1
|
Polidori N, Babin P, Daniel B, Gruber K. Structure, Oligomerization, and Thermal Stability of a Recently Discovered Old Yellow Enzyme. Proteins 2025. [PMID: 39840754 DOI: 10.1002/prot.26800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
The Old Yellow Enzyme from Ferrovum sp. JA12 (FOYE) displays an unusual thermal stability for an enzyme isolated from a mesophilic organism. We determined the crystal structure of this enzyme and performed bioinformatic characterization to get insights into its thermal stability. The enzyme displays a tetrameric quaternary structure; however, unlike the other tetrameric homologs, it clusters in a separate phylogenetic group and possesses unique interactions that stabilize this oligomeric state. The thermal stability of this enzyme is mainly due to an unusually high number of intramolecular hydrogen bonds. Finally, this study provides a general analysis of the forces driving the oligomerization in Old Yellow Enzymes.
Collapse
Affiliation(s)
- Nakia Polidori
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Torino, Italy
| | - Peter Babin
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Bastian Daniel
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Kattula B, Munakala A, Kashyap R, Nallamilli T, Nagendla NK, Naza S, Mudiam MKR, Chegondi R, Addlagatta A. Strategic enzymatic enantioselective desymmetrization of prochiral cyclohexa-2,5-dienones. Chem Commun (Camb) 2024; 60:6647-6650. [PMID: 38856301 DOI: 10.1039/d4cc02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Asymmetric desymmetrization through the selective reduction of one double bond of prochiral 2,5-cyclohexadienones is highly challenging. A novel method has been developed for synthesizing chiral cyclohexenones by employing an ene-reductase (Bacillus subtilis YqjM) enzyme that belongs to the OYE family. Our strategy demonstrates high substrate scope and enantioselectivity towards substrates containing all-carbon as well as heteroatom (O, N)-containing quaternary centers. The mechanistic studies (kH/D = ∼1.8) indicate that hydride transfer is probably the rate-limiting step. Mutation of several active site residues did not affect the stereochemical outcomes. This work provides a convenient way of synthesizing various enantioselective γ,γ-disubstituted cyclohexanones using enzymes.
Collapse
Affiliation(s)
- Bhavita Kattula
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anandarao Munakala
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
| | | | - Tarun Nallamilli
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Narendra Kumar Nagendla
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Surabhi Naza
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohana Krishna Reddy Mudiam
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anthony Addlagatta
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Kerschbaumer B, Totaro MG, Friess M, Breinbauer R, Bijelic A, Macheroux P. Loop 6 and the β-hairpin flap are structural hotspots that determine cofactor specificity in the FMN-dependent family of ene-reductases. FEBS J 2024; 291:1560-1574. [PMID: 38263933 DOI: 10.1111/febs.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Flavin mononucleotide (FMN)-dependent ene-reductases constitute a large family of oxidoreductases that catalyze the enantiospecific reduction of carbon-carbon double bonds. The reducing equivalents required for substrate reduction are obtained from reduced nicotinamide by hydride transfer. Most ene-reductases significantly prefer, or exclusively accept, either NADPH or NADH. Despite their usefulness in biocatalytic applications, the structural determinants for cofactor preference remain elusive. We employed the NADPH-preferring 12-oxophytodienoic acid reductase 3 from Solanum lycopersicum (SlOPR3) as a model enzyme of the ene-reductase family and applied computational and structural methods to investigate the binding specificity of the reducing coenzymes. Initial docking results indicated that the arginine triad R283, R343, and R366 residing on and close to a critical loop at the active site (loop 6) are the main contributors to NADPH binding. In contrast, NADH binds unfavorably in the opposite direction toward the β-hairpin flap within a largely hydrophobic region. Notably, the crystal structures of SlOPR3 in complex with either NADPH4 or NADH4 corroborated these different binding modes. Molecular dynamics simulations confirmed NADH binding near the β-hairpin flap and provided structural explanations for the low binding affinity of NADH to SlOPR3. We postulate that cofactor specificity is determined by the arginine triad/loop 6 and the residue(s) controlling access to a hydrophobic cleft formed by the β-hairpin flap. Thus, NADPH preference depends on a properly positioned arginine triad, whereas granting access to the hydrophobic cleft at the β-hairpin flap favors NADH binding.
Collapse
Affiliation(s)
| | - Massimo G Totaro
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Michael Friess
- Institute of Organic Chemistry, Graz University of Technology, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Austria
| | | | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
4
|
Villa R, Ferrer-Carbonell C, Paul CE. Biocatalytic reduction of alkenes in micro-aqueous organic solvent catalysed by an immobilised ene reductase. Catal Sci Technol 2023; 13:5530-5535. [PMID: 38013840 PMCID: PMC10544049 DOI: 10.1039/d3cy00541k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 11/29/2023]
Abstract
Biocatalytic asymmetric reduction of alkenes in organic solvent is attractive for enantiopurity and product isolation, yet remains under developed. Herein we demonstrate the robustness of an ene reductase immobilised on Celite for the reduction of activated alkenes in micro-aqueous organic solvent. Full conversion was obtained in methyl t-butyl ether, avoiding hydrolysis and racemisation of products. The immobilised ene reductase showed reusability and a scale-up demonstrated its applicability.
Collapse
Affiliation(s)
- Rocio Villa
- Biocatalysis section, Department of Biotechnology, Delft University of Biotechnology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Claudia Ferrer-Carbonell
- Biocatalysis section, Department of Biotechnology, Delft University of Biotechnology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Caroline E Paul
- Biocatalysis section, Department of Biotechnology, Delft University of Biotechnology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
5
|
Böhmer S, Marx C, Goss R, Gilbert M, Sasso S, Happe T, Hemschemeier A. Chlamydomonas reinhardtii mutants deficient for Old Yellow Enzyme 3 exhibit increased photooxidative stress. PLANT DIRECT 2023; 7:e480. [PMID: 36685735 PMCID: PMC9840898 DOI: 10.1002/pld3.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2022] [Accepted: 12/31/2022] [Indexed: 05/12/2023]
Abstract
Old Yellow Enzymes (OYEs) are flavin-containing ene-reductases that have been intensely studied with regard to their biotechnological potential for sustainable chemical syntheses. OYE-encoding genes are found throughout the domains of life, but their physiological role is mostly unknown, one reason for this being the promiscuity of most ene-reductases studied to date. The unicellular green alga Chlamydomonas reinhardtii possesses four genes coding for OYEs, three of which we have analyzed biochemically before. Ene-reductase CrOYE3 stood out in that it showed an unusually narrow substrate scope and converted N-methylmaleimide (NMI) with high rates. This was recapitulated in a C. reinhardtii croye3 mutant that, in contrast to the wild type, hardly degraded externally added NMI. Here we show that CrOYE3-mediated NMI conversion depends on electrons generated photosynthetically by photosystem II (PSII) and that the croye3 mutant exhibits slightly decreased photochemical quenching in high light. Non-photochemical quenching is strongly impaired in this mutant, and it shows enhanced oxidative stress. The phenotypes of the mutant suggest that C. reinhardtii CrOYE3 is involved in the protection against photooxidative stress, possibly by converting reactive carbonyl species derived from lipid peroxides or maleimides from tetrapyrrole degradation.
Collapse
Affiliation(s)
- Stefanie Böhmer
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Christina Marx
- SolarBioproducts RuhrBusiness Development Agency HerneHerneGermany
| | - Reimund Goss
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Matthias Gilbert
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Severin Sasso
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
6
|
Tan Z, Han Y, Fu Y, Zhang X, Xu M, Na Q, Zhuang W, Qu X, Ying H, Zhu C. Investigating the Structure‐Reactivity Relationships Between Nicotinamide Coenzyme Biomimetics and Pentaerythritol Tetranitrate Reductase. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Yaoying Han
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Yaping Fu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Xiaowang Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Mengjiao Xu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Qi Na
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Xudong Qu
- School of Life Sciences and Biotechnology Shanghai Jiao Tong University 200240 Shanghai People's Republic of China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| |
Collapse
|
7
|
Böhmer S, Marx C, Gómez-Baraibar Á, Nowaczyk MM, Tischler D, Hemschemeier A, Happe T. Evolutionary diverse Chlamydomonas reinhardtii Old Yellow Enzymes reveal distinctive catalytic properties and potential for whole-cell biotransformations. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Tischler D, Gädke E, Eggerichs D, Gomez Baraibar A, Mügge C, Scholtissek A, Paul CE. Asymmetric Reduction of (R)-Carvone through a Thermostable and Organic-Solvent-Tolerant Ene-Reductase. Chembiochem 2020; 21:1217-1225. [PMID: 31692216 PMCID: PMC7216909 DOI: 10.1002/cbic.201900599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Indexed: 11/29/2022]
Abstract
Ene-reductases allow regio- and stereoselective reduction of activated C=C double bonds at the expense of nicotinamide adenine dinucleotide cofactors [NAD(P)H]. Biological NAD(P)H can be replaced by synthetic mimics to facilitate enzyme screening and process optimization. The ene-reductase FOYE-1, originating from an acidophilic iron oxidizer, has been described as a promising candidate and is now being explored for applied biocatalysis. Biological and synthetic nicotinamide cofactors were evaluated to fuel FOYE-1 to produce valuable compounds. A maximum activity of (319.7±3.2) U mg-1 with NADPH or of (206.7±3.4) U mg-1 with 1-benzyl-1,4-dihydronicotinamide (BNAH) for the reduction of N-methylmaleimide was observed at 30 °C. Notably, BNAH was found to be a promising reductant but exhibits poor solubility in water. Different organic solvents were therefore assayed: FOYE-1 showed excellent performance in most systems with up to 20 vol% solvent and at temperatures up to 40 °C. Purification and application strategies were evaluated on a small scale to optimize the process. Finally, a 200 mL biotransformation of 750 mg (R)-carvone afforded 495 mg of (2R,5R)-dihydrocarvone (>95 % ee), demonstrating the simplicity of handling and application of FOYE-1.
Collapse
Affiliation(s)
- Dirk Tischler
- Faculty of Biology and BiotechnologyMicrobial BiotechnologyRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| | - Eric Gädke
- Faculty of Biology and BiotechnologyMicrobial BiotechnologyRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
- Environmental MicrobiologyTU Bergakademie FreibergLeipziger Strasse 2909599FreibergGermany
| | - Daniel Eggerichs
- Faculty of Biology and BiotechnologyMicrobial BiotechnologyRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| | - Alvaro Gomez Baraibar
- Faculty of Biology and BiotechnologyMicrobial BiotechnologyRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| | - Carolin Mügge
- Faculty of Biology and BiotechnologyMicrobial BiotechnologyRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| | - Anika Scholtissek
- Environmental MicrobiologyTU Bergakademie FreibergLeipziger Strasse 2909599FreibergGermany
- Present address: BRAIN AGDarmstädter Strasse 3464673ZwingenbergGermany
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
9
|
Guarneri A, Westphal AH, Leertouwer J, Lunsonga J, Franssen MCR, Opperman DJ, Hollmann F, Berkel WJH, Paul CE. Flavoenzyme‐mediated Regioselective Aromatic Hydroxylation with Coenzyme Biomimetics. ChemCatChem 2020. [DOI: 10.1002/cctc.201902044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alice Guarneri
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 Wageningen 6708 WE The Netherlands
| | - Adrie H. Westphal
- Laboratory of BiochemistryWageningen University Stippeneng 4 Wageningen 6708 WE The Netherlands
| | - Jos Leertouwer
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| | - Joy Lunsonga
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 Wageningen 6708 WE The Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 Wageningen 6708 WE The Netherlands
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 South Africa
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| | - Willem J. H. Berkel
- Laboratory of Food ChemistryWageningen University Bornse Weilanden 9 Wageningen 6708 WG The Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| |
Collapse
|
10
|
Rauch MCR, Huijbers MME, Pabst M, Paul CE, Pešić M, Arends IWCE, Hollmann F. Photochemical regeneration of flavoenzymes - An Old Yellow Enzyme case-study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140303. [PMID: 31678192 DOI: 10.1016/j.bbapap.2019.140303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/01/2022]
Abstract
Direct, NAD(P)H-independent regeneration of Old Yellow Enzymes represents an interesting approach for simplified reaction schemes for the stereoselective reduction of conjugated C=C-double bonds. Simply by illuminating the reaction mixtures with blue light in the presence of sacrificial electron donors enables to circumvent the costly and unstable nicotinamide cofactors and a corresponding regeneration system. In the present study, we characterise the parameters determining the efficiency of this approach and outline the current limitations. Particularly, the photolability of the flavin photocatalyst and the (flavin-containing) biocatalyst represent the major limitation en route to preparative application.
Collapse
Affiliation(s)
- M C R Rauch
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - M M E Huijbers
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - M Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - C E Paul
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - M Pešić
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - I W C E Arends
- Faculty of Science, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, the Netherlands
| | - F Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
11
|
Abstract
Redox reactions catalyzed by highly selective nicotinamide-dependent oxidoreductases are rising to prominence in industry. The cost of nicotinamide adenine dinucleotide coenzymes has led to the use of well-established elaborate regeneration systems and more recently alternative synthetic biomimetic cofactors. These biomimetics are highly attractive to use with ketoreductases for asymmetric catalysis. In this work, we show that the commonly studied cofactor analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) can be used with alcohol dehydrogenases (ADHs) under certain conditions. First, we carried out the rhodium-catalyzed recycling of BNAH with horse liver ADH (HLADH), observing enantioenriched product only with unpurified enzyme. Then, a series of cell-free extracts and purified ketoreductases were screened with BNAH. The use of unpurified enzyme led to product formation, whereas upon dialysis or further purification no product was observed. Several other biomimetics were screened with various ADHs and showed no or very low activity, but also no inhibition. BNAH as a hydride source was shown to directly reduce nicotinamide adenine dinucleotide (NAD) to NADH. A formate dehydrogenase could also mediate the reduction of NAD from BNAH. BNAH was established to show no or very low activity with ADHs and could be used as a hydride donor to recycle NADH.
Collapse
|