1
|
Carbonero-Pacheco J, Ayllón-Gavilán M, Santos-Dueñas IM, Moreno-García J, Moreno J, García-Martínez T, Mauricio JC. Influence of flor yeast starters on volatile and nitrogen compounds during a controlled biological aging. Food Microbiol 2024; 124:104609. [PMID: 39244361 DOI: 10.1016/j.fm.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
Fino Sherry wine undergoes biological aging carried out by a velum of flor yeast within a traditional dynamic system known as "criaderas and solera". The complex microbiota of biofilm-forming Saccharomyces cerevisiae strains play a crucial role in shaping the distinctive organoleptic profile of these types of wines. For this reason, the aim of this study is to analyze the changes produced by different flor yeast strains in the volatilome and the aminogram of different wines from the criaderas and solera system during biological aging in the laboratory, simulating a flor yeast velum condition at different stages of the system. Results suggest that each strain metabolizes wine differently, finding that depending on the wine, some strains are better suited for the process than others. In addition, it is found that the content of biogenic amines in Fino Sherry wines, previously attributed to malolactic bacteria, varies according to the yeast strain metabolizing the wine, suggesting that flor yeast could be used to modify biogenic amines content during biological aging. Results indicate that the use of selected flor yeast starters in biological aging may be of interest to modulate some parameters during Fino Sherry wine aging.
Collapse
Affiliation(s)
- Juan Carbonero-Pacheco
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Manuel Ayllón-Gavilán
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Inés M Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence CeiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| |
Collapse
|
2
|
Xiong X, Geden CJ, Tan Y, Zhang Y, Zhang D, Werren JH, Wang X. Genome Structure, Evolution, and Host Shift of Nosema. BIOLOGY 2024; 13:952. [PMID: 39596907 PMCID: PMC11592040 DOI: 10.3390/biology13110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Nosema is a diverse fungal genus of unicellular, obligate symbionts infecting various arthropods. We performed comparative genomic analyses of seven Nosema species that infect bees, wasps, moths, butterflies, and amphipods. As intracellular parasites, these species exhibit significant genome reduction, retaining only about half of the genes found in free-living yeast genomes. Notably, genes related to oxidative phosphorylation are entirely absent (p < 0.001), and those associated with endocytosis are significantly diminished compared to other pathways (p < 0.05). All seven Nosema genomes display significantly lower G-C content compared to their microsporidian outgroup. Species-specific 5~12 bp motifs were identified immediately upstream of start codons for coding genes in all species (p ≤ 1.6 × 10-72). Our RNA-seq data from Nosema muscidifuracis showed that this motif is enriched in highly expressed genes but depleted in lowly expressed ones (p < 0.05), suggesting it functions as a cis-regulatory element in gene expression. We also discovered diverse telomeric repeats within the genus. Phylogenomic analyses revealed two major Nosema clades and incongruency between the Nosema species tree and their hosts' phylogeny, indicating potential host switch events (100% bootstrap values). This study advances the understanding of genomic architecture, gene regulation, and evolution of Nosema, offering valuable insights for developing strategies to control these microbial pathogens.
Collapse
Affiliation(s)
- Xiao Xiong
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (X.X.); (Y.Z.)
| | - Christopher J. Geden
- Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, FL 32608, USA;
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, MO 63103, USA; (Y.T.); (D.Z.)
| | - Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (X.X.); (Y.Z.)
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, MO 63103, USA; (Y.T.); (D.Z.)
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA;
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (X.X.); (Y.Z.)
- Alabama Agricultural Experiment Station, Center for Advanced Science, Innovation and Commerce, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
3
|
Vion C, Brambati M, Da Costa G, Richard T, Marullo P. Endo metabolomic profiling of flor and wine yeasts reveals a positive correlation between intracellular metabolite load and the specific glycolytic flux during wine fermentation. Front Microbiol 2023; 14:1227520. [PMID: 37928666 PMCID: PMC10620685 DOI: 10.3389/fmicb.2023.1227520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
This study explored the intracellular metabolic variations between 17 strains of Saccharomyces cerevisiae belonging to two different genetic populations: flor and wine yeasts, in the context of alcoholic fermentation. These two populations are closely related as they share the same ecological niche but display distinct genetic characteristics. A protocol was developed for intracellular metabolites extraction and 1H-NMR analysis. This methodology allowed us to identify and quantify 21 intracellular metabolites at two different fermentation steps: the exponential and stationary phases. This work provided evidence of significant differences in the abundance of intracellular metabolites, which are strain- and time-dependent, thus revealing complex interactions. Moreover, the differences in abundance appeared to be correlated with life-history traits such as average cell size and specific glycolytic flux, which revealed unsuspected phenotypic correlations between metabolite load and fermentation activity.
Collapse
Affiliation(s)
- Charlotte Vion
- Biolaffort, Bordeaux, France
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Mathilde Brambati
- Biolaffort, Bordeaux, France
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Grégory Da Costa
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Tristan Richard
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Philippe Marullo
- Biolaffort, Bordeaux, France
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| |
Collapse
|
4
|
Sorribes-Dauden R, Jordá T, Peris D, Martínez-Pastor MT, Puig S. Adaptation of Saccharomyces Species to High-Iron Conditions. Int J Mol Sci 2022; 23:13965. [PMID: 36430442 PMCID: PMC9693265 DOI: 10.3390/ijms232213965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is an indispensable element that participates as an essential cofactor in multiple biological processes. However, when present in excess, iron can engage in redox reactions that generate reactive oxygen species that damage cells at multiple levels. In this report, we characterized the response of budding yeast species from the Saccharomyces genus to elevated environmental iron concentrations. We have observed that S. cerevisiae strains are more resistant to high-iron concentrations than Saccharomyces non-cerevisiae species. Liquid growth assays showed that species evolutionarily closer to S. cerevisiae, such as S. paradoxus, S. jurei, S. mikatae, and S. arboricola, were more resistant to high-iron levels than the more distant species S. eubayanus and S. uvarum. Remarkably, S. kudriavzevii strains were especially iron sensitive. Growth assays in solid media suggested that S. cerevisiae and S. paradoxus were more resistant to the oxidative stress caused by elevated iron concentrations. When comparing iron accumulation and sensitivity, different patterns were observed. As previously described for S. cerevisiae, S. uvarum and particular strains of S. kudriavzevii and S. paradoxus became more sensitive to iron while accumulating more intracellular iron levels. However, no remarkable changes in intracellular iron accumulation were observed for the remainder of species. These results indicate that different mechanisms of response to elevated iron concentrations exist in the different species of the genus Saccharomyces.
Collapse
Affiliation(s)
- Raquel Sorribes-Dauden
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| | - Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| | - David Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
5
|
Non-Saccharomyces Are Also Forming the Veil of Flor in Sherry Wines. FERMENTATION 2022. [DOI: 10.3390/fermentation8090456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biological ageing is an essential process for obtaining some distinctive Sherry wines, such as Fino and Manzanilla. It occurs after the fermentation of the grape must due to the appearance of a biofilm on the surface of the wine called “veil of flor”. Yeasts belonging to the Saccharomyces cerevisiae species mainly comprise such biofilm. Although other species have also been found, these have been traditionally considered spoilage. Indeed, it has even been hypothesised that they may not be able to form biofilm on their own under such conditions. In the present work, four different non-Saccharomyces yeasts isolated from barrels in the Jerez area under biological ageing have been characterised through their physiological abilities, including extracellular enzymatic and biofilm-forming capabilities. Results showed not only a surprising ethanol tolerance, above 15.5% in all cases, but also a significant degree of extracellular enzyme production, highlighting the urease and proteolytic activities found in Pichia manshurica, as well as lipolytic activity in Pichia kudriavzevii, Pichia membranifaciens and Wicherhamomyces anomalus. As a conclusion, these non-Saccharomyces could be very interesting in the oenological field, beyond improving the organoleptic characteristics as well as technological features in these wines.
Collapse
|
6
|
Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The manufacturing of sherry wines is a unique, carefully regulated process, from harvesting to quality control of the finished product, involving dynamic biological aging in a “criadera-solera” system or some other techniques. Specialized “flor” strains of the yeast Saccharomyces cerevisiae play the central role in the sherry manufacturing process. As a result, sherry wines have a characteristic and unique chemical composition that determines their organoleptic properties (such as color, odor, and taste) and distinguishes them from all other types of wine. The use of modern methods of genetics and biotechnology contributes to a deep understanding of the microbiology of sherry production and allows us to define a new methodology for breeding valuable flor strains. This review discusses the main sherry-producing regions and the chemical composition of sherry wines, as well as genetic, oenological, and other selective markers for flor strains that can be used for screening novel candidates that are promising for sherry production among environmental isolates.
Collapse
|
7
|
Morata A, Arroyo T, Bañuelos MA, Blanco P, Briones A, Cantoral JM, Castrillo D, Cordero-Bueso G, Del Fresno JM, Escott C, Escribano-Viana R, Fernández-González M, Ferrer S, García M, González C, Gutiérrez AR, Loira I, Malfeito-Ferreira M, Martínez A, Pardo I, Ramírez M, Ruiz-Muñoz M, Santamaría P, Suárez-Lepe JA, Vilela A, Capozzi V. Wine yeast selection in the Iberian Peninsula: Saccharomyces and non- Saccharomyces as drivers of innovation in Spanish and Portuguese wine industries. Crit Rev Food Sci Nutr 2022; 63:10899-10927. [PMID: 35687346 DOI: 10.1080/10408398.2022.2083574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yeast selection for the wine industry in Spain started in 1950 for the understanding of the microbial ecology, and for the selection of optimal strains to improve the performance of alcoholic fermentation and the overall wine quality. This process has been strongly developed over the last 30 years, firstly on Saccharomyces cerevisiae, and, lately, with intense activity on non-Saccharomyces. Several thousand yeast strains have been isolated, identified and tested to select those with better performance and/or specific technological properties. The present review proposes a global survey of this massive ex-situ preservation of eukaryotic microorganisms, a reservoir of biotechnological solutions for the wine sector, overviewing relevant screenings that led to the selection of strains from 12 genera and 22 species of oenological significance. In the first part, the attention goes to the selection programmes related to relevant wine-producing areas (i.e. Douro, Extremadura, Galicia, La Mancha and Uclés, Ribera del Duero, Rioja, Sherry area, and Valencia). In the second part, the focus shifted on specific non-Saccharomyces genera/species selected from different Spanish and Portuguese regions, exploited to enhance particular attributes of the wines. A fil rouge of the dissertation is the design of tailored biotechnological solutions for wines typical of given geographic areas.
Collapse
Affiliation(s)
- A Morata
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - T Arroyo
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - M A Bañuelos
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - P Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - A Briones
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - J M Cantoral
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - D Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - G Cordero-Bueso
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - J M Del Fresno
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - C Escott
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - R Escribano-Viana
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - M Fernández-González
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - S Ferrer
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M García
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - C González
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A R Gutiérrez
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - I Loira
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Malfeito-Ferreira
- Departamento Recursos Naturais Ambiente e Território (DRAT), Linking Landscape Environment Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomía, Tapada da Ajuda, Lisboa, Portugal
| | - A Martínez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - I Pardo
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M Ramírez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - M Ruiz-Muñoz
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - P Santamaría
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - J A Suárez-Lepe
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A Vilela
- CQ-VR, Chemistry Research Centre, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - V Capozzi
- National Research Council (CNR) of Italy, c/o CS-DAT, Institute of Sciences of Food Production, Foggia, Italy
| |
Collapse
|
8
|
Stress Resistance and Adhesive Properties of Commercial Flor and Wine Strains, and Environmental Isolates of Saccharomyces cerevisiae. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flor strains of Saccharomyces cerevisiae represent a special group of yeasts used for producing biologically aged wines. We analyzed the collection of commercial wine and flor yeast strains, as well as environmental strains isolated from the surface of grapes growing in vineyards, for resistance to abiotic stresses, adhesive properties, and the ability to form a floating flor. The degree of resistance of commercial strains to ethanol, acetaldehyde, and hydrogen peroxide was generally not higher than that of environmental isolates, some of which had high resistance to the tested stress agents. The relatively low degree of stress resistance of flor strains can be explained both by the peculiarities of their adaptive mechanisms and by differences in the nature of their exposure to various types of stress in the course of biological wine aging and under the experimental conditions we used. The hydrophobicity and adhesive properties of cells were determined by the efficiency of adsorption to polystyrene and the distribution of cells between the aqueous and organic phases. Flor strains were distinguished by a higher degree of hydrophobicity of the cell surface and an increased ability to adhere to polystyrene. A clear correlation between biofilm formation and adhesive properties was also observed for environmental yeast isolates. The overall results of this study indicate that relatively simple tests for cell hydrophobicity can be used for the rapid screening of new candidate flor strains in yeast culture collections and among environmental isolates.
Collapse
|
9
|
Minebois R, Lairón-Peris M, Barrio E, Pérez-Torrado R, Querol A. Metabolic differences between a wild and a wine strain of Saccharomyces cerevisiae during fermentation unveiled by multi-omic analysis. Environ Microbiol 2021; 23:3059-3076. [PMID: 33848053 DOI: 10.1111/1462-2920.15523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Saccharomyces cerevisiae, a widespread yeast present both in the wild and in fermentative processes, like winemaking. During the colonization of these human-associated fermentative environments, certain strains of S. cerevisiae acquired differential adaptive traits that enhanced their physiological properties to cope with the challenges imposed by these new ecological niches. The advent of omics technologies allowed unveiling some details of the molecular bases responsible for the peculiar traits of S. cerevisiae wine strains. However, the metabolic diversity within yeasts remained poorly explored, in particular that existing between wine and wild strains of S. cerevisiae. For this purpose, we performed a dual transcriptomic and metabolomic comparative analysis between a wild and a wine S. cerevisiae strains during wine fermentations performed at high and low temperatures. By using this approach, we could correlate the differential expression of genes involved in metabolic pathways, such as sulfur, arginine and thiamine metabolisms, with differences in the amounts of key metabolites that can explain some important differences in the fermentation performance between the wine and wild strains.
Collapse
Affiliation(s)
- Romain Minebois
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| | - María Lairón-Peris
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain.,Departament de Genètica, Universitat de València, C/Doctor Moliner, 50, Burjassot, Valencia, E-46100, Spain
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| |
Collapse
|
10
|
Jacobus AP, Stephens TG, Youssef P, González-Pech R, Ciccotosto-Camp MM, Dougan KE, Chen Y, Basso LC, Frazzon J, Chan CX, Gross J. Comparative Genomics Supports That Brazilian Bioethanol Saccharomyces cerevisiae Comprise a Unified Group of Domesticated Strains Related to Cachaça Spirit Yeasts. Front Microbiol 2021; 12:644089. [PMID: 33936002 PMCID: PMC8082247 DOI: 10.3389/fmicb.2021.644089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 01/05/2023] Open
Abstract
Ethanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are Saccharomyces cerevisiae strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the S. cerevisiae PE-2, a predominant bioethanol strain in Brazil. The assembled genomes of H3 and H4, together with 42 draft genomes of sugarcane-fermenting (fuel ethanol plus cachaça) strains, were compared against those of the reference S288C and diverse S. cerevisiae. All genomes of bioethanol yeasts have amplified SNO2(3)/SNZ2(3) gene clusters for vitamin B1/B6 biosynthesis, and display ubiquitous presence of a particular family of SAM-dependent methyl transferases, rare in S. cerevisiae. Widespread amplifications of quinone oxidoreductases YCR102C/YLR460C/YNL134C, and the structural or punctual variations among aquaporins and components of the iron homeostasis system, likely represent adaptations to industrial fermentation. Interesting is the pervasive presence among the bioethanol/cachaça strains of a five-gene cluster (Region B) that is a known phylogenetic signature of European wine yeasts. Combining genomes of H3, H4, and 195 yeast strains, we comprehensively assessed whole-genome phylogeny of these taxa using an alignment-free approach. The 197-genome phylogeny substantiates that bioethanol yeasts are monophyletic and closely related to the cachaça and wine strains. Our results support the hypothesis that biofuel-producing yeasts in Brazil may have been co-opted from a pool of yeasts that were pre-adapted to alcoholic fermentation of sugarcane for the distillation of cachaça spirit, which historically is a much older industry than the large-scale fuel ethanol production.
Collapse
Affiliation(s)
- Ana Paula Jacobus
- Laboratory for Genomics and Experimental Evolution of Yeasts, Institute for Bioenergy Research, São Paulo State University, Rio Claro, Brazil
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Pierre Youssef
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Raul González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Michael M Ciccotosto-Camp
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine E Dougan
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yibi Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Luiz Carlos Basso
- Biological Science Department, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo (USP), Piracicaba, Brazil
| | - Jeverson Frazzon
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jeferson Gross
- Laboratory for Genomics and Experimental Evolution of Yeasts, Institute for Bioenergy Research, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
11
|
Costa ACT, Hornick J, Antunes TFS, Santos AMC, Fernandes AAR, Broach JR, Fernandes PMB. Complete genome sequence and analysis of a Saccharomyces cerevisiae strain used for sugarcane spirit production. Braz J Microbiol 2021; 52:1087-1095. [PMID: 33835421 DOI: 10.1007/s42770-021-00444-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/02/2021] [Indexed: 12/01/2022] Open
Abstract
Distillation of fermented sugarcane juice produces both rum and cachaça, significant sources of revenue in Brazil and elsewhere. In this study, we provide a genomic analysis of a Saccharomyces cerevisiae strain isolated from a cachaça distillery in Brazil. We determined the complete genome sequence of a strain with high flocculation capacity, high tolerance to ethanol, osmotic and heat shock stress and high fermentation rates and compared the sequence with that of the reference S288c genome as well as those of two other cachaça strains. Single-nucleotide polymorphism analysis identified alterations in genes involved in nitrogen and organic compound metabolism, integrity of organelles and ion homeostasis. The strain exhibited fragmentation of several flocculation genes relative to the reference genome, as well as loss of a stop codon in the FLO8 gene, which encodes a transcription factor required for FLO gene expression. The strain contained no genes not present in the reference genome strain but did lack several genes, including asparaginase genes, maltose utilization loci, and several genes from the tandem array of the DUP240 family. The three cachaça strains lacked different sets of genes, but the asparaginase genes and several of the DUP240 genes were common deficiencies. This study provides new insights regarding the selective pressure of sugarcane fermentation on the genome of yeast strains and offers additional genetic resources for modern synthetic biology and genome editing tools.
Collapse
Affiliation(s)
- Ane Catarine Tosi Costa
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, ES, 29040-090, Brazil
| | - Jacob Hornick
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Tathiana Ferreira Sá Antunes
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, ES, 29040-090, Brazil
| | | | - A Alberto R Fernandes
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, ES, 29040-090, Brazil
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Patricia M B Fernandes
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, ES, 29040-090, Brazil.
| |
Collapse
|
12
|
Ramos-Alonso L, Romero AM, Martínez-Pastor MT, Puig S. Iron Regulatory Mechanisms in Saccharomyces cerevisiae. Front Microbiol 2020; 11:582830. [PMID: 33013818 PMCID: PMC7509046 DOI: 10.3389/fmicb.2020.582830] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in many cellular processes. However, excess iron can damage cells since it promotes the generation of reactive oxygen species. The budding yeast Saccharomyces cerevisiae has been used as a model organism to study the adaptation of eukaryotic cells to changes in iron availability. Upon iron deficiency, yeast utilizes two transcription factors, Aft1 and Aft2, to activate the expression of a set of genes known as the iron regulon, which are implicated in iron uptake, recycling and mobilization. Moreover, Aft1 and Aft2 activate the expression of Cth2, an mRNA-binding protein that limits the expression of genes encoding for iron-containing proteins or that participate in iron-using processes. Cth2 contributes to prioritize iron utilization in particular pathways over other highly iron-consuming and non-essential processes including mitochondrial respiration. Recent studies have revealed that iron deficiency also alters many other metabolic routes including amino acid and lipid synthesis, the mitochondrial retrograde response, transcription, translation and deoxyribonucleotide synthesis; and activates the DNA damage and general stress responses. At high iron levels, the yeast Yap5, Msn2, and Msn4 transcription factors activate the expression of a vacuolar iron importer called Ccc1, which is the most important high-iron protecting factor devoted to detoxify excess cytosolic iron that is stored into the vacuole for its mobilization upon scarcity. The complete sequencing and annotation of many yeast genomes is starting to unveil the diversity and evolution of the iron homeostasis network in this species.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
13
|
Eldarov MA, Mardanov AV. Metabolic Engineering of Wine Strains of Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E964. [PMID: 32825346 PMCID: PMC7565949 DOI: 10.3390/genes11090964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Modern industrial winemaking is based on the use of starter cultures of specialized wine strains of Saccharomyces cerevisiae yeast. Commercial wine strains have a number of advantages over natural isolates, and it is their use that guarantees the stability and reproducibility of industrial winemaking technologies. For the highly competitive wine market with new demands for improved wine quality, it has become increasingly critical to develop new wine strains and winemaking technologies. Novel opportunities for precise wine strain engineering based on detailed knowledge of the molecular nature of a particular trait or phenotype have recently emerged due to the rapid progress in genomic and "postgenomic" studies with wine yeast strains. The review summarizes the current achievements of the metabolic engineering of wine yeast, the results of recent studies and the prospects for the application of genomic editing technologies for improving wine S. cerevisiae strains.
Collapse
Affiliation(s)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
14
|
Kishkovskaya SA, Tanashchuk TN, Shalamitskiy MY, Zagoryiko VI, Shiryaev MI, Avdanina DA, Eldarov MA, Ravin NV, Mardanov AV. Natural Yeast Strains of Saccharomyces cerevisiae that are Promising for Sherry Production. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Mardanov AV, Eldarov MA, Beletsky AV, Tanashchuk TN, Kishkovskaya SA, Ravin NV. Transcriptome Profile of Yeast Strain Used for Biological Wine Aging Revealed Dynamic Changes of Gene Expression in Course of Flor Development. Front Microbiol 2020; 11:538. [PMID: 32308650 PMCID: PMC7145950 DOI: 10.3389/fmicb.2020.00538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Flor strains of Saccharomyces cerevisiae are principal microbial agents responsible for biological wine aging used for production of sherry-like wines. The flor yeast velum formed on the surface of fortified fermented must is a major adaptive and technological characteristic of flor yeasts that helps them to withstanding stressful winemaking conditions and ensures specific biochemical and sensory oxidative alterations typical for sherry wines. We have applied RNAseq technology for transcriptome analysis of an industrial flor yeast strain at different steps of velum development over 71 days under experimental winemaking conditions. Velum growth and maturation was accompanied by accumulation of aldehydes and acetales. We have identified 1490 differentially expressed genes including 816 genes upregulated and 674 downregulated more than 2-fold at mature biofilm stage as compared to the early biofilm. Distinct expression patterns of genes involved in carbon and nitrogen metabolism, respiration, cell cycle, DNA repair, cell adhesion, response to various stresses were observed. Many genes involved in response to different stresses, oxidative carbon metabolism, high affinity transport of sugars, glycerol utilization, sulfur metabolism, protein quality control and recycling, cell wall biogenesis, apoptosis were induced at the mature biofilm stage. Strong upregulation was observed for FLO11 flocculin while expression of other flocculins remained unaltered or moderately downregulated. Downregulated genes included those for proteins involved in glycolysis, transportation of ions, metals, aminoacids, sugars, indicating repression of some major transport and metabolic process at the mature biofilm stage. Presented results are important for in-depth understanding of cell response elicited by velum formation and sherry wine manufacturing conditions, and for the comprehension of relevant regulatory mechanisms. Such knowledge may help to better understand the molecular mechanisms that flor yeasts use to adapt to winemaking environments, establish the functions of previously uncharacterized genes, improve the technology of sherry- wine production, and find target genes for strain improvement.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Tanashchuk
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Svetlana A Kishkovskaya
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
A novel narnavirus from a Saccharomyces cerevisiae flor strain. Arch Virol 2020; 165:789-791. [PMID: 32002667 DOI: 10.1007/s00705-020-04539-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
A novel virus of the genus Narnavirus, designated "Saccharomyces narnavirus I329" (ScNV-I329), was discovered in Saccharomyces cerevisiae strain I-329, which is used for industrial production of sherry-like wines. The genome of ScNV-I329 is 2509 nt in length with short terminal inverted repeats and a single open reading frame capable of encoding an RNA-dependent RNA polymerase most closely related to that of Saccharomyces 20S RNA narnavirus. This is the third known member of the genus Narnavirus from yeasts.
Collapse
|
17
|
Eldarov MA, Beletsky AV, Ravin NV, Mardanov AV. Mitochondrial Genomes of Flor Yeast Strains Are Characterized by Low Genetic Variability. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
El’darov MA, Avdanina DA, Shalamitskii MY, Ivanova EV, Tanashchuk TN, Kishkovskaya SA, Ravin NV, Mardanov AV. Polymorphism of the Iron Homeostasis Genes and Iron Sensitivity in Saccharomyces cerevisiae Flor and Wine Strains. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719020036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Morard M, Macías LG, Adam AC, Lairón-Peris M, Pérez-Torrado R, Toft C, Barrio E. Aneuploidy and Ethanol Tolerance in Saccharomyces cerevisiae. Front Genet 2019; 10:82. [PMID: 30809248 PMCID: PMC6379819 DOI: 10.3389/fgene.2019.00082] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/28/2019] [Indexed: 12/31/2022] Open
Abstract
Response to environmental stresses is a key factor for microbial organism growth. One of the major stresses for yeasts in fermentative environments is ethanol. Saccharomyces cerevisiae is the most tolerant species in its genus, but intraspecific ethanol-tolerance variation exists. Although, much effort has been done in the last years to discover evolutionary paths to improve ethanol tolerance, this phenotype is still hardly understood. Here, we selected five strains with different ethanol tolerances, and used comparative genomics to determine the main factors that can explain these phenotypic differences. Surprisingly, the main genomic feature, shared only by the highest ethanol-tolerant strains, was a polysomic chromosome III. Transcriptomic data point out that chromosome III is important for the ethanol stress response, and this aneuploidy can be an advantage to respond rapidly to ethanol stress. We found that chromosome III copy numbers also explain differences in other strains. We show that removing the extra chromosome III copy in an ethanol-tolerant strain, returning to euploidy, strongly compromises its tolerance. Chromosome III aneuploidy appears frequently in ethanol-tolerance evolution experiments, and here, we show that aneuploidy is also used by natural strains to enhance their ethanol tolerance.
Collapse
Affiliation(s)
- Miguel Morard
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Laura G Macías
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Ana C Adam
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - María Lairón-Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| |
Collapse
|
20
|
Mechanisms of Yeast Adaptation to Wine Fermentations. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:37-59. [PMID: 30911888 DOI: 10.1007/978-3-030-13035-0_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cells face genetic and/or environmental changes in order to outlast and proliferate. Characterization of changes after stress at different "omics" levels is crucial to understand the adaptation of yeast to changing conditions. Wine fermentation is a stressful situation which yeast cells have to cope with. Genome-wide analyses extend our cellular physiology knowledge by pointing out the mechanisms that contribute to sense the stress caused by these perturbations (temperature, ethanol, sulfites, nitrogen, etc.) and related signaling pathways. The model organism, Saccharomyces cerevisiae, was studied in response to industrial stresses and changes at different cellular levels (transcriptomic, proteomic, and metabolomics), which were followed statically and/or dynamically in the short and long terms. This chapter focuses on the response of yeast cells to the diverse stress situations that occur during wine fermentations, which induce perturbations, including nutritional changes, ethanol stress, temperature stress, oxidative stress, etc.
Collapse
|
21
|
Moreno-García J, Martín-García FJ, Ogawa M, García-Martínez T, Moreno J, Mauricio JC, Bisson LF. FLO1, FLO5 and FLO11 Flocculation Gene Expression Impacts Saccharomyces cerevisiae Attachment to Penicillium chrysogenum in a Co-immobilization Technique. Front Microbiol 2018; 9:2586. [PMID: 30429833 PMCID: PMC6220091 DOI: 10.3389/fmicb.2018.02586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/10/2018] [Indexed: 11/14/2022] Open
Abstract
A reoccurring flaw of most yeast immobilization systems that limits the potential of the technique is leakage of the cells from the matrix. Leakage may be due to weakly adherent cells, deterioration of the matrix, or to new growth and loss of non-adherent daughter cells. Yeast biocapsules are a spontaneous, cost effective system of immobilization whereby Saccharomyces cerevisiae cells are attached to the hyphae of Penicillium chrysogenum, creating hollow spheres that allow recovery and reutilization. This attachment is based on naturally occurring adherent properties of the yeast cell surface. We hypothesized that proteins associated with flocculation might play a role in adherence to fungal hyphae. To test this hypothesis, yeast strains with overexpressed and deleted flocculation genes (FLO1, FLO5, and FLO11) were evaluated for biocapsule formation to observe the impact of gene expression on biocapsule diameter, number, volume, dry mass, and percent immobilized versus non-immobilized cells. Overexpression of all three genes enhanced immobilization and resulted in larger diameter biocapsules. In particular, overexpression of FLO11 resulted in a five fold increase of absorbed cells versus the wild type isogenic strain. In addition, deletion of FLO1 and FLO11 significantly decreased the number of immobilized yeast cells compared to the wild type BY4742. These results confirm the role of natural adherent properties of yeast cells in attachment to fungal hyphae and offer the potential to create strongly adherent cells that will produce adherent progeny thereby reducing the potential for cell leakage from the matrix.
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, University of Córdoba, Córdoba, Spain
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Minami Ogawa
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | | | - Juan Moreno
- Department of Agricultural Chemistry, University of Córdoba, Córdoba, Spain
| | - Juan C. Mauricio
- Department of Microbiology, University of Córdoba, Córdoba, Spain
| | - Linda F. Bisson
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
David-Vaizant V, Alexandre H. Flor Yeast Diversity and Dynamics in Biologically Aged Wines. Front Microbiol 2018; 9:2235. [PMID: 30319565 PMCID: PMC6167421 DOI: 10.3389/fmicb.2018.02235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022] Open
Abstract
Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species. Our results highlight that different strains of Saccharomyces are present in these velums. Unexpectedly, in the same velum, flor yeast strain succession occurred during aging, supporting the assumption that environmental changes are responsible for these shifts. Despite numerous sample wine analyses, very few flor yeasts could be isolated from wine following alcoholic fermentation, suggesting that flor yeast development results from the colonization of yeast present in the aging cellar. We analyzed the FLO11 and ICR1 sequence of different S. cerevisiae strains in order to understand how the same strain of S. cerevisiae could form various types of biofilm. Among the strains analyzed, some were heterozygote at the FLO11 locus, while others presented two different alleles of ICR1 (wild type and a 111 bp deletion). We could not find a strong link between strain genotypes and velum characteristics. The same strain in different wines could form a velum having very different characteristics, highlighting a matrix effect.
Collapse
Affiliation(s)
- Vanessa David-Vaizant
- AgroSup Dijon, PAM UMR A 02.102, Université Bourgogne Franche-Comté, Dijon, France.,Equipe VAlMiS, Institut Universitaire de la Vigne et du Vin, Dijon, France
| | - Hervé Alexandre
- AgroSup Dijon, PAM UMR A 02.102, Université Bourgogne Franche-Comté, Dijon, France.,Equipe VAlMiS, Institut Universitaire de la Vigne et du Vin, Dijon, France
| |
Collapse
|