1
|
Homa J, Wilms W, Marcinkowska K, Cyplik P, Ławniczak Ł, Woźniak-Karczewska M, Niemczak M, Chrzanowski Ł. Comparative analysis of bacterial populations in sulfonylurea-sensitive and -resistant weeds: insights into community composition and catabolic gene dynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52391-52409. [PMID: 39150664 PMCID: PMC11374828 DOI: 10.1007/s11356-024-34593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
This study aimed to compare the impact of iodosulfuron-methyl-sodium and an iodosulfuron-based herbicidal ionic liquid (HIL) on the microbiomes constituting the epiphytes and endophytes of cornflower (Centaurea cyanus L.). The experiment involved biotypes of cornflower susceptible and resistant to acetolactate synthase inhibition, examining potential bacterial involvement in sulfonylurea herbicide detoxification. We focused on microbial communities present on the surface and in the plant tissues of roots and shoots. The research included the synthesis and physicochemical analysis of a novel HIL, evaluation of shifts in bacterial community composition, analysis of the presence of catabolic genes associated with sulfonylurea herbicide degradation and determination of their abundance in all experimental variants. Overall, for the susceptible biotype, the biodiversity of the root microbiome was higher compared to shoot microbiome; however, both decreased notably after herbicide or HIL applications. The herbicide-resistant biotype showed lower degree of biodiversity changes, but shifts in community composition occurred, particularly in case of HIL treatment.
Collapse
Affiliation(s)
- Jan Homa
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland.
| | - Wiktoria Wilms
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| | - Katarzyna Marcinkowska
- Department of Weed Science, Institute of Plant Protection - National Research Institute, 60-318, Poznan, Poland
| | - Paweł Cyplik
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, 60-624, Poznan, Poland
| | - Łukasz Ławniczak
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| | | | - Michał Niemczak
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| | - Łukasz Chrzanowski
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| |
Collapse
|
2
|
Singh R, Shukla J, Ali M, Dubey AK. A novel diterpenic derivative produced by Streptomyces chrestomyceticus ADP4 is a potent inhibitor of biofilm and virulence factors in Candida albicans and C. auris. J Appl Microbiol 2024; 135:lxae139. [PMID: 38866718 DOI: 10.1093/jambio/lxae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
AIM Isolation, identification, structural and functional characterization of potent anti-Candida compound with specific antagonistic activities against significant human pathogens, Candida albicans and C. auris. METHODS AND RESULTS The compound (55B3) was purified from the metabolites produced by Streptomyces chrestomyceticus ADP4 by employing column chromatography. The structure of 55B3 was determined from the analyses of spectral data that included LCMS, nuclear magnetic resonance, FTIR, and UV spectroscopies. It was identified as a novel derivative of diterpenic aromatic acid, 3-(dictyotin-11'-oate-15'α, 19'β-olide)-4-(dictyotin-11'-oate-15″α, 19″β-olide)-protocatechoic acid. The compound displayed potent antifungal and anti-biofilm activities against C. albicans ATCC 10231 (Minimum Inhibitory Concentration, MIC90:14.94 ± 0.17 μgmL-1 and MBIC90: 16.03 ± 1.1 μgmL-1) and against C. auris CBS 12372 (MIC90: 21.75 ± 1.5 μgmL-1 and Minimum Biofilm Inhibitory Concentration, MBIC90: 18.38 ± 1.78 μgmL-1). Further, pronounced inhibition of important virulence attributes of Candida spp., e.g. yeast-to-hyphae transition, secretory aspartyl proteinase and phospholipase B by 55B3 was noted at subinhibitory concentrations. A plausible mechanism of anti-Candida action of the compound appeared to be the inhibition of ergosterol biosynthesis, which was inhibited by 64 ± 3% at the MIC90 value. The non-cytotoxic attribute of the compound was noted in the liver cell line (HepG2 cells). CONCLUSION The present work led to the discovery of a novel diterpenic derivative produced by S. chrestomyceticus ADP4. The compound displayed potent anti-Candida activity, particularly against the two most significant human pathogens, C. albicans and C. auris, which underlined its significance as a potential drug candidate for infections involving these pathogens.
Collapse
Affiliation(s)
- Radha Singh
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
| | - Jyoti Shukla
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
| | - Mohd Ali
- Faculty of Pharmacy, Hamdard University, New Delhi 110062, India
| | - Ashok K Dubey
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
| |
Collapse
|
3
|
Veilumuthu P, Nagarajan T, Magar S, Sundaresan S, Moses LJ, Theodore T, Christopher JG. Genomic insights into an endophytic Streptomyces sp. VITGV156 for antimicrobial compounds. Front Microbiol 2024; 15:1407289. [PMID: 38887720 PMCID: PMC11180775 DOI: 10.3389/fmicb.2024.1407289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
Endophytic Streptomyces sp. are recognized as a potential resource for valuable natural products but are less explored. This study focused on exploring endophytic Streptomyces species residing within tomato plants (Solanum lycopersicum) harboring genes for the production of a novel class of antibiotics. Our research involved the isolation and characterization of Streptomyces sp. VITGV156, a newly identified endophytic Streptomyces species that produces antimicrobial products. VITGV156 harbors a genome of 8.18 mb and codes 6,512 proteins, of which 4,993 are of known function (76.67%) and 1,519 are of unknown function (23.32%). By employing genomic analysis, we elucidate the genome landscape of this microbial strain and shed light on various BGCs responsible for producing polyketide antimicrobial compounds, with particular emphasis on the antibiotic kendomycin. We extended our study by evaluating the antibacterial properties of kendomycin. Overall, this study provides valuable insights into the genome of endophytic Streptomyces species, particularly Streptomyces sp. VITGV156, which are prolific producers of antimicrobial agents. These findings hold promise for further research and exploitation of pharmaceutical compounds, offering opportunities for the development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Pattapulavar Veilumuthu
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - T. Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravathi, India
| | - Sharayu Magar
- Department of Biological Sciences, SRM University-AP, Amaravathi, India
| | - Sasikumar Sundaresan
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Lenus Joy Moses
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Thomas Theodore
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - John Godwin Christopher
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
4
|
Sudheer NS, Biju IF, Balasubramanian CP, Panigrahi A, Kumar TS, Kumar S, Mandal B, Das S, De D. Probiotic potential of a novel endophytic Streptomyces griseorubens CIBA-NS1 isolated from Salicornia sp. against Vibrio campbellii infection in shrimp. Microb Pathog 2024; 191:106677. [PMID: 38705217 DOI: 10.1016/j.micpath.2024.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
A novel endophytic Streptomyces griseorubens CIBA-NS1 was isolated from a salt marsh plant Salicornia sp. The antagonistic effect of S. griseorubens against Vibrio campbellii, was studied both in vitro and in vivo. The strain was validated for its endophytic nature and characterized through scanning electron microscopy, morphological and biochemical studies and 16SrDNA sequencing. The salinity tolerance experiment has shown that highest antibacterial activity was at 40‰ (16 ± 1.4 mm) and lowest was at 10 ‰ salinity (6.94 ± 0.51 mm). In vivo exclusion of Vibrio by S. griseorubens CIBA-NS1 was studied in Penaeus indicus post larvae and evaluated for its ability to improve growth and survival of P. indicus. After 20 days administration of S. griseorubens CIBA-NS1, shrimps were challenged with V. campbellii. The S. griseorubens CIBA-NS1 reduced Vibrio population in test group when compared to control, improved survival (60.5 ± 6.4%) and growth, as indicated by weight gain (1.8 ± 0.05g). In control group survival and growth were 48.4 ± 3.5% and 1.4 ± 0.03 g respectively. On challenge with V. campbellii, the S. griseorubens CIBA-NS1 administered group showed better survival (85.6 ± 10%) than positive control (64.3 ± 10%). The results suggested that S. griseorubens CIBA-NS1 is antagonistic to V. campbellii, reduce Vibrio population in the culture system and improve growth and survival. This is the first report on antagonistic activity of S. griseorubens isolated from salt marsh plant Salicornia sp, as a probiotic candidate to prevent V. campbellii infection in shrimps.
Collapse
Affiliation(s)
- N S Sudheer
- Kakdwip Research Centre of ICAR-CIBA, Kakdwip, South 24 Parganas, West Bengal, India.
| | - I F Biju
- Kakdwip Research Centre of ICAR-CIBA, Kakdwip, South 24 Parganas, West Bengal, India
| | - C P Balasubramanian
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - A Panigrahi
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - T Sathish Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Sujeet Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Babita Mandal
- Kakdwip Research Centre of ICAR-CIBA, Kakdwip, South 24 Parganas, West Bengal, India
| | - S Das
- Kakdwip Research Centre of ICAR-CIBA, Kakdwip, South 24 Parganas, West Bengal, India
| | - D De
- Kakdwip Research Centre of ICAR-CIBA, Kakdwip, South 24 Parganas, West Bengal, India
| |
Collapse
|
5
|
Ahmed A, He P, He Y, Singh BK, Wu Y, Munir S, He P. Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. Crit Rev Biotechnol 2024; 44:562-580. [PMID: 37055183 DOI: 10.1080/07388551.2023.2183379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/15/2023]
Abstract
Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Barman D, Dkhar MS. Purification and characterization of moderately thermostable raw-starch digesting α-amylase from endophytic Streptomyces mobaraensis DB13 associated with Costus speciosus. J GEN APPL MICROBIOL 2024; 69:293-300. [PMID: 37635076 DOI: 10.2323/jgam.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Endophytic actinobacteria are known to produce various enzymes with potential industrial applications. Alpha-amylase is an important class of industrial enzyme with a multi-dimensional utility. The present experiment was designed to characterize a moderately thermostable α-amylase producing endophytic Streptomyces mobaraensis DB13 isolated from Costus speciosus (J. Koenig) Sm. The enzyme was purified using 60% ammonium sulphate precipitation, dialysis, and Sephadex G-100 column chromatography. Based on 12% SDS-PAGE, the molecular weight of the purified α-amylase was estimated to be 55 kDa. The maximum α-amylase activity was achieved at pH 7.0, 50°C and it retained 80% of its activity at both pH 7.0 and 8.0 after incubation for 2 h. The α-mylase activity is strongly enhanced by Ca2+, Mg2+, and inhibited by Ba2+. The activity remains stable in the presence of Tween-80, SDS, PMSF, and Triton X-100; however, β-mercaptoethanol, EDTA, and H2O2 reduced the activity. The kinetic parameters Km and Vmax values for this α-amylase were calculated as 2.53 mM and 29.42 U/mL respectively. The α-amylase had the ability to digest various raw starches at a concentration of 10 mg/mL at pH 7.0, 50°C, where maize and rice are the preferred substrates. The digestion starts after 4 h of incubation, which reaches maximum after 48 h of incubation. These results suggest that S. mobaraensis DB13 is a potential source of moderately thermostable α-amylase enzyme, that effciently hydrolyzes raw starch. It suggesting that this α-amylase is a promising candidate to be use for industrial purposes.
Collapse
Affiliation(s)
- Dina Barman
- Microbial Ecology Laboratory, Centre for Advanced Studies in Botany, Department of Botany
- Department of Microbiology, The Assam Royal Global University
| | - Mamtaj S Dkhar
- Microbial Ecology Laboratory, Centre for Advanced Studies in Botany, Department of Botany
| |
Collapse
|
7
|
Chavarría-Pizarro L, Núñez-Montero K, Gutiérrez-Araya M, Watson-Guido W, Rivera-Méndez W, Pizarro-Cerdá J. Novel strains of Actinobacteria associated with neotropical social wasps (Vespidae; Polistinae, Epiponini) with antimicrobial potential for natural product discovery. FEMS MICROBES 2024; 5:xtae005. [PMID: 38476864 PMCID: PMC10929769 DOI: 10.1093/femsmc/xtae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Antimicrobial resistance has been considered a public health threat. The World Health Organization has warned about the urgency of detecting new antibiotics from novel sources. Social insects could be crucial in the search for new antibiotic metabolites, as some of them survive in places that favor parasite development. Recent studies have shown the potential of social insects to produce antimicrobial metabolites (e.g. ants, bees, and termites). However, most groups of social wasps remain unstudied. Here, we explored whether Actinobacteria are associated with workers in the Neotropical Social Wasps (Epiponini) of Costa Rica and evaluated their putative inhibitory activity against other bacteria. Most isolated strains (67%) have antagonistic effects, mainly against Bacillus thuringensis and Escherichia coli ATCC 25992. Based on genome analysis, some inhibitory Actinobacteria showed biosynthetic gene clusters (BGCs) related to the production of antimicrobial molecules such as Selvamycin, Piericidin A1, and Nystatin. The Actinobacteria could be associated with social wasps to produce antimicrobial compounds. For these reasons, we speculate that Actinobacteria associated with social wasps could be a novel source of antimicrobial compounds, mainly against Gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Chavarría-Pizarro
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - Kattia Núñez-Montero
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
- Instituto de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida Alemania 1090, 4810101 Temuco, Chile
| | - Mariela Gutiérrez-Araya
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - William Watson-Guido
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - William Rivera-Méndez
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit - Institut Pasteur 28, rue du Docteur Roux - 75724 Paris Cedex 15, France
| |
Collapse
|
8
|
Singh R, Ali M, Dubey AK. Identification and characterization of a novel decalin derivative with anti-Candida activity from Streptomyces chrestomyceticus strain ADP4. Arch Microbiol 2024; 206:50. [PMID: 38172349 DOI: 10.1007/s00203-023-03788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
A novel decalin derivative, trans-1-oxo-2,4-diacetylaminodecalin (1) with anti-Candida activity, had been isolated from Streptomyces chrestomyceticus strain ADP4. The structure of the compound was determined from the analysis of spectral data (LCMS/MS, UV, FTIR, 1D- and 2D-NMR). The anti-Candida activity of 1 was specific to Candida albicans and Candida auris. Further, it displayed inhibition of the early-stage biofilm of C. albicans. In-silico analysis of the compound revealed its drug likeness properties without any violations and PAINS alert when investigated for ADME properties. Along with the overall bioavailability, compound 1 did not show any predicted bioaccumulation and mutagenicity in the analysis by TEST software. Non-cytotoxic property was further confirmed by in-vitro assay on the HepG2 cell line.
Collapse
Affiliation(s)
- Radha Singh
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Mohd Ali
- Faculty of Pharmacy, Hamdard University, New Delhi, 110062, India
| | - Ashok K Dubey
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, 110078, India.
| |
Collapse
|
9
|
Rathinam AJ, Santhaseelan H, Dahms HU, Dinakaran VT, Murugaiah SG. Bioprospecting of unexplored halophilic actinobacteria against human infectious pathogens. 3 Biotech 2023; 13:398. [PMID: 37974926 PMCID: PMC10645811 DOI: 10.1007/s13205-023-03812-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/08/2023] [Indexed: 11/19/2023] Open
Abstract
Human pathogenic diseases received much attention recently due to their uncontrolled spread of antimicrobial resistance (AMR) which causes several threads every year. Effective alternate antimicrobials are urgently required to combat those disease causing infectious microbes. Halophilic actinobacteria revealed huge potentials and unexplored cultivable/non-cultivable actinobacterial species producing enormous antimicrobials have been proved in several genomics approaches. Potential gene clusters, PKS and NRPKS from Nocardia, Salinospora, Rhodococcus, and Streptomyces have wide range coding genes of secondary metabolites. Biosynthetic pathways identification via various approaches like genome mining, In silico, OSMAC (one strain many compound) analysis provides better identification of knowing the active metabolites using several databases like AMP, APD and CRAMPR, etc. Genome constellations of actinobacteria particularly the prediction of BGCs (Biosynthetic Gene Clusters) to mine the bioactive molecules such as pigments, biosurfactants and few enzymes have been reported for antimicrobial activity. Saltpan, saltlake, lagoon and haloalkali environment exploring potential actinobacterial strains Micromonospora, Kocuria, Pseudonocardia, and Nocardiopsis revealed several acids and ester derivatives with antimicrobial potential. Marine sediments and marine macro organisms have been found as significant population holders of potential actinobacterial strains. Deadly infectious diseases (IDs) including tuberculosis, ventilator-associated pneumonia and Candidiasis, have been targeted by halo-actinobacterial metabolites with promising results. Methicillin resistant Staphylococus aureus and virus like Encephalitic alphaviruses were potentially targeted by halophilic actinobacterial metabolites by the compound Homoseongomycin from sponge associated antinobacterium. In this review, we discuss the potential antimicrobial properties of various biomolecules extracted from the unexplored halophilic actinobacterial strains specifically against human infectious pathogens along with prospective genomic constellations.
Collapse
Affiliation(s)
- Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Henciya Santhaseelan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | | | | |
Collapse
|
10
|
Tsipinana S, Husseiny S, Alayande KA, Raslan M, Amoo S, Adeleke R. Contribution of endophytes towards improving plant bioactive metabolites: a rescue option against red-taping of medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1248319. [PMID: 37771494 PMCID: PMC10522919 DOI: 10.3389/fpls.2023.1248319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Medicinal plants remain a valuable source for natural drug bioprospecting owing to their multi-target spectrum. However, their use as raw materials for novel drug synthesis has been greatly limited by unsustainable harvesting leading to decimation of their wild populations coupled with inherent low concentrations of constituent secondary metabolites per unit mass. Thus, adding value to the medicinal plants research dynamics calls for adequate attention. In light of this, medicinal plants harbour endophytes which are believed to be contributing towards the host plant survival and bioactive metabolites through series of physiological interference. Stimulating secondary metabolite production in medicinal plants by using endophytes as plant growth regulators has been demonstrated to be one of the most effective methods for increasing metabolite syntheses. Use of endophytes as plant growth promotors could help to ensure continuous supply of medicinal plants, and mitigate issues with fear of extinction. Endophytes minimize heavy metal toxicity in medicinal plants. It has been hypothesized that when medicinal plants are exposed to harsh conditions, associated endophytes are the primary signalling channels that induce defensive reactions. Endophytes go through different biochemical processes which lead to activation of defence mechanisms in the host plants. Thus, through signal transduction pathways, endophytic microorganisms influence genes involved in the generation of secondary metabolites by plant cells. Additionally, elucidating the role of gene clusters in production of secondary metabolites could expose factors associated with low secondary metabolites by medicinal plants. Promising endophyte strains can be manipulated for enhanced production of metabolites, hence, better probability of novel bioactive metabolites through strain improvement, mutagenesis, co-cultivation, and media adjustment.
Collapse
Affiliation(s)
- Sinawo Tsipinana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Samah Husseiny
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Kazeem A. Alayande
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Mai Raslan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Stephen Amoo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Agricultural Research Council – Vegetables, Industrial and Medicinal Plants, Roodeplaat, Pretoria, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
12
|
Kong J, Huang C, Xiong Y, Li B, Kong W, Liu W, Tan Z, Peng D, Duan Y, Zhu X. Discovery and Biosynthetic Studies of a Highly Reduced Cinnamoyl Lipid, Tripmycin A, from an Endophytic Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:1870-1877. [PMID: 37462318 DOI: 10.1021/acs.jnatprod.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A Tripterygium wilfordii endophyte, Streptomyces sp. CB04723, was shown to produce an unusually highly reduced cytotoxic cinnamoyl lipid, tripmycin A (1). Structure-activity relationship studies revealed that both the cinnamyl moiety and the saturated fatty acid side chain are indispensable to the over 400-fold cytotoxicity improvement of 1 against the triple-negative breast cancer cell line MDA-MB-231 compared to 5-(2-methylphenyl)-4-pentenoic acid (2). Bioinformatical analysis, gene inactivation, and overexpression revealed that Hxs15 most likely acted as an enoyl reductase and was involved with the side chain reduction of 1, which provides a new insight into the biosynthesis of cinnamoyl lipids.
Collapse
Affiliation(s)
- Jieqian Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Chengshuang Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Baihuan Li
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wenping Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wangyang Liu
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Zhouke Tan
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Dian Peng
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, People's Republic of China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
13
|
Lu C, Zhang Z, Guo P, Wang R, Liu T, Luo J, Hao B, Wang Y, Guo W. Synergistic mechanisms of bioorganic fertilizer and AMF driving rhizosphere bacterial community to improve phytoremediation efficiency of multiple HMs-contaminated saline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163708. [PMID: 37105481 DOI: 10.1016/j.scitotenv.2023.163708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
The addition of Arbuscular mycorrhizal fungi (AMF) or bioorganic fertilizer (BOF) alone has been reported to enhance plant tolerance to heavy metals and salt stress and promote plant growth, while their synergistic effects on plant growth and rhizosphere microorganism are largely unknown. This study explored the effects of AMF (Rhizophagus intraradices), BOF and BOF + RI assisted phytoremediation on heavy metals contaminated saline soil improvement and revealed the microbial mechanism. For this purpose, a pot trial consisting of four treatments (CK, RI, BOF and BOF + RI) was carried out. The results showed that the biomass, nutrient element contents, the accumulation of heavy metals and Na of Astragalus adsurgens and soil properties were most significantly improved by BOF + RI. BOF + RI significantly impacted rhizosphere microbial diversity, abundance and community composition. Chloroflexi and Patescibacteria at the phylum level and Actinomadura, Iamia, and Desulfosporosinus at the genus level were significantly enriched in BOF + RI. Network analysis revealed that BOF + RI significantly changed the keystone and enhanced complexity and interaction. Most of the keystones had roles in promoting plant growth and stress resistance. This study suggested that phytoremediation assisted by BOF and AMF is an attractive approach to ameliorate heavy metals contaminated saline soil.
Collapse
Affiliation(s)
- Chengyan Lu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Peiran Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Run Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
14
|
Khan SS, Verma V, Rasool S. Purification and characterization of lipase enzyme from endophytic Bacillus pumilus WSS5 for application in detergent industry. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Kaewkla O, Suriyachadkun C, Franco CMM. Streptomyces phytophilus sp. nov., an endophytic actinobacterium with biosynthesis potential as an antibiotic producer. Int J Syst Evol Microbiol 2023; 73. [PMID: 37093715 DOI: 10.1099/ijsem.0.005834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
An endophytic actinobacterium, strain PIP175T, was isolated from the root sample of a native apricot tree (Pittosporum angustifolium) growing on the Bedford Park campus of Flinders University, Adelaide, South Australia. This strain is a Gram stain-positive, aerobic actinobacterium with well-developed substrate mycelia. Aerial mycelia rarely produce spores and the spore chain is spiral. Strain PIP175T showed the highest 16S rRNA gene sequence similarity to Streptomyces aculeolatus DSM 41644T (99.4 %). Other closely related phylogenetic representatives include Streptomyces synnematoformans DSM 41902T (98.3 %), Streptomyces albospinus NBRC 13846T (97.6 %), Streptomyces cacaoi subsp. cacaoi NRRL B-1220T (97.5 %) and Streptomyces ruber NBRC 14600T (97.4 %). The major cellular fatty acid of this strain was iso-C16 : 0 and the major menaquinone was MK-9(H6). The whole-cell sugar contained galactose, glucose and mannose. Chemotaxonomic data confirmed that strain PIP175T belonged to the genus Streptomyces. Digital DNA-DNA hybridization, average nucleotide identity based on blast and OrthoANIu results between strain PIP175T and S. aculeolatus DSM 41644T were 60.0, 94.1 and 94.9 %, respectively. Genotypic and phenotypic data and genome analysis results allowed the differentiation of strain PIP175T from its closest species with validly published names. Strain PIP175T showed good activity against methicillin-resistant Staphylococcus aureus 03120385. Genome mining of strain PIP175T revealed biosynthetic genes encoding proteins relating to antibiotic production, plant growth promotion and biodegradation enzymes. The name proposed for the new species is Streptomyces phytophilus sp. nov. The type strain is PIP175T (=DSM 103379T=TBRC 6026T).
Collapse
Affiliation(s)
- Onuma Kaewkla
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham Province, 44150, Thailand
- Department of Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand
| | - Christopher Milton Mathew Franco
- Department of Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| |
Collapse
|
16
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Antifungal Activities of Compounds Produced by Newly Isolated Acrocarpospora Strains. Antibiotics (Basel) 2023; 12:antibiotics12010095. [PMID: 36671296 PMCID: PMC9854854 DOI: 10.3390/antibiotics12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
In our continued search for bioactive metabolites from cultures of rare Actinobacteria resources from all over Taiwan and various natural ecological environments, an active antimicrobial strain of Acrocarpospora punica 04107M was collected in Taitung County in Taiwan and prepared from soil. The bioassay-guided fractionation of the BuOH extract of a culture broth from A. punica 04107M led to the isolation of five previously undescribed compounds: Acrocarposporins A−E (Compounds 1−5). All the constituents were confirmed by HRESIMS and 1D- and 2D-NMR spectroscopy. Their antifungal activity was also evaluated. Our results showed that four constituents (Compounds 1, 2, 4, and 5) possessed mild antifungal activity against Aspergillus niger, Penicillium italicum, Candida albicans, and Saccharomyces cerevisiae. It is worth mentioning that the chemical composition of Acrocarpospora punica 04107M has never been studied. This is the first report on diterpenoid metabolites from the genus Acrocarpospora.
Collapse
|
18
|
Zhou S, Zhou Y, Li C, Wu W, Xu Y, Xia W, Huang D, Huang X. Identification and genomic analyses of a novel endophytic actinobacterium Streptomyces endophytica sp. nov. with potential for biocontrol of yam anthracnose. Front Microbiol 2023; 14:1139456. [PMID: 37082180 PMCID: PMC10111032 DOI: 10.3389/fmicb.2023.1139456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/06/2023] [Indexed: 04/22/2023] Open
Abstract
Anthracnose disease caused by Colletotrichum gloeosporioides is one of the devastating diseases of yams (Dioscorea sp.) worldwide. In this study, we aimed to isolate endophytic actinobacteria from yam plants and to evaluate their potential for the control of yam anthracnose based on bioassays and genomic analyses. A total of 116 endophytic actinomycete strains were isolated from the surface-sterilized yam tissues from a yam orchard in Hainan Province, China. In total, 23 isolates showed antagonistic activity against C. gloeosporioides. An endophytic actinomycete, designated HNM0140T, which exhibited strong antifungal activities, multiple biocontrol, and plant growth-promoting (PGP) traits was subsequently selected to colonize in the tissue-cultured seedlings of yam and was tested for its in vivo biocontrol potential on yam anthracnose. The results showed that treatment with strain HNM0140T markedly reduced the severity and incidence of yam anthracnose under greenhouse conditions. Morphological and chemotaxonomic analyses showed that strain HNM0140T was assigned to the genus Streptomyces. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain HNM0140T formed a separate cluster together with Streptomyces lydicus ATCC 25470T (99.45%), Streptomyces chattanoogensis NRRL ISP-5002T (99.45%), and Streptomyces kronopolitis NEAU-ML8T (98.97%). The phylogenomic tree also showed that strain HNM0140T stably clustered with Streptomyces lydicus ATCC 25470T. The ANI and dDDH between strain HNM0140T and its closest related-type species were well below the recommended thresholds for species demarcation. Hence, based on the phylogenetic, genomic, and phenotypic analyses, strain HNM0140T should represent a new streptomycete species named Streptomyces endophytica sp. nov. Genomic analysis revealed that strain HNM0140T harbored 18 putative BGCs for secondary metabolites, some PGP-related genes, and several genes coding for antifungal enzymes. The presented results indicated that strain HNM0140T was a promising biocontrol agent for yam anthracnose.
Collapse
Affiliation(s)
- Shuangqing Zhou
- Department of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, China
| | - Yifan Zhou
- Department of Agronomy, College of Tropical Crops, Hainan University, Haikou, China
| | - Chengui Li
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, China
| | - Wenqiang Wu
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, China
| | - Yun Xu
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, China
| | - Wei Xia
- Department of Agronomy, College of Tropical Crops, Hainan University, Haikou, China
| | - Dongyi Huang
- Department of Agronomy, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaolong Huang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, China
- *Correspondence: Xiaolong Huang
| |
Collapse
|
19
|
Ryabova OV, Gagarina AA. Actinomycetes as the Basis of Probiotics for Plants. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822070055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Wu MD, Cheng MJ. Undescribed Metabolites from an Actinobacteria Acrocarpospora punica and Their Anti-Inflammatory Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227982. [PMID: 36432083 PMCID: PMC9694197 DOI: 10.3390/molecules27227982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
In an effort to explore bioactive anti-inflammatory compounds from natural Actinobacteria resources from all over Taiwan and various ecological environments, an active strain of Acrocarpospora punica was collected at Taitung County in Taiwan, prepared from soil origin. A bioassay-guided fractionation of the BuOH extract of a culture broth of a new strain of the actinomycete Acrocarpospora punica led to the isolation of five previously undescribed compounds: acrocarpunicains A-F (1-6). The structures were elucidated by 1D and 2D Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. Furthermore, the isolated compounds were subjected to in vitro testing to evaluate their anti-inflammatory activity. Of these isolates, acrocarpunicains A (1), B (2), C (3) and F (6) showed NO inhibitory activity with IC50 values of 9.36 ± 0.25, 10.11 ± 0.47, 5.15 ± 0.18, and 27.17 ± 1.87 μM, stronger than the positive control, quercetin (IC50 = 35.95 ± 2.34 μM). To the best of our knowledge, this is the first report on azaphilone and phenanthrene-type metabolites from the genus Acrocarpospora.
Collapse
Affiliation(s)
- Ming-Der Wu
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan
| | - Ming-Jen Cheng
- Department of Life Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence:
| |
Collapse
|
21
|
Diversity and Bioactivity of Endophytic Actinobacteria Associated with Grapevines. Curr Microbiol 2022; 79:390. [PMCID: PMC9633489 DOI: 10.1007/s00284-022-03068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
AbstractGrapevine trunk diseases (GTDs) are a significant problem for New Zealand viticulture. Endophytic actinobacteria are of interest as potential biocontrol agents due to their ability to inhibit plant pathogens and improve plant growth. However, no studies have investigated the diversity of actinobacteria associated with grapevines in New Zealand vineyards and their bioactivity. Actinobacteria diversity in different ‘Sauvignon blanc’ vine tissues from three vineyards (conventional and organic management, and different vine ages) was assessed using different methods and media. Forty-six endophytic actinobacteria were isolated, with more isolates recovered from roots (n = 45) than leaves (n = 1) and shoot internodes (n = 0). More isolates were recovered from the organic (n = 21) than conventional (n = 8) vineyard, mature (25-year old; n = 21) than young (2-year old; n = 2) vines and using a tissue maceration technique (n = 40). Actinomycete Isolation Agar, International Streptomyces Project 2, and Starch Casein media were effective for actinobacteria isolation. Most of the isolates recovered belonged to Streptomyces, with one isolate identified as Mycolicibacterium. Forty isolates were assessed for antifungal activity and plant growth-promoting (PGP) characteristics. Of these, 13 isolates had antifungal activity against test GTD pathogens (Dactylonectria macrodidyma, Eutypa lata, Ilyonectria liriodendri, Neofusicoccum parvum, and N. luteum). Eighteen isolates exhibited more than one PGP trait; 25siderophore production (n = 25), phosphate solubilization (n = 6), and indole acetic acid production (n = 16). Two strains, Streptomyces sp. LUVPK-22 and Streptomyces sp. LUVPK-30, exhibited the best antifungal and PGP properties. This study revealed the diversity of culturable endophytic actinobacteria from grapevines in New Zealand vineyards and their biocontrol potential against GTD pathogens.
Collapse
|
22
|
Identification and antibacterial evaluation of endophytic actinobacteria from Luffa cylindrica. Sci Rep 2022; 12:18236. [PMID: 36309579 PMCID: PMC9617871 DOI: 10.1038/s41598-022-23073-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
The emergence of antibiotic-resistant bacteria has limited treatment options and led to the untreatable infections, thereby necessitating the discovery of new antibiotics to battel against bacteria. Natural products from endophytic actinobacteria (EA) serve as a reservoir for discovery of new antibiotics. Therefore, the current study focused on the isolation and antibacterial properties of EA isolated from Luffa cylindrica. Six strains were identified using morphological characterization, SEM analyses and 16S rRNA gene sequencing from the roots and leaves of the plant. They were taxonomically classified as Streptomycetaceae family. This is the first report on EA form L. cylindrica. The strains produced a chain of oval, cubed or cylindrical shaped spores with spiny or smooth surfaces. Three strains; KUMS-B3, KUMS-B4 and KUMS-B6 were reported as endophytes for the first time. Fifty percent of isolates were isolated from leaves samples using YECD medium. Our results showed that the sampling time and seasons may affect the bacterial diversity. All six strains had antibacterial activity against at least one of the tested bacteria S. aureus, P. aeruginosa, and E. coli. Among the strains, KUMS-B6 isolate, closely related to S. praecox, exhibited the highest antibacterial activity against both gram-positive and negative bacteria. KUMS-B6, KUMS-B5 and KUMS-B4 isolates strongly inhibited the growth of P. aeruginosa. Interestingly, the strains, isolated from leaves exhibited stronger antagonist activities compared to those isolated from the roots. The study revealed that the isolated strains from Luffa produce a plethora of bioactive substances that are potential source of new drug candidates for the treatment of infections.
Collapse
|
23
|
The Neuroprotective Potential of Endophytic Fungi and Proposed Molecular Mechanism: A Current Update. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6214264. [PMID: 36217430 PMCID: PMC9547681 DOI: 10.1155/2022/6214264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Millions of people are affected by neuronal disorders that are emerging as a principal cause of death after cancer. Alzheimer's disease, ataxia, Parkinson's disease, multiple system atrophy, and autism comprise the most common ones, being accompanied by loss of cognitive power, impaired balance, and movement. In past decades, natural polyphenols obtained from different sources including bacteria, fungi, and plants have been utilized in the traditional system of medicine for the treatment of several ailments. Endophytes are one such natural producer of secondary metabolites, namely, polyphenols, which exhibit strong abilities to assist in the management of such affections, through modifying multiple therapeutic targets and weaken their complex physiology. Limited research has been conducted in detail on bioactive compounds present in the endophytic fungi and their neuroprotective effects. Therefore, this review aims to provide an update on scientific evidences related to the pharmacological and clinical potential along with proposed molecular mechanism of action of endophytes for neuronal protection.
Collapse
|
24
|
Plant Abiotic and Biotic Stress Alleviation: From an Endophytic Microbial Perspective. Curr Microbiol 2022; 79:311. [DOI: 10.1007/s00284-022-03012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
|
25
|
Zeyad MT, Tiwari P, Ansari WA, Kumar SC, Kumar M, Chakdar H, Srivastava AK, Singh UB, Saxena AK. Bio-priming with a consortium of Streptomyces araujoniae strains modulates defense response in chickpea against Fusarium wilt. Front Microbiol 2022; 13:998546. [PMID: 36160196 PMCID: PMC9493686 DOI: 10.3389/fmicb.2022.998546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Wilt caused by Fusarium oxysporum f. sp. ciceris (Foc) is one of the major diseases of chickpea affecting the potential yield significantly. Productivity and biotic stress resilience are both improved by the association and interaction of Streptomyces spp. with crop plants. In the present study, we evaluated two Streptomyces araujoniae strains (TN11 and TN19) for controlling the wilt of chickpea individually and as a consortium. The response of Foc challenged chickpea to inoculation with S. araujoniae TN11 and TN19 individually and as a consortium was recorded in terms of changes in physio-biochemical and expression of genes coding superoxide dismutase (SOD), peroxidase, and catalase. Priming with a consortium of TN11 and TN19 reduced the disease severity by 50–58% when challenged with Foc. Consortium primed-challenged plants recorded lower shoot dry weight to fresh weight ratio and root dry weight to fresh weight ratio as compared to challenged non-primed plants. The pathogen-challenged consortium primed plants recorded the highest accumulation of proline and electrolyte leakage. Similarly, total chlorophyll and carotenoids were recorded highest in the consortium treatment. Expression of genes coding SOD, peroxidase, and catalase was up-regulated which corroborated with higher activities of SOD, peroxidase, and catalase in consortium primed-challenged plants as compared to the challenged non-primed plants. Ethyl acetate extracts of TN11 and TN19 inhibited the growth of fungal pathogens viz., Fusarium oxysporum f. sp. ciceris. Macrophomina phaseolina, F. udum, and Sclerotinia sclerotiarum by 54–73%. LC–MS analyses of the extracts showed the presence of a variety of antifungal compounds like erucamide and valinomycin in TN11 and valinomycin and dinactin in TN19. These findings suggest that the consortium of two strains of S. araujoniae (TN11 and TN19) can modulate defense response in chickpea against wilt and can be explored as a biocontrol strategy.
Collapse
|
26
|
Mohamad OAA, Liu YH, Huang Y, Li L, Ma JB, Egamberdieva D, Gao L, Fang BZ, Hatab S, Jiang HC, Li WJ. The Metabolic Potential of Endophytic Actinobacteria Associated with Medicinal Plant Thymus roseus as a Plant-Growth Stimulator. Microorganisms 2022; 10:microorganisms10091802. [PMID: 36144404 PMCID: PMC9505248 DOI: 10.3390/microorganisms10091802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Bio-fertilizer practice considers not only economical but also environmentally friendly, sustainable agriculture. Endophytes can play important beneficiary roles in plant development, directly, indirectly, or synergistically. In this study, the majority of our endophytic actinobacteria were able to possess direct plant growth-promoting (PGP) traits, including auxin (88%), ammonia (96%), siderophore production (94%), and phosphate solubilization (24%), along with cell-wall degrading enzymes such as protease (75%), cellulase (81%), lipase (81%), and chitinase (18%). About 45% of tested strains have an inhibitory effect on the phytopathogen Fusarium oxysporum, followed by 26% for Verticillium dahlia. Overall, our results showed that strains XIEG63 and XIEG55 were the potent strains with various PGP traits that caused a higher significant increase (p ≤ 0.05) in length and biomass in the aerial part and roots of tomato and cotton, compared to the uninoculated plants. Our data showed that the greatest inhibition percentages of two phytopathogens were achieved due to treatment with strains XIEG05, XIEG07, XIEG45, and XIEG51. The GC-MS analysis showed that most of the compounds were mainly alkanes, fatty acid esters, phenols, alkenes, and aromatic chemicals and have been reported to have antifungal activity. Our investigation emphasizes that endophytic actinobacteria associated with medicinal plants might help reduce the use of chemical fertilization and potentially lead to increased agricultural productivity and sustainability.
Collapse
Affiliation(s)
- Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Department of Biological, Marine Sciences and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Al-Arish 45511, Egypt
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish 45511, Egypt
- Correspondence: (O.A.A.M.); (L.L.); (W.-J.L.)
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Correspondence: (O.A.A.M.); (L.L.); (W.-J.L.)
| | - Jin-Biao Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dilfuza Egamberdieva
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University (TIIAME), Tashkent 100000, Uzbekistan
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Shaimaa Hatab
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish 45511, Egypt
- Faculty of Organic Agriculture, Heliopolis University, Cairo 2834, Egypt
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (O.A.A.M.); (L.L.); (W.-J.L.)
| |
Collapse
|
27
|
Tavarideh F, Pourahmad F, Nemati M. Diversity and antibacterial activity of endophytic bacteria associated with medicinal plant, Scrophularia striata. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:409-415. [PMID: 36320307 PMCID: PMC9548236 DOI: 10.30466/vrf.2021.529714.3174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/20/2021] [Indexed: 01/24/2023]
Abstract
To search endophytic bacteria diversity and evaluate their antibacterial activity, healthy medicinal plant of Scrophularia striata was chosen in this study. One hundred endophytic bacteria were isolated from surface-sterilized tissues (root, stem and leaf) of S. striata. Using sequence analysis targeting 16S rRNA gene, eight genera, including Agrococcus, Arthrobacter, Bacillus, Chryseobacterium, Delftia, Kocuria, Pseudomonas and Sphingomonas were identified. Antibacterial activity of endophytic bacteria was examined against some test bacteria, employing agar well diffusion method. Out of 31 endophytic bacterial isolates, 24(77.42%) isolates showed significant antimicrobial activity against Bacillus cereus, 17(54.84%) isolates exhibited maximum activity against Staphylococcus aureus, 14(45.16%) isolates against Escherichia coli and 5(16.13%) isolates showed positive activity against Proteus mirabilis.The results obtained in this study suggested that the medicinal plant, S. striatais is a potent source of endophytic bacteria with antibacterial activity and offers promise for discovery of more impressive biological compounds.
Collapse
Affiliation(s)
| | - Fazel Pourahmad
- Correspondence Fazel Pourahmad. DVM, PhD Department of Microbiology, Faculty of Veterinary Sciences, Ilam University, Ilam, Iran. E-mail:
| | | |
Collapse
|
28
|
Microbial endophytes: application towards sustainable agriculture and food security. Appl Microbiol Biotechnol 2022; 106:5359-5384. [PMID: 35902410 DOI: 10.1007/s00253-022-12078-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Microbial endophytes are ubiquitous and exist in each recognised plant species reported till date. Within the host plant, the entire community of microbes lives non-invasively within the active internal tissues without causing any harm to the plant. Endophytes interact with their host plant via metabolic communication enables them to generate signal molecules. In addition, the host plant's genetic recombination with endophytes helps them to imitate the host's physicochemical functions and develop identical active molecules. Therefore, when cultured separately, they begin producing the host plant phytochemicals. The fungal species Penicillium chrysogenum has portrayed the glory days of antibiotics with the invention of the antibiotic penicillin. Therefore, fungi have substantially supported social health by developing many bioactive molecules utilised as antioxidant, antibacterial, antiviral, immunomodulatory and anticancerous agents. But plant-related microbes have emanated as fountainheads of biologically functional compounds with higher levels of medicinal perspective in recent years. Researchers have been motivated by the endless need for potent drugs to investigate alternate ways to find new endophytes and bioactive molecules, which tend to be a probable aim for drug discovery. The current research trends with these promising endophytic organisms are reviewed in this review paper. KEY POINTS: • Identified 54 important bioactive compounds as agricultural relevance • Role of genome mining of endophytes and "Multi-Omics" tools in sustainable agriculture • A thorough description and graphical presentation of agricultural significance of plant endophytes.
Collapse
|
29
|
Mattoo AJ, Nonzom S. Endophytes in Lignin Valorization: A Novel Approach. Front Bioeng Biotechnol 2022; 10:895414. [PMID: 35928943 PMCID: PMC9343868 DOI: 10.3389/fbioe.2022.895414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lignin, one of the essential components of lignocellulosic biomass, comprises an abundant renewable aromatic resource on the planet earth. Although 15%––40% of lignocellulose pertains to lignin, its annual valorization rate is less than 2% which raises the concern to harness and/or develop effective technologies for its valorization. The basic hindrance lies in the structural heterogeneity, complexity, and stability of lignin that collectively makes it difficult to depolymerize and yield common products. Recently, microbial delignification, an eco-friendly and cheaper technique, has attracted the attention due to the diverse metabolisms of microbes that can channelize multiple lignin-based products into specific target compounds. Also, endophytes, a fascinating group of microbes residing asymptomatically within the plant tissues, exhibit marvellous lignin deconstruction potential. Apart from novel sources for potent and stable ligninases, endophytes share immense ability of depolymerizing lignin into desired valuable products. Despite their efficacy, ligninolytic studies on endophytes are meagre with incomplete understanding of the pathways involved at the molecular level. In the recent years, improvement of thermochemical methods has received much attention, however, we lagged in exploring the novel microbial groups for their delignification efficiency and optimization of this ability. This review summarizes the currently available knowledge about endophytic delignification potential with special emphasis on underlying mechanism of biological funnelling for the production of valuable products. It also highlights the recent advancements in developing the most intriguing methods to depolymerize lignin. Comparative account of thermochemical and biological techniques is accentuated with special emphasis on biological/microbial degradation. Exploring potent biological agents for delignification and focussing on the basic challenges in enhancing lignin valorization and overcoming them could make this renewable resource a promising tool to accomplish Sustainable Development Goals (SDG’s) which are supposed to be achieved by 2030.
Collapse
Affiliation(s)
| | - Skarma Nonzom
- *Correspondence: Skarma Nonzom, , orcid.org/0000-0001-9372-7900
| |
Collapse
|
30
|
Li Z, Wen W, Qin M, He Y, Xu D, Li L. Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Front Microbiol 2022; 13:928967. [PMID: 35898919 PMCID: PMC9309545 DOI: 10.3389/fmicb.2022.928967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 12/28/2022] Open
Abstract
Endophytes is a kind of microorganism resource with great potential medicinal value. The interactions between endophytes and host not only promote the growth and development of each other but also drive the biosynthesis of many new medicinal active substances. In this review, we summarized recent reports related to the interactions between endophytes and hosts, mainly regarding the research progress of endophytes affecting the growth and development of host plants, physiological stress and the synthesis of new compounds. Then, we also discussed the positive effects of multiomics analysis on the interactions between endophytes and their hosts, as well as the application and development prospects of metabolites synthesized by symbiotic interactions. This review may provide a reference for the further development and utilization of endophytes and the study of their interactions with their hosts.
Collapse
Affiliation(s)
- Zhaogao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Engineering Research Center of Key Technology Development for Gui Zhou Provincial Dendrobium Nobile Industry, Zunyi Medical University, Zunyi, China
- *Correspondence: Yuqi He,
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Delin Xu,
| | - Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Lin Li,
| |
Collapse
|
31
|
Adeleke BS, Babalola OO. Meta-omics of endophytic microbes in agricultural biotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Maheshwari R, Kumar P, Bhutani N, Suneja P. Exploration of plant growth-promoting endophytic bacteria from Pisum sativum and Cicer arietinum from South-West Haryana. J Basic Microbiol 2022; 62:857-874. [PMID: 35655367 DOI: 10.1002/jobm.202100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 11/07/2022]
Abstract
In the present study, nonrhizobial endophytes were isolated from Pisum sativum and Cicer arietinum from Haryana, India. A total of 355 bacterial endophytes were screened for plant growth promoting traits. Out of all, 96 bacterial endophytes were selected based on morphological characters and multi-PGP traits, and their diversity analyzed by amplified ribosomal DNA restriction analysis. Based on their ARDRA profile, the 25 representative isolates (12 from P. sativum and 13 from C. arietinum), were selected and identified by 16S ribosomal DNA sequencing. Genetic relatedness based on BLAST analysis revealed the similarity of these isolates with members of three prominent phyla, that is, Proteobacteria, Firmicutes, and Actinobacteria. The dominant cluster, Firmicutes, constituted 60% of the isolates, assigned to four different genera, Bacillus, Staphylococcus, Ornithinibacillus, and Lysinibacillus. Phylum α-proteobacteria included two genera, namely Paenochrobactrum and Ochrobactrum and three genera in phylum γ-proteobacteria, namely Pseudomonas, Pantoea and Proteus. The phylum Actinobacteria was constituted of two genera, Microbacterium and Arthrobacter. Bacillus zhangzhouensis, Bacillus safensis, Arthrobacter enclensis from P. sativum and Bacillus haynesii, Paenochrobactrum sp. from C. arietinum are documented as plant growth promoting endophytic bacteria for the first time in the present study. The in vitro and in vivo assessment based on bonitur score revealed that the endophytic isolates Bacillus mojavensis PRN2, Pseudomonas chlororaphis PHN9, B. safensis PRER2, Pseudomonas sp. RCP1, Pseudomonas lini PRN1 and B. haynensii RCP3 from P. sativum and C. arietinum significantly enhanced the plant growth parameters. Therefore, these potential isolates can be further harnessed for preparation of bioformulations to enhance sustainable agriculture.
Collapse
Affiliation(s)
- Rajat Maheshwari
- Department of Microbiology, Plant-Microbe Interaction Laboratory, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pradeep Kumar
- Department of Microbiology, Plant-Microbe Interaction Laboratory, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Namita Bhutani
- Department of Microbiology, Plant-Microbe Interaction Laboratory, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja Suneja
- Department of Microbiology, Plant-Microbe Interaction Laboratory, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
33
|
Devi R, Kaur T, Kour D, Yadav A, Yadav AN, Suman A, Ahluwalia AS, Saxena AK. Minerals solubilizing and mobilizing microbiomes: A sustainable approaches for managing minerals deficiency in agricultural soil. J Appl Microbiol 2022; 133:1245-1272. [PMID: 35588278 DOI: 10.1111/jam.15627] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Agriculture faces challenges to fulfill the rising food demand due to shortage of arable land and various environmental stressors. Traditional farming technologies help in fulfilling food demand but they are harmful to humans and environmental sustainability. The food production along with agro-environmental sustainability could be achieved by encouraging farmers to use agro-environmental sustainable products such as biofertilizers and biopesticides consisting of live microbes or plant extract instead of chemical-based inputs. The ecofriendly formulations play a significant role in plant growth promotion, crop yield, and repairing degraded soil texture and fertility sustainably. Mineral solubilizing microbes that provide vital nutrients like phosphorus, potassium, zinc, and selenium are essential for plant growth and development and could be developed as biofertilizers. These microbes could be plant-associated (rhizospheric, endophytic, and phyllospheric) or inhabits the bulk soil, and diverse extreme habitats. Mineral solubilizing microbes from soil, extreme environments, surface and internal parts of the plant belong to diverse phyla such as Ascomycota, Actinobacteria, Basidiomycota, Bacteroidetes, Chlorobi, Cyanobacteria, Chlorophyta, Euryarchaeota, Firmicutes, Gemmatimonadetes, Mucoromycota, Proteobacteria, and Tenericutes. Mineral solubilizing microbes (MSMs) directly or indirectly stimulate plant growth and development either by releasing plant growth regulators; solubilizing phosphorus, potassium, zinc, selenium, and silicon; biological nitrogen fixation; and production of siderophores, ammonia, hydrogen cyanide, hydrolytic enzymes, and bioactive compound/secondary metabolites. Biofertilizer developed using mineral solubilizing microbes is an eco-friendly solution to the sustainable food production system in many countries worldwide. The present review deals with the biodiversity of mineral solubilizing microbes, and potential roles in crop improvement and soil well-being for agricultural sustainability.
Collapse
Affiliation(s)
- Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Archna Suman
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Amrik Singh Ahluwalia
- Department of Botany, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kusmaur-275103, Mau, India
| |
Collapse
|
34
|
Ravinder P, Manasa M, Roopa D, Bukhari NA, Hatamleh AA, Khan MY, M. S. R, Hameeda B, El Enshasy HA, Hanapi SZ, Sayyed RZ. Biosurfactant producing multifarious Streptomyces puniceus RHPR9 of Coscinium fenestratum rhizosphere promotes plant growth in chilli. PLoS One 2022; 17:e0264975. [PMID: 35290374 PMCID: PMC8923452 DOI: 10.1371/journal.pone.0264975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022] Open
Abstract
The present study involves isolation of Streptomyces spp. from rhizosphere of Coscinium fenestratum Gaertn, an endangered medicinal plant from Western Ghats of Karnataka, India. Four potential isolates were identified by 16S rRNA sequencing as Streptomyces sp. RHPR3, Streptomyces puniceus RHPR9, Streptomyces sp. RHPR14 and Streptomyces mediolani RHPR25. An enrichment culture method was used for the isolation of Streptomyces spp. for biosurfactant activity. Among four potential Streptomyces spp., S. puniceus RHPR9 showed highest Emulsification index (EI) (78±0.2%) and Emulsification assay (EA) (223±0.2 EU mL-1). Thin layer chromatography, Fourier transform infrared spectroscopy (FTIR) and mass spectrometric analysis revealed that as glycolipid. Further confirmed by presence of fatty acids like hexanoic acid methyl ester, decanoic acid by Gas chromatography mass spectroscopy (GC-MS) analysis. S. puniceus RHPR9 showed a significant IAA production (41μg mL-1), solubilized P (749.1 μg mL-1), growth promotion of chilli (Capsicum annuum L.) was evaluated using paper towel method and greenhouse conditions. S. puniceus RHPR9 showed a significant increase in seed vigor index (2047) and increase in plant biomass (65%) when compared to uninoculated control. To our knowledge, this is the first report on epiphytic S. puniceus RHPR9 isolated from an endangered medicinal plant C. fenestratum Gaertn, for biosurfactant production and plant growth promotion activities.
Collapse
Affiliation(s)
- Polapally Ravinder
- Department of Microbiology, University College of Science, Osmania University Hyderabad, Hyderabad, India
| | - M. Manasa
- Department of Microbiology, University College of Science, Osmania University Hyderabad, Hyderabad, India
| | - D. Roopa
- Department of Wildlife and Management, Kuvempu University Shankaraghatta, Karnataka, India
| | - Najat A. Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Reddy M. S.
- Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, Alabama, United States of America
| | - Bee Hameeda
- Department of Microbiology, University College of Science, Osmania University Hyderabad, Hyderabad, India
- * E-mail: ,
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | - Siti Zulaiha Hanapi
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s, S I Patil Arts, G B Patel Science & STKVS Commerce College, Shahada, India
| |
Collapse
|
35
|
An JS, Kim MS, Han J, Jang SC, Im JH, Cui J, Lee Y, Nam SJ, Shin J, Lee SK, Yoon YJ, Oh DC. Nyuzenamide C, an Antiangiogenic Epoxy Cinnamic Acid-Containing Bicyclic Peptide from a Riverine Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:804-814. [PMID: 35294831 DOI: 10.1021/acs.jnatprod.1c00837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new nonribosomal peptide, nyuzenamide C (1), was discovered from riverine sediment-derived Streptomyces sp. DM14. Comprehensive analysis of the spectroscopic data of nyuzenamide C (1) revealed that 1 has a bicyclic backbone composed of six common amino acid residues (Asn, Leu, Pro, Gly, Val, and Thr) and four nonproteinogenic amino acid units, including hydroxyglycine, β-hydroxyphenylalanine, p-hydroxyphenylglycine, and 3,β-dihydroxytyrosine, along with 1,2-epoxypropyl cinnamic acid. The absolute configuration of 1 was proposed by J-based configuration analysis, the advanced Marfey's method, quantum mechanics-based DP4 calculations, and bioinformatic analysis of its nonribosomal peptide synthetase biosynthetic gene cluster. Nyuzenamide C (1) displayed antiangiogenic activity in human umbilical vein endothelial cells and induced quinone reductase in murine Hepa-1c1c7 cells.
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myoun-Su Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Han
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Jang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyeon Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinsheng Cui
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonjin Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
36
|
Mohamad OAA, Liu YH, Li L, Ma JB, Huang Y, Gao L, Fang BZ, Wang S, El-Baz AF, Jiang HC, Li WJ. Synergistic Plant-Microbe Interactions between Endophytic Actinobacteria and Their Role in Plant Growth Promotion and Biological Control of Cotton under Salt Stress. Microorganisms 2022; 10:microorganisms10050867. [PMID: 35630312 PMCID: PMC9143301 DOI: 10.3390/microorganisms10050867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial endophytes are well-acknowledged inoculants to promote plant growth and enhance their resistance toward various pathogens and environmental stresses. In the present study, 71 endophytic strains associated with the medicinal plant Thymus roseus were screened for their plant growth promotion (PGP), and the applicability of potent strains as bioinoculant has been evaluated. Regarding PGP traits, the percentage of strains were positive for the siderophore production (84%), auxin synthesis (69%), diazotrophs (76%), phosphate solubilization (79%), and production of lytic enzymes (i.e., cellulase (64%), lipase (62%), protease (61%), chitinase (34%), and displayed antagonistic activity against Verticillium dahliae (74%) in vitro. The inoculation of strain XIEG05 and XIEG12 enhanced plant tolerance to salt stress significantly (p < 0.05) through the promotion of shoot, root development, and reduced the activities of antioxidant enzymes (SOD, POD, and CAT), compared with uninoculated controls in vivo. Furthermore, inoculation of strain XIEG57 was capable of reducing cotton disease incidence (DI) symptoms caused by V. dahliae at all tested salt concentrations. The GC-MS analysis showed that many compounds are known to have antimicrobial and antifungal activity. Our findings provide valuable information for applying strains XIEG05 and XIEG12 as bioinoculant fertilizers and biological control agent of cotton under saline soil conditions.
Collapse
Affiliation(s)
- Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (J.-B.M.); (Y.H.); (L.G.); (B.-Z.F.)
- Department of Biological, Marine Sciences and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Al-Arish 45511, Egypt
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish 45511, Egypt
- Correspondence: (O.A.A.M.); (L.L.); (W.-J.L.)
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (J.-B.M.); (Y.H.); (L.G.); (B.-Z.F.)
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (J.-B.M.); (Y.H.); (L.G.); (B.-Z.F.)
- Correspondence: (O.A.A.M.); (L.L.); (W.-J.L.)
| | - Jin-Biao Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (J.-B.M.); (Y.H.); (L.G.); (B.-Z.F.)
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (J.-B.M.); (Y.H.); (L.G.); (B.-Z.F.)
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (J.-B.M.); (Y.H.); (L.G.); (B.-Z.F.)
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (J.-B.M.); (Y.H.); (L.G.); (B.-Z.F.)
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Ashraf F. El-Baz
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt;
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China;
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (J.-B.M.); (Y.H.); (L.G.); (B.-Z.F.)
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (O.A.A.M.); (L.L.); (W.-J.L.)
| |
Collapse
|
37
|
Belaouni HA, Compant S, Antonielli L, Nikolic B, Zitouni A, Sessitsch A. In-depth genome analysis of Bacillus sp. BH32, a salt stress-tolerant endophyte obtained from a halophyte in a semiarid region. Appl Microbiol Biotechnol 2022; 106:3113-3137. [PMID: 35435457 DOI: 10.1007/s00253-022-11907-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 11/02/2022]
Abstract
Endophytic strains belonging to the Bacillus cereus group were isolated from the halophytes Atriplex halimus L. (Amaranthaceae) and Tamarix aphylla L. (Tamaricaceae) from costal and continental regions in Algeria. Based on their salt tolerance (up to 5%), the strains were tested for their ability to alleviate salt stress in tomato and wheat. Bacillus sp. strain BH32 showed the highest potential to reduce salinity stress (up to + 50% and + 58% of dry weight improvement, in tomato and wheat, respectively, compared to the control). To determine putative mechanisms involved in salt tolerance and plant growth promotion, the whole genome of Bacillus sp. BH32 was sequenced, annotated, and used for comparative genomics against the genomes of closely related strains. The pangenome of Bacillus sp. BH32 and its closest relative was further analyzed. The phylogenomic analyses confirmed its taxonomic position, a member of the Bacillus cereus group, with intergenomic distances (GBDP analysis) pinpointing to a new taxon (digital DNA-DNA hybridization, dDDH < 70%). Genome mining unveiled several genes involved in stress tolerance, production of anti-oxidants and genes involved in plant growth promotion as well as in the production of secondary metabolites. KEY POINTS : • Bacillus sp. BH32 and other bacterial endophytes were isolated from halophytes, to be tested on tomato and wheat and to limit salt stress adverse effects. • The strain with the highest potential was then studied at the genomic level to highlight numerous genes linked to plant growth promotion and stress tolerance. • Pangenome approaches suggest that the strain belongs to a new taxon within the Bacillus cereus group.
Collapse
Affiliation(s)
- Hadj Ahmed Belaouni
- Laboratoire de Biologie Des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Stéphane Compant
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria.
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| | - Branislav Nikolic
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| | - Abdelghani Zitouni
- Laboratoire de Biologie Des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| |
Collapse
|
38
|
Świecimska M, Golińska P, Goodfellow M. Genome-based classification of Streptomyces pinistramenti sp. nov., a novel actinomycete isolated from a pine forest soil in Poland with a focus on its biotechnological and ecological properties. Antonie van Leeuwenhoek 2022; 115:783-800. [DOI: 10.1007/s10482-022-01734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
|
39
|
Secondary Metabolites with Anti-Inflammatory Activities from an Actinobacteria Herbidospora daliensis. Molecules 2022; 27:molecules27061887. [PMID: 35335250 PMCID: PMC8951269 DOI: 10.3390/molecules27061887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Bioassay-guided fractionation of extracts derived from solid cultures of a Herbidospora daliensis originating from Taiwan led to the isolation of five new compounds, for which we propose the name herbidosporadalins A−E (1−5), one isolated for the first time, herbidosporadalin F (6), together with two known compounds (7 & 8). Their structures were elucidated by spectroscopic analyses, including 1D- and 2D-NMR experiments with those of known analogues, and on the basis of HR-EI-MS mass spectrometry, their anti-inflammatory activities were also evaluated. Of these isolates, herbidosporadalin A (1), B (2), F (6) and G (8) showed NO inhibitory activity, with IC50 values of 11.8 ± 0.9, 7.1 ± 2.9, 17.8 ± 1.7, and 13.3 ± 6.5 μM, stronger than the positive control quercetin (IC50 = 36.8 ± 1.3 μM). To the best of our knowledge, this is the first report on 3,4-seco-friedelane metabolites (5, 6 & 8) from the genus Herbidospora.
Collapse
|
40
|
Roots of the xerophyte Panicum turgidum host a cohort of ionizing-radiation-resistant biotechnologically-valuable bacteria. Saudi J Biol Sci 2022; 29:1260-1268. [PMID: 35197792 PMCID: PMC8847929 DOI: 10.1016/j.sjbs.2021.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial communities associated with roots of Panicum turgidum, exposed to arid conditions, were investigated with a combination of cultural and metataxonomic approaches. Traditional culture-based techniques were used and 32 isolates from the irradiated roots were identified as belonging to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria phyla. Four actinobacterial strains were shown to be ionizing-radiation (IR)-resistant: Microbacterium sp. PT8 (4.8 kGy (kGy)), Micrococcus sp. PT11 (4.4 kGy), Kocuria rhizophila PT10 (2.9 kGy) and Promicromonospora panici PT9T (2.6 kGy), based on the D10 dose necessary for a 90% reduction in colony forming units (CFU). Concerning the investigation of microbial communities in situ, metataxonomic analyses of the diversity of IR-resistant microorganisms associated with irradiated roots revealed a marked dominance of Actinobacteria (46.6%) and Proteobacteria (31.5%) compared to Bacteroidetes (4.6%) and Firmicutes (3.2%). Gamma irradiation not only changed the structure of bacterial communities, but also affected their functional properties. Comparative analyses of metabolic profiles indicated the induction of several pathways related to adaptation to oxidative stress in irradiated roots, such as DNA repair, secondary metabolites synthesis, reactive oxygen species (ROS)-mitigating enzymes, etc. P. turgidum is emblematic of desert-adapted plants. Until now, there is no other work that has focused on the microbial profile of irradiated roots of this xerophyte.
Collapse
|
41
|
Fang H, Zheng K, Zhang J, Gu X, Zhao Y, Zheng Y, Wang Q. Differences in gene expression and endophytic bacterial diversity in Atractylodes macrocephala Koidz. rhizomes from different growth years. Can J Microbiol 2022; 68:353-366. [PMID: 35080442 DOI: 10.1139/cjm-2021-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atractylodes macrocephala Koidz. (AMK) is widely used owing to its pharmacological activity in traditional Chinese medicine (TCM). Here, we aimed to characterize the differentially expressed genes (DEGs) of one- and three-year growth (OYG and TYG) rhizomes of AMK combined with the endophytic bacterial diversity analysis using high-throughput RNA-sequencing. 114,572 unigenes were annotated in six public databases. 3570 DEGs revealed a clear difference, of which 936 and 2634 genes were up- and down-regulated, respectively. The results of KEGG pathway analysis indicated that DEGs corresponding to the terpenoid synthesis gene were downregulated in TYG rhizomes. 414,424 sequences corresponding to the 16S rRNA gene were divided into 1267 operational taxonomic units (OTUs). Moreover, the diversity of endophytic bacteria changed with species in OYG (773) and TYG (1201) rhizomes at OTU level, and Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla. Comparison of species differences among different growth years revealed that some species were significantly different, such as Actinomycetes, Variovorax, Cloacibacterium, etc. Interestingly, the decrease in the function-related metabolism of terpenoids and polyketides was found to be correlated the low expression of terpene synthesis genes in TYG rhizomes assessed using PICRUSt2. These data provide a scientific basis for elucidating the mechanism underlying metabolite accumulation and endophytic bacterial diversity in relation to the growth years in AMK.
Collapse
Affiliation(s)
- Huiyong Fang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, College of Pharmacy, China;
| | - Kaiyan Zheng
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Jianyun Zhang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China, 050200.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China, 050200;
| | - Xian Gu
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yanyun Zhao
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yuguang Zheng
- Hebei Chemical and Pharmaceutical College, 118457, Shijiazhuang, Hebei, China.,Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China;
| | - Qian Wang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| |
Collapse
|
42
|
Alsaedi ZS, Ashy RA, Shami AY, Majeed MA, Alswat AM, Baz L, Baeshen MN, Jalal RS. Metagenomic study of the communities of bacterial endophytes in the desert plant Senna Italica and their role in abiotic stress resistance in the plant. BRAZ J BIOL 2022; 82:e267584. [DOI: 10.1590/1519-6984.267584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/22/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract Plant leaves and roots are home to diverse communities of bacteria, which play a significant role in plant health and growth. Although one of the most unfriendly environments for plant growth is deserts, desert plants can influence their surrounding microbial population and choose favorable bacteria that encourage their growth under these severe circumstances. Senna italica is known for its excellent medicinal values as a traditional medical plant, but little is known about its associated endophytic bacterial community under extreme conditions. In the present study, metagenomic sequencing of 16S rRNA was used to report the diversity of endophytic bacterial communities associated with the leaves and roots of the desert medicinal plant Senna italica that was collected from the Asfan region in northeast Jeddah, Saudi Arabia. Analyses of the 16S rRNA sequences at the taxonomic phylum level revealed that bacterial communities in the roots and leaves samples belonged to five phyla, including Cyanobacteria, Proteobacteria, Actinobacteria, Firmicutes, and unclassified phyla. Results indicated that the most common phyla were Cyanobacteria/Chloroplast and Actinobacteria. Analysis of the 16S rRNA sequences at the taxonomic phylum level revealed that bacterial communities in the roots and leaves samples belonged to twelve genera at the taxonomic genus level. The most abundant ones were highlighted for further analysis, including Okibacterium and Streptomyces found in Actinobacteria, which were the dominant genus in roots samples. However, Streptophyta found in Cyanobacteria/Chloroplast was the dominant genus in leaf samples. Metagenomic analysis of medicinal plants leads to identifying novel organisms or genes that may have a role in abiotic stress resistance in the plant. The study of endophytic microbiome taxonomic, phylogenetic, and functional diversity will better know innovative candidates that may be selected as biological agents to enhance agricultural and industrial processes, especially for crop desert agricultural improvement.
Collapse
Affiliation(s)
| | | | - A. Y. Shami
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | | | | | - L. Baz
- King Abdulaziz University, Saudi Arabia
| | | | | |
Collapse
|
43
|
Mierzejewska E, Urbaniak M, Zagibajło K, Vangronsveld J, Thijs S. The Effect of Syringic Acid and Phenoxy Herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) on Soil, Rhizosphere, and Plant Endosphere Microbiome. FRONTIERS IN PLANT SCIENCE 2022; 13:882228. [PMID: 35712561 PMCID: PMC9195007 DOI: 10.3389/fpls.2022.882228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2022] [Indexed: 05/07/2023]
Abstract
The integration of phytoremediation and biostimulation can improve pollutant removal from the environment. Plant secondary metabolites (PSMs), which are structurally related to xenobiotics, can stimulate the presence of microbial community members, exhibiting specialized functions toward detoxifying, and thus mitigating soil toxicity. In this study, we evaluated the effects of enrichment of 4-chloro-2-methylphenoxyacetic acid (MCPA) contaminated soil (unplanted and zucchini-planted) with syringic acid (SA) on the bacterial community structure in soil, the rhizosphere, and zucchini endosphere. Additionally, we measured the concentration of MCPA in soil and fresh biomass of zucchini. The diversity of bacterial communities differed significantly between the studied compartments (i.e., unplanted soil, rhizospheric soil, and plant endosphere: roots or leaves) and between used treatments (MCPA or/and SA application). The highest diversity indices were observed for unplanted soil and rhizosphere. Although the lowest diversity was observed among leaf endophytes, this community was significantly affected by MCPA or SA: the compounds applied separately favored the growth of Actinobacteria (especially Pseudarthrobacter), while their simultaneous addition promoted the growth of Firmicutes (especially Psychrobacillus). The application of MCPA + SA together lead also to enhanced growth of Pseudomonas, Burkholderia, Sphingomonas, and Pandoraea in the rhizosphere, while SA increased the occurrence of Pseudomonas in leaves. In addition, SA appeared to have a positive influence on the degradative potential of the bacterial communities against MCPA: its addition, followed by zucchini planting, significantly increased the removal of the herbicide (50%) from the soil without affecting, neither positively nor negatively, the plant growth.
Collapse
Affiliation(s)
- Elżbieta Mierzejewska
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- *Correspondence: Elżbieta Mierzejewska,
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Katarzyna Zagibajło
- Food Safety Laboratory, Research Institute of Horticulture, Skierniewice, Poland
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
44
|
Saikia J, Mazumdar R, Thakur D. Phylogenetic affiliation of endophytic actinobacteria associated with selected orchid species and their role in growth promotion and suppression of phytopathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:1058867. [PMID: 36570961 PMCID: PMC9769409 DOI: 10.3389/fpls.2022.1058867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 05/22/2023]
Abstract
Endophytic actinobacteria aid in plant development and disease resistance by boosting nutrient uptake or producing secondary metabolites. For the first time, we investigated the culturable endophytic actinobacteria associated with ten epiphytic orchid species of Assam, India. 51 morphologically distinct actinobacteria were recovered from surface sterilized roots and leaves of orchids and characterized based on different PGP and antifungal traits. According to the 16S rRNA gene sequence, these isolates were divided into six families and eight genera, where Streptomyces was most abundant (n=29, 56.86%), followed by Actinomadura, Nocardia, Nocardiopsis, Nocardioides, Pseudonocardia, Microbacterium, and Mycolicibacterium. Regarding PGP characteristics, 25 (49.01%) isolates demonstrated phosphate solubilization in the range of 61.1±4.4 - 289.7±11.9 µg/ml, whereas 27 (52.94%) isolates biosynthesized IAA in the range of 4.0 ± 0.08 - 43.8 ± 0.2 µg/ml, and 35 (68.62%) isolates generated ammonia in the range of 0.9 ± 0.1 - 5.9 ± 0.2 µmol/ml. These isolates also produced extracellular enzymes, viz. protease (43.13%), cellulase (23.52%), pectinase (21.56%), ACC deaminase (27.45%), and chitinase (37.25%). Out of 51 isolates, 27 (52.94%) showed antagonism against at least one test phytopathogen. In molecular screening, most isolates with antifungal and chitinase producing traits revealed the presence of 18 family chitinase genes. Two actinobacterial endophytes, Streptomyces sp. VCLA3 and Streptomyces sp. RVRA7 were ranked as the best strains based on PGP and antifungal activity on bonitur scale. GC-MS examination of ethyl acetate extract of these potent strains displayed antimicrobial compound phenol, 2,4-bis-(1,1-dimethylethyl) as the major metabolite along with other antifungal and plant growth beneficial bioactive chemicals. SEM analysis of fungal pathogen F. oxysporum (MTCC 4633) affected by Streptomyces sp. VCLA3 revealed significant destruction in the spore structure. An in vivo plant growth promotion experiment with VCLA3 and RVRA7 on chili plants exhibited statistically significant (p<0.05) improvements in all of the evaluated vegetative parameters compared to the control. Our research thus gives insight into the diversity, composition, and functional significance of endophytic actinobacteria associated with orchids. This research demonstrates that isolates with multiple plant development and broad-spectrum antifungal properties are beneficial for plant growth. They may provide a viable alternative to chemical fertilizers and pesticides and a sustainable solution for chemical inputs in agriculture.
Collapse
Affiliation(s)
- Juri Saikia
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Rajkumari Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Department of Molecular Biology & Biotechnology, Cotton University, Guwahati, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Debajit Thakur,
| |
Collapse
|
45
|
Insuk C, Pongpamorn P, Forsythe A, Matsumoto A, Ōmura S, Pathom-aree W, Cheeptham N, Xu J. Taxonomic and Metabolite Diversities of Moss-Associated Actinobacteria from Thailand. Metabolites 2021; 12:metabo12010022. [PMID: 35050144 PMCID: PMC8777641 DOI: 10.3390/metabo12010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 01/08/2023] Open
Abstract
Actinobacteria are a group of ecologically important bacteria capable of producing diverse bioactive compounds. However, much remains unknown about the taxonomic and metabolic diversities of actinobacteria from many geographic regions and ecological niches. In this study, we report the isolation of actinobacteria from moss and moss-associated rhizosphere soils in Thailand. Among the 89 isolates analyzed for their bioactivities, 86 strains produced indole-3-acetic acid (IAA, ranging from 0.04 to 59.12 mg/L); 42 strains produced hydroxamate type of siderophore; 35 strains produced catecholate type of siderophore; 21 strains solubilized tricalcium phosphate; and many strains exhibited antagonistic activities against one to several of the seven selected plant, animal, and human pathogens. Overall, actinobacteria from the rhizosphere soil of mosses showed greater abilities to produce IAA and siderophores and to solubilize tricalcium phosphate than those from mosses. Among these 89 isolates, 37 were analyzed for their 16S rRNA gene sequences, which revealed their diverse phylogenetic distributions among seven genera, Streptomyces, Micromonospora, Nocardia, Actinoplanes, Saccharothrix, Streptosporangium, and Cryptosporangium. Furthermore, gas chromatography-mass spectrometry analyses of ethyl acetate crude extracts of three selected isolates with inhibitory effects against a methicillin-resistant Staphylococcus aureus strain revealed diverse metabolites with known antimicrobial activities. Together, our results demonstrate that actinobacteria from mosses in Thailand are taxonomically diverse and capable of producing a range of metabolites with plant-growth-promoting and microbial pathogen-inhibiting potentials.
Collapse
Affiliation(s)
- Chadabhorn Insuk
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.I.); (A.F.)
| | - Pornkanok Pongpamorn
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Adrian Forsythe
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.I.); (A.F.)
| | - Atsuko Matsumoto
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan; (A.M.); (S.Ō.)
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan; (A.M.); (S.Ō.)
| | - Wasu Pathom-aree
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (W.P.-a.); (N.C.); (J.X.)
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
- Correspondence: (W.P.-a.); (N.C.); (J.X.)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.I.); (A.F.)
- Correspondence: (W.P.-a.); (N.C.); (J.X.)
| |
Collapse
|
46
|
Yildirim E, Ilina L, Laptev G, Filippova V, Brazhnik E, Dunyashev T, Dubrovin A, Novikova N, Tiurina D, Tarlavin N, Laishev K. The structure and functional profile of ruminal microbiota in young and adult reindeers ( Rangifer tarandus) consuming natural winter-spring and summer-autumn seasonal diets. PeerJ 2021; 9:e12389. [PMID: 34900412 PMCID: PMC8627130 DOI: 10.7717/peerj.12389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background The key natural area of Russian reindeer (Rangifer tarandus, Nenets breed) is arctic zones, with severe climatic conditions and scarce feed resources, especially in the cold winter season. The adaptation of reindeer to these conditions is associated not only with the genetic potential of the animal itself. The rumen microbiome provides significant assistance in adapting animals to difficult conditions by participating in the fiber digestion. The aim of our study is to investigate the taxonomy and predicted metabolic pathways of the ruminal microbiota (RM) during the winter–spring (WS) and summer–autumn (SA) seasons, in calves and adult reindeer inhabiting the natural pastures of the Yamalo-Nenetsky Autonomous District of the Russian Federation. Methods The RM in reindeer was studied using the Next Generation Sequencing method with the MiSeq (Illumina, San Diego, CA, USA) platform. Reconstruction and prediction of functional profiles of the metagenome, gene families, and enzymes were performed using the software package PICRUSt2 (v.2.3.0). Results The nutritional value of WS and SA diets significantly differed. Crude fiber content in the WS diet was higher by 22.4% (p < 0.05), compared to SA, indicating possibly poorer digestibility and necessity of the adaptation of the RM to this seasonal change. A total of 22 bacterial superphyla and phyla were found in the rumen, superphylum Bacteroidota and phylum Firmicutes being the dominating taxa (up to 48.1% ± 4.30% and 46.1% ± 4.80%, respectively); while only two archaeal phyla presented as minor communities (no more then 0.54% ± 0.14% totally). The percentages of the dominating taxa were not affected by age or season. However, significant changes in certain minor communities were found, with seasonal changes being more significant than age-related ones. The percentage of phylum Actinobacteriota significantly increased (19.3-fold) in SA, compared to WS (p = 0.02) in adults, and the percentage of phylum Cyanobacteria increased up to seven-fold (p = 0.002) in adults and calves. Seasonal changes in RM can improve the ability of reindeer to withstand the seasons characterized by a low availability of nutrients. The PICRUSt2 results revealed 257 predicted metabolic pathways in RM: 41 pathways were significantly (p < 0.05) influenced by season and/or age, including the processes of synthesis of vitamins, volatile fatty acids, and pigments; metabolism of protein, lipids, and energy; pathogenesis, methanogenesis, butanediol to pyruvate biosynthesis, cell wall biosynthesis, degradation of neurotransmitters, lactic acid fermentation, and biosynthesis of nucleic acids. A large part of these changeable pathways (13 of 41) was related to the synthesis of vitamin K homologues. Conclusion The results obtained improve our knowledge on the structure and possible metabolic pathways of the RM in reindeer, in relation to seasonal changes.
Collapse
Affiliation(s)
- Elena Yildirim
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Larisa Ilina
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Georgy Laptev
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | | | - Evgeni Brazhnik
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Timur Dunyashev
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Andrey Dubrovin
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Natalia Novikova
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Daria Tiurina
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Nikolay Tarlavin
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Kasim Laishev
- Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, Pushkin, Saint-Petersurg, Russia
| |
Collapse
|
47
|
Padilla-Gálvez N, Luengo-Uribe P, Mancilla S, Maurin A, Torres C, Ruiz P, France A, Acuña I, Urrutia H. Antagonistic activity of endophytic actinobacteria from native potatoes (Solanum tuberosum subsp. tuberosum L.) against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. BMC Microbiol 2021; 21:335. [PMID: 34876006 PMCID: PMC8650274 DOI: 10.1186/s12866-021-02393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. RESULT The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. CONCLUSIONS We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.
Collapse
Affiliation(s)
- Natalia Padilla-Gálvez
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile
| | - Paola Luengo-Uribe
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile
| | - Sandra Mancilla
- Instituto de Investigaciones Agropecuarias, INIA Remehue. Ruta 5 Norte Km 8-, Osorno, Región de Los Lagos, Chile
| | - Amandine Maurin
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile
- University of Montpellier, Montpellier, France
| | - Claudia Torres
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile
| | - Pamela Ruiz
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Autopista Concepción Talcahuano # 7100, 4300866, Talcahuano, Chile
| | - Andrés France
- Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Región de Ñuble, Chillán, Chile
| | - Ivette Acuña
- Instituto de Investigaciones Agropecuarias, INIA Remehue. Ruta 5 Norte Km 8-, Osorno, Región de Los Lagos, Chile
| | - Homero Urrutia
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile.
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
48
|
Actinobacteria in the Algerian Sahara: Diversity, adaptation mechanism and special unexploited biotopes for the isolation of novel rare taxa. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. BIORESOURCE TECHNOLOGY 2021; 339:125589. [PMID: 34304098 DOI: 10.1016/j.biortech.2021.125589] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Worldwide, heavy metals pollution is mostly caused by rapid population growth and industrial development which is accumulated in food webs causing a serious public health risk. Endophytic microorganisms have a variety of mechanisms for metal sequestration having metal biosorption capacities.Endophytic organisms like bacteria and fungi provide beneficial qualities that help plants to improve their health, reduce stress, and detoxify metals. Endophytes have a higher proclivity for improving metal and mineral solubility by cells that secrete low-molecular-weight organic acids and metal-specific ligands like siderophores, which change the pH of the soil and improve binding activity. Protein-related approaches like chromatin immunoprecipitation sequencing (ChIP-Seq) and modified enzyme-linked immunosorbent assay (ELISA test) can represent endophytic bacterial community and DNA-protein interactions during metal reduction. This review explored the role of endophytes in bioremediation approaches that can help in analyzing the potential and prospects in response to industrial effluents' detoxification.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
50
|
Zin NM, Ismail A, Mark DR, Westrop G, Schniete JK, Herron PR. Adaptation to Endophytic Lifestyle Through Genome Reduction by Kitasatospora sp. SUK42. Front Bioeng Biotechnol 2021; 9:740722. [PMID: 34712653 PMCID: PMC8545861 DOI: 10.3389/fbioe.2021.740722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
Endophytic actinobacteria offer great potential as a source of novel bioactive compounds. In order to investigate the potential for the production of secondary metabolites by endophytes, we recovered a filamentous microorgansism from the tree Antidesma neurocarpum Miq. After phenotypic analysis and whole genome sequencing we demonstrated that this organism, SUK42 was a member of the actinobacterial genus Kitasatospora. This strain has a small genome in comparison with other type strains of this genus and has lost metabolic pathways associated with Stress Response, Nitrogen Metabolism and Secondary Metabolism. Despite this SUK42 can grow well in a laboratory environment and encodes a core genome that is consistent with other members of the genus. Finally, in contrast to other members of Kitasatospora, SUK42 encodes saccharide secondary metabolite biosynthetic gene clusters, one of which with similarity to the acarviostatin cluster, the product of which displays α-amylase inhibitory activity. As extracts of the host plant demonstrate this inhibitory activity, it suggests that the potential medicinal properties of A. neurocarpum Miq might be provided by the endophytic partner and illustrate the potential for exploitation of endophytes for clinical or industrial uses.
Collapse
Affiliation(s)
- Noraziah M Zin
- School of Diagnostic and Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Aishah Ismail
- School of Diagnostic and Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - David R Mark
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gareth Westrop
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jana K Schniete
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul R Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|