1
|
Domingos IJS, Rocha KLS, Graciano JM, Almeida LR, Doty JB, Paglia AP, Oliveira DB, Nakazawa YJ, Trindade GDS. Orthopoxvirus Circulation in an Endemic Area in Brazil: Investigation of Infections in Small Mammals during an Absence of Outbreaks. Viruses 2023; 15:v15040842. [PMID: 37112823 PMCID: PMC10144947 DOI: 10.3390/v15040842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Vaccinia virus (VACV) is the causative agent of an emerging viral zoonosis called bovine vaccinia (BV). Several studies have documented characteristics of VACV infections in Brazil; however, the manner in which this virus is maintained in wildlife remains unknown. This work investigated the presence of viral DNA and anti-orthopoxvirus (OPXV) antibodies in samples collected from small mammals in a VACV-endemic area in Minas Gerais, Brazil, in the absence of current outbreaks. Samples did not show amplification of OPXV DNA in molecular tests. However, 5/142 serum samples demonstrated the presence of anti-OPXV neutralizing antibodies in serological tests. These data reinforce the involvement of small mammals in the natural cycle of VACV, highlighting the need for further ecological studies to better understand how this virus is maintained in nature and to develop measures to prevent BV outbreaks.
Collapse
Affiliation(s)
- Iago J. S. Domingos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, Brazil
- Correspondence: (I.J.S.D.); (Y.J.N.); (G.d.S.T.); Tel.: +55-(31)-3409-2755 (G.d.S.T.)
| | - Kamila L. S. Rocha
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Jessica M. Graciano
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Lara R. Almeida
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Jeffrey B. Doty
- U.S. Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA
| | - Adriano P. Paglia
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Danilo B. Oliveira
- Centro Integrado de Pesquisa e Pós-Graduação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, MGC 367 Km 583, 5000, Diamantina 39100-000, Brazil
| | - Yoshinori J. Nakazawa
- U.S. Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA
- Correspondence: (I.J.S.D.); (Y.J.N.); (G.d.S.T.); Tel.: +55-(31)-3409-2755 (G.d.S.T.)
| | - Giliane de S. Trindade
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, Brazil
- Correspondence: (I.J.S.D.); (Y.J.N.); (G.d.S.T.); Tel.: +55-(31)-3409-2755 (G.d.S.T.)
| |
Collapse
|
2
|
Orthopoxvirus Zoonoses—Do We Still Remember and Are Ready to Fight? Pathogens 2023; 12:pathogens12030363. [PMID: 36986285 PMCID: PMC10052541 DOI: 10.3390/pathogens12030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The eradication of smallpox was an enormous achievement due to the global vaccination program launched by World Health Organization. The cessation of the vaccination program led to steadily declining herd immunity against smallpox, causing a health emergency of global concern. The smallpox vaccines induced strong, humoral, and cell-mediated immune responses, protecting for decades after immunization, not only against smallpox but also against other zoonotic orthopoxviruses that now represent a significant threat to public health. Here we review the major aspects regarding orthopoxviruses’ zoonotic infections, factors responsible for viral transmissions, as well as the emerging problem of the increased number of monkeypox cases recently reported. The development of prophylactic measures against poxvirus infections, especially the current threat caused by the monkeypox virus, requires a profound understanding of poxvirus immunobiology. The utilization of animal and cell line models has provided good insight into host antiviral defenses as well as orthopoxvirus evasion mechanisms. To survive within a host, orthopoxviruses encode a large number of proteins that subvert inflammatory and immune pathways. The circumvention of viral evasion strategies and the enhancement of major host defenses are key in designing novel, safer vaccines, and should become the targets of antiviral therapies in treating poxvirus infections.
Collapse
|
3
|
Capobianchi MR, Di Caro A, Piubelli C, Mori A, Bisoffi Z, Castilletti C. Monkeypox 2022 outbreak in non-endemic countries: Open questions relevant for public health, nonpharmacological intervention and literature review. Front Cell Infect Microbiol 2022; 12:1005955. [PMID: 36204640 PMCID: PMC9530127 DOI: 10.3389/fcimb.2022.1005955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
Starting from mid-May 2022, cases of human monkeypox started to rise in several non-endemic countries. By mid-July, more than 17000 confirmed/suspect cases have been reported by at least 82 countries worldwide, with a regular incremental trend. In order to contain the disease diffusion, risk evaluation is crucial to undertake informed decisions and effective communication campaigns. However, since orthopoxvirus infections so far have attracted low attention, due to the eradication of smallpox 40 years ago, and to the confinement of human monkeypox almost exclusively to endemic areas, several unresolved issues concerning natural history, ecology and pathogenesis remain. To this respect, we identified some open questions and reviewed the relevant literature on monkeypoxvirus and/or related orthopoxviruses. The results will be discussed in the perspective of their relevance to public health decisions, particularly those related to non-pharmacological interventions.
Collapse
Affiliation(s)
- Maria Rosaria Capobianchi
- Department of Infectious Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore-Don Calabria Hospital, Verona, Italy
- Saint Camillus International Medical University, Rome, Italy
| | - Antonino Di Caro
- Department of Infectious Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore-Don Calabria Hospital, Verona, Italy
- Saint Camillus International Medical University, Rome, Italy
| | - Chiara Piubelli
- Department of Infectious Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore-Don Calabria Hospital, Verona, Italy
| | - Antonio Mori
- Department of Infectious Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore-Don Calabria Hospital, Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore-Don Calabria Hospital, Verona, Italy
| | - Concetta Castilletti
- Department of Infectious Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore-Don Calabria Hospital, Verona, Italy
| |
Collapse
|
4
|
Barbosa Costa G, Silva de Oliveira J, Townsend MB, Carson WC, Borges IA, McCollum AM, Kroon EG, Satheshkumar PS, Reynolds MG, Nakazawa YJ, de Souza Trindade G. Educational Approach to Prevent the Burden of Vaccinia Virus Infections in a Bovine Vaccinia Endemic Area in Brazil. Pathogens 2021; 10:pathogens10050511. [PMID: 33922509 PMCID: PMC8145679 DOI: 10.3390/pathogens10050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bovine vaccinia (BV), caused by Vaccinia virus (VACV), is a zoonotic disease characterized by exanthematous lesions on the teats of dairy cows and the hands of milkers, and is an important public health issue in Brazil and South America. BV also results in economic losses to the dairy industry, being a burden to the regions involved in milk production. In the past 20 years, much effort has been made to increase the knowledge regarding BV epidemiology, etiologic agents, and interactions with the hosts and the environment. In the present study, we evaluated milking practices that could be associated with VACV infections in an endemic area in Brazil and proposed an educational tool to help prevent VACV infections. In our survey, 124 individuals (51.7%) from a total of 240 had previously heard of BV, 94 of which knew about it through BV outbreaks. Although most individuals involved in dairy activities (n = 85/91) reported having good hygiene practices, only 29.7% used adequate disinfecting products to clean their hands and 39.5% disinfected cows’ teats before and after milking. Furthermore, 46.7% of individuals reported having contact with other farm and domestic animals besides dairy cattle. We also evaluated the presence of IgG and IgM antibodies in the surveyed population. Overall, 6.1% of likely unvaccinated individuals were positive for anti-Orthopoxvirus IgG antibodies, and 1.7% of all individuals were positive for IgM antibodies. Based on our findings, we proposed educational materials which target individuals with permanent residence in rural areas (mainly farmers and milkers), providing an overview and basic information about preventive measures against VACV infections that could enhance BV control and prevention efforts, especially for vulnerable populations located in endemic areas.
Collapse
Affiliation(s)
- Galileu Barbosa Costa
- Departamento de Análise em Saúde e Vigilância de Doenças não Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília 70723-040, Brazil
- Correspondence: or (G.B.C.); (G.d.S.T.); Tel.: +55-61-3315-7708 (G.B.C.); +55-31-3409-2747 (G.d.S.T.)
| | - Jaqueline Silva de Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (J.S.d.O.); (I.A.B.); (E.G.K.)
| | - Michael B. Townsend
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (M.B.T.); (W.C.C.); (A.M.M.); (P.S.S.); (M.G.R.); (Y.J.N.)
| | - William C. Carson
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (M.B.T.); (W.C.C.); (A.M.M.); (P.S.S.); (M.G.R.); (Y.J.N.)
| | - Iara Apolinário Borges
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (J.S.d.O.); (I.A.B.); (E.G.K.)
| | - Andrea M. McCollum
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (M.B.T.); (W.C.C.); (A.M.M.); (P.S.S.); (M.G.R.); (Y.J.N.)
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (J.S.d.O.); (I.A.B.); (E.G.K.)
| | - Panayampalli Subbian Satheshkumar
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (M.B.T.); (W.C.C.); (A.M.M.); (P.S.S.); (M.G.R.); (Y.J.N.)
| | - Mary G. Reynolds
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (M.B.T.); (W.C.C.); (A.M.M.); (P.S.S.); (M.G.R.); (Y.J.N.)
| | - Yoshinori J. Nakazawa
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (M.B.T.); (W.C.C.); (A.M.M.); (P.S.S.); (M.G.R.); (Y.J.N.)
| | - Giliane de Souza Trindade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (J.S.d.O.); (I.A.B.); (E.G.K.)
- Correspondence: or (G.B.C.); (G.d.S.T.); Tel.: +55-61-3315-7708 (G.B.C.); +55-31-3409-2747 (G.d.S.T.)
| |
Collapse
|
5
|
José da Silva Domingos I, Silva de Oliveira J, Lorene Soares Rocha K, Bretas de Oliveira D, Geessien Kroon E, Barbosa Costa G, de Souza Trindade G. Twenty Years after Bovine Vaccinia in Brazil: Where We Are and Where Are We Going? Pathogens 2021; 10:406. [PMID: 33807254 PMCID: PMC8065508 DOI: 10.3390/pathogens10040406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 01/31/2023] Open
Abstract
Orthopoxvirus (OPV) infections have been present in human life for hundreds of years. It is known that Variola virus (VARV) killed over 300 million people in the past; however, it had an end thanks to the physician Edward Jenner (who developed the first vaccine in history) and also thanks to a massive vaccination program in the 20th century all over the world. Although the first vaccine was created using the Cowpox virus (CPXV), it turned out later that the Vaccinia virus was the one used during the vaccination program. VACV is the etiological agent of bovine vaccinia (BV), a zoonotic disease that has emerged in Brazil and South America in the last 20 years. BV has a great impact on local dairy economies and is also a burden to public health. In this review, we described the main events related to VACV and BV emergence in Brazil and South America, the increase of related scientific studies, and the issues that science, human and animal medicine are going to face if we do not be on guard to this virus and its disease.
Collapse
Affiliation(s)
- Iago José da Silva Domingos
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; (I.J.d.S.D.); (J.S.d.O.); (E.G.K.)
| | - Jaqueline Silva de Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; (I.J.d.S.D.); (J.S.d.O.); (E.G.K.)
| | - Kamila Lorene Soares Rocha
- Laboratório de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG 39100-000, Brazil; (K.L.S.R.); (D.B.d.O.)
| | - Danilo Bretas de Oliveira
- Laboratório de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG 39100-000, Brazil; (K.L.S.R.); (D.B.d.O.)
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; (I.J.d.S.D.); (J.S.d.O.); (E.G.K.)
| | - Galileu Barbosa Costa
- Departamento de Análise em Saúde e Vigilância de Doenças Não-Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF 70719-040, Brazil
| | - Giliane de Souza Trindade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; (I.J.d.S.D.); (J.S.d.O.); (E.G.K.)
| |
Collapse
|
6
|
Ehmann R, Brandes K, Antwerpen M, Walter M, V Schlippenbach K, Stegmaier E, Essbauer S, Bugert J, Teifke JP, Meyer H. Molecular and genomic characterization of a novel equine molluscum contagiosum-like virus. J Gen Virol 2020; 102. [PMID: 31922947 PMCID: PMC8515872 DOI: 10.1099/jgv.0.001357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cases of pox-like lesions in horses and donkeys have been associated with poxviruses belonging to different genera of the family Poxviridae. These include the orthopoxviruses vaccinia virus (VACV), horsepoxvirus (HPXV) and cowpoxvirus (CPXV), as well as a potentially novel parapoxvirus and molluscum contagiosum virus (MOCV). However, with the exception of VACV, HPXV and CPXV, the genomic characterization of the causative agents remains largely elusive with only single short genome fragments available. Here we present the first full-length genome sequence of an equine molluscum contagiosum-like virus (EMCLV) directly determined from skin biopsies of a horse with generalized papular dermatitis. Histopathological analysis of the lesions revealed severe epidermal hyperplasia with numerous eosinophilic inclusion bodies within keratinocytes. Virions were detected in the lesions in embedded tissue by transmission electron microscopy. The genome sequence determined by next- and third-generation sequencing comprises 166 843 nt with inverted terminal repeats (ITRs) of 3473 nt. Overall, 20 of the predicted 159 ORFs have no equivalents in other poxviruses. Intriguingly, two of these ORFs were identified to encode homologues of mammalian proteins involved in immune signalling pathways, namely secreted and transmembrane protein 1 (SECTM1) and insulin growth factor-like family receptor 1 (IGFLR1), that were not described in any virus family so far. Phylogenetic analysis with all relevant representatives of the Poxviridae suggests that EMCLV should be nominated as a new species within the genus Molluscipoxvirus.
Collapse
Affiliation(s)
- Rosina Ehmann
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - K Brandes
- Animal Pathology Augsburg, Augsburg, Germany
| | - M Antwerpen
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - M Walter
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | - S Essbauer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - J Bugert
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - J P Teifke
- Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - H Meyer
- Bundeswehr Institute of Microbiology, Munich, Germany
| |
Collapse
|
7
|
Silent Circulation of the Saint Louis Encephalitis Virus among Humans and Equids, Southeast Brazil. Viruses 2019; 11:v11111029. [PMID: 31694207 PMCID: PMC6893452 DOI: 10.3390/v11111029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022] Open
Abstract
Saint Louis encephalitis virus (SLEV) is a mosquito-borne flavivirus that occurs throughout the Americas, and is considered a public health threat. In Brazil, SLEV has been detected from human cases associated with dengue-like disease, but no neurological symptoms were reported. Furthermore, the epidemiology of SLEV in human populations is still poorly explored in the country. We reported serological and molecular detection of SLEV in a healthy population of equids and humans from rural areas in Southeast Brazil. A plaque reduction neutralization test was applied, and neutralizing antibodies were detected in 11 individuals (4.6%) and 60 horses (21.5%). A qPCR targeting the 5′UTR region and reverse transcription-PCR (RT-PCR) targeting the non-structural protein (NS5) gene were performed and three individuals tested positive in both assays. Subsequent phylogenetic analysis confirmed SLEV circulation and its findings suggest the occurrence of an asymptomatic or subclinical presence in human and animal cases, correlating with the risks for outbreaks and consequently burden of SLEV infections to public health. Preventive strategies should include improved surveillance in regions with a high probability of SLEV occurrence, improvement in diagnostic methods, and evaluation of exposure/risk factors that can favor SLEV emergence.
Collapse
|
8
|
Yang Q, Dong X, Xie G, Fu S, Zou P, Sun J, Wang Y, Huang J. Comparative genomic analysis unravels the transmission pattern and intra-species divergence of acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus strains. Mol Genet Genomics 2019; 294:1007-1022. [PMID: 30968246 DOI: 10.1007/s00438-019-01559-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a recently discovered shrimp disease that has become a severe threat to global shrimp-farming industry. The causing agents of AHPND were identified as Vibrio parahaemolyticus and other vibrios harboring a plasmid encoding binary toxins PirAvp/PirBvp. However, the epidemiological involvement of environmental vibrios in AHPND is poorly understood. In this study, with an aim to reveal the possible transmission route of AHPND-causing V. parahaemolyticus, we sequenced and analyzed the genomes of four pairs of V. parahaemolyticus strains from four representative regions of shrimp farming in China, each including one strain isolated from diseased shrimp during an AHPND outbreak and one strain isolated from sediment before AHPND outbreaks. Our results showed that all the four shrimp-isolated and three of the sediment-isolated strains encode and secret PirAvp/PirBvp toxins and, therefore, are AHPND-causing strains. In silico multilocus sequence typing and high-resolution phylogenomic analysis based on single-nucleotide polymorphisms, as well as comparison of genomic loci in association with prophages and capsular polysaccharides (CPSs) consistently pointed to a close genetic relationship between the shrimp- and sediment-isolated strains obtained from the same region. In addition, our analyses revealed that the sequences associated with prophages, CPSs, and type VI secretion system-1 are highly divergent among strains from different regions, implying that these genes may play vital roles in environmental adaptation for AHPND-causing V. parahaemolyticus and thereby be potential targets for AHPND control. Summing up, this study provides the first direct evidence regarding the transmission route of AHPND-causing V. parahaemolyticus and underscores that V. parahaemolyticus in shrimp are most likely originated from local environment. The importance of environmental disinfection measures in shrimp farming was highlighted.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xuan Dong
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Guosi Xie
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Songzhe Fu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China.
| | - Peizhuo Zou
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jing Sun
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yi Wang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Jie Huang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| |
Collapse
|