experience statistically significant increases in net CH4 production potentials until higher incubation temperatures (10 °C to 25 °C). We propose these observed differences in temperature sensitivities are due to differences in SOM quality and functional microbial community composition that evolve over time; however further research is necessary to better constrain the roles of these factors in determining temperature controls on anaerobic C mineralization.
Collapse
Affiliation(s)
- J K Heslop
- Water and Environmental Research Center, University of Alaska, Fairbanks, USA.
| | - K M Walter Anthony
- Water and Environmental Research Center, University of Alaska, Fairbanks, USA
| | - G Grosse
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany; Institute of Earth and Environmental Sciences, University of Potsdam, Germany
| | - S Liebner
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Helmholtz Centre Potsdam, Potsdam, Germany; University of Potsdam, Institute of Biochemistry and Biology, Germany
| | - M Winkel
- Water and Environmental Research Center, University of Alaska, Fairbanks, USA; GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Helmholtz Centre Potsdam, Potsdam, Germany
| |
Collapse
|
40
|
Zhang CJ, Pan J, Duan CH, Wang YM, Liu Y, Sun J, Zhou HC, Song X, Li M. Prokaryotic Diversity in Mangrove Sediments across Southeastern China Fundamentally Differs from That in Other Biomes. mSystems 2019; 4:e00442-19. [PMID: 31506265 PMCID: PMC6739103 DOI: 10.1128/msystems.00442-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Mangroves, as a blue carbon reservoir, provide an environment for a variety of microorganisms. Mangroves lie in special locations connecting coastal and estuarine areas and experience fluctuating conditions, which are expected to intensify with climate change, creating a need to better understand the relative roles of stochastic and deterministic processes in shaping microbial community assembly. Here, a study of microbial communities inhabiting mangrove sediments across southeastern China, spanning mangroves in six nature reserves, was conducted. We performed high-throughput DNA sequencing of these samples and compared them with data of 1,370 sediment samples collected from the Earth Microbiome Project (EMP) to compare the microbial diversity of mangroves with that of other biomes. Our results showed that prokaryotic alpha diversity in mangroves was significantly higher than that in other biomes and that microbial beta diversity generally clustered according to biome types. The core operational taxonomic units (OTUs) in mangroves were mostly assigned to Gammaproteobacteria, Deltaproteobacteria, Chloroflexi, and Euryarchaeota The majority of beta nearest-taxon index values were higher than 2, indicating that community assembly in mangroves was better explained through a deterministic process than through a stochastic process. Mean annual precipitation (MAP) and total organic carbon (TOC) were main deterministic factors explaining variation in the microbial community. This study fills a gap in addressing the unique microbial diversity of mangrove ecosystems and their microbial community assembly mechanisms.IMPORTANCE Understanding the underlying mechanisms of microbial community assembly patterns is a vital issue in microbial ecology. Mangroves, as an important and special ecosystem, provide a unique environment for examining the relative importance of stochastic and deterministic processes. We made the first global-scale comparison and found that microbial diversity was significantly different in mangrove sediments compared to that of other biomes. Furthermore, our results suggest that a deterministic process is more important in shaping microbial community assembly in mangroves.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Chang-Hai Duan
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yong-Ming Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jian Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hai-Chao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xin Song
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Aguirrezabala-Campano T, Gerardo-Nieto O, Gonzalez-Valencia R, Souza V, Thalasso F. Methane dynamics in the subsaline ponds of the Chihuahuan Desert: A first assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1255-1264. [PMID: 30970490 DOI: 10.1016/j.scitotenv.2019.02.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
The Cuatro Cienegas Basin (CCB) in the Chihuahuan desert is characterized by the presence of over 500 ponds located in an endorheic basin. These ponds are subsaline ecosystems characterized by a low productivity and a particularly high sulfate concentration, comparable to marine environments. This study focused on assessing the main physicochemical parameters in these ponds along with the characterization of the CH4 dynamics through the determination of fluxes, dissolved CH4 concentrations, and net methanotrophic and methanogenic activity. Despite a sulfate concentration ranging from 1.06 to 4.73 g L-1, the studied ponds showed moderate but clear CH4 production and emission, which suggests that methanogenesis is not completely outcompeted by sulfate reduction. CH4 fluxes ranged from 0.12 to 0.98 mg m-2 d-1, which falls within the higher range of marine emissions and within the lower range reported for coastal saline lagoons and saline ponds. During summer, significant CH4 production in the oxic water column was observed. In addition to CH4, CO2 fluxes were determined at levels from 0.2 to 53 g m-2 d-1, which is within the range recorded for saline lakes in other parts of the world. Our results provide additional evidence that subsaline/saline aquatic ecosystems play an important role in the emission of greenhouse gases to the atmosphere.
Collapse
Affiliation(s)
| | - Oscar Gerardo-Nieto
- Cinvestav, Department of Biotechnology and Bioengineering, Mexico City, Mexico
| | | | - Valeria Souza
- Universidad Nacional Autónoma de México, Departamento de Ecología Evolutiva, Mexico City, Mexico
| | - Frederic Thalasso
- Cinvestav, Department of Biotechnology and Bioengineering, Mexico City, Mexico.
| |
Collapse
|
42
|
Han C, Liu B, Zhong W. Effects of transgenic Bt rice on the active rhizospheric methanogenic archaeal community as revealed by DNA-based stable isotope probing. J Appl Microbiol 2018; 125:1094-1107. [PMID: 29846995 DOI: 10.1111/jam.13939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to investigate the influence of planting Cry1Ab/Cry1Ac gene expressing rice (Bt rice) on rhizospheric active methanogenic archaeal communities. METHODS AND RESULTS The nontransgenic parental line was used as the control (Ck rice). DNA-based stable isotope probing (DNA-SIP) technology traced the rhizospheric active methanogens at the tillering stage. The results revealed significantly lower CH4 emission flux from Bt soil than that from Ck soil during the whole growth period. The active methanogenic community composition remained stable. The RC-I lineage (77·9-79·8%) and Methanosaetaceae (13·9-15·1%) were the predominant active methanogens in Bt and Ck rice rhizospheres. However, the abundance of functionally active methanogens in the Bt rice rhizosphere was significantly reduced. Lower levels of root exudates (that included carbohydrate and organic acids) from Bt rice were also detected at the tillering stage. CONCLUSION This study found that the genetic modification of rice reduced the potential methanogenic substrates came from plant-derived root exudates, which represented an important factor in reducing CH4 generation and active methanogenic archaeal abundance in Bt rhizosphere soil. SIGNIFICANCE AND IMPACT OF THE STUDY The effect of genetically modified (GM) insect-resistant crops on soil micro-organisms has become an issue of public concern, especially the indirect effect of plant metabolisms caused by the insertion of foreign genes. Methanogenesis, which is regarded as a critical ecological process in paddy soil, is influenced by plant root exudates; these are mainly derived from photosynthesis. The variations in root exudates across the Bt and Ck rice suggested the indirect influence of foreign gene insertion. DNA-SIP successfully traced the active methanogenic archaeal populations assimilating 13 C-labelled photosynthetic carbon and found a strong influence of planting Bt rice on active methanogens. As a consequence, we proposed that analysis of functionally active micro-organisms is more suitable for monitoring and predicting the environmental influence of GM plants.
Collapse
Affiliation(s)
- C Han
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography Science, Nanjing Normal University - Xianlin Campus, Nanjing, Jiangsu Province, China.,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University - Xianlin Campus, Nanjing, Jiangsu Province, China
| | - B Liu
- Ministry of Environmental Protection of the People's Republic of China, Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Beijing, China
| | - W Zhong
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography Science, Nanjing Normal University - Xianlin Campus, Nanjing, Jiangsu Province, China.,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University - Xianlin Campus, Nanjing, Jiangsu Province, China
| |
Collapse
|
43
|
Michał B, Gagat P, Jabłoński S, Chilimoniuk J, Gaworski M, Mackiewicz P, Marcin Ł. PhyMet 2 : a database and toolkit for phylogenetic and metabolic analyses of methanogens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:378-382. [PMID: 29624889 DOI: 10.1111/1758-2229.12648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The vast biodiversity of the microbial world and how little is known about it, has already been revealed by extensive metagenomics analyses. Our rudimentary knowledge of microbes stems from difficulties concerning their isolation and culture in laboratory conditions, which is necessary for describing their phenotype, among other things, for biotechnological purposes. An important component of the understudied ecosystems is methanogens, archaea producing a potent greenhouse-effect gas methane. Therefore, we created PhyMet2 , the first database that combines descriptions of methanogens and their culturing conditions with genetic information. The database contains a set of utilities that facilitate interactive data browsing, data comparison, phylogeny exploration and searching for sequence homologues. The most unique feature of the database is the web server MethanoGram, which can be used to significantly reduce the time and cost of searching for the optimal culturing conditions of methanogens by predicting them based on 16S RNA sequences. The database will aid many researchers in exploring the world of methanogens and their applications in biotechnological processes. PhyMet2 with the MethanoGram predictor is available at http://metanogen.biotech.uni.wroc.pl.
Collapse
Affiliation(s)
- Burdukiewicz Michał
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Przemysław Gagat
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Sławomir Jabłoński
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jarosław Chilimoniuk
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Gaworski
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Łukaszewicz Marcin
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
44
|
Zhang J, Jiao S, Lu Y. Biogeographic distribution of bacterial, archaeal and methanogenic communities and their associations with methanogenic capacity in Chinese wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:664-675. [PMID: 29223893 DOI: 10.1016/j.scitotenv.2017.11.279] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 05/12/2023]
Abstract
Natural wetlands and anthropogenic paddy fields are the dominant biogenic sources of atmospheric methane emission which have been speculated as the most probable sources for the increase of post-2006 atmospheric methane. Regional differences in CH4 emission is possibly due to microbial biogeographic distribution. Here we collected soils from 19 wetlands from different regions in China. The methane production capacity (MPC) was measured for each soil samples and varied from 1.11 to 841.94mg/kg dry soil. High throughput sequencing was employed to investigate the diversity and composition of bacterial, archaeal and methanogenic communities. Similar biogeographic patterns for bacterial, archaeal and methanogenic communities along the latitudinal gradient were observed, and the biogeographic assemblies of different microbial groups were driven by concurrent factors, including edaphic variables (total organic carbon, total phosphorus and pH) and climatic variables (annual frost days, mean annual temperature, direct solar radiation and mean annual precipitation). MPC was significantly correlated with TOC concentration, and in addition, various functional taxa were positively correlated with MPC (P<0.05), for example, Sphingomonas, Syntrophomonas, Methanospirillum and Methanoregula, indicating their potential contributions in the methanogenic process, and many of them were fermentative bacteria and methanogens. Network analysis showed that some syntrophs, sulfate-reducers and methanogens were tightly co-occurred in one module, suggesting their involvements in cross-linked functional processes. Our study implicated both temperature and substrate availability altered the biogeographic patterns of microbial community as well as methane production potential in Chinese wetlands.
Collapse
Affiliation(s)
- Jie Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shuo Jiao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
45
|
Yang S, Winkel M, Wagner D, Liebner S. Community structure of rare methanogenic archaea: insight from a single functional group. FEMS Microbiol Ecol 2018; 93:4331631. [PMID: 29029047 PMCID: PMC5812523 DOI: 10.1093/femsec/fix126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 11/24/2022] Open
Abstract
The rare biosphere, the low abundant microbial populations, is suggested to be a conserved way of microbial life. Here we conducted a molecular survey of rare methanogenic archaea in the environment targeting the mcrA gene in order to test if general concepts associated with the structure of the rare bacterial biosphere also apply to single functional groups. Similar to what is known about rare bacterial communities, the contribution of rare methanogens to the alpha diversity is much larger than to Bray-Curtis measures. Moreover, a similar core group of methanogens harbored by the abundant and rare communities suggests similar sources and environmental controls of both groups. Among the communities of different levels of rarity, the conditionally rare methanogenic taxa largely account for the overall community dynamics of the rare biosphere and likely enter the dominant community under favorable environmental conditions. In addition, we observed a positive correlation between the alpha diversity and the production of methane when the rare taxa were taken into account. This supports the concept that increasing microbial biodiversity enhances ecological function. The composition and environmental associations of the rare methanogenic biosphere allow us to conclude that rarity is a conserved way also for single functional groups.
Collapse
Affiliation(s)
- Sizhong Yang
- GFZ German Research Center for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473 Potsdam, Germany.,State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Matthias Winkel
- GFZ German Research Center for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473 Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Center for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473 Potsdam, Germany
| | - Susanne Liebner
- GFZ German Research Center for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473 Potsdam, Germany
| |
Collapse
|
46
|
Yan L, Yu D, Hui N, Naanuri E, Viggor S, Gafarov A, Sokolov SL, Heinaru A, Romantschuk M. Distribution of Archaeal Communities along the Coast of the Gulf of Finland and Their Response to Oil Contamination. Front Microbiol 2018; 9:15. [PMID: 29410652 PMCID: PMC5787342 DOI: 10.3389/fmicb.2018.00015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022] Open
Abstract
The Baltic Sea is vulnerable to environmental changes. With the increasing shipping activities, the risk of oil spills remains high. Archaea are widely distributed in many environments. However, the distribution and the response of archaeal communities to oil contamination have rarely been investigated in brackish habitats. Hence, we conducted a survey to investigate the distribution, diversity, composition, and species interactions of indigenous archaeal communities at oil-contaminated sites along the coast of the Gulf of Finland (GoF) using high-throughput sequencing. Surface water and littoral sediment samples were collected at presumably oil-contaminated (oil distribution facilities) and clean sites along the coastline of the GoF in the winter 2015 and the summer 2016. Another three samples of open sea surface water were taken as offshore references. Of Archaea, Euryarchaeota dominated in the surface water and the littoral sediment of the coast of the GoF, followed by Crenarchaeota (including Thaumarchaeota, Thermoprotei, and Korarchaeota based on the Greengenes database used). The unclassified sequences accounted for 5.62% of the total archaeal sequences. Our study revealed a strong dependence of the archaeal community composition on environmental variables (e.g., salinity, pH, oil concentration, TOM, electrical conductivity, and total DNA concentration) in both littoral sediment and coastal water in the GoF. The composition of archaeal communities was season and ecosystem dependent. Archaea was highly diverse in the three ecosystems (littoral sediment, coastal water, and open sea water). Littoral sediment harbored the highest diversity of archaea. Oil was often detected in the littoral sediment but rarely detected in water at those presumably contaminated sites. Although the composition of archaeal community in the littoral sediment was sensitive to low-input oil contamination, the unchanged putative functional profiles and increased interconnectivity of the archaeal core species network plausibly revealed resilience and the potential for oil degradation. Halobacteriaceae and putative cytochrome P450 pathways were significantly enriched in the oil-contaminated littoral sediment. The archaeal taxa formed highly interconnected and interactive networks, in which Halobacteriaceae, Thermococcus, and methanogens were the main components, implying a potential relevant trophic connection between hydrocarbon degradation, methanogenesis, sulfate reduction, and/or fermentative growth.
Collapse
Affiliation(s)
- Lijuan Yan
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Dan Yu
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nan Hui
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Eve Naanuri
- Faculty of Science and Technology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Signe Viggor
- Faculty of Science and Technology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Arslan Gafarov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Sergei L Sokolov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Ain Heinaru
- Faculty of Science and Technology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Martin Romantschuk
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland.,Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| |
Collapse
|
47
|
Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog. Appl Environ Microbiol 2018; 84:AEM.02218-17. [PMID: 29180368 DOI: 10.1128/aem.02218-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/16/2017] [Indexed: 11/20/2022] Open
Abstract
Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover. However, the response of the underlying microbial communities catalyzing methane production and oxidation have so far received little attention. We hypothesize that with the return of Sphagnum spp. postharvest, methane turnover potential and the corresponding microbial communities will converge in a natural and restored peatland. To address our hypothesis, we determined the potential methane production and oxidation rates in natural (as a reference), actively mined, abandoned, and restored peatlands over two consecutive years. In all sites, the methanogenic and methanotrophic population sizes were enumerated using quantitative PCR (qPCR) assays targeting the mcrA and pmoA genes, respectively. Shifts in the community composition were determined using Illumina MiSeq sequencing of the mcrA gene and a pmoA-based terminal restriction fragment length polymorphism (t-RFLP) analysis, complemented by cloning and sequence analysis of the mmoX gene. Peat mining adversely affected methane turnover potential, but the rates recovered in the restored site. The recovery in potential activity was reflected in the methanogenic and methanotrophic abundances. However, the microbial community composition was altered, being more pronounced for the methanotrophs. Overall, we observed a lag between the recovery of the methanogenic/methanotrophic activity and the return of the corresponding microbial communities, suggesting that a longer duration (>15 years) is needed to reverse mining-induced effects on the methane-cycling microbial communities.IMPORTANCE Ombrotrophic peatlands are a crucial carbon sink, but this environment is also a source of methane, an important greenhouse gas. Methane emission in peatlands is regulated by methane production and oxidation catalyzed by methanogens and methanotrophs, respectively. Methane-cycling microbial communities have been documented in natural peatlands. However, less is known of their response to peat mining and of the recovery of the community after restoration. Mining exerts an adverse impact on potential methane production and oxidation rates and on methanogenic and methanotrophic population abundances. Peat mining also induced a shift in the methane-cycling microbial community composition. Nevertheless, with the return of Sphagnum spp. in the restored site after 15 years, methanogenic and methanotrophic activity and population abundance recovered well. The recovery, however, was not fully reflected in the community composition, suggesting that >15 years are needed to reverse mining-induced effects.
Collapse
|
48
|
Krauze P, Kämpf H, Horn F, Liu Q, Voropaev A, Wagner D, Alawi M. Microbiological and Geochemical Survey of CO 2-Dominated Mofette and Mineral Waters of the Cheb Basin, Czech Republic. Front Microbiol 2017; 8:2446. [PMID: 29321765 PMCID: PMC5732176 DOI: 10.3389/fmicb.2017.02446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/24/2017] [Indexed: 02/01/2023] Open
Abstract
The Cheb Basin (NW Bohemia, Czech Republic) is a shallow, neogene intracontinental basin. It is a non-volcanic region which features frequent earthquake swarms and large-scale diffuse degassing of mantle-derived CO2 at the surface that occurs in the form of CO2-rich mineral springs and wet and dry mofettes. So far, the influence of CO2 degassing onto the microbial communities has been studied for soil environments, but not for aquatic systems. We hypothesized, that deep-trenching CO2 conduits interconnect the subsurface with the surface. This admixture of deep thermal fluids should be reflected in geochemical parameters and in the microbial community compositions. In the present study four mineral water springs and two wet mofettes were investigated through an interdisciplinary survey. The waters were acidic and differed in terms of organic carbon and anion/cation concentrations. Element geochemical and isotope analyses of fluid components were used to verify the origin of the fluids. Prokaryotic communities were characterized through quantitative PCR and Illumina 16S rRNA gene sequencing. Putative chemolithotrophic, anaerobic and microaerophilic organisms connected to sulfur (e.g., Sulfuricurvum, Sulfurimonas) and iron (e.g., Gallionella, Sideroxydans) cycling shaped the core community. Additionally, CO2-influenced waters form an ecosystem containing many taxa that are usually found in marine or terrestrial subsurface ecosystems. Multivariate statistics highlighted the influence of environmental parameters such as pH, Fe2+ concentration and conductivity on species distribution. The hydrochemical and microbiological survey introduces a new perspective on mofettes. Our results support that mofettes are either analogs or rather windows into the deep biosphere and furthermore enable access to deeply buried paleo-sediments.
Collapse
Affiliation(s)
- Patryk Krauze
- GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Potsdam, Germany
| | - Horst Kämpf
- GFZ German Research Centre for Geosciences, Section 3.2 Organic Geochemistry, Potsdam, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Potsdam, Germany
| | - Qi Liu
- GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Potsdam, Germany
| | | | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Potsdam, Germany.,Institute for Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Potsdam, Germany
| |
Collapse
|