1
|
Zahra ST, Tariq M, Abdullah M, Ullah MK, Rafiq AR, Siddique A, Shahid MS, Ahmed T, Jamil I. Salt-Tolerant Plant Growth-Promoting Bacteria (ST-PGPB): An Effective Strategy for Sustainable Food Production. Curr Microbiol 2024; 81:304. [PMID: 39133243 DOI: 10.1007/s00284-024-03830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Soil is the backbone of the agricultural economy of any country. Soil salinity refers to the higher concentration of soluble salts in the soil. Soil salinity is a ruinous abiotic stress that has emerged as a threatening issue for food security. High salt concentration causes an ionic imbalance that hampers water uptake, affecting photosynthesis and other metabolic processes, ultimately resulting in inferior seed germination and stunted plant growth. A wide range of strategies have been adopted to mitigate the harmful effects of salinity such as efficient irrigation techniques, soil reclamation, habitat restoration, flushing, leaching or using salt-tolerant crops, but all the methods have one or more limitations. An alternative and effective strategy is the exploitation of salt-tolerant plant growth-promoting bacteria (ST-PGPB) to mitigate salt stress and improve crop productivity. ST-PGPB can survive in salinity-tainted environments and perform their inherent plant growth-promoting and biocontrol functions effectively. Additionally, ST-PGPB can rescue plants via stress-responsive mechanisms including production of growth regulators, maintenance of osmotic balance, aminocyclopropane-1-carboxylate (ACC) deaminase activity, exopolysaccharides (EPS) activity, improvement in photosynthesis activity, synthesis of compatible solutes, antioxidant activity and regulation of salt overly sensitive (SOS) signaling pathway. Several well-known ST-PGPB, specifically Azospirillum, Bacillus, Burkholderia, Enterobacter, Pseudomonas and Pantoea, are used as bioinoculants to improve the growth of different crops. The application of ST-PGPB allows plants to cope with salt stress by boosting their defense mechanisms. This review highlights the impact of salinity stress on plant growth and the potential of ST-PGPB as a biofertilizer to improve crop productivity under salt stress.
Collapse
Affiliation(s)
- Syeda Tahseen Zahra
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem Ullah
- Institute of Agricultural Extension, Education and Rural Development, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdul Rafay Rafiq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aisha Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Muscat, Oman
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Imrana Jamil
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
Valencia-Marin MF, Chávez-Avila S, Guzmán-Guzmán P, Orozco-Mosqueda MDC, de Los Santos-Villalobos S, Glick BR, Santoyo G. Survival strategies of Bacillus spp. in saline soils: Key factors to promote plant growth and health. Biotechnol Adv 2024; 70:108303. [PMID: 38128850 DOI: 10.1016/j.biotechadv.2023.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Soil salinity is one of the most important abiotic factors that affects agricultural production worldwide. Because of saline stress, plants face physiological changes that have negative impacts on the various stages of their development, so the employment of plant growth-promoting bacteria (PGPB) is one effective means to reduce such toxic effects. Bacteria of the Bacillus genus are excellent PGPB and have been extensively studied, but what traits makes them so extraordinary to adapt and survive under harsh situations? In this work we review the Bacillus' innate abilities to survive in saline stressful soils, such as the production osmoprotectant compounds, antioxidant enzymes, exopolysaccharides, and the modification of their membrane lipids. Other survival abilities are also discussed, such as sporulation or a reduced growth state under the scope of a functional interaction in the rhizosphere. Thus, the most recent evidence shows that these saline adaptive activities are important in plant-associated bacteria to potentially protect, direct and indirect plant growth-stimulating activities. Additionally, recent advances on the mechanisms used by Bacillus spp. to improve the growth of plants under saline stress are addressed, including genomic and transcriptomic explorations. Finally, characterization and selection of Bacillus strains with efficient survival strategies are key factors in ameliorating saline problems in agricultural production.
Collapse
Affiliation(s)
- María F Valencia-Marin
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico
| | - Salvador Chávez-Avila
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico
| | - Paulina Guzmán-Guzmán
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico
| | - Ma Del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, 38010 Celaya, Gto, Mexico
| | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico.
| |
Collapse
|
3
|
Rahim MA, Ayub H, Sehrish A, Ambreen S, Khan FA, Itrat N, Nazir A, Shoukat A, Shoukat A, Ejaz A, Özogul F, Bartkiene E, Rocha JM. Essential Components from Plant Source Oils: A Review on Extraction, Detection, Identification, and Quantification. Molecules 2023; 28:6881. [PMID: 37836725 PMCID: PMC10574037 DOI: 10.3390/molecules28196881] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Oils derived from plant sources, mainly fixed oils from seeds and essential oil from other parts of the plant, are gaining interest as they are the rich source of beneficial compounds that possess potential applications in different industries due to their preventive and therapeutic actions. The essential oils are used in food, medicine, cosmetics, and agriculture industries as they possess antimicrobial, anticarcinogenic, anti-inflammatory and immunomodulatory properties. Plant based oils contain polyphenols, phytochemicals, and bioactive compounds which show high antioxidant activity. The extractions of these oils are a crucial step in terms of the yield and quality attributes of plant oils. This review paper outlines the different modern extraction techniques used for the extraction of different seed oils, including microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), cold-pressed extraction (CPE), ultrasound-assisted extraction (UAE), supercritical-fluid extraction (SFE), enzyme-assisted extraction (EAE), and pulsed electric field-assisted extraction (PEF). For the identification and quantification of essential and bioactive compounds present in seed oils, different modern techniques-such as high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FTIR), gas chromatography-infrared spectroscopy (GC-IR), atomic fluorescence spectroscopy (AFS), and electron microscopy (EM)-are highlighted in this review along with the beneficial effects of these essential components in different in vivo and in vitro studies and in different applications. The primary goal of this research article is to pique the attention of researchers towards the different sources, potential uses and applications of oils in different industries.
Collapse
Affiliation(s)
- Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.K.); (A.E.)
| | - Hudda Ayub
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad 38000, Pakistan; (H.A.); (A.S.); (A.S.)
| | - Aqeela Sehrish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA;
| | - Saadia Ambreen
- University Institute of Food Science and Technology, The University of Lahore, Lahore 54590, Pakistan;
| | - Faima Atta Khan
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.K.); (A.E.)
| | - Nizwa Itrat
- Department of Nutrition and Dietetics, The University of Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (A.N.)
| | - Anum Nazir
- Department of Nutrition and Dietetics, The University of Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (A.N.)
| | - Aurbab Shoukat
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad 38000, Pakistan; (H.A.); (A.S.); (A.S.)
| | - Amna Shoukat
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad 38000, Pakistan; (H.A.); (A.S.); (A.S.)
| | - Afaf Ejaz
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.K.); (A.E.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, Adana 01330, Türkiye;
- Biotechnology Research and Application Center, Cukurova University, Balcali, Adana 01330, Türkiye
| | - Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Patel JS, Selvaraj V, More P, Bahmani R, Borza T, Prithiviraj B. A Plant Biostimulant from Ascophyllum nodosum Potentiates Plant Growth Promotion and Stress Protection Activity of Pseudomonas protegens CHA0. PLANTS (BASEL, SWITZERLAND) 2023; 12:1208. [PMID: 36986897 PMCID: PMC10053968 DOI: 10.3390/plants12061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Abiotic stresses, including salinity stress, affect numerous crops, causing yield reduction, and, as a result, important economic losses. Extracts from the brown alga Ascophyllum nodosum (ANE), and compounds secreted by the Pseudomonas protegens strain, CHA0, can mitigate these effects by inducing tolerance against salt stress. However, the influence of ANE on P. protegens CHA0 secretion, and the combined effects of these two biostimulants on plant growth, are not known. Fucoidan, alginate, and mannitol are abundant components of brown algae and of ANE. Reported here are the effects of a commercial formulation of ANE, fucoidan, alginate, and mannitol, on pea (Pisum sativum), and on the plant growth-promoting activity of P. protegens CHA0. In most situations, ANE and fucoidan increased indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and hydrogen cyanide (HCN) production by P. protegens CHA0. Colonization of pea roots by P. protegens CHA0 was found to be increased mostly by ANE and fucoidan in normal conditions and under salt stress. Applications of P. protegens CHA0 combined with ANE, or with fucoidan, alginate, and mannitol, generally augmented root and shoot growth in normal and salinity stress conditions. Real-time quantitative PCR analyses of P. protegens revealed that, in many instances, ANE and fucoidan enhanced the expression of several genes involved in chemotaxis (cheW and WspR), pyoverdine production (pvdS), and HCN production (hcnA), but gene expression patterns overlapped only occasionally those of growth-promoting parameters. Overall, the increased colonization and the enhanced activities of P. protegens CHA0 in the presence of ANE and its components mitigated salinity stress in pea. Among treatments, ANE and fucoidan were found responsible for most of the increased activities of P. protegens CHA0 and the improved plant growth.
Collapse
|
5
|
Rhizosphere microbes enhance plant salt tolerance: toward crop production in saline soil. Comput Struct Biotechnol J 2022; 20:6543-6551. [DOI: 10.1016/j.csbj.2022.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
|
6
|
Yaghoubi Khanghahi M, Crecchio C, Verbruggen E. Shifts in the Rhizosphere and Endosphere Colonizing Bacterial Communities Under Drought and Salinity Stress as Affected by a Biofertilizer Consortium. MICROBIAL ECOLOGY 2022; 84:483-495. [PMID: 34499191 DOI: 10.1007/s00248-021-01856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The present research asks how plant growth-promoting bacterial (PGPB) inoculants and chemical fertilizers change rhizosphere and root endophytic bacterial communities in durum wheat, and its dependence on environmental stress. A greenhouse experiment was carried out under drought (at 40% field capacity), or salinity (150 mM NaCl) conditions to investigate the effects of a chemical fertilizer (containing nitrogen, phosphorus, potassium and zinc) or a biofertilizer (a bacterial consortium of four PGPBs). High-throughput amplicon sequencing of the 16S rRNA of the rhizosphere, non-sterilized, or surface-sterilized roots, showed shifts in bacterial communities in response to stress treatments, which were greater for salinity than for drought and tended to show increased oligotrophs relative abundances compared to non-stress controls. The results also showed that Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Thaumarchaeota, Firmicutes, and Verrucomicrobia had a higher relative abundance in the rhizosphere, while Actinobacteria were more abundant on roots, while Candidatus_Saccharibacteria and Planctomycetes inside roots. The results indicated that the root endophytic bacterial communities were more affected by (bio-) fertilization treatments than those in the rhizosphere, particularly as affected by PGPB inoculation. This greater susceptibility of endophytes to (bio-) fertilizers was associated with increased abundance of the 16S rRNA and acdS genes in plant roots, especially under stress conditions. These changes in root endophytes, which coincided with an improvement in grain yield and photosynthetic capacity of plants, may be considered as one of the mechanisms by which PGPB affect plants.
Collapse
Affiliation(s)
- Mohammad Yaghoubi Khanghahi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Carmine Crecchio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Erik Verbruggen
- Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
7
|
Chandwani S, Amaresan N. Role of ACC deaminase producing bacteria for abiotic stress management and sustainable agriculture production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22843-22859. [PMID: 35050477 DOI: 10.1007/s11356-022-18745-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Plants are immobile and are exposed to various biotic and abiotic stresses, including heat, cold, drought, flooding, nutrient deficiency, heavy metal exposure, phytopathogens, and pest attacks. The stressors significantly affect agricultural productivity when exceed a certain threshold. It has been reported that most of the stressed plants are reported to have increased ethylene synthesis from its precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Ethylene is a plant hormone that plays a vital role in the regulation of various physiological processes, such as respiration, nitrogen fixation, and photosynthesis. The increment in the plant hormone ethylene would reduce plant growth and development, and if the ethylene level increased beyond the limit, it could also result in plant death. Therefore, plant growth-promoting bacteria (PGPB) possessing ACC deaminase activity play an essential role in the management of biotic and abiotic stresses by hydrolysing 1-aminocyclopropane-1-carboxylic acid using ACC deaminase. In this review, the importance of ACC deaminase-producing bacteria in promoting plant growth under various abiotic stressors is discussed.
Collapse
Affiliation(s)
- Sapna Chandwani
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli- 394 350, Surat, Gujarat, India
| | - Natarajan Amaresan
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli- 394 350, Surat, Gujarat, India.
| |
Collapse
|
8
|
Neupane D, Lohaus RH, Solomon JKQ, Cushman JC. Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060772. [PMID: 35336654 PMCID: PMC8951600 DOI: 10.3390/plants11060772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 05/09/2023]
Abstract
Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable or green diesel) crop. This renewed interest is reflected in the rapid rise in the number of peer-reviewed publications (>2300) containing “camelina” from 1997 to 2021. An overview of the origins of this ancient crop and its genetic diversity and its yield potential under hot and dry growing conditions is provided. The major biotic barriers that limit C. sativa production are summarized, including weed control, insect pests, and fungal, bacterial, and viral pathogens. Ecosystem services provided by C. sativa are also discussed. The profiles of seed oil and fatty acid composition and the many uses of seed meal and oil are discussed, including food, fodder, fuel, industrial, and medical benefits. Lastly, we outline strategies for improving this important and versatile crop to enhance its production globally in the face of a rapidly changing climate using molecular breeding, rhizosphere microbiota, genetic engineering, and genome editing approaches.
Collapse
Affiliation(s)
- Dhurba Neupane
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
| | - Richard H. Lohaus
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
| | - Juan K. Q. Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV 89557, USA;
| | - John C. Cushman
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
- Correspondence: ; Tel.: +1-775-784-1918
| |
Collapse
|
9
|
Gamalero E, Glick BR. Recent Advances in Bacterial Amelioration of Plant Drought and Salt Stress. BIOLOGY 2022; 11:biology11030437. [PMID: 35336811 PMCID: PMC8945159 DOI: 10.3390/biology11030437] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Salt and drought stress cause enormous crop losses worldwide. Several different approaches may be taken to address this problem, including increased use of irrigation, use of both traditional breeding and genetic engineering to develop salt-tolerant and drought-resistant crop plants, and the directed use of naturally occurring plant growth-promoting bacteria. Here, the mechanisms used by these plant growth-promoting bacteria are summarized and discussed. Moreover, recently reported studies of the effects that these organisms have on the growth of plants in the laboratory, the greenhouse, and the field under high salt and/or drought conditions is discussed in some detail. It is hoped that by understanding the mechanisms that these naturally occurring plant growth-promoting bacteria utilize to overcome damaging environmental stresses, it may be possible to employ these organisms to increase future agricultural productivity. Abstract The recent literature indicates that plant growth-promoting bacteria (PGPB) employ a range of mechanisms to augment a plant’s ability to ameliorate salt and drought stress. These mechanisms include synthesis of auxins, especially indoleacetic acid, which directly promotes plant growth; synthesis of antioxidant enzymes such as catalase, superoxide dismutase and peroxidase, which prevents the deleterious effects of reactive oxygen species; synthesis of small molecule osmolytes, e.g., trehalose and proline, which structures the water content within plant and bacterial cells and reduces plant turgor pressure; nitrogen fixation, which directly improves plant growth; synthesis of exopolysaccharides, which protects plant cells from water loss and stabilizes soil aggregates; synthesis of antibiotics, which protects stress-debilitated plants from soil pathogens; and synthesis of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which lowers the level of ACC and ethylene in plants, thereby decreasing stress-induced plant senescence. Many of the reports of overcoming these plant stresses indicate that the most successful PGPB possess several of these mechanisms; however, the involvement of any particular mechanism in plant protection is nearly always inferred and not proven.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
- Correspondence:
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
10
|
Dukare A, Mhatre P, Maheshwari HS, Bagul S, Manjunatha BS, Khade Y, Kamble U. Delineation of mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3 Biotech 2022; 12:57. [PMID: 35186654 PMCID: PMC8817020 DOI: 10.1007/s13205-022-03115-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Sustainable agriculture demands the balanced use of inorganic, organic, and microbial biofertilizers for enhanced plant productivity and soil fertility. Plant growth-enhancing rhizospheric bacteria can be an excellent biotechnological tool to augment plant productivity in different agricultural setups. We present an overview of microbial mechanisms which directly or indirectly contribute to plant growth, health, and development under highly variable environmental conditions. The rhizosphere microbiomes promote plant growth, suppress pathogens and nematodes, prime plants immunity, and alleviate abiotic stress. The prospective of beneficial rhizobacteria to facilitate plant growth is of primary importance, particularly under abiotic and biotic stresses. Such microbe can promote plant health, tolerate stress, even remediate soil pollutants, and suppress phytopathogens. Providing extra facts and a superior understanding of microbial traits underlying plant growth promotion can stir the development of microbial-based innovative solutions for the betterment of agriculture. Furthermore, the application of novel scientific approaches for facilitating the design of crop-specific microbial biofertilizers is discussed. In this context, we have highlighted the exercise of "multi-omics" methods for assessing the microbiome's impact on plant growth, health, and overall fitness via analyzing biochemical, physiological, and molecular facets. Furthermore, the role of clustered regularly interspaced short palindromic repeats (CRISPR) based genome alteration and nanotechnology for improving the agronomic performance and rhizosphere microbiome is also briefed. In a nutshell, the paper summarizes the recent vital molecular processes that underlie the different beneficial plant-microbe interactions imperative for enhancing plant fitness and resilience under-challenged agriculture.
Collapse
Affiliation(s)
- Ajinath Dukare
- ICAR-Central Institute for Research on Cotton Technology (CIRCOT), Mumbai, Maharashtra India
| | - Priyank Mhatre
- ICAR-Central Potato Research Institute (Regional Station), Udhagamandalam, Tamil Nadu India
| | - Hemant S. Maheshwari
- ICAR-Indian Institute of Soybean Research (IISR), Indore, Madhya Pradesh India
- Present Address: Ecophysiology of Plants, Faculty of Science and Engineering, GELIFES-Groningen Institute for Evolutionary Life Sciences, The University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Samadhan Bagul
- ICAR-Directorate of Medicinal and Aromatic Plant Research, Anand, Gujarat India
| | - B. S. Manjunatha
- ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata, West Bengal India
| | - Yogesh Khade
- ICAR- Directorate of Onion and Garlic Research, Pune, Maharashtra India
| | - Umesh Kamble
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana India
| |
Collapse
|
11
|
Mishra P, Mishra J, Arora NK. Plant growth promoting bacteria for combating salinity stress in plants - Recent developments and prospects: A review. Microbiol Res 2021; 252:126861. [PMID: 34521049 DOI: 10.1016/j.micres.2021.126861] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/16/2023]
Abstract
Soil salinity has emerged as a great threat to the agricultural ecosystems throughout the globe. Many continents of the globe are affected by salinity and crop productivity is severely affected. Anthropogenic activities leading to the degradation of agricultural land have also accelerated the rate of salinization in arid and semi-arid regions. Several approaches are being evaluated for remediating saline soil and restoring their productivity. Amongst these, utilization of plant growth promoting bacteria (PGPB) has been marked as a promising tool. This greener approach is suitable for simultaneous reclamation of saline soil and improving the productivity. Salt-tolerant PGPB utilize numerous mechanisms that affect physiological, biochemical, and molecular responses in plants to cope with salt stress. These mechanisms include osmotic adjustment by ion homeostasis and osmolyte accumulation, protection from free radicals by the formation of free radicals scavenging enzymes, oxidative stress responses and maintenance of growth parameters by the synthesis of phytohormones and other metabolites. As salt-tolerant PGPB elicit better plant survival under salinity, they are the potential candidates for enhancing agricultural productivity. The present review focuses on the various mechanisms used by PGPB to improve plant health under salinity. Recent developments and prospects to facilitate better understanding on the functioning of PGPB for ameliorating salt stress in plants are emphasized.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| |
Collapse
|
12
|
Multi-Trait Wheat Rhizobacteria from Calcareous Soil with Biocontrol Activity Promote Plant Growth and Mitigate Salinity Stress. Microorganisms 2021; 9:microorganisms9081588. [PMID: 34442666 PMCID: PMC8400701 DOI: 10.3390/microorganisms9081588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) can be functional microbial fertilizers and/or biological control agents, contributing to an eco-spirit and safe solution for chemical replacement. Therefore, we have isolated rhizospheric arylsulfatase (ARS)-producing bacteria, belonging to Pseudomonas and Bacillus genus, from durum wheat crop grown on calcareous soil. These isolates harbouring plant growth promoting (PGP) traits were further evaluated in vitro for additional PGP traits, including indole compounds production and biocontrol activity against phytopathogens, limiting the group of multi-trait strains to eight. The selected bacterial strains were further evaluated for PGP attributes associated with biofilm formation, compatibility, salt tolerance ability and effect on plant growth. In vitro studies demonstrated that the multi-trait isolates, Bacillus (1.SG.7, 5.SG.3) and Pseudomonas (2.SG.20, 2.C.19) strains, enhanced the lateral roots abundance and shoots biomass, mitigated salinity stress, suggesting the utility of beneficial ARS-producing bacteria as potential microbial fertilizers. Furthermore, in vitro studies demonstrated that compatible combinations of multi-trait isolates, Bacillus sp. 1.SG.7 in a mixture coupled with 5.SG.3, and 2.C.19 with 5.SG.3 belonging to Bacillus and Pseudomonas, respectively, may enhance plant growth as compared to single inoculants.
Collapse
|
13
|
Jayakumar A, Nair IC, Radhakrishnan EK. Environmental Adaptations of an Extremely Plant Beneficial Bacillus subtilis Dcl1 Identified Through the Genomic and Metabolomic Analysis. MICROBIAL ECOLOGY 2021; 81:687-702. [PMID: 33078238 DOI: 10.1007/s00248-020-01605-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Bacterial endophytes ubiquitously colonize the internal tissues of plants and promote the plant growth through diverse mechanisms. The current study describes the mechanistic basis of plant-specific adaptations present in an extremely beneficial endophytic bacterium. Here, the endophytic Bacillus subtilis Dcl1 isolated from the dried rhizome of Curcuma longa was found to have the drought tolerance, IAA and ACC deaminase production and phosphate solubilization properties. The whole genome sequencing and annotation further showed the genome of B. subtilis Dcl1 to have the size of 4,321,654 bp. This also showed the presence of genes for IAA, H2S, acetoin, butanediol, flagella and siderophore production along with phosphate solubilization and biofilm formation for the B. subtilis Dcl1. In addition, the genes responsible for the synthesis of surfactin, iturin, fengycin, bacillibactin, bacillaene, bacilysin, chitinase, chitosanase, protease and glycoside hydrolase could also be annotated from the genome of B. subtilis Dcl1. Identification of genes for the glycine betaine, glutamate and trehalose further indicated the drought stress tolerance features of B. subtilis Dcl1. The presence of the genetic basis to produce the catalase, superoxide dismutase, peroxidases, gamma-glutamyltranspeptidase, glutathione and glycolate oxidase also indicated the plant oxidative stress protective effect of B. subtilis Dcl1. Identification of these properties and the demonstration of its plant probiotic effect in Vigna unguiculata confirmed the applicability of B. subtilis Dcl1 as a biofertilizer, biocontrol and bioremediator agent to enhance the agricultural productivity.
Collapse
Affiliation(s)
- Aswathy Jayakumar
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | - Indu C Nair
- Department of Biotechnology, SAS SNDP Yogam College, Pathanamthitta, Kerala, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
14
|
Heydarian Z, Gruber M, Coutu C, Glick BR, Hegedus DD. Gene expression patterns in shoots of Camelina sativa with enhanced salinity tolerance provided by plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acdS gene. Sci Rep 2021; 11:4260. [PMID: 33608579 PMCID: PMC7895925 DOI: 10.1038/s41598-021-83629-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Growth of plants in soil inoculated with plant growth promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase or expression of the corresponding acdS gene in transgenic lines reduces the decline in shoot length, shoot weight and photosynthetic capacity triggered by salt stress in Camelina sativa. Reducing the levels of ethylene attenuated the salt stress response as inferred from decreases in the expression of genes involved in development, senescence, chlorosis and leaf abscission that are highly induced by salt to levels that may otherwise have a negative effect on plant growth and productivity. Growing plants in soil treated with Pseudomonas migulae 8R6 negatively affected ethylene signaling, auxin and JA biosynthesis and signalling, but had a positive effect on the regulation of genes involved in GA signaling. In plants expressing acdS, the expression of the genes involved in auxin signalling was positively affected, while the expression of genes involved in cytokinin degradation and ethylene biosynthesis were negatively affected. Moreover, fine-tuning of ABA signaling appears to result from the application of ACC deaminase in response to salt treatment. Moderate expression of acdS under the control of the root specific rolD promoter or growing plants in soil treated with P. migulae 8R6 were more effective in reducing the expression of the genes involved in ethylene production and/or signaling than expression of acdS under the more active Cauliflower Mosaic Virus 35S promoter.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.,Department of Biotechnology, School of Agriculture, University of Shiraz, Bajgah, Shiraz, Fars, Iran
| | - Margaret Gruber
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
15
|
Hakim S, Naqqash T, Nawaz MS, Laraib I, Siddique MJ, Zia R, Mirza MS, Imran A. Rhizosphere Engineering With Plant Growth-Promoting Microorganisms for Agriculture and Ecological Sustainability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.617157] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The rhizosphere is undoubtedly the most complex microhabitat, comprised of an integrated network of plant roots, soil, and a diverse consortium of bacteria, fungi, eukaryotes, and archaea. The rhizosphere conditions have a direct impact on crop growth and yield. Nutrient-rich rhizosphere environments stimulate plant growth and yield and vice versa. Extensive cultivation exhaust most of the soils which need to be nurtured before or during the next crop. Chemical fertilizers are the major source of crop nutrients but their uncontrolled and widespread usage has posed a serious threat to the sustainability of agriculture and stability of an ecosystem. These chemicals are accumulated in the soil, drained in water, and emitted to the air where they persist for decades causing a serious threat to the overall ecosystem. Plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere convert many plant-unavailable essential nutrients e.g., nitrogen, phosphorous, zinc, etc. into available forms. PGPR produces certain plant growth hormones (such as auxin, cytokinin, and gibberellin), cell lytic enzymes (chitinase, protease, hydrolases, etc.), secondary metabolites, and antibiotics, and stress alleviating compounds (e.g., 1-Aminocyclopropane-1- carboxylate deaminase), chelating agents (siderophores), and some signaling compounds (e.g., N-Acyl homoserine lactones) to interact with the beneficial or pathogenic counterparts in the rhizosphere. These multifarious activities of PGPR improve the soil structure, health, fertility, and functioning which directly or indirectly support plant growth under normal and stressed environments. Rhizosphere engineering with these PGPR has a wide-ranging application not only for crop fertilization but developing eco-friendly sustainable agriculture. Due to severe climate change effects on plants and rhizosphere biology, there is growing interest in stress-resilient PGPM and their subsequent application to induce stress (drought, salinity, and heat) tolerance mechanism in plants. This review describes the three components of rhizosphere engineering with an explicit focus on the broader perspective of PGPM that could facilitate rhizosphere engineering in selected hosts to serve as an efficient component for sustainable agriculture.
Collapse
|
16
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
17
|
Wang R, Wang X, Liu K, Zhang XJ, Zhang LY, Fan SJ. Comparative Transcriptome Analysis of Halophyte Zoysia macrostachya in Response to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E458. [PMID: 32260413 PMCID: PMC7238138 DOI: 10.3390/plants9040458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
As one of the most severe environmental stresses, salt stress can cause a series of changes in plants. In salt tolerant plant Zoysia macrostachya, germination, physiology, and genetic variation under salinity have been studied previously, and the morphology and distribution of salt glands have been clarified. However, no study has investigated the transcriptome of such species under salt stress. In the present study, we compared transcriptome of Z. macrostachya under normal conditions and salt stress (300 mmol/L NaCl, 24 h) aimed to identify transcriptome responses and molecular mechanisms under salt stress in Z. macrostachya. A total of 8703 differently expressed genes (DEGs) were identified, including 4903 up-regulated and 3800 down-regulated ones. Moreover, a series of molecular processes were identified by Gene Ontology (GO) analysis, and these processes were suggested to be closely related to salt tolerance in Z. macrostachya. The identified DEGs concentrated on regulating plant growth via plant hormone signal transduction, maintaining ion homeostasis via salt secretion and osmoregulatory substance accumulation and preventing oxidative damage via increasing the activity of ROS (reactive oxygen species) scavenging system. These changes may be the most important responses of Z. macrostachya under salt stress. Some key genes related to salt stress were identified meanwhile. Collectively, our findings provided valuable insights into the molecular mechanisms and genetic underpinnings of salt tolerance in Z. macrostachya.
Collapse
Affiliation(s)
| | | | | | | | - Luo-Yan Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (X.W.); (K.L.); (X.-J.Z.)
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (X.W.); (K.L.); (X.-J.Z.)
| |
Collapse
|
18
|
Orozco-Mosqueda MDC, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol Res 2020; 235:126439. [PMID: 32097862 DOI: 10.1016/j.micres.2020.126439] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 11/27/2022]
Abstract
Salinity in agricultural soil is a major problem around the world, with negative consequences for the growth and production of a wide range of crops. To counteract these harmful effects, plants sometimes have bacterial partners that contain the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which acts by degrading ACC (the precursor of ethylene in all higher plants). The enzymatic activity of ACC deaminase results in the production of α-ketobutyrate and ammonia, which, by lowering ACC levels, prevents excessive increases in the synthesis of ethylene under various stress conditions and is one of the most efficient mechanisms to induce plant tolerance to salt stress. In the present review, recent works on the role of ACC deaminase are discussed alongside its importance in promoting plant growth under conditions of salt stress in endophytic and rhizospheric bacteria, with some emphasis on Bacillus species. In addition, the toxic effects of soil salinity on plants and microbial biodiversity are analysed. Recent findings on the synergetic functioning of ACC deaminase and other bacterial mechanisms of salt stress tolerance, such as trehalose accumulation, are also summarized. Finally, we discuss the various advantages of ACC deaminase-producing bacilli as bioinoculants to address the problem of salinity in agricultural soils.
Collapse
Affiliation(s)
- Ma Del Carmen Orozco-Mosqueda
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Paseo Lázaro Cárdenas s/n Esq, Berlín, Col. Viveros, 60190, Uruapan, Michoacán, Mexico
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
19
|
Dixit S, Jangid VK, Grover A. Evaluation of suitable reference genes in Brassica juncea and its wild relative Camelina sativa for qRT-PCR analysis under various stress conditions. PLoS One 2019; 14:e0222530. [PMID: 31539385 PMCID: PMC6754150 DOI: 10.1371/journal.pone.0222530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/01/2019] [Indexed: 01/23/2023] Open
Abstract
Quantitative real-time PCR (qRT-PCR) is an efficient method to estimate the gene expression levels but the accuracy of its result largely depends on the stability of the reference gene. Many studies have reported considerable variation in the expression of reference genes (RGs) in different tissue and conditions. Therefore, screening for appropriate RGs with stable expression is crucial for functional analysis of the target gene. Two closely related crucifers Brassica juncea (cultivated) and Camelina sativa (wild) respond differently towards various abiotic and biotic stress where C. sativa exhibits higher tolerance to various stress. Comparative gene expression analysis of the target genes between two such species is the key approach to understand the mechanism of a plant’s response to stress. However, using an unsuitable RG can lead to misinterpretation of expression levels of the target gene in such studies. In this investigation, the stability of seven candidate RGs including traditional housekeeping genes (HKGs) and novel candidate RGs were identified across diverse sample sets of B. juncea and C. sativa representing- hormone treated, wounded, Alternaria brassicae inoculated and combination treated samples (exogenous hormone treatment followed by A. brassicae inoculation). In this investigation, we identified stable RGs in both the species and the most suitable RGs to perform an unbiased comparative gene expression analysis between B. juncea and C. sativa. Results revealed that TIPS41 and PP2A were identified as the overall best performing RGs in both the species. However, the most suitable RG for each sample subset representing different condition must be individually selected. In Hormone treated and wounded samples TIPS41 expressed stably in both the species and in A. brassicae inoculated and combination treatment performance of PP2A was the best. In this study, for the first time, we have identified and validated stable reference gene in C. sativa for accurate normalization of gene expression data.
Collapse
Affiliation(s)
- Shikha Dixit
- Plant-Pathogen Interaction Laboratory, National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Vinod Kumar Jangid
- Plant-Pathogen Interaction Laboratory, National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Anita Grover
- Plant-Pathogen Interaction Laboratory, National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
20
|
Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SØ. Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management. Front Microbiol 2018; 9:2992. [PMID: 30568644 PMCID: PMC6289982 DOI: 10.3389/fmicb.2018.02992] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
How to sustainably feed a growing global population is a question still without an answer. Particularly farmers, to increase production, tend to apply more fertilizers and pesticides, a trend especially predominant in developing countries. Another challenge is that industrialization and other human activities produce pollutants, which accumulate in soils or aquatic environments, contaminating them. Not only is human well-being at risk, but also environmental health. Currently, recycling, land-filling, incineration and pyrolysis are being used to reduce the concentration of toxic pollutants from contaminated sites, but too have adverse effects on the environment, producing even more resistant and highly toxic intermediate compounds. Moreover, these methods are expensive, and are difficult to execute for soil, water, and air decontamination. Alternatively, green technologies are currently being developed to degrade toxic pollutants. This review provides an overview of current research on microbial inoculation as a way to either replace or reduce the use of agrochemicals and clean environments heavily affected by pollution. Microorganism-based inoculants that enhance nutrient uptake, promote crop growth, or protect plants from pests and diseases can replace agrochemicals in food production. Several examples of how biofertilizers and biopesticides enhance crop production are discussed. Plant roots can be colonized by a variety of favorable species and genera that promote plant growth. Microbial interventions can also be used to clean contaminated sites from accumulated pesticides, heavy metals, polyaromatic hydrocarbons, and other industrial effluents. The potential of and key processes used by microorganisms for sustainable development and environmental management are discussed in this review, followed by their future prospects.
Collapse
Affiliation(s)
- Maqshoof Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Lisa Pataczek
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Thomas H. Hilger
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Azhar Hussain
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | | | - Svein Ø. Solberg
- World Vegetable Center, Tainan, China
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
21
|
Enzymatic detoxification of azo dyes by a multifarious Bacillus sp. strain MR-1/2-bearing plant growth-promoting characteristics. 3 Biotech 2018; 8:425. [PMID: 30305994 DOI: 10.1007/s13205-018-1442-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
This study was conducted to elucidate the inherent potential of Bacillus sp. MR-1/2, which was isolated from root zone of maize crop grown on a textile wastewater-irrigated soil. The isolated strain was identified through its ribosomal RNA sequence. Under in vitro conditions, the strain demonstrated its tolerance for high concentrations of various heavy metal ions as determined by minimum inhibitory concentration. Moreover, the strain MR-1/2 exhibited many important phytobeneficial traits such as inorganic P solubilization and 1-aminocyclopropane-1-carboxylate (ACC) deaminase ability even under high metal and salt stress. Results showed that the strain proficiently decolorizes various azo dye compounds, e.g., reactive black-5, reactive red-120, and direct blue-1 and congo red, in broth culture. The bioremediation potential of the strain MR-1/2 was further confirmed by analyzing the retrieved azoreductase gene sequence through bioinformatics tools, whereby a subsequent prediction revealed that the azoreductase enzyme activity was involved in decolorization process. When mung bean seeds were grown in pots under various concentrations of decolorized and non-decolorized azo dye, the Bacillus sp. MR-1/2 not only alleviated the azo dye toxicity, but also increased the plant growth parameters. In conclusion, the strain MR-1/2 efficiently decolorized the azo dyes and helped in mung bean plant growth by alleviating azo dye toxicity.
Collapse
|