1
|
Yan J, Zhang X, Guo W, Wu S, Chen Y. Evidences of the electrogenic sulfur oxidation in constructed wetlands. CHEMOSPHERE 2024; 370:143951. [PMID: 39675582 DOI: 10.1016/j.chemosphere.2024.143951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
The sulfur redox cycling, mainly involving sulfide oxidation and sulfate reduction, remains a crucial factor that regulates the treatment performance of constructed wetlands (CWs). However, anoxic environments normally prevail in the CW systems, harboring vast reduced sulfur and sulfur minerals, where the occurrence and mechanism of anoxic sulfide oxidation remain unknown. In this study, CW microcosms filled with quartz sand (Qtz) and pyrite (Pyt) were established to investigate the anoxic sulfur oxidation under the bioelectrochemical manipulations. As a result, the δ34S-sulfate increased from 8.75 ± 0.29‰ in the influent to 51.74 ± 16.21‰ (Pyt) and 46.12 ± 25.95‰ (Qtz) at the anoxic zone under the open-circuit condition, and to 34.50 ± 6.99‰ (Pyt) and 42.53 ± 19.59‰ (Qtz) at that under the close-circuit conditions. This suggested the concurrent sulfate reduction and electrogenic sulfide oxidation in the systems. Based on a modified isotopic fractionation model, the electrogenic sulfide oxidation were further calculated (i.e., up to 87.58 and 265.13 mgS·m-2·d-1 in Qtz and Pyt, respectively). Results of fluorescence in situ hybridization and metagenomic analyses demonstrated the occurrence of filamentous bacteria belonging to Desulfobulbaceae, with relative abundances of 0.32 ± 0.00% and 0.88 ± 0.25% in the anoxic zones of Qtz and Pyt, respectively. Pyrite was found to upregulate the functional genes encoding microbial transformation of elemental sulfur, sulfide, and thiosulfate. Interspecies network analyses revealed mutual relationships between the filamentous bacteria and microorganisms involved in sulfur, iron, and carbon transformations. Together, this study provided new insights to the electrogenic sulfide oxidation in CWs.
Collapse
Affiliation(s)
- Jun Yan
- College of Environment and Ecology, Chongqing University, Chongqing, PR China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, PR China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, PR China
| | - Wenrui Guo
- PowerChina Huadong Engineering Corporation Limited, Hangzhou, 311122, PR China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Yi Chen
- College of Environment and Ecology, Chongqing University, Chongqing, PR China.
| |
Collapse
|
2
|
Valero A, Petrash DA, Kuchenbuch A, Korth B. Enriching electroactive microorganisms from ferruginous lake waters - Mind the sulfate reducers! Bioelectrochemistry 2024; 157:108661. [PMID: 38340618 DOI: 10.1016/j.bioelechem.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Electroactive microorganisms are pivotal players in mineral transformation within redox interfaces characterized by pronounced oxygen and dissolved metal gradients. Yet, their systematic cultivation from such environments remains elusive. Here, we conducted an anodic enrichment using anoxic ferruginous waters from a post-mining lake as inoculum. Weak electrogenicity (j = ∼5 µA cm-2) depended on electroactive planktonic cells rather than anodic biofilms, with a preference for formate as electron donor. Addition of yeast extract decreased the lag phase but did not increase current densities. The enriched bacterial community varied depending on the substrate composition but mainly comprised of sulfate- and nitrate-reducing bacteria (e.g., Desulfatomaculum spp. and Stenotrophomonas spp.). A secondary enrichment strategy resulted in different bacterial communities composed of iron-reducing (e.g., Klebsiella spp.) and fermentative bacteria (e.g., Paeniclostridium spp.). Secondary electron microscopy and energy-dispersive X-ray spectroscopy results indicate the precipitation of sulfur- and iron-rich organomineral aggregates at the anode surface, presumably impeding current production. Our findings indicate that (i) anoxic waters containing geogenically derived metals can be used to enrich weak electricigens, and (ii) it is necessary to specifically inhibit sulfate reducers. Otherwise, sulfate reducers tend to dominate over EAM during cultivation, which can lead to anode passivation due to biomineralization.
Collapse
Affiliation(s)
- Astolfo Valero
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Daniel A Petrash
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague, Czech Republic
| | - Anne Kuchenbuch
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Benjamin Korth
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany.
| |
Collapse
|
3
|
Kadam R, Jo S, Khanthong K, Lee J, Jang H, Park J. Potential of nitrite-absent anaerobic ammonium oxidation by mixed culture ANAMMOX granules in a single chamber bio-electrochemical system. CHEMOSPHERE 2023; 345:140494. [PMID: 37863210 DOI: 10.1016/j.chemosphere.2023.140494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Nitrogen (N) removal from wastewater is essential, but it a process that demands a substantial amount of energy. Therefore, there is an urgent need to develop treatment processes that can conserve and use energy effectively. This study investigated the potential of a single chamber bio-electrochemical system (BES) for ammonium (NH4+) removal. Various NH4+:NO2- ratios (1:1, 1:0.5, and 1:0) were tested at an applied potential of 0.4 V vs. Ag/AgCl. Potential in the reactors (R-1, R-2, and R-3) significantly improved NH4+ removal efficiencies. Specifically, R-1, R-2, and R-3 exhibited removal efficiencies of 68.12%, 64.22%, and 57.86%, respectively. NH4+ oxidation in R-3 involved using a carbon brush electrode as an electron acceptor. Significant electric charge generation was observed in all reactors (R-1, R-2, and R-3) during NH4+ removal. Particularly, the use of a carbon brush as an electron acceptor in R-3 resulted in higher electric charge generation compared to those in R-1 and R-2, where NO2- served as an electron acceptor. Upon NH4+ removal and concurrent electric charge generation, nitrate (NO3-) accumulation was observed in reactors with applied potential (R-1, R-2, and R-3), demonstrating greater accumulation compared to reactors without potential (R-7, R-8, and R-9). The mechanism involves ammonium oxidizing bacteria (AOB) oxidizing NH4+ to NO2-, which is then further oxidized by nitrite-oxidizing bacteria (NOB) to NO3-. ANAMMOX bacteria could directly produce N2 from NH4+ and NO2- or NH4+ could be oxidized to N2 through extracellular electron transfer (EET). A carbon brush electron acceptor reduces NO2- requirement by 1.65 g while enhancing NH4+ oxidation efficiency. This study demonstrates the potential of mixed culture ANAMMOX granules for efficient NO2-free NH4+ removal.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jonghwa Lee
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Heewon Jang
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
4
|
Olmsted CN, Ort R, Tran PQ, McDaniel EA, Roden EE, Bond DR, He S, McMahon KD. Environmental predictors of electroactive bacterioplankton in small boreal lakes. Environ Microbiol 2023; 25:705-720. [PMID: 36529539 DOI: 10.1111/1462-2920.16314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Extracellular electron transfer (EET) by electroactive bacteria in anoxic soils and sediments is an intensively researched subject, but EET's function in planktonic ecology has been less considered. Following the discovery of an unexpectedly high prevalence of EET genes in a bog lake's bacterioplankton, we hypothesized that the redox capacities of dissolved organic matter (DOM) enrich for electroactive bacteria by mediating redox chemistry. We developed the bioinformatics pipeline FEET (Find EET) to identify and summarize predicted EET protein-encoding genes from metagenomics data. We then applied FEET to 36 bog and thermokarst lakes and correlated gene occurrence with environmental data to test our predictions. Our results provide indirect evidence that DOM may participate in bacterioplankton EET. We found a similarly high prevalence of genes encoding putative EET proteins in most of these lakes, where oxidative EET strongly correlated with DOM. Numerous novel clusters of multiheme cytochromes that may enable EET were identified. Taxa previously not considered EET-capable were found to carry EET genes. We propose that EET and DOM interactions are of ecologically important to bacterioplankton in small boreal lakes, and that EET, particularly by methylotrophs and anoxygenic phototrophs, should be further studied and incorporated into methane emission models of melting permafrost.
Collapse
Affiliation(s)
- Charles N Olmsted
- Department of Molecular and Environmental Toxicology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Trout Lake Station, Center for Limnology, University of Wisconsin - Madison, Boulder, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Roger Ort
- Trout Lake Station, Center for Limnology, University of Wisconsin - Madison, Boulder, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Elizabeth A McDaniel
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Daniel R Bond
- Department of Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Shaomei He
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Bai L, Wang J, Wang Y, Wang Y, Yang Y, Cui D, Zhao M. Photocatalytic performance of an α-Fe 2O 3 electrode and its effects on the growth and metabolism of Citrobacter freundii. Appl Microbiol Biotechnol 2022; 106:6253-6262. [PMID: 35969261 DOI: 10.1007/s00253-022-12120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022]
Abstract
Electronic exchanges occur between semiconductor minerals and microorganisms. However, researchers have focused on the photocatalytic degradation of pollutants by semiconductor minerals, and there is a limited amount of studies on semiconductor photogenerated electrons that influence the growth and energetic mechanisms of bacteria. Bioelectrochemical systems (BES) are important new bioengineering technologies for investigating the mechanisms by which bacteria absorb electrons. In this work, we built a BES that used α-Fe2O3 nanorods as a photoanode and Citrobacter freundii as bio-cathode bacteria to explore the effect of photoelectrons on C. freundii growth and metabolism. The photoanode was prepared by a hydrothermal synthesis method. As confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), the photoanode was made of α-Fe2O3. Corresponding scanning electron microscope (SEM) images showed that α-Fe2O3 nanorod arrays formed with a diameter of 50 nm, and the band gap was 2.03 eV, as indicated by UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The C. freundii growth metabolism changed significantly because of photoelectrons; under light conditions, the growth rate of C. freundii significantly accelerated, and as inferred from the three-dimensional fluorescence spectrum, the protein, humic acid, and NADH concentrations were significantly higher at 72 h. According to the changes in the organic acid content, photoelectrons participated in the reductive tricarboxylic acid cycle (rTCA) to enhance growth and metabolism. The results of the study have broad implications for advancing fields that study the effects of semiconductor minerals on electroactive microorganisms and the semiconductor-photoelectronic transport mechanisms of electroautotrophic microorganisms. KEY POINTS: • For the first time, A BES was built that used α-Fe2O3 nanorods as a photoanode and C. freundii as a bio-cathode bacteria. • Photoelectrons produced by α-Fe2O3 photoelectrode promote the growth of C. freundii. • Effects of photoelectrons on C. freundii metabolism were conjectured by the changes of organic acids and NADH.
Collapse
Affiliation(s)
- Long Bai
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jueyu Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuelei Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yongqi Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yue Yang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
6
|
Chaudhary S, Yadav S, Singh R, Sadhotra C, Patil SA. Extremophilic electroactive microorganisms: Promising biocatalysts for bioprocessing applications. BIORESOURCE TECHNOLOGY 2022; 347:126663. [PMID: 35017088 DOI: 10.1016/j.biortech.2021.126663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms (EAMs) use extracellular electron transfer (EET) processes to access insoluble electron donors or acceptors in cellular respiration. These are used in developing microbial electrochemical technologies (METs) for biosensing and bioelectronics applications and the valorization of liquid and gaseous wastes. EAMs from extreme environments can be useful to overcome the existing limitations of METs operated with non-extreme microorganisms. Studying extreme EAMs is also necessary to improve understanding of respiratory processes involving EET. This article first discusses the advantages of using extreme EAMs in METs and summarizes the diversity of EAMs from different extreme environments. It is followed by a detailed discussion on their use as biocatalysts in various bioprocessing applications via bioelectrochemical systems. Finally, the challenges associated with operating METs under extreme conditions and promising research opportunities on fundamental and applied aspects of extreme EAMs are presented.
Collapse
Affiliation(s)
- Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sukrampal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Ramandeep Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Chetan Sadhotra
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
7
|
Bird LJ, Kundu BB, Tschirhart T, Corts AD, Su L, Gralnick JA, Ajo-Franklin CM, Glaven SM. Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synth Biol 2021; 10:2808-2823. [PMID: 34637280 DOI: 10.1021/acssynbio.1c00335] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Biki B. Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Anna D. Corts
- Joyn Bio, Boston, Massachusetts 02210, United States
| | - Lin Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, People’s Republic of China
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | | | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
8
|
Thrash JC. Towards culturing the microbe of your choice. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:36-41. [PMID: 33073476 DOI: 10.1111/1758-2229.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Affiliation(s)
- J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
9
|
Electrochemical and phylogenetic comparisons of oxygen-reducing electroautotrophic communities. Biosens Bioelectron 2021; 171:112700. [PMID: 33096434 DOI: 10.1016/j.bios.2020.112700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/21/2022]
Abstract
The mechanisms of extracellular electron transfer and the microbial taxa associated with the observed electroactivity are fundamental to oxygen-reducing microbial cathodes. Here we confirmed the apparent 'electroautotrophic' behavior of electroactive biofilms (EABs) grown on carbon electrodes at + 0.20V vs. Ag/AgCl under air. The EABs catalyzed O2 electroreduction into water ─ as demonstrated by a rotating ring disc experiment ─ and performed quasi-reversible heterogeneous electron transfer (HET). By using electrodes of low surface capacitance, we report for the first time nonturnover redox peaks that are very likely intrinsic to the redox protein(s) performing the HET. Because the formal potential of redox proteins is pH-dependent, we investigated the evolution of characteristic potentials of the EABs with the solution pH: (i) open circuit potential, (ii) half-wave potential, and (iii) averaged peak potential of nonturnover cyclic voltammograms, which is presumably the formal potential of the primary electron acceptor(s) for the community. In addition to describing the redox thermodynamics behind HET, we suggest that the corresponding data provides an electrochemical fingerprint that could help in comparing the electroactivity of diverse microbial communities. The taxon with the highest relative abundance in our EABs was an unclassified member of the Gammaproteobacteria that was phylogenetically closely related to most other abundant unclassified Gammaproteobacteria commonly reported in EABs reducing O2 at high potentials, further suggesting that those taxa are responsible for the bioelectroactivity. Phylogenetic and electrochemical similarities between reported EABs jointly support the hypothesis that similar biomolecular mechanisms may be responsible for this highly probable electroautotrophic metabolism.
Collapse
|
10
|
Arbour TJ, Gilbert B, Banfield JF. Diverse Microorganisms in Sediment and Groundwater Are Implicated in Extracellular Redox Processes Based on Genomic Analysis of Bioanode Communities. Front Microbiol 2020; 11:1694. [PMID: 32849356 PMCID: PMC7399161 DOI: 10.3389/fmicb.2020.01694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
Extracellular electron transfer (EET) between microbes and iron minerals, and syntrophically between species, is a widespread process affecting biogeochemical cycles and microbial ecology. The distribution of this capacity among microbial taxa, and the thermodynamic controls on EET in complex microbial communities, are not fully known. Microbial electrochemical cells (MXCs), in which electrodes serve as the electron acceptor or donor, provide a powerful approach to enrich for organisms capable of EET and to study their metabolism. We used MXCs coupled with genome-resolved metagenomics to investigate the capacity for EET in microorganisms present in a well-studied aquifer near Rifle, CO. Electroactive biofilms were established and maintained for almost 4 years on anodes poised mostly at −0.2 to −0.25 V vs. SHE, a range that mimics the redox potential of iron-oxide minerals, using acetate as the sole carbon source. Here we report the metagenomic characterization of anode-biofilm and planktonic microbial communities from samples collected at timepoints across the study period. From two biofilm and 26 planktonic samples we reconstructed draft-quality and near-complete genomes for 84 bacteria and 2 archaea that represent the majority of organisms present. A novel Geobacter sp. with at least 72 putative multiheme c-type cytochromes (MHCs) was the dominant electrode-attached organism. However, a diverse range of other electrode-associated organisms also harbored putative MHCs with at least 10 heme-binding motifs, as well as porin-cytochrome complexes and e-pili, including Actinobacteria, Ignavibacteria, Chloroflexi, Acidobacteria, Firmicutes, Beta- and Gammaproteobacteria. Our results identify a small subset of the thousands of organisms previously detected in the Rifle aquifer that may have the potential to mediate mineral redox transformations.
Collapse
Affiliation(s)
- Tyler J Arbour
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | - Benjamin Gilbert
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.,Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.,Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
11
|
Naradasu D, Miran W, Okamoto A. Metabolic Current Production by an Oral Biofilm Pathogen Corynebacterium matruchotii. Molecules 2020; 25:molecules25143141. [PMID: 32660074 PMCID: PMC7397247 DOI: 10.3390/molecules25143141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
The development of a simple and direct assay for quantifying microbial metabolic activity is important for identifying antibiotic drugs. Current production capabilities of environmental bacteria via the process called extracellular electron transport (EET) from the cell interior to the exterior is well investigated in mineral-reducing bacteria and have been used for various energy and environmental applications. Recently, the capability of human pathogens for producing current has been identified in different human niches, which was suggested to be applicable for drug assessment, because the current production of a few strains correlated with metabolic activity. Herein, we report another strain, a highly abundant pathogen in human oral polymicrobial biofilm, Corynebacterium matruchotii, to have the current production capability associated with its metabolic activity. It showed the current production of 50 nA/cm2 at OD600 of 0.1 with the working electrode poised at +0.4 V vs. a standard hydrogen electrode in a three-electrode system. The addition of antibiotics that suppress the microbial metabolic activity showed a significant current decrease (>90%), establishing that current production reflected the cellular activity in this pathogen. Further, the metabolic fixation of atomically labeled 13C (31.68% ± 2.26%) and 15N (19.69% ± 1.41%) confirmed by high-resolution mass spectrometry indicated that C. matruchotii cells were metabolically active on the electrode surface. The identified electrochemical activity of C. matruchotii shows that this can be a simple and effective test for evaluating the impact of antibacterial compounds, and such a method might be applicable to the polymicrobial oral biofilm on electrode surfaces, given four other oral pathogens have already been shown the current production capability.
Collapse
Affiliation(s)
- Divya Naradasu
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (D.N.); (W.M.)
| | - Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (D.N.); (W.M.)
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (D.N.); (W.M.)
- Center for Sensor and Actuator Material, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Correspondence:
| |
Collapse
|
12
|
Yee MO, Deutzmann J, Spormann A, Rotaru AE. Cultivating electroactive microbes-from field to bench. NANOTECHNOLOGY 2020; 31:174003. [PMID: 31931483 DOI: 10.1088/1361-6528/ab6ab5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electromicrobiology is an emerging field investigating and exploiting the interaction of microorganisms with insoluble electron donors or acceptors. Some of the most recently categorized electroactive microorganisms became of interest to sustainable bioengineering practices. However, laboratories worldwide typically maintain electroactive microorganisms on soluble substrates, which often leads to a decrease or loss of the ability to effectively exchange electrons with solid electrode surfaces. In order to develop future sustainable technologies, we cannot rely solely on existing lab-isolates. Therefore, we must develop isolation strategies for environmental strains with electroactive properties superior to strains in culture collections. In this article, we provide an overview of the studies that isolated or enriched electroactive microorganisms from the environment using an anode as the sole electron acceptor (electricity-generating microorganisms) or a cathode as the sole electron donor (electricity-consuming microorganisms). Next, we recommend a selective strategy for the isolation of electroactive microorganisms. Furthermore, we provide a practical guide for setting up electrochemical reactors and highlight crucial electrochemical techniques to determine electroactivity and the mode of electron transfer in novel organisms.
Collapse
Affiliation(s)
- Mon Oo Yee
- Nordcee, Department of Biology, University of Southern Denmark, Odense, DK-5230, Denmark
| | | | | | | |
Collapse
|
13
|
Marzocchi U, Palma E, Rossetti S, Aulenta F, Scoma A. Parallel artificial and biological electric circuits power petroleum decontamination: The case of snorkel and cable bacteria. WATER RESEARCH 2020; 173:115520. [PMID: 32018171 DOI: 10.1016/j.watres.2020.115520] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/13/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Degradation of petroleum hydrocarbons (HC) in sediments is often limited by the availability of electron acceptors. By allowing long-distance electron transport (LDET) between anoxic sediments and oxic overlying water, bioelectrochemical snorkels may stimulate the regeneration of sulphate in the anoxic sediment thereby accelerating petroleum HC degradation. Cable bacteria can also mediate LDET between anoxic and oxic sediment layers and thus theoretically stimulate petroleum HC degradation. Here, we quantitatively assessed the impact of cable bacteria and snorkels on the degradation of alkanes in marine sediment from Aarhus Bay (Denmark). After seven weeks, cable bacteria and snorkels accelerated alkanes degradation by +24 and +25%, respectively, compared to control sediment with no cable bacteria nor snorkel. The combination of snorkels and cable bacteria further enhanced alkanes degradation (+46%). Higher degradation rates were sustained by LDET-induced sulphide removal rather than, as initially hypothesized, sulphate regeneration. Cable bacteria are thus overlooked players in the self-healing capacity of crude-oil contaminated sediments, and may inspire novel remediation treatments upon hydrocarbon spillage.
Collapse
Affiliation(s)
- Ugo Marzocchi
- Center for Electromicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Napoli, Italy.
| | - Enza Palma
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Alberto Scoma
- Section of Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; Biological and Chemical Engineering (BCE), Department of Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Li H, Wang B, Deng S, Dai J, Shao S. Oxygen-containing functional groups on bioelectrode surface enhance expression of c-type cytochromes in biofilm and boost extracellular electron transfer. BIORESOURCE TECHNOLOGY 2019; 292:121995. [PMID: 31430670 DOI: 10.1016/j.biortech.2019.121995] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Introducing oxygen-containing functional groups is a common and convenient method to increase the hydrophilicity of bioelectrodes. In this study, the effect of oxygen-containing functional groups on biofilm was systematically studied to understand how the electron transfer between electrochemically active bacteria (EAB) and bioelectrode was boosted. After electrolysis pretreatment in sulfuric and nitric acid mixture, the oxygen content of the carbon fiber brushes increased from 4.6% to 30.9%. Comparing with the control, the maximum power density increased by 27.7%, while the anode resistance decreased by 21.8%, because charge transfer resistance significantly reduced. The analysis results showed that the content of c-type cytochromes (c-Cyts) in the EAB biofilm was four times higher than that in the control, while the biomass just slightly increased and the bacteria community was similar with that of the control. These findings suggested that the fundamental reason for the enhanced extracellular electron transfer between EAB and electrode was the increased c-Cyts.
Collapse
Affiliation(s)
- Hui Li
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Bin Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Songping Deng
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jingcheng Dai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
15
|
Karbelkar AA, Rowe AR, El-Naggar MY. An electrochemical investigation of interfacial electron uptake by the sulfur oxidizing bacterium Thioclava electrotropha ElOx9. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Yang Y, Yu YY, Shi YT, Moradian JM, Yong YC. In Vivo Two-Way Redox Cycling System for Independent Duplexed Electrochemical Signal Amplification. Anal Chem 2019; 91:4939-4942. [DOI: 10.1021/acs.analchem.9b00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuan Yang
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yang-Yang Yu
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
- Zhenjiang Key Laboratory for Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yu-Tong Shi
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Jamile Mohammadi Moradian
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
- Zhenjiang Key Laboratory for Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| |
Collapse
|
17
|
Jiang Y, Zeng RJ. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application. BIORESOURCE TECHNOLOGY 2019; 271:439-448. [PMID: 30292689 DOI: 10.1016/j.biortech.2018.09.133] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The extracellular electron transfer (EET) between microorganisms and electrodes forms the basis for microbial electrochemical technology (MET), which recently have advanced as a flexible platform for applications in energy and environmental science. This review, for the first time, focuses on the electrode-biofilm capable of bidirectional EET, where the electrochemically active bacteria (EAB) can conduct both the outward EET (from EAB to electrodes) and the inward EET (from electrodes to EAB). Only few microorganisms are tested in pure culture with the capability of bidirectional EET, however, the mixed culture based bidirectional EET offers great prospects for biocathode enrichment, pollutant complete mineralization, biotemplated material development, pH stabilization, and bioelectronic device design. Future efforts are necessary to identify more EAB capable of the bidirectional EET, to balance the current density, to evaluate the effectiveness of polarity reversal for biocathode enrichment, and to boost the future research endeavors of such a novel function.
Collapse
Affiliation(s)
- Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
18
|
Tanaka K, Yokoe S, Igarashi K, Takashino M, Ishikawa M, Hori K, Nakanishi S, Kato S. Extracellular Electron Transfer via Outer Membrane Cytochromes in a Methanotrophic Bacterium Methylococcus capsulatus (Bath). Front Microbiol 2018; 9:2905. [PMID: 30555443 PMCID: PMC6281684 DOI: 10.3389/fmicb.2018.02905] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 11/24/2022] Open
Abstract
Electron exchange reactions between microbial cells and solid materials, referred to as extracellular electron transfer (EET), have attracted attention in the fields of microbial physiology, microbial ecology, and biotechnology. Studies of model species of iron-reducing, or equivalently, current-generating bacteria such as Geobacter spp. and Shewanella spp. have revealed that redox-active proteins, especially outer membrane c-type cytochromes (OMCs), play a pivotal role in the EET process. Recent (meta)genomic analyses have revealed that diverse microorganisms that have not been demonstrated to have EET ability also harbor OMC-like proteins, indicating that EET via OMCs could be more widely preserved in microorganisms than originally thought. A methanotrophic bacterium Methylococcus capsulatus (Bath) was reported to harbor multiple OMC genes whose expression is elevated by Cu starvation. However, the physiological role of these genes is unknown. Therefore, in this study, we explored whether M. capsulatus (Bath) displays EET abilities via OMCs. In electrochemical analysis, M. capsulatus (Bath) generated anodic current only when electron donors such as formate were available, and could reduce insoluble iron oxides in the presence of electron donor compounds. Furthermore, the current-generating and iron-reducing activities of M. capsulatus (Bath) cells that were cultured in a Cu-deficient medium, which promotes high levels of OMC expression, were higher than those cultured in a Cu-supplemented medium. Anodic current production by the Cu-deficient cells was significantly suppressed by disruption of MCA0421, a highly expressed OMC gene, and by treatment with carbon monoxide (CO) gas (an inhibitor of c-type cytochromes). Our results provide evidence of EET in M. capsulatus (Bath) and demonstrate the pivotal role of OMCs in this process. This study raises the possibility that EET to solid compounds is a novel survival strategy of methanotrophic bacteria.
Collapse
Affiliation(s)
- Kenya Tanaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Sho Yokoe
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Motoko Takashino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shuji Nakanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan.,Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| | - Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| |
Collapse
|
19
|
Chong GW, Karbelkar AA, El-Naggar MY. Nature's conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion? Curr Opin Chem Biol 2018; 47:7-17. [PMID: 30015234 DOI: 10.1016/j.cbpa.2018.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
Microorganisms can acquire energy from the environment by extending their electron transport chains to external solid electron donors or acceptors. This process, known as extracellular electron transfer (EET), is now being heavily pursued for wiring microbes to electrodes in bioelectrochemical renewable energy technologies. Recent studies highlight the crucial role of multi-heme cytochromes in facilitating biotic-abiotic EET both for cellular electron export and uptake. Here we explore progress in understanding the range and function of these biological electron conduits in the context of fuel-to-electricity and electricity-to-bioproduct conversion. We also highlight emerging topics, including the role of multi-heme cytochromes in inter-species electron transfer and in inspiring the design and synthesis of a new generation of protein-based bioelectronic components.
Collapse
Affiliation(s)
- Grace W Chong
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Amruta A Karbelkar
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, USA
| | - Mohamed Y El-Naggar
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, USA; Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA.
| |
Collapse
|