1
|
Ječmenica B, Duvnjak S, Humski A, Taylor LT, Kralj J, Krstulović F, Amšel Zelenika T, Mašović V, Jurinović L. Age-related presence and genetic diversity of Campylobacter spp. in young and adult yellow-legged gulls (Larus michahellis) in Croatia. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70017. [PMID: 39374597 PMCID: PMC11458183 DOI: 10.1111/1758-2229.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024]
Abstract
The epidemiology of Campylobacter species in wild birds is still poorly understood. This study describes the occurrence and genetic diversity of Campylobacter in adult and nestlings of yellow-legged gulls, highlighting differences between breeding locations. The gulls were captured in Croatia between 2021 and 2023. A cloacal swab was taken from each individual and tested for the presence of Campylobacter. Isolated Campylobacter species were genotyped using the multilocus sequence typing (MLST) method. A total of 1071 gulls were captured and sampled, of which 152 samples were identified as Campylobacter species, with Campylobacter jejuni (9.90%) being the most frequently isolated bacterium, followed by Campylobacter lari (3.36%) and Campylobacter coli (0.93%). Complete sequence type (ST) profiles were generated for 141 isolates: 100 C. jejuni, 33 C. lari, and 8 C. coli. A significant difference in the occurrence of positive Campylobacter species was found depending on the sampling sites, while both sampling site and age were significant for the occurrence of C. jejuni. Adults and nestlings showed high genetic diversity for C. jejuni and C. lari, and there were no significant differences between strains isolated from adults and nestlings or between sites, suggesting a high genotype flow in the studied gull population.
Collapse
Affiliation(s)
- Biljana Ječmenica
- Poultry CentreLaboratory for Bacteriology, Croatian Veterinary Institute, Poultry CentreZagrebCroatia
| | - Sanja Duvnjak
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and ParasitologyCroatian Veterinary InstituteZagrebCroatia
| | - Andrea Humski
- Laboratory for Food Microbiology, Department for Veterinary Public HealthCroatian Veterinary InstituteZagrebCroatia
| | - Louie Thomas Taylor
- Croatian Academy of Sciences and Arts, Institute of OrnithologyZagrebCroatia
| | - Jelena Kralj
- Croatian Academy of Sciences and Arts, Institute of OrnithologyZagrebCroatia
| | - Fani Krstulović
- Poultry CentreLaboratory for Bacteriology, Croatian Veterinary Institute, Poultry CentreZagrebCroatia
| | - Tajana Amšel Zelenika
- Poultry CentreLaboratory for Bacteriology, Croatian Veterinary Institute, Poultry CentreZagrebCroatia
| | - Viktor Mašović
- Poultry CentreLaboratory for Bacteriology, Croatian Veterinary Institute, Poultry CentreZagrebCroatia
| | - Luka Jurinović
- Poultry CentreLaboratory for Bacteriology, Croatian Veterinary Institute, Poultry CentreZagrebCroatia
| |
Collapse
|
2
|
Barata R, Saavedra MJ, Almeida G. A Decade of Antimicrobial Resistance in Human and Animal Campylobacter spp. Isolates. Antibiotics (Basel) 2024; 13:904. [PMID: 39335077 PMCID: PMC11429304 DOI: 10.3390/antibiotics13090904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: Campylobacter spp. remain a leading cause of bacterial gastroenteritis worldwide, with resistance to antibiotics posing significant challenges to treatment and public health. This study examines profiles in antimicrobial resistance (AMR) for Campylobacter isolates from human and animal sources over the past decade. Methods: We conducted a comprehensive review of resistance data from studies spanning ten years, analyzing profiles in resistance to key antibiotics, ciprofloxacin (CIP), tetracycline (TET), erythromycin (ERY), chloramphenicol (CHL), and gentamicin (GEN). Data were collated from various regions to assess global and regional patterns of resistance. Results: The analysis reveals a concerning trend of increasing resistance patterns, particularly to CIP and TET, across multiple regions. While resistance to CHL and GEN remains relatively low, the high prevalence of CIP resistance has significantly compromised treatment options for campylobacteriosis. Discrepancies in resistance patterns were observed between human and animal isolates, with variations across different continents and countries. Notably, resistance to ERY and CHL showed regional variability, reflecting potential differences in antimicrobial usage and management practices. Conclusions: The findings underscore the ongoing challenge of AMR in Campylobacter, highlighting the need for continued surveillance and research. The rising resistance prevalence, coupled with discrepancies in resistance patterns between human and animal isolates, emphasize the importance of a One Health approach to address AMR. Enhanced monitoring, novel treatment strategies, and global cooperation are crucial for mitigating the impact of resistance and ensuring the effective management of Campylobacter-related infections.
Collapse
Affiliation(s)
- Rita Barata
- National Institute of Agricultural and Veterinary Research (INIAV), 4485-655 Vila do Conde, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Center for Veterinary and Animal Research (CECAV), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Center for Veterinary and Animal Research (CECAV), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Gonçalo Almeida
- National Institute of Agricultural and Veterinary Research (INIAV), 4485-655 Vila do Conde, Portugal;
- Center for Animal Science Studies (CECA-ICETA), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
3
|
Badjo AOR, Kabore NF, Zongo A, Gnada K, Ouattara A, Muhigwa M, Ouangraoua S, Poda A, Some SA, Schubert G, Eckmanns T, Leendertz FH, Belarbi E, Ouedraogo AS. Burden and epidemiology of Campylobacter species in acute enteritis cases in Burkina Faso. BMC Infect Dis 2024; 24:808. [PMID: 39123104 PMCID: PMC11316331 DOI: 10.1186/s12879-024-09709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Campylobacter spp. is a significant etiological agent of bacterial gastroenteritis globally. In Burkina Faso (BFA), the actual impact of this pathogen on gastroenteritis is considerably underestimated, primarily due to inadequate surveillance systems. OBJECTIVES This study aimed to investigate the proportion of Campylobacter species responsible for acute gastroenteritis among patients of all ages in urban and rural areas of BFA, using molecular biology techniques. STUDY DESIGN & METHODS Between 2018 and 2021, faecal specimens were obtained from 1,295 individuals presenting with acute gastroenteritis. These samples underwent screening for the Campylobacter coli/jejuni/lari complex utilizing real-time polymerase chain reaction (PCR) assays. Subsequently, positive samples were subjected to species-level differentiation through the application of species-specific primers. RESULTS Campylobacter spp. was detected in 25.0% (324/1,295) of the samples analysed. The majority of positive samples (95%, 308/324) were obtained from children under 5 years of age. Species identification was performed on a subset of 114 isolates, revealing 51 Campylobacter jejuni, 10 Campylobacter coli, and 53 Campylobacter isolates that remained unspeciated. CONCLUSIONS This study reveals a significant prevalence of Campylobacter species among patients with acute gastroenteritis, with a particularly high incidence observed in children under 5 years of age. Based on these findings, the implementation of routine Campylobacter surveillance in public health laboratories is strongly recommended to better monitor and address this health concern.
Collapse
Affiliation(s)
- Ange Oho Roseline Badjo
- Laboratory of Emerging and Re-emerging Pathogens, Nazi Boni University, 01 BP 1091, Bobo Dioulasso, Burkina Faso.
| | | | - Arsène Zongo
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
| | - Kobo Gnada
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
| | - Aminata Ouattara
- Laboratory of Emerging and Re-emerging Pathogens, Nazi Boni University, 01 BP 1091, Bobo Dioulasso, Burkina Faso
- Bacteriology and Virology Department, Souro Sanou University Hospital, Bobo Dioulasso, Burkina Faso
| | - Merci Muhigwa
- Laboratory of Emerging and Re-emerging Pathogens, Nazi Boni University, 01 BP 1091, Bobo Dioulasso, Burkina Faso
| | - Soumeya Ouangraoua
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
| | - Armel Poda
- Laboratory of Emerging and Re-emerging Pathogens, Nazi Boni University, 01 BP 1091, Bobo Dioulasso, Burkina Faso
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
- Department of Infectious Diseases, Souro Sanou University Hospital, Bobo Dioulasso, Burkina Faso
| | - Satouro Arsène Some
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
| | | | | | | | | | - Abdoul-Salam Ouedraogo
- Laboratory of Emerging and Re-emerging Pathogens, Nazi Boni University, 01 BP 1091, Bobo Dioulasso, Burkina Faso
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
- Bacteriology and Virology Department, Souro Sanou University Hospital, Bobo Dioulasso, Burkina Faso
| |
Collapse
|
4
|
Stevens MJA, Stephan R, Horlbog JA, Cernela N, Nüesch-Inderbinen M. Whole genome sequence-based characterization of Campylobacter isolated from broiler carcasses over a three-year period in a big poultry slaughterhouse reveals high genetic diversity and a recurring genomic lineage of Campylobacter jejuni. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 119:105578. [PMID: 38417639 DOI: 10.1016/j.meegid.2024.105578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Campylobacter is among the most frequent agents of bacterial gastroenteritis in Europe and is primarily linked to the consumption of contaminated food. The aim of this study was to assess genomic diversity and to identify antimicrobial resistance and virulence genes of 155 Campylobacter isolated from broiler carcasses (neck skin samples) in a large-scale Swiss poultry abattoir over a three-year period. Samples originated from broilers from three different types of farming systems (particularly animal-friendly stabling (PAFS), free-range farms, and organic farms). Campylobacter jejuni (n = 127) and Campylobacter coli (n = 28) were analysed using a whole genome sequencing (WGS) approach (MiniSeq; Illumina). Sequence types (STs) were determined in silico from the WGS data and isolates were assigned into complex types (CTs) using the cgMLST SeqSphere+ scheme. Antimicrobial resistance genes were identified using the Resistance Gene Identifier (RGI), and virulence genes were identified using the virulence factor database (VFDB). A high degree of genetic diversity was observed. Many sequence types (C. jejuni ST19, ST21, ST48, ST50, ST122, ST262 and C. coli ST827) occurred more than once and were distributed throughout the study period, irrespective of the year of isolation and of the broiler farming type. Antimicrobial resistance determinants included blaOXA and tet(O) genes, as well as the T86I substitution within GyrA. Virulence genes known to play a role in human Campylobacter infection were identified such as the wlaN, cstIII, neuA1, neuB1, and neuC1. Subtyping of the Campylobacter isolates identified the occurrence of a highly clonal population of C. jejuni ST21 that was isolated throughout the three-year study period from carcasses from farms with geographically different locations and different farming systems. The high rate of genetic diversity observed among broiler carcass isolates is consistent with previous studies. The identification of a persisting highly clonal C. jejuni ST21 subtype suggests that the slaughterhouse may represent an environment in which C. jejuni ST21 may survive, however, the ecological reservoir potentially maintaining this clone remains unknown.
Collapse
Affiliation(s)
- Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Jule Anna Horlbog
- National Reference Centre for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Magdalena Nüesch-Inderbinen
- National Reference Centre for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Yan R, M'ikanatha NM, Nachamkin I, Hudson LK, Denes TG, Kovac J. Prevalence of ciprofloxacin resistance and associated genetic determinants differed among Campylobacter isolated from human and poultry meat sources in Pennsylvania. Food Microbiol 2023; 116:104349. [PMID: 37689423 DOI: 10.1016/j.fm.2023.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
Poultry is the primary source of Campylobacter infections and severe campylobacteriosis cases are treated with macrolides and fluoroquinolones. However, these drugs are less effective against antimicrobial-resistant strains. Here, we investigated the prevalence of phenotypic antimicrobial resistance and associated resistance genetic determinants in Campylobacter isolates collected from human clinical (N = 123) and meat (N = 80) sources in Pennsylvania in 2017 and 2018. Our goal was to assess potential differences in the prevalence of antimicrobial resistance in Campylobacter isolated from human and poultry meat sources in Pennsylvania and to assess the accuracy of predicting antimicrobial resistance phenotypes based on resistance genotypes. We whole genome sequenced isolates and identified genetic resistance determinants using the National Antimicrobial Resistance Monitoring System Campylobacter AMR workflow v2.0 in GalaxyTrakr. Phenotypic antimicrobial susceptibility testing was carried out using the E-Test and Sensititre CAMPYCMV methods for human clinical and poultry meat isolates, respectively, and the results were interpreted using the EUCAST epidemiological cutoff values. The 193 isolates were represented by 85 MLST sequence types and 23 clonal complexes, suggesting high genetic diversity. Resistance to erythromycin was confirmed in 6% human and 4% meat isolates. Prevalence of ciprofloxacin resistance was significantly higher in human isolates as compared to meat isolates. A good concordance was observed between phenotypic resistance and the presence of the corresponding known resistance genetic determinants.
Collapse
Affiliation(s)
- Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Aksomaitiene J, Novoslavskij A, Malakauskas M. Whole-Genome Sequencing-Based Profiling of Antimicrobial Resistance Genes and Core-Genome Multilocus Sequence Typing of Campylobacter jejuni from Different Sources in Lithuania. Int J Mol Sci 2023; 24:16017. [PMID: 37958998 PMCID: PMC10648690 DOI: 10.3390/ijms242116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Campylobacter jejuni is known as one of the main causative agents of gastroenteritis in humans worldwide, and the rise of antimicrobial resistance (AMR) in Campylobacter is a growing public health challenge of special concern. Whole-genome sequencing (WGS) was used to characterize genetic determinants of AMR in 53 C. jejuni isolates from dairy cattle, broiler products, wild birds, and humans in Lithuania. The WGS-based study revealed 26 C. jejuni AMR markers that conferred resistance to various antimicrobials. Genetic markers associated with resistance to beta-lactamases, tetracycline, and aminoglycosides were found in 79.3%, 28.3%, and 9.4% of C. jejuni isolates, respectively. Additionally, genetic markers associated with multidrug resistance (MDR) were found in 90.6% of C. jejuni isolates. The WGS data analysis revealed that a common mutation in the quinolone resistance-determining region (QRDR) was R285K (854G > A) at 86.8%, followed by A312T (934G > A) at 83% and T86I (257C > T) at 71.7%. The phenotypic resistance analysis performed with the agar dilution method revealed that ciprofloxacin (CIP) (90.6%), ceftriaxone (CRO) (67.9%), and tetracycline (TET) (45.3%) were the predominant AMR patterns. MDR was detected in 41.5% (22/53) of the isolates tested. Fifty-seven virulence genes were identified in all C. jejuni isolates; most of these genes were associated with motility (n = 28) and chemotaxis (n = 10). Additionally, all C. jejuni isolates harbored virulence genes related to adhesion, invasion, LOS, LPS, CPS, transportation, and CDT. In total, 16 sequence types (STs) and 11 clonal complexes (CC) were identified based on core-genome MLST (cgMLST) analysis. The data analysis revealed distinct diversity depending on phenotypic and genotypic antimicrobial resistance of C. jejuni.
Collapse
Affiliation(s)
- Jurgita Aksomaitiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (A.N.); (M.M.)
| | | | | |
Collapse
|
7
|
Guirado P, Iglesias‐Torrens Y, Miró E, Navarro F, Attolini CS, Balsalobre C, Madrid C. Host-associated variability of the cdtABC operon, coding for the cytolethal distending toxin, in Campylobacter jejuni. Zoonoses Public Health 2022; 69:966-977. [PMID: 36053024 PMCID: PMC9826217 DOI: 10.1111/zph.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023]
Abstract
Campylobacter, a major cause of food-borne gastroenteritis worldwide, colonize the gastrointestinal tract of a wide range of animals, being birds the main reservoir. The mechanisms involved in the interaction of Campylobacter with the different hosts are poorly understood. The cytolethal distending toxin, encoded in the cdtABC operon, is considered a pivotal virulence factor during human infection. Differences in the prevalence of cdtABC genes in Campylobacter isolates from three distinct origins (wild birds, broiler chickens and humans) prompted us to further characterize their allelic variability. The sequence of cdtABC is highly conserved among broiler and human isolates. A high diversity of cdtABC alleles was found among wild bird isolates, including several alleles that do not produce any functional CDT. These results suggest that specific variants of the cdtABC operon might define the host range of specific Campylobacter jejuni isolates. Moreover, our data indicate that PCR methodology is inaccurate to characterize the prevalence of the cdt genes, since negative PCR detection can be the result of divergences in the sequence used for primer design rather than indicating the absence of a specific gene.
Collapse
Affiliation(s)
- Pedro Guirado
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Yaidelis Iglesias‐Torrens
- Hospital de la Santa Creu i Sant Pau and Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau)BarcelonaSpain,Departament de Genètica i MicrobiologiaUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Elisenda Miró
- Hospital de la Santa Creu i Sant Pau and Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Ferran Navarro
- Hospital de la Santa Creu i Sant Pau and Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau)BarcelonaSpain,Departament de Genètica i MicrobiologiaUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Camile Stephan‐Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carlos Balsalobre
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Cristina Madrid
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
8
|
Andrzejewska M, Grudlewska-Buda K, Śpica D, Skowron K, Ćwiklińska-Jurkowska M, Szady-Grad M, Indykiewicz P, Wiktorczyk-Kapischke N, Klawe JJ. Genetic relatedness, virulence, and drug susceptibility of Campylobacter isolated from water and wild birds. Front Cell Infect Microbiol 2022; 12:1005085. [PMID: 36506026 PMCID: PMC9732551 DOI: 10.3389/fcimb.2022.1005085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction This study aimed to identify the characteristics of Campylobacter isolated from wild birds (Black-headed gulls Chroicocephalus ridibundus and Great tits Parus major) and collect surface water samples (from rivers, ponds, ornamental lakes, freshwater beaches). Research material included 33 Campylobacter isolates. All the strains were isolated by different monitoring and surveillance plans. Methods The prevalence of selected genes (flaA, cadF, iam, cdtB, wlaN, sodB, tet0) encoding virulence factors and resistance among Campylobacter spp. was assessed by the PCR method. The genetic similarities of isolates were determined by Pulsed-Field Gel Electrophoresis (PFGE). The susceptibility of Campylobacter isolates to clinically important antimicrobials: erythromycin, tetracycline, and ciprofloxacin, previously assessed by E-test, was presented in the form of drug susceptibility profiles depending on the origin of the isolates. Results The cadF, flaA, cdtB, and sodB genes exhibited the highest detection rate. Statistically significant differences between the presence of wlaN virulence genes were noted among different species of the isolates. No genetically identical isolates were found. The most numerous antibiotic susceptibility profile included strains susceptible to all antibiotics studied (profile A-33.3%). The second most common were the tetracycline - and ciprofloxacin-resistant (profile B-27.2%), and tetracycline-resistant profile (C-24.2%) respectively. Discussion The study revealed the virulent properties of Campylobacter isolated from water samples, and wild birds, and high resistance rates to tetracycline, and fluoroquinolones. The lack of genetic relatedness among strains isolated from water, and birds may indicate other sources of surface water contamination with Campylobacter bacteria than birds. The presence of Campylobacter spp. in wild birds could also have other environmental origins.
Collapse
Affiliation(s)
- Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland,*Correspondence: Małgorzata Andrzejewska,
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Dorota Śpica
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Małgorzata Ćwiklińska-Jurkowska
- Department of Biostatistics and Theory of Biomedical Systems, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Małgorzata Szady-Grad
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Piotr Indykiewicz
- Department of Biology and Animal Environment, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Jacek J. Klawe
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
9
|
Santos-Ferreira N, Ferreira V, Teixeira P. Occurrence and Multidrug Resistance of Campylobacter in Chicken Meat from Different Production Systems. Foods 2022; 11:1827. [PMID: 35804643 PMCID: PMC9265442 DOI: 10.3390/foods11131827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Campylobacter is the leading bacterial cause of diarrheal disease worldwide and poultry remains the primary vehicle of its transmission to humans. Due to the rapid increase in antibiotic resistance among Campylobacter strains, the World Health Organization (WHO) added Campylobacter fluoroquinolone resistance to the WHO list of antibiotic-resistant "priority pathogens". This study aimed to investigate the occurrence and antibiotic resistance of Campylobacter spp. in meat samples from chickens reared in different production systems: (a) conventional, (b) free-range and (c) backyard farming. Campylobacter spp. was detected in all samples from conventionally reared and free-range broilers and in 72.7% of backyard chicken samples. Levels of contamination were on average 2.7 × 103 colony forming units (CFU)/g, 4.4 × 102 CFU/g and 4.2 × 104 CFU/g in conventionally reared, free-range and backyard chickens, respectively. Campylobacter jejuni and Campylobacter coli were the only species isolated. Distribution of these species does not seem to be affected by the production system. The overall prevalence of Campylobacter isolates exhibiting resistance to at least one antimicrobial was 98.4%. All the C. coli isolates showed resistance to ciprofloxacin and to nalidixic acid, and 79.5 and 97.4% to ampicillin and tetracycline, respectively. In total, 96.2% of C. jejuni isolates displayed a resistant phenotype to ciprofloxacin and to nalidixic acid, and 92.3% to ampicillin and tetracycline. Of the 130 Campylobacter isolates tested, 97.7% were classified as multidrug resistant (MDR).
Collapse
Affiliation(s)
| | - Vânia Ferreira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| | - Paula Teixeira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| |
Collapse
|
10
|
Gürbüz M, İrem Omurtag Korkmaz B. The anti-campylobacter activity of eugenol and its potential for poultry meat safety: A review. Food Chem 2022; 394:133519. [PMID: 35749879 DOI: 10.1016/j.foodchem.2022.133519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/04/2022]
Abstract
Poultry is one of the fastest growing industries due to advantages in land use, rapid production and advances in feed technology. The rising trend in the consumption of poultry meat over the last 50 years has also increased concerns about food safety. Campylobacter jejuniis the leading bacterial cause of gastroenteritis, the foremost cause of foodborne deaths. Despite significant progress in food safety methology, the genusCampylobacter remains a common foodborne pathogen in poultry. Increasing consumer demands for natural products require the discovery of new antimicrobials to ensure the safety of poultry meat. Recent studies have revealed that eugenol acts with antimicrobial activity on a wide variety of foodborne microorganisms. Eugenol is generally recognized as safe and is a promising preservative for the food industry. However, specific applications of eugenol need to be identified and validated to clarify the role of the food preservative in poultry meat safety.
Collapse
Affiliation(s)
- Murat Gürbüz
- Trakya University, Department of Nutrition and Dietetics, Edirne, Turkey.
| | | |
Collapse
|
11
|
A New Variant of the aadE-sat4-aphA-3 Gene Cluster Found in a Conjugative Plasmid from a MDR Campylobacter jejuni Isolate. Antibiotics (Basel) 2022; 11:antibiotics11040466. [PMID: 35453217 PMCID: PMC9032879 DOI: 10.3390/antibiotics11040466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a foodborne pathogen causing bacterial gastroenteritis, with the highest incidence reported in Europe. The prevalence of antibiotic resistance in C. jejuni, as well as in many other bacterial pathogens, has increased over the last few years. In this report, we describe the presence of a plasmid in a multi-drug-resistant C. jejuni strain isolated from a gastroenteritis patient. Mating experiments demonstrated the transference of this genetic element (pCjH01) among C. jejuni by plasmid conjugation. The pCjH01 plasmid was sequenced and assembled, revealing high similarity (97% identity) with pTet, a described tetracycline resistance encoding plasmid. pCjH01 (47.7 kb) is a mosaic plasmid composed of a pTet backbone that has acquired two discrete DNA regions. Remarkably, one of the acquired sequences carried an undescribed variant of the aadE-sat4-aphA-3 gene cluster, providing resistance to at least kanamycin and gentamycin. Aside from the antibiotic resistance genes, the cluster also carries genes coding for putative regulators, such as a sigma factor of the RNA polymerase and an antisigma factor. Homology searches suggest that Campylobacter exchanges genetic material with distant G-positive bacterial genera.
Collapse
|
12
|
Zang X, Huang P, Li J, Jiao X, Huang J. Genomic Relatedness, Antibiotic Resistance and Virulence Traits of Campylobacter jejuni HS19 Isolates From Cattle in China Indicate Pathogenic Potential. Front Microbiol 2021; 12:783750. [PMID: 34956150 PMCID: PMC8698899 DOI: 10.3389/fmicb.2021.783750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Although campylobacteriosis is a zoonotic foodborne illness, high-risk isolates from animal sources are rarely characterized, and the pathogenic potential of zoonotic strains remains an obstacle to effective intervention against human infection. HS19 has been acknowledged as a maker serotype represented by Campylobacter jejuni (C. jejuni) isolates from patients with post-infection Guillain-Barré syndrome (GBS), which is circulation in developed countries. However, a previous serotype epidemiological study of C. jejuni isolates in an animal population revealed that HS19 was also prevalent in isolates from cattle in China. In this study, to investigate the hazardous potential of zoonotic strains, 14 HS19 isolates from cattle were systematically characterized both by genotype and phenotype. The results showed that all of these cattle isolates belonged to the ST-22 complex, a high-risk lineage represented by 77.2% HS19 clinical isolates from patients worldwide in the PubMLST database, indicating that the ST-22 complex is the prominent clonal complex of HS19 isolates, as well as the possibility of clonal spread of HS19 isolates across different regions and hosts. Nevertheless, these cattle strains clustered closely with the HS19 isolates from patients, suggesting a remarkable phylogenetic relatedness and genomic similarity. Importantly, both tetracycline genes tet(O) and gyrA (T86I) reached a higher proportional representation among the cattle isolates than among the human clinical isolates. A worrying level of multidrug resistance (MDR) was observed in all the cattle isolates, and two MDR profiles of the cattle isolates also existed in human clinical isolates. Notably, although shared with the same serotype HS19 and sequence type ST-22, 35.7% of cattle isolates induced severe gastrointestinal pathology in the IL-10–/– C57BL/6 mice model, indicating that some bacteria could change due to host adaptation to induce a disease epidemic, thus the associated genetic elements deserve further investigation. In this study, HS19 isolates from cattle were first characterized by a systematic evaluation of bacterial genomics and in vitro virulence, which improved our understanding of the potential zoonotic hazard from food animal isolates with high-risk serotypes, and provided critical information for the development of targeted C. jejuni mitigation strategies.
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Pingyu Huang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Jie Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
- *Correspondence: Jinlin Huang,
| |
Collapse
|
13
|
Panzenhagen P, Portes AB, dos Santos AMP, Duque SDS, Conte Junior CA. The Distribution of Campylobacter jejuni Virulence Genes in Genomes Worldwide Derived from the NCBI Pathogen Detection Database. Genes (Basel) 2021; 12:1538. [PMID: 34680933 PMCID: PMC8535712 DOI: 10.3390/genes12101538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is responsible for 80% of human campylobacteriosis and is the leading cause of gastroenteritis globally. The relevant public health risks of C. jejuni are caused by particular virulence genes encompassing its virulome. We analyzed 40,371 publicly available genomes of C. jejuni deposited in the NCBI Pathogen Detection Database, combining their epidemiologic metadata with an in silico bioinformatics analysis to increase our current comprehension of their virulome from a global perspective. The collection presented a virulome composed of 126 identified virulence factors that were grouped in three clusters representing the accessory, the softcore, and the essential core genes according to their prevalence within the genomes. The multilocus sequence type distribution in the genomes was also investigated. An unexpected low prevalence of the full-length flagellin flaA and flaB locus of C. jejuni genomes was revealed, and an essential core virulence gene repertoire prevalent in more than 99.99% of genomes was identified. Altogether, this is a pioneer study regarding Campylobacter jejuni that has compiled a significant amount of data about the Multilocus Sequence Type and virulence factors concerning their global prevalence and distribution over this database.
Collapse
Affiliation(s)
- Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Anamaria M. P. dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Sheila da Silva Duque
- Collection of Campylobacter, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
14
|
Hubálek Z. Pathogenic microorganisms associated with gulls and terns (Laridae). JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zdeněk Hubálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| |
Collapse
|
15
|
de Melo RT, Dumont CF, Braz RF, Monteiro GP, Takeuchi MG, Lourenzatto ECA, Dos Santos JP, Rossi DA. Genotypical Relationship Between Human and Poultry Strains of Campylobacter jejuni. Curr Microbiol 2021; 78:2980-2988. [PMID: 34089354 DOI: 10.1007/s00284-021-02553-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to compare the genotype diversity of C. jejuni isolates. From the total of 64 C. jejuni strains evaluated, 44 were isolated from broiler carcasses (2015-2016) and 20 from hospitalized patients with gastroenteritis caused by the microorganism (2000-2006). The strains were correlated for the presence of flaA, pldA, cadF, ciaB, cdtABC, luxS, dnaJ, cbrA, htrA, pVir, Hcp, cstII, and neuA genes by PCR (polymerase chain reaction) and for phylogenetic proximity by PFGE (pulsed-field gel electrophoresis). Of the total strains studied, 28 (43.7%) presented all the studied genes, except pVir. Among these strains, 25 (89.3%) were of poultry origin. Poultry strains showed a higher prevalence (P < 0.05) of genes linked to adhesion, colonization, invasion, cytotoxicity, biofilm formation, and adaptation to adverse conditions. Additionally, the profile that denotes the presence of all genes identified in the study (P1) was identified in 56.8% of poultry strains and in 15.0% of human strains. Molecular typing analysis identified five pulsotypes, none of which grouped strains from different origins. Although human strains were from hospitalized patients, they presented limited virulence capacity and adaptability to adverse conditions compared to chicken carcasses, besides being different in molecular typing. However, the ability to cause Guillain-Barré Syndrome is equal for both strains. In general, poultry strains, being more recent, are more specialized to adapt to the environment, invade, and cause disease in the human host.
Collapse
Affiliation(s)
- Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil.
| | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil
| | - Raquelline Figueiredo Braz
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil
| | - Guilherme Paz Monteiro
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil
| | - Micaela Guidotti Takeuchi
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil
| | | | | | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil
| |
Collapse
|
16
|
Wang J, Wang Z, Zhang J, Ding Y, Ma Z, Jiang F, Nie X, Tang S, Chen M, Wu S, Zeng H, Lei T, Yang X, Zhang S, Wu Q. Prevalence, antibiotic susceptibility and genetic diversity of Campylobacter jejuni isolated from retail food in China. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Improving the Quality and Safety of Fresh Camel Meat Contaminated with Campylobacter jejuni Using Citrox, Chitosan, and Vacuum Packaging to Extend Shelf Life. Animals (Basel) 2021; 11:ani11041152. [PMID: 33920579 PMCID: PMC8072804 DOI: 10.3390/ani11041152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary This study aimed to investigate the influence of using 1% or 2% Citrox alone or in combination with 1% chitosan on the survival of Campylobacter jejuni in camel meat slices vacuum-packed and stored at 4 or 10 °C for 30 days. The shelf life of camel meat was 30 days longer using 1% or 2% Citrox in combination with 1% chitosan than when using Citrox alone. The reductions ranged from 4.0 to 3.5 logarithmic cycles during the storage period at both 4 and 10 °C. The quality of camel meat treated with Citrox plus chitosan was also better than that of the control meat and of meat treated with 0.85% NaCl. Abstract Camel meat is one of the most consumed meats in Arab countries. The use of natural antimicrobial agents to extend the shelf life of fresh camel meat, control Campylobacter jejuni contamination, and preserve meat quality is preferred. In this study, we determined the antimicrobial effects of using 1% or 2% Citrox alone or in combination with 1% chitosan on the survival of C. jejuni in vitro and on camel meat samples during storage at 4 or 10 °C for 30 days in vacuum packaging. We determined the total viable count (TVC (cfu/g)), total volatile base nitrogen (TVB-N) content, and pH of the treated camel meat samples every three days during storage. The shelf lives of camel meat samples treated with 2% Citrox alone or in combination with 1% chitosan were longer than those of camel meat samples treated with 1% Citrox alone or in combination with 1% chitosan at both the 4 and 10 °C storage temperatures, with TVCs of <100 cfu/g after the first ten days and six days of storage at 4 and 10 °C, respectively. The addition of Citrox (1% and 2%) and 1% chitosan to camel meat samples and the application of vacuum storage were more effective than using Citrox (1% and 2%) alone and led to a reduction in C. jejuni in approximately 4.0 and 3.5 log cycles at 4 and 10 °C, respectively. The experimental results demonstrated that using a Citrox-chitosan combination improved the quality of camel meat and enhanced the long-term preservation of fresh meat for up to or more than 30 days at 4 °C.
Collapse
|
18
|
Antilles N, García-Bocanegra I, Alba-Casals A, López-Soria S, Pérez-Méndez N, Saco M, González-Solís J, Cerdà-Cuéllar M. Occurrence and antimicrobial resistance of zoonotic enteropathogens in gulls from southern Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143018. [PMID: 33158539 DOI: 10.1016/j.scitotenv.2020.143018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter spp. and Salmonella spp. are the two most frequent zoonotic bacteria involved in human enteric infections in the European Union. Both enteropathogens have been isolated from a diversity of wild birds in Northern Europe, but there is limited information about gulls as potential reservoirs in Southern Europe. A broad sampling of fledglings from nine colonies of yellow-legged gull (Larus michahellis, N = 1222) and Audouin's gull (Larus audouinii, N = 563) has been conducted in Spain and Tunisia during the late chick-rearing period. Overall, the occurrence of Campylobacter spp. and Salmonella spp. was 5.2% (93/1785, CI95%: 4.2-6.2%) and 20.8% (371/1785, CI95%: 18.9-22.7%), respectively. The most predominant Campylobacter species was C. jejuni (94.6%). A high diversity of Salmonella serovars was isolated and the most frequent were those also reported in human outbreaks, such as Salmonella Typhimurium. A high proportion of Campylobacter and Salmonella isolates showed resistance to at least one antimicrobial agent (20.2% and 51.5%, respectively), while 19.2% of Salmonella isolates were multidrug-resistant. These results show the relevance of gulls as reservoirs of Campylobacter and Salmonella by maintaining and spreading these bacteria, including resistant and multidrug resistant strains, in the environment. Our results suggest that gulls can serve as sentinel species for antibiotic pressure in the environment.
Collapse
Affiliation(s)
- Noelia Antilles
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), 14071 Córdoba, Spain
| | - Ana Alba-Casals
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sergio López-Soria
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Néstor Pérez-Méndez
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Montse Saco
- Departament de Microbiologia, Laboratori Agroalimentari de Cabrils, Departament d'Agricultura, Ramaderia, Pesca i Alimentació, Generalitat de Catalunya, Barcelona, Spain
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Marta Cerdà-Cuéllar
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
19
|
Brehony C, Lanigan D, Carroll A, McNamara E. Establishment of sentinel surveillance of human clinical campylobacteriosis in Ireland. Zoonoses Public Health 2021; 68:121-130. [PMID: 33428331 DOI: 10.1111/zph.12802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/19/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
The aim of this work was the establishment of a national laboratory sentinel surveillance service for human clinical Campylobacter in Ireland. This included detailed genomic molecular epidemiology of Campylobacter for 2019. For February-December 2019, 24 clinical microbiology laboratories in Ireland submitted all PCR/culture-positive clinical Campylobacter spp. specimens to Public Health Laboratory (PHL) Dublin one week out of every four. Antimicrobial susceptibility testing (AST) according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria was carried out for Campylobacter spp. isolates for ciprofloxacin, tetracycline and erythromycin. Batch whole genome sequencing (WGS) was carried out on cultures and analysis was performed to determine species, genotype, identify antimicrobial resistance (AMR) and virulence determinants and identify clusters. A total of 75 isolates and 366 PCR-positive stools were received, and 277 isolates recovered (55.7% recovery from stools). Of 257 isolates characterized by WGS, 86.4% (n = 222) were Campylobacter jejuni, 11.7% (n = 30) Campylobacter coli and 1.9% (n = 5) Campylobacter lari. There were 20 clonal complexes with ST-21 clonal complex most prevalent at 26.8% (n = 69). 50.5% (n = 140) of isolates were susceptible to all three antimicrobials tested. 39.3% (n = 109) isolates were ciprofloxacin resistant, 26.3% (n = 73) tetracycline resistant and two isolates erythromycin resistant. Congruence between phenotypic and genotypic AST was observed. There was 95.9% and 95.6% sensitivity and specificity for WGS to predict ciprofloxacin sensitivity and 98.6% and 99.5% sensitivity and specificity for WGS to predict tetracycline sensitivity. Virulence factors flaA, racR, ciaB and cdtB were detected in all isolates. WGS identified 31 potential clusters for public health alert. This sentinel surveillance of human campylobacteriosis in Ireland establishes the basis for a national reference service. Linking with other partners in a 'One Health' framework will help us better understand sources of infection to reduce disease burden and the threat of AMR.
Collapse
Affiliation(s)
- Carina Brehony
- Public Health Laboratory, Health Service Executive, Dublin, Ireland.,European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Control and Prevention, Stockholm, Sweden
| | - Donal Lanigan
- Public Health Laboratory, Health Service Executive, Dublin, Ireland
| | - Anne Carroll
- Public Health Laboratory, Health Service Executive, Dublin, Ireland
| | - Eleanor McNamara
- Public Health Laboratory, Health Service Executive, Dublin, Ireland
| |
Collapse
|
20
|
Vogt NA, Pearl DL, Taboada EN, Mutschall SK, Bondo KJ, Jardine CM. Epidemiology of Campylobacter jejuni in raccoons (Procyon lotor) on swine farms and in conservation areas in southern Ontario. Zoonoses Public Health 2020; 68:19-28. [PMID: 33226196 DOI: 10.1111/zph.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
Campylobacter is a leading cause of foodborne illness in humans worldwide. Sources of infection are often difficult to identify, and are, generally, poorly understood. Recent work suggests that wildlife may represent a source of Campylobacter for human infections. Using a repeated cross-sectional study design, raccoons were trapped on five swine farms and five conservation areas in southern Ontario from 2011 to 2013. Our objectives were to: (a) assess the impact of seasonal, climatic, location, annual and raccoon demographic factors on the occurrence of Campylobacter jejuni in these animals; and (b) identify clusters of C. jejuni in space, time and space-time using spatial scan statistics. Multi-level multivariable logistic regression was used to examine the odds of isolating C. jejuni, with site and animal modelled as random intercepts. The following independent variables were examined: raccoon age and sex, year, location type, season, temperature and rainfall. A total of 1,096 samples were obtained from 627 raccoons; 46.3% were positive for C. jejuni. The following interactions and their main effects were significant (p < .05) and retained in the final model: season × temperature, year × rainfall, year × temperature. Based on the results from our multivariable model and spatial scan statistics, climatic variables (i.e. rainfall, temperature and season) were associated with the carriage of C. jejuni by raccoons, but the effects were not consistent, and varied by location and year. Although raccoons may pose a zoonotic risk due to their carriage of Campylobacter, further work is required to characterize the transmission and movement of this microorganism within the ecosystem.
Collapse
Affiliation(s)
- Nadine A Vogt
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Eduardo N Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Steven K Mutschall
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - Kristin J Bondo
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, USA
| | - Claire M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Tardón A, Bataller E, Llobat L, Jiménez-Trigos E. Bacteria and antibiotic resistance detection in fractures of wild birds from wildlife rehabilitation centres in Spain. Comp Immunol Microbiol Infect Dis 2020; 74:101575. [PMID: 33260016 DOI: 10.1016/j.cimid.2020.101575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
Anatomic adaptations make birds more prone to open fractures with exposed bone parts losing vascularization. As a result of this exposure, fractures are colonized by different microorganisms, including different types of bacteria, both aerobic and anaerobic, causing osteomyelitis in many cases. For this reason, antibiotic treatment is common. However, carrying out antibiotic treatment without carrying out a previous antibiogram may contribute to increased resistance against antibiotics, especially in migratory wild birds. In this paper, bacterial counts regarding fracture type, bacterial identification and antibiotic resistance have been analysed in wild birds from wildlife rehabilitation centres in Spain. The results obtained showed that open fractures had higher bacterial counts (CFU/mL) than closed ones. Bacteria in family Enterobacteriaceae, identified were Escherichia spp., Enterobacter spp., Shigella spp., Hafnia alvei, Proteus mirabilis, Leclercia adecarboxylata and Pantoea agglomerans. Other bacteria present in wild birds' fractures were Aeromonas spp., Enterococcus spp. Bacillus wiedmannii and Staphylococcus sciuri. All species found presented resistance to at least one of the antibiotics used. Wild birds can be implicated in the introduction, maintenance and global spreading of antibiotic resistant bacteria and represent an emerging public health concern. Results obtained in this paper support the idea that it is necessary to take this fact into account before antibiotic administration to wild animals, since it could increase the number of bacteria resistant to antibiotics.
Collapse
Affiliation(s)
- A Tardón
- CREW Foundation (Conservation and Research for Endangered Wildlife), Lleida, Spain
| | - E Bataller
- Research Group Microbiological Agents Associated With Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| | - L Llobat
- Research Group Microbiological Agents Associated With Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain.
| | - E Jiménez-Trigos
- Research Group Microbiological Agents Associated With Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain.
| |
Collapse
|
22
|
Samarth DP, Kwon YM. Horizontal genetic exchange of chromosomally encoded markers between Campylobacter jejuni cells. PLoS One 2020; 15:e0241058. [PMID: 33104745 PMCID: PMC7588059 DOI: 10.1371/journal.pone.0241058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Many epidemiological studies provide us with the evidence of horizontal gene transfer (HGT) contributing to the bacterial genomic diversity that benefits the bacterial populations with increased ability to adapt to the dynamic environments. Campylobacter jejuni, a major cause of acute enteritis in the U.S., often linked with severe post-infection neuropathies, has been reported to exhibit a non-clonal population structure and comparatively higher strain-level genetic variation. In this study, we provide evidence of the HGT of chromosomally encoded genetic markers between C. jejuni cells in the biphasic MH medium. We used two C. jejuni NCTC-11168 mutants harbouring distinct antibiotic-resistance genes [chloramphenicol (Cm) and kanamycin (Km)] present at two different neutral genomic loci. Cultures of both marker strains were mixed together and incubated for 5 hrs, then plated on MH agar plates supplemented with both antibiotics. The recombinant cells with double antibiotic markers were generated at the frequency of 0.02811 ± 0.0035% of the parental strains. PCR assays using locus-specific primers confirmed that transfer of the antibiotic-resistance genes was through homologous recombination. Also, the addition of chicken cecal content increased the recombination efficiency approximately up to 10-fold as compared to the biphasic MH medium (control) at P < 0.05. Furthermore, treating the co-culture with DNase I decreased the available DNA, which in turn significantly reduced recombination efficiency by 99.92% (P < 0.05). We used the cell-free supernatant of 16 hrs-culture of Wild-type C. jejuni as a template for PCR and found DNA sequences from six different genomic regions were easily amplified, indicating the presence of released chromosomal DNA in the culture supernatant. Our findings suggest that HGT in C. jejuni is facilitated in the chicken gut environment contributing to in vivo genomic diversity. Additionally, C. jejuni might have an active mechanism to release its chromosomal DNA into the extracellular environment, further expediting HGT in C. jejuni populations.
Collapse
Affiliation(s)
- Deepti Pranay Samarth
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail:
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States of America
| |
Collapse
|
23
|
Rivera-Mendoza D, Martínez-Flores I, Santamaría RI, Lozano L, Bustamante VH, Pérez-Morales D. Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. Front Microbiol 2020; 11:513070. [PMID: 33042043 PMCID: PMC7518152 DOI: 10.3389/fmicb.2020.513070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
The genus Campylobacter groups 32 Gram-negative bacteria species, several being zoonotic pathogens and a major cause of human gastroenteritis worldwide. Antibiotic resistant Campylobacter is considered by the World Health Organization as a high priority pathogen for research and development of new antibiotics. Genetic elements related to antibiotic resistance in the classical C. coli and C. jejuni species, which infect humans and livestock, have been analyzed in numerous studies, mainly focused on local geographical areas. However, the presence of these resistance determinants in other Campylobacter species, as well as in C. jejuni and C. coli strains distributed globally, remains poorly studied. In this work, we analyzed the occurrence and distribution of antibiotic resistance factors in 237 Campylobacter closed genomes available in NCBI, obtained from isolates collected worldwide, in different dates, from distinct hosts and comprising 22 Campylobacter species. Our data revealed 18 distinct genetic determinants, genes or point mutations in housekeeping genes, associated with resistance to antibiotics from aminoglycosides, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols or tetracyclines classes, which are differentially distributed among the Campylobacter species tested, on chromosomes or plasmids. Three resistance determinants, the blaOXA–493 and blaOXA–576 genes, putatively related to β-lactams resistance, as well as the lnu(AN2) gene, putatively related to lincosamides resistance, had not been reported in Campylobacter; thus, they represent novel determinants for antibiotic resistance in Campylobacter spp., which expands the insight on the Campylobacter resistome. Interestingly, we found that some of the genetic determinants associated with antibiotic resistance are Campylobacter species-specific; e.g., the blaOXA–493 gene and the T86V mutation in gyrA were found only in the C. lari group, whereas genes associated with aminoglycosides resistance were found only in C. jejuni and C. coli. Additional analyses revealed how are distributed the resistance and multidrug resistance Campylobacter genotypes assessed, with respect to hosts, geographical locations, and collection dates. Thus, our findings further expand the knowledge on the factors that can determine or favor the antibiotic resistance in Campylobacter species distributed globally, which can be useful to choose a suitable antibiotic treatment to control the zoonotic infections by these bacteria.
Collapse
Affiliation(s)
- Daniel Rivera-Mendoza
- Programa de Maestría en Biotecnología, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Irma Martínez-Flores
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Rosa I Santamaría
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Deyanira Pérez-Morales
- CONACYT-Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
24
|
Occurrence of Campylobacter jejuni in Gulls Feeding on Zagreb Rubbish Tip, Croatia; Their Diversity and Antimicrobial Susceptibility in Perspective with Human and Broiler Isolates. Pathogens 2020; 9:pathogens9090695. [PMID: 32847120 PMCID: PMC7559842 DOI: 10.3390/pathogens9090695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/21/2023] Open
Abstract
Campylobacteriosis is the most common gastrointestinal bacterial disease in the European Union (EU). Wild birds are one of the natural reservoirs of these pathogens. In this study we tested cloacal swabs of 643 gulls captured on rubbish tip in Zagreb, Croatia for the presence of Campylobacter spp. and found 168 Campylobacter positive samples. We used multilocus sequence typing (MLST) to genotype 62 random C. jejuni isolates from gulls, 24 isolates from broiler caeca, 27 isolates from broiler neck skins and 23 human isolates. Altogether, we identified 44 different STs, from which 19 were newly described. Most of the new STs (14) originate from gulls. Although humans and broilers share the majority of STs and isolates from gulls are separated from these, there was one ST present in all three hosts: 45. Additionally antimicrobial susceptibility to six antimicrobials was performed on 123 C. jejuni strains isolated from broiler caeca (n = 22), neck skins of broilers (n = 20), gulls cloacal swabs (n = 50) and human faeces (n = 31) by the broth microdilution method. Results show lower resistance of gull isolates to NAL and CIP, while resistance to TET was as high as in human and broiler isolates.
Collapse
|
25
|
Yu H, Elbediwi M, Zhou X, Shuai H, Lou X, Wang H, Li Y, Yue M. Epidemiological and Genomic Characterization of Campylobacter jejuni Isolates from a Foodborne Outbreak at Hangzhou, China. Int J Mol Sci 2020; 21:E3001. [PMID: 32344510 PMCID: PMC7215453 DOI: 10.3390/ijms21083001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Foodborne outbreaks caused by Campylobacter jejuni have become a significant public health problem worldwide. Applying genomic sequencing as a routine part of foodborne outbreak investigation remains in its infancy in China. We applied both traditional PFGE profiling and genomic investigation to understand the cause of a foodborne outbreak in Hangzhou in December 2018. METHOD A total of 43 fecal samples, including 27 sick patients and 16 canteen employees from a high school in Hangzhou city in Zhejiang province, were recruited. Routine real-time fluorescent PCR assays were used for scanning the potential infectious agents, including viral pathogens (norovirus, rotavirus, adenovirus, and astrovirus), and bacterial pathogens (Salmonella, Shigella, Campylobacter jejuni, Vibrio parahaemolyticus and Vibrio cholerae). Bacterial selection medium was used to isolate and identify the positive bacteria identified by molecular test. Pulsed field gel electrophoresis (PFGE), and next generation sequencing (NGS) were applied to fifteen recovered C. jejuni isolates to further understand the case linkage of this particular outbreak. Additionally, we retrieved reference genomes from the NCBI database and performed a comparative genomics analysis with the examined genomes produced in this study. RESULTS The analyzed samples were found to be negative for the queried viruses. Additionally, Salmonella, Shigella, Vibrio parahaemolyticus and Vibrio cholera were not detected. Fifteen C. jejuni strains were identified by the real-time PCR assay and bacterial selection medium. These C. jejuni strains were classified into two genetic profiles defined by the PFGE. Out of fifteen C. jejuni strains, fourteen have a unified consistent genotype belonging to ST2988, and the other strain belongs to ST8149, with a 66.7% similarity in comparison with the rest of the strains. Moreover, all fifteen strains harbored blaOXA-61 and tet(O), in addition to a chromosomal mutation in gyrA (T86I). The examined fourteen strains of ST2988 from CC354 clone group have very minimal genetic difference (3~66 SNPs), demonstrated by the phylogenomic investigation. CONCLUSION Both genomic investigation and PFGE profiling confirmed that C. jejuni ST2988, a new derivative from CC354, was responsible for the foodborne outbreak Illustrated in this study.
Collapse
Affiliation(s)
- Hua Yu
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China; (H.Y.); (X.L.); (H.W.)
| | - Mohammed Elbediwi
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; (M.E.); (Y.L.)
- Animal Health Research Institute, Agriculture Research Centre, Cairo 11865, Egypt
| | - Xiaohong Zhou
- Xiacheng Center for Disease Control and Prevention, Hangzhou 310003, China; (X.Z.); (H.S.)
| | - Huiqun Shuai
- Xiacheng Center for Disease Control and Prevention, Hangzhou 310003, China; (X.Z.); (H.S.)
| | - Xiuqin Lou
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China; (H.Y.); (X.L.); (H.W.)
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China; (H.Y.); (X.L.); (H.W.)
| | - Yan Li
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
26
|
Marotta F, Janowicz A, Di Marcantonio L, Ercole C, Di Donato G, Garofolo G, Di Giannatale E. Molecular Characterization and Antimicrobial Susceptibility of C. jejuni Isolates from Italian Wild Bird Populations. Pathogens 2020; 9:E304. [PMID: 32326051 PMCID: PMC7238051 DOI: 10.3390/pathogens9040304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Poultry is considered a major reservoir of human campylobacteriosis. It also been reported that not only poultry, but also wild birds, are capable of carrying C. jejuni, thus demonstrating to be a risk of spreading the bacteria in the environment. To gain insight into the population structure and investigate the antimicrobial resistance genotypes and phenotypes, we analyzed a collection of 135 C. jejuni from 15 species of wild birds in Italy. MLST revealed the presence of 41 sequence types (STs) and 13 clonal complexes (CCs). ST-179 complex and the generalist ST-45 complex were the most prevalent. Core genome MLST revealed that C. jejuni from ST-45 complex clustered according to the bird species, unlike the ST-179 complex which featured 3 different species in the same cluster. Overall we found a moderate prevalence of resistance to tetracycline (12.5%), ciprofloxacin and nalidixic acid (10%). The novel ST isolated from one pigeon showed resistance to all the antibiotics tested. The ST-179 complex (33.3%) was identified with significantly higher nalidixic acid resistance relative to other tested STs. Nine AMR genes (tet(O), cmeA, cmeB, cmeC, cmeR, aad, blaOXA-61, blaOXA-184 and erm(B)) and 23S rRNA and gyrA-associated point mutations were also described, indicating a concordance level between genotypic and phenotypic resistance of 23.3%, 23.4% and of 37.5% for streptomycin, tetracycline and quinolones/fluoroquinolones, respectively. We recommend that particular attention should be given to wild birds as key sentinel animals for the ecosystem contamination surveillance.
Collapse
Affiliation(s)
- Francesca Marotta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Anna Janowicz
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Lisa Di Marcantonio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Claudia Ercole
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Guido Di Donato
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Elisabetta Di Giannatale
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| |
Collapse
|
27
|
Cuevas-Ferrando E, Guirado P, Miró E, Iglesias-Torrens Y, Navarro F, Alioto TS, Gómez-Garrido J, Madrid C, Balsalobre C. Tetracycline resistance transmission in Campylobacter is promoted at temperatures resembling the avian reservoir. Vet Microbiol 2020; 244:108652. [PMID: 32402330 DOI: 10.1016/j.vetmic.2020.108652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 11/26/2022]
Abstract
Campylobacter is the causal agent of campylobacteriosis in humans, a self-limiting gastroenteritis. Campylobacteriosis is a zoonosis, commonly transmitted from contaminated chicken meat by either direct consumption or cross contamination during food manipulation. Presence of plasmids encoding for resistance to antibiotics such as tetracycline is common among Campylobacter isolates. In this report, we studied the effect of the temperature in the conjugation frequency of several tet(O) carrying plasmids, providing tetracycline resistance to the recipient cells. The conjugation frequency from donor cells carrying three previously characterized plasmids (pCjA13, pCjA9 and pTet) and from two clinical isolates was determined. Two temperatures, 37 and 42 °C, mimicking the conditions encountered by C. jejuni in the human and broiler chicken gastrointestinal tracts, respectively, were assessed. Our results clearly indicate that the conjugation process is promoted at high temperature. Accordingly, the transcriptional expression of some putative conjugative apparatus genes is thermoregulated, being induced at 42 °C. The two plasmids present in the clinical isolates were sequenced and assembled. Both plasmids are highly related among them and to the pTet plasmid. The high identity of the genes putatively involved in the conjugation process among the plasmids is in agreement with the similar behavior regarding the temperature dependency of the conjugative process. This report suggest that conjugation of plasmids carrying antibiotic resistance genes occurs preferentially at temperatures that resemble the gastrointestinal tract of birds, the main reservoir of C. jejuni.
Collapse
Affiliation(s)
- E Cuevas-Ferrando
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona Spain
| | - P Guirado
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona Spain
| | - E Miró
- Hospital de la Santa Creu i Sant Pau and Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Y Iglesias-Torrens
- Hospital de la Santa Creu i Sant Pau and Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F Navarro
- Hospital de la Santa Creu i Sant Pau and Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - T S Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - J Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - C Madrid
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona Spain.
| | - C Balsalobre
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona Spain.
| |
Collapse
|
28
|
Guirado P, Paytubi S, Miró E, Iglesias-Torrens Y, Navarro F, Cerdà-Cuéllar M, Stephan-Otto Attolini C, Balsalobre C, Madrid C. Differential Distribution of the wlaN and cgtB Genes, Associated with Guillain-Barré Syndrome, in Campylobacter jejuni Isolates from Humans, Broiler Chickens, and Wild Birds. Microorganisms 2020; 8:E325. [PMID: 32110976 PMCID: PMC7142995 DOI: 10.3390/microorganisms8030325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni causes campylobacteriosis, a bacterial gastroenteritis with high incidence worldwide. Moreover, C. jejuni infection can trigger the polyneuropathic disorder denominated Guillain-Barré syndrome (GBS). The C. jejuni strains that can elicit GBS carry either wlaN or cgtB, coding both genes for a β-1,3-galactosyltransferase enzyme that is required for the production of sialylated lipooligosaccharide (LOSSIAL). We described a differential prevalence of the genes wlaN and cgtB in C. jejuni isolates from three different ecological niches: humans, broiler chickens, and wild birds. The distribution of both genes, which is similar between broiler chicken and human isolates and distinct when compared to the wild bird isolates, suggests a host-dependent distribution. Moreover, the prevalence of the wlaN and cgtB genes seems to be restricted to some clonal complexes. Gene sequencing identified the presence of new variants of the G- homopolymeric tract within the wlaN gene. Furthermore, we detected two variants of a G rich region within the cgtB gene, suggesting that, similarly to wlaN, the G-tract in the cgtB gene mediates the phase variation control of cgtB expression. Caco-2 cell invasion assays indicate that there is no evident correlation between the production of LOSSIAL and the ability to invade eukaryotic cells.
Collapse
Affiliation(s)
- Pedro Guirado
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biología, Universitat de Barcelona. Avda. Diagonal 643, 08028 Barcelona, Spain; (P.G.); (S.P.); (C.B.)
| | - Sonia Paytubi
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biología, Universitat de Barcelona. Avda. Diagonal 643, 08028 Barcelona, Spain; (P.G.); (S.P.); (C.B.)
| | - Elisenda Miró
- Hospital de la Santa Creu i Sant Pau and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 89, 08041 Barcelona, Spain; (E.M.); (Y.I.-T.)
| | - Yaidelis Iglesias-Torrens
- Hospital de la Santa Creu i Sant Pau and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 89, 08041 Barcelona, Spain; (E.M.); (Y.I.-T.)
- Departament de Genètica i Microbiologia. Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ferran Navarro
- Hospital de la Santa Creu i Sant Pau and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 89, 08041 Barcelona, Spain; (E.M.); (Y.I.-T.)
- Departament de Genètica i Microbiologia. Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Marta Cerdà-Cuéllar
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA-UAB). Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain;
| | - Carlos Balsalobre
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biología, Universitat de Barcelona. Avda. Diagonal 643, 08028 Barcelona, Spain; (P.G.); (S.P.); (C.B.)
| | - Cristina Madrid
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biología, Universitat de Barcelona. Avda. Diagonal 643, 08028 Barcelona, Spain; (P.G.); (S.P.); (C.B.)
| |
Collapse
|
29
|
Igwaran A, I. Okoh A. Campylobacteriosis Agents in Meat Carcasses Collected from Two District Municipalities in the Eastern Cape Province, South Africa. Foods 2020; 9:E203. [PMID: 32079101 PMCID: PMC7074574 DOI: 10.3390/foods9020203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
Raw meats are sometimes contaminated with Campylobacter species from animal faeces, and meats have repeatedly been implicated in foodborne infections. This study evaluated the prevalence, virulence genes, antimicrobial susceptibility patterns, and resistance gene determinants in Campylobacter species isolated from retailed meat carcasses. A total of 248 raw meat samples were collected from butcheries, supermarkets, and open markets; processed for enrichment in Bolton broth; and incubated at 42 °C for 48 h in 10% CO2. Thereafter, the broths were streaked on modified charcoal cefoperazone deoxycholate agar (mCCDA) plates and incubated at the same conditions and for the same amount of time. After incubation, colonies were isolated and confirmed by Polymerase chain reaction using specific oligonucleotide sequences used for the identification of the genus Campylobacter, species, and their virulence markers. The patterns of antimicrobial resistance profiles of the identified isolates were studied by disk diffusion method against 12 antibiotics, and relevant resistance genes were assessed by PCR. From culture, 845 presumptive Campylobacter isolates were obtained, of which 240 (28.4%) were identified as genus Campylobacter. These were then characterised into four species, of which C. coli had the highest prevalence rate (22.08%), followed by C. jejuni (16.66%) and C. fetus (3.73%). The virulence genes detected included iam (43.14%), cadF (37.25%), cdtB (23.53%), flgR (18.63%), and flaA (1.96%), and some of the isolates co-harboured two to four virulence genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter isolates was against clindamycin (100%), and the lowest level of resistance was observed against imipenem (23.33%). The frequency of resistance genes detected included catll (91.78%), tetA (68.82%), gyra (61.76%), ampC (55%), aac(3)-IIa (aacC2)a (40.98%), tetM (38.71%), ermB (18.29%), tetB (12.90%), and tetK (2.15%). There is a high incidence of Campylobacter species in meat carcasses, suggesting these to be a reservoir of campylobacteriosis agents in this community, and as such, consumption of undercooked meats in this community is a potential health risk to consumers.
Collapse
Affiliation(s)
- Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
30
|
Wieczorek K, Wołkowicz T, Osek J. MLST-based genetic relatedness of Campylobacter jejuni isolated from chickens and humans in Poland. PLoS One 2020; 15:e0226238. [PMID: 31978059 PMCID: PMC6980552 DOI: 10.1371/journal.pone.0226238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/24/2019] [Indexed: 11/25/2022] Open
Abstract
Campylobacter jejuni infection is one of the most frequently reported foodborne bacterial diseases worldwide. The main transmission route of these microorganisms to humans is consumption of contaminated food, especially of chicken origin. The aim of this study was to analyze the genetic relatedness of C. jejuni from chicken sources (feces, carcasses, and meat) and from humans with diarrhea as well as to subtype the isolates to gain better insight into their population structure present in Poland. C. jejuni were genotyped using multilocus sequence typing (MLST) and sequence types (STs) were assigned in the MLST database. Among 602 isolates tested, a total of 121 different STs, including 70 (57.9%) unique to the isolates' origin, and 32 STs that were not present in the MLST database were identified. The most prevalent STs were ST464 and ST257, with 58 (9.6%) and 52 (8.6%) C. jejuni isolates, respectively. Isolates with some STs (464, 6411, 257, 50) were shown to be common in chickens, whereas others (e.g. ST21 and ST572) were more often identified among human C. jejuni. It was shown that of 47 human sequence types, 26 STs (106 isolates), 23 STs (102 isolates), and 29 STs (100 isolates) were also identified in chicken feces, meat, and carcasses, respectively. These results, together with the high and similar proportional similarity indexes (PSI) calculated for C. jejuni isolated from patients and chickens, may suggest that human campylobacteriosis was associated with contaminated chicken meat or meat products or other kinds of food cross-contaminated with campylobacters of chicken origin. The frequency of various sequence types identified in the present study generally reflects of the prevalence of STs in other countries which may suggest that C. jejuni with some STs have a global distribution, while other genotypes may be more restricted to certain countries.
Collapse
Affiliation(s)
- Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Tomasz Wołkowicz
- Department of Bacteriology and Biocontamination Control, National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
31
|
Multiple Megaplasmids Confer Extremely High Levels of Metal Tolerance in Alteromonas Strains. Appl Environ Microbiol 2020; 86:AEM.01831-19. [PMID: 31757820 DOI: 10.1128/aem.01831-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
Alteromonas is a widely distributed genus of marine Gammaproteobacteria, with representatives shown to be key players in diverse processes, including biogeochemical cycling and biofouling of marine substrata. While Alteromonas spp. are early colonizers of copper-based antifouling paints on marine vessels, their mechanism of tolerance is poorly understood. PacBio whole-genome sequencing of Alteromonas macleodii strains CUKW and KCC02, isolated from Cu/Ni alloy test coupons submerged in oligotrophic coastal waters, indicated the presence of multiple megaplasmids (ca. 200 kb) in both. A pulsed-field gel electrophoresis method was developed and used to confirm the presence of multiple megaplasmids in these two strains; it was then used to screen additional Alteromonas strains for which little to no sequencing data exist. Plasmids were not detected in any of the other strains. Bioinformatic analysis of the CUKW and KCC02 plasmids identified numerous genes associated with metal resistance. Copper resistance orthologs from both the Escherichia coli Cue and Cus and Pseudomonas syringae Cop systems were present, at times as multiple copies. Metal growth assays in the presence of copper, cobalt, manganese, and zinc performed with 10 Alteromonas strains demonstrated the ability of CUKW and KCC02 to grow at metal concentrations inhibitory to all the other strains tested. This study reports multiple megaplasmids in Alteromonas strains. Bioinformatic analysis of the CUKW and KCC02 plasmids indicate that they harbor elements of the Tra system conjugation apparatus, although their type of mobility remains to be experimentally verified.IMPORTANCE Copper is commonly used as an antifouling agent on ship hulls. Alteromonas spp. are early colonizers of copper-based antifouling paint, but their mechanism of tolerance is poorly understood. Sequencing of A. macleodii strains isolated from copper test materials for marine ships indicated the presence of multiple megaplasmids. Plasmids serve as key vectors in horizontal gene transfer and confer traits such as metal resistance, detoxification, ecological interaction, and antibiotic resistance. Bioinformatic analysis identified many metal resistance genes and genes associated with mobility. Understanding the molecular mechanisms and capacity for gene transfer within marine biofilms provides a platform for the development of novel antifouling solutions targeting genes involved in copper tolerance and biofilm formation.
Collapse
|
32
|
Igwaran A, Okoh AI. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019; 5:e02814. [PMID: 31763476 PMCID: PMC6861584 DOI: 10.1016/j.heliyon.2019.e02814] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/07/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023] Open
Abstract
Campylobacter species are among the leading cause of bacterial foodborne and waterborne infections. In addition, Campylobacter is one of the major causative agent of bacterial gastrointestinal infections and the rise in the incidence of Campylobacter infections have been reported worldwide. Also, the emergence of some Campylobacter species as one of the main causative agent of diarrhea and the propensity of these bacteria species to resist the actions of antimicrobial agents; position them as a serious threat to the public health. This paper reviews Campylobacter pathogenicity, infections, isolation and diagnosis, their reservoirs, transmission pathways, epidemiology of Campylobacter outbreaks, prevention and treatment option, antibiotics resistance and control of antibiotics use.
Collapse
Affiliation(s)
- Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| |
Collapse
|
33
|
Schiaffino F, Platts-Mills J, Kosek MN. A One Health approach to prevention, treatment, and control of campylobacteriosis. Curr Opin Infect Dis 2019; 32:453-460. [PMID: 31305492 DOI: 10.1097/qco.0000000000000570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To review recent findings regarding the control and treatment of campylobacteriosis. RECENT FINDINGS The application of improved diagnostics has led to an upward shift in the attributable burden of Campylobacter infections, in both the United States and Europe as well as in resource-poor settings. Increased focus has brought a fundamental feature of campylobacteriosis -- the ability to cause relapsing disease back into focus, and expanding data on antimicrobial resistance has lead from a switch in first-line therapy for severe diarrhea from quinolones to azithromycin in most contexts, even as evidence of expanding macrolide resistance emerges. SUMMARY Campylobacter spp. infection is a common infection worldwide. Antibiotic-resistant Campylobacter spp. has become an emerging threat with the increase in industrial poultry production, as well as the broad use of antibiotics in both animals and humans.
Collapse
Affiliation(s)
| | - James Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
34
|
Aksomaitiene J, Ramonaite S, Tamuleviciene E, Novoslavskij A, Alter T, Malakauskas M. Overlap of Antibiotic Resistant Campylobacter jejuni MLST Genotypes Isolated From Humans, Broiler Products, Dairy Cattle and Wild Birds in Lithuania. Front Microbiol 2019; 10:1377. [PMID: 31275289 PMCID: PMC6593065 DOI: 10.3389/fmicb.2019.01377] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/03/2019] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance was determined for 341 thermophilic Campylobacter jejuni isolates obtained from human clinical cases (n = 101), broiler products (n = 98), dairy cattle (n = 41) and wild birds (n = 101) with known multilocus sequence types (MLST) in Lithuania. The minimum inhibitory concentration (MIC) values for ciprofloxacin, tetracycline, gentamicin, ceftriaxone and erythromycin were determined with the agar dilution method. MIC values were compared with MLST types to find possible associations among isolation source, sequence type and resistance to antibiotics. The proportions of resistant strains were 94.2% (human), 95% (wild birds), 100% (broiler products) and 100% (dairy cattle) for one of the tested antibiotics. Most frequently, resistance to ciprofloxacin was observed (91.5%), followed by ceftriaxone with 60.4%, and tetracycline (37.8%). However only three C. jejuni strains were resistant to erythromycin (0.9%) and all tested thermophilic Campylobacter strains were sensitive to gentamicin. Most of the examined C. jejuni isolates (80.6%) showed resistance to at least one of three profiles: CIP+AXO (28.1%), TET+CIP+AXO (26.7%) and CIP (25.8%). Statistically significant differences in resistance to tetracycline were found between C. jejuni strains obtained from cattle (85.4%) and broiler products (64.3%) (P < 0.05). The majority (87.1%) of the tested strains from wild birds were resistant to ciprofloxacin (P < 0.05). The results showed that strains of novel ST's showed significantly lower resistance to ceftriaxone (P < 0.05). The ST-21 (CC21) (78.8%) was identified with significantly higher multidrug resistance relatively to other tested ST's in this study. Our results emphasize the high antimicrobial resistance of phylogenetically diverse C. jejuni strains isolated from different sources including specific genotypes of wild bird's strains in Lithuania. The results support the opinion that not only broiler products but cattle and wild birds may be a reservoir of resistant C. jejuni and stipulate a risk of spread or resistant bacteria. There is increasing need for broad surveillance and control measures to track changes and pathways of antimicrobial resistance of C. jejuni in epidemiologically distinct populations.
Collapse
Affiliation(s)
- Jurgita Aksomaitiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sigita Ramonaite
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egle Tamuleviciene
- Clinic of Children Diseases, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aleksandr Novoslavskij
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
35
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Dewulf J, Hald T, Michel V, Niskanen T, Ricci A, Snary E, Boelaert F, Messens W, Davies R. Salmonella control in poultry flocks and its public health impact. EFSA J 2019; 17:e05596. [PMID: 32626222 PMCID: PMC7009056 DOI: 10.2903/j.efsa.2019.5596] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An increase in confirmed human salmonellosis cases in the EU after 2014 triggered investigation of contributory factors and control options in poultry production. Reconsideration of the five current target serovars for breeding hens showed that there is justification for retaining Salmonella Enteritidis, Salmonella Typhimurium (including monophasic variants) and Salmonella Infantis, while Salmonella Virchow and Salmonella Hadar could be replaced by Salmonella Kentucky and either Salmonella Heidelberg, Salmonella Thompson or a variable serovar in national prevalence targets. However, a target that incorporates all serovars is expected to be more effective as the most relevant serovars in breeding flocks vary between Member State (MS) and over time. Achievement of a 1% target for the current target serovars in laying hen flocks is estimated to be reduced by 254,400 CrI95[98,540; 602,700] compared to the situation in 2016. This translates to a reduction of 53.4% CrI95[39.1; 65.7] considering the layer-associated human salmonellosis true cases and 6.2% considering the overall human salmonellosis true cases in the 23 MSs included in attribution modelling. A review of risk factors for Salmonella in laying hens revealed that overall evidence points to a lower occurrence in non-cage compared to cage systems. A conclusion on the effect of outdoor access or impact of the shift from conventional to enriched cages could not be reached. A similar review for broiler chickens concluded that the evidence that outdoor access affects the occurrence of Salmonella is inconclusive. There is conclusive evidence that an increased stocking density, larger farms and stress result in increased occurrence, persistence and spread of Salmonella in laying hen flocks. Based on scientific evidence, an impact of Salmonella control programmes, apart from general hygiene procedures, on the prevalence of Campylobacter in broiler flocks at the holding and on broiler meat at the end of the slaughter process is not expected.
Collapse
|