1
|
Boltz JP, Rittmann BE. Microbial ecology of nitrate-, selenate-, selenite-, and sulfate-reducing bacteria in a H2-driven bioprocess. FEMS Microbiol Ecol 2024; 100:fiae125. [PMID: 39277779 PMCID: PMC11523051 DOI: 10.1093/femsec/fiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/30/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024] Open
Abstract
A hydrogen (H2)-based membrane biofilm reactor (H2-MBfR) can reduce electron acceptors nitrate (NO3-), selenate (SeO42-), selenite (HSeO3-), and sulfate (SO42-), which are in wastewaters from coal mining and combustion. This work presents a model to describe a H2-driven microbial community comprised of hydrogenotrophic and heterotrophic bacteria that respire NO3-, SeO42-, HSeO3-, and SO42-. The model provides mechanistic insights into the interactions between autotrophic and heterotrophic bacteria in a microbial community that is founded on H2-based autotrophy. Simulations were carried out for a range of relevant solids retention times (SRT; 0.1-20 days) and with adequate H2-delivery capacity to reduce all electron acceptors. Bacterial activity began at an ∼0.6-day SRT, when hydrogenotrophic denitrifiers began to accumulate. Selenate-reducing and selenite-reducing hydrogenotrophs became established next, at SRTs of ∼1.2 and 2 days, respectively. Full NO3-, SeO42-, and HSeO3- reductions were complete by an SRT of ∼5 days. SO42- reduction began at an SRT of ∼10 days and was complete by ∼15 days. The desired goal of reducing NO3-, SeO42-, and HSeO3-, but not SO42-, was achievable within an SRT window of 5-10 days. Autotrophic hydrogenotrophs dominated the active biomass, but nonactive solids were a major portion of the solids, especially for an SRT ≥ 5 days.
Collapse
Affiliation(s)
- Joshua P Boltz
- Woodard & Curran, Inc., 12 Mountfort Street, Portland, ME 04101, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, PO Box 875701, Tempe, AZ 85287-5701, United States
| |
Collapse
|
2
|
Jang Y, Lee SH, Kim NK, Park HD. Metagenomic analysis reveals abundance of mixotrophic, heterotrophic, and homoacetogenic bacteria in a hydrogen-based membrane biofilm reactor. WATER RESEARCH 2024; 267:122564. [PMID: 39369508 DOI: 10.1016/j.watres.2024.122564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Heterotrophic microorganisms are frequently observed in hydrogenotrophic denitrification systems and are presumed to contribute to their improved performance. However, their roles and metabolic pathways in the hydrogen-based membrane biofilm reactor (H2-MBfR) system remain unclear. The objective of this study was to elucidate the underlying mechanisms driving heterotrophic denitrification. For this purpose, metagenomic analysis was conducted on an H2-MBfR showing higher denitrification performance, focusing on the metabolic function of the microbial community. Functional genes related to H2 oxidation, organic carbon metabolism, and denitrification were the major targets of interest. This analysis revealed a substantial number of genes associated with the oxidation of organic carbon compounds in the biofilm, suggesting its potential for heterotrophic denitrification. Investigation of the genes of interest in metagenome-assembled genomes (MAGs) has demonstrated a predominance of mixotrophs or heterotrophs rather than obligate autotrophs. Notably, MAGs exhibiting the highest abundance of genes of interest were affiliated with Hydrogenophaga and Thauera, implying their significant role in denitrifying the H2-MBfR as mixotrophs utilizing both H2 and organic substrates. The identification of 11 MAGs, presumed to originate from homoacetogens suggested that acetate might contribute to the proliferation of heterotrophs. Based on these metagenomic findings, possible metabolic pathways were identified to explain heterotrophic denitrification within the H2-MBfR biofilms.
Collapse
Affiliation(s)
- Yongsun Jang
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Hoon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Na-Kyung Kim
- Department of Animal Science, College of Agricultural, Consumer, and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Zhou L, Wu F, Lai Y, Zhao B, Zhang W, Rittmann BE. Cooperation and competition between denitrification and chromate reduction in a hydrogen-based membrane biofilm reactor. WATER RESEARCH 2024; 259:121870. [PMID: 38843627 DOI: 10.1016/j.watres.2024.121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Competition and cooperation between denitrification and Cr(VI) reduction in a H2-based membrane biofilm reactor (H2-MBfR) were documented over 55 days of continuous operation. When nitrate (5 mg N/L) and chromate (0.5 mg Cr/L) were fed together, the H2-MBfR maintained approximately 100 % nitrate removal and 60 % chromate Cr(VI) removal, which means that nitrate outcompeted Cr(VI) for electrons from H2 oxidation. Removing nitrate from the influent led to an immediate increase in Cr(VI) removal (to 92 %), but Cr(VI) removal gradually deteriorated, with the removal ratio dropping to 14 % after five days. Cr(VI) removal resumed once nitrate was again added to the influent. 16S rDNA analyses showed that bacteria able to carry out H2-based denitrification and Cr(VI) reduction were in similar abundances throughout the experiment, but gene expression for Cr(VI)-reduction and export shifted. Functional genes encoding for energy-consuming chromate export (encoded by ChrA) as a means of bacterial resistance to toxicity were more abundant than genes encoding for the energy producing Cr(VI) respiration via the chromate reductase ChrR-NdFr. Thus, Cr(VI) transport and resistance to Cr(VI) toxicity depended on H2-based denitrification to supply energy. With Cr(VI) being exported from the cells, Cr(VI) reduction to Cr(III) was sustained. Thus, cooperation among H2-based denitrification, Cr(VI) export, and Cr(VI) reduction led to sustained Cr(VI) removal in the presence of nitrate, even though Cr(VI) reduction was at a competitive disadvantage for utilizing electrons from H2 oxidation.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Fei Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongzhou Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States of America.
| |
Collapse
|
4
|
Long M, Zheng CW, Roldan MA, Zhou C, Rittmann BE. Co-Removal of Perfluorooctanoic Acid and Nitrate from Water by Coupling Pd Catalysis with Enzymatic Biotransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11514-11524. [PMID: 38757358 DOI: 10.1021/acs.est.3c10377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
PFAS (poly- and per-fluorinated alkyl substances) represent a large family of recalcitrant organic compounds that are widely used and pose serious threats to human and ecosystem health. Here, palladium (Pd0)-catalyzed defluorination and microbiological mineralization were combined in a denitrifying H2-based membrane biofilm reactor to remove co-occurring perfluorooctanoic acid (PFOA) and nitrate. The combined process, i.e., Pd-biofilm, enabled continuous removal of ∼4 mmol/L nitrate and ∼1 mg/L PFOA, with 81% defluorination of PFOA. Metagenome analysis identified bacteria likely responsible for biodegradation of partially defluorinated PFOA: Dechloromonas sp. CZR5, Kaistella koreensis, Ochrobacterum anthropic, and Azospira sp. I13. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and metagenome analyses revealed that the presence of nitrate promoted microbiological oxidation of partially defluorinated PFOA. Taken together, the results point to PFOA-oxidation pathways that began with PFOA adsorption to Pd0, which enabled catalytic generation of partially or fully defluorinated fatty acids and stepwise oxidation and defluorination by the bacteria. This study documents how combining catalysis and microbiological transformation enables the simultaneous removal of PFOA and nitrate.
Collapse
Affiliation(s)
- Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe, Arizona 85281, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
- Institute for the Environment and Health, Nanjing University, Suzhou Campus, Suzhou 215163, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
5
|
Schwarz A, Aybar M, Suárez J, Rittmann B. A steady-state pH-control model for the biological production of elemental sulfur from sulfate in mining-influenced water. WATER RESEARCH 2024; 250:121067. [PMID: 38150861 DOI: 10.1016/j.watres.2023.121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
We developed a model to predict pH, alkalinity, and the Langelier Saturation Index (LSI) in coupled systems of hydrogen-based autotrophic sulfate reduction and aerobic oxidation of sulfide to elemental sulfur. To neutralize the biologically generated base, the model allows for the addition of CO2 as part of the gas mixture, the independent addition of HCl or CO2, or a combination of the alternatives. The model was evaluated against the results from a laboratory system for the production of elemental sulfur from sulfate present in mine-tailings water, which is characterized by the presence of elevated sulfate and calcium concentrations. Model results were consistent with measurements of pH, alkalinity, and LSI. The model showed how the acid demands of the coupled reactors vary with pH, being approximately equivalent at pH over 8, when ionized sulfide predominates. Also, while the sulfidogenic reactor was well buffered due to the production of ionized sulfide, the sulfidotrophic reactor in the absence of sulfide and carbonate alkalinity was prone to pH declines. Considering that both reactors operated in the positive range of LSI, the model also indicated that addition of CO2 should be minimized due to increase in the bicarbonate concentration and its effect on increasing the LSI. Furthermore, the model also showed that exclusive reliance on HCl for pH control can be incompatible with Cl- effluent standards, which means that a compromise must be reached between CO2 and HCl additions.
Collapse
Affiliation(s)
- Alex Schwarz
- Civil Engineering Department, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile.
| | - Marcelo Aybar
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - José Suárez
- Civil Engineering Department, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
6
|
Wu C, Zhou J, Pang S, Yang L, Lichtfouse E, Liu H, Xia S, Rittmann BE. Reduction and precipitation of chromium(VI) using a palladized membrane biofilm reactor. WATER RESEARCH 2024; 249:120878. [PMID: 38007896 DOI: 10.1016/j.watres.2023.120878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
H2-driven reduction of hexavalent chromium (Cr(VI)) using precious-metal catalysts is promising, but its implementation in water treatment has been restricted by poor H2-transfer efficiency and high catalyst loss. We investigated the reduction of Cr(VI) through hydrogenation catalyzed by elemental-palladium nanoparticles (PdNPs) generated in-situ within biofilm of a membrane biofilm reactor (MBfR), creating a Pd-MBfR. Experiments were conducted using a Pd-MBfR and a non-Pd MBfR. The Pd-MBfR achieved Cr(VI) (1000 μg L-1) reduction of >99 % and reduced the concentration of total Cr to below 50 μg L-1, much lower than the total Cr concentration in the non-Pd MBfR effluent (290 μg L-1). The Pd-MBfR also had a lower concentration of dissolved organic compounds compared to the non-Pd MBfR, which minimized the formation of soluble organo-Cr(III) complexes and promoted precipitation of Cr(OH)3. Solid-state characterizations documented deposition of Cr(OH)3 as the product of Cr(VI) reduction in the Pd-MBfR. Metagenomic analyses revealed that the addition and reduction of Cr(VI) had minimal impact on the microbial community (dominated by Dechloromonas) and functional genes in the biofilm of the Pd-MBfR, since the PdNP-catalyzed reduction process was rapid. This study documented efficient Cr(VI) reduction and precipitation of Cr(OH)3 by the Pd-MBfR technology.
Collapse
Affiliation(s)
- Chengyang Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence 13100, France
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, USA
| |
Collapse
|
7
|
Alsanea A, Bounaga A, Danouche M, Lyamlouli K, Zeroual Y, Boulif R, Zhou C, Rittmann B. Optimizing Autotrophic Sulfide Oxidation in the Oxygen-Based Membrane Biofilm Reactor to Recover Elemental Sulfur. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21736-21743. [PMID: 38085930 DOI: 10.1021/acs.est.3c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Biological sulfide oxidation is an efficient means to recover elemental sulfur (S0) as a valuable resource from sulfide-bearing wastewater. This work evaluated the autotrophic sulfide oxidation to S0 in the O2-based membrane biofilm reactor (O2-MBfR). High recovery of S0 (80-90% of influent S) and high sulfide oxidation (∼100%) were simultaneously achieved when the ratio of O2-delivery capacity to sulfide-to S0 surface loading (SL) (O2/S2- → S0 ratio) was around 1.5 (g O2/m2-day/g O2/m2-day). On average, most of the produced S0 was recovered in the MBfR effluent, although the biofilm could be a source or sink for S0. Shallow metagenomic analysis of the biofilm showed that the top sulfide-oxidizing genera present in all stages were Thauera, Thiomonas, Thauera_A, and Pseudomonas. Thiomonas or Pseudomonas was the most important genus in stages that produced almost only S0 (i.e., the O2/S2- → S0 ratio around 1.5 g of the O2/m2-day/g O2/m2-day). With a lower sulfide SL, the S0-producing genes were sqr and fccAB in Thiomonas. With a higher sulfide SL, the S0-producing genes were in the soxABDXYZ system in Pseudomonas. Thus, the biofilm community of the O2-MBfR adapted to different sulfide-to-S0 SLs and corresponding O2-delivery capacities. The results illustrate the potential for S0 recovery using the O2-MBfR.
Collapse
Affiliation(s)
- Anwar Alsanea
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, Arizona 85287-5701, United States
| | - Ayoub Bounaga
- Chemical & Biochemical Sciences Department, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Mohammed Danouche
- Chemical & Biochemical Sciences Department, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Karim Lyamlouli
- College of Sustainable Agriculture and Environmental Sciences, Agrobioscience Program, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Youssef Zeroual
- Situation Innovation, OCP Group, BP 118, Jorf Lasfar, El Jadida 24000, Morocco
| | - Rachid Boulif
- Chemical & Biochemical Sciences Department, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, Arizona 85287-5701, United States
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
8
|
Espinosa-Ortiz EJ, Gerlach R, Peyton BM, Roberson L, Yeh DH. Biofilm reactors for the treatment of used water in space:potential, challenges, and future perspectives. Biofilm 2023; 6:100140. [PMID: 38078057 PMCID: PMC10704334 DOI: 10.1016/j.bioflm.2023.100140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 02/29/2024] Open
Abstract
Water is not only essential to sustain life on Earth, but also is a crucial resource for long-duration deep space exploration and habitation. Current systems in space rely on the resupply of water from Earth, however, as missions get longer and move farther away from Earth, resupply will no longer be a sustainable option. Thus, the development of regenerative reclamation water systems through which useable water can be recovered from "waste streams" (i.e., used waters) is sorely needed to further close the loop in space life support systems. This review presents the origin and characteristics of different used waters generated in space and discusses the intrinsic challenges of developing suitable technologies to treat such streams given the unique constrains of space exploration and habitation (e.g., different gravity conditions, size and weight limitations, compatibility with other systems, etc.). In this review, we discuss the potential use of biological systems, particularly biofilms, as possible alternatives or additions to current technologies for water reclamation and waste treatment in space. The fundamentals of biofilm reactors, their advantages and disadvantages, as well as different reactor configurations and their potential for use and challenges to be incorporated in self-sustaining and regenerative life support systems in long-duration space missions are also discussed. Furthermore, we discuss the possibility to recover value-added products (e.g., biomass, nutrients, water) from used waters and the opportunity to recycle and reuse such products as resources in other life support subsystems (e.g., habitation, waste, air, etc.).
Collapse
Affiliation(s)
- Erika J. Espinosa-Ortiz
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Brent M. Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Luke Roberson
- Exploration Research and Technology Directorate, NASA, Kennedy Space Center, 32899, USA
| | - Daniel H. Yeh
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
9
|
Cruces M, Suárez J, Nancucheo I, Schwarz A. Optimization of the chemolithotrophic denitrification of ion exchange concentrate using hydrogen-based membrane biofilm reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119283. [PMID: 37839208 DOI: 10.1016/j.jenvman.2023.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A H2-based membrane biofilm reactor (MBfR) was used to remove nitrate from a synthetic ion-exchange brine made up of 23.8 g L-1 NaCl. To aid the selection of the best nitrate management strategy, our research was based on the integrated analysis of ionic exchange and MBfR processes, including a detailed cost analysis. The nitrate removal flux was not affected if key nutrients were present in the feed solution including potassium and sodium bicarbonate. Operating pH was maintained between 7 and 8. By using a H2 pressure of 15 psi, a hydraulic retention time (HRT) of 4 h, and a surface loading rate of 13.6 ± 0.2 g N m-2 d-1, the average nitrate removal flux was 3.3 ± 0.6 g N m-2 d-1. At HRTs of up to 24 h, the system was able to maintain a removal flux of 1.6 ± 0.2 g N m-2 d-1. Microbial diversity analysis showed that the consortium was dominated by the genera Sulfurimonas and Marinobacter. The estimated cost for a 200 m3/h capacity, coupled ion exchange (IX) + MBfR treatment plant is 0.43 USD/m3. This is a sustainable and competitive alternative to an IX-only plant for the same flowrate. The proposed treatment option allows for brine recycling and reduces costs by 55% by avoiding brine disposal expenses.
Collapse
Affiliation(s)
- Matias Cruces
- Departamento de Ingeniería Civil, Universidad de Concepción, P.O. Box 160-C, Concepción, 4070386, Chile
| | - José Suárez
- Departamento de Ingeniería Civil, Universidad de Concepción, P.O. Box 160-C, Concepción, 4070386, Chile
| | - Iván Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile
| | - Alex Schwarz
- Departamento de Ingeniería Civil, Universidad de Concepción, P.O. Box 160-C, Concepción, 4070386, Chile.
| |
Collapse
|
10
|
Chen C, Lu L, Fei L, Xu J, Wang B, Li B, Shen L, Lin H. Membrane-catalysis integrated system for contaminants degradation and membrane fouling mitigation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166220. [PMID: 37591402 DOI: 10.1016/j.scitotenv.2023.166220] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
The integration of catalytic degradation and membrane separation processes not only enables continuous degradation of contaminants but also effectively alleviates inevitable membrane fouling, demonstrating fascinating practical value for efficient water purification. Such membrane-catalysis integrated system (MCIS) has attracted tremendous research interest from scientists in chemical engineering and environmental science recently. In this review, the advantages of MCIS are discussed, including the membrane structure regulation, stable catalyst loading, nano-confinement effect, and efficient natural organic matter (NOM) exclusion, highlighting the synergistic effect between membrane separation and catalytic process. Subsequently, the design considerations for the fabrication of catalytic membranes, including substrate membrane, catalytic material, and fabrication method, are comprehensively summarized. Afterward, the mechanisms and performance of MCIS based on different catalytic types, including liquid-phase oxidants/reductants involved MCIS, gas involved MCIS, photocatalysis involved MCIS, and electrocatalysis involved MCIS are reviewed in detail. Finally, the research direction and future perspectives of catalytic membranes for water purification are proposed. The current review provides an in-depth understanding of the design of catalytic membranes and facilitates their further development for practical applications in efficient water purification.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| |
Collapse
|
11
|
Woern C, Grossmann L. Microbial gas fermentation technology for sustainable food protein production. Biotechnol Adv 2023; 69:108240. [PMID: 37647973 DOI: 10.1016/j.biotechadv.2023.108240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The development of novel, sustainable, and robust food production technologies represents one of the major pillars to address the most significant challenges humanity is going to face on earth in the upcoming decades - climate change, population growth, and resource depletion. The implementation of microfoods, i.e., foods formulated with ingredients from microbial cultivation, into the food supply chain has a huge potential to contribute towards energy-efficient and nutritious food manufacturing and represents a means to sustainably feed a growing world population. This review recapitulates and assesses the current state in the establishment and usage of gas fermenting bacteria as an innovative feedstock for protein production. In particular, we focus on the most promising representatives of this taxon: the hydrogen-oxidizing bacteria (hydrogenotrophs) and the methane-oxidizing bacteria (methanotrophs). These unicellular microorganisms can aerobically metabolize gaseous hydrogen and methane, respectively, to provide the required energy for building up cell material. A protein yield over 70% in the dry matter cell mass can be reached with no need for arable land and organic substrates making it a promising alternative to plant- and animal-based protein sources. We illuminate the holistic approach to incorporate protein extracts obtained from the cultivation of gas fermenting bacteria into microfoods. Herein, the fundamental properties of the bacteria, cultivation methods, downstream processing, and potential food applications are discussed. Moreover, this review covers existing and future challenges as well as sustainability aspects associated with the production of microbial protein through gas fermentation.
Collapse
Affiliation(s)
- Carlos Woern
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
12
|
Levi J, Guo S, Kavadiya S, Luo Y, Lee CS, Jacobs HP, Holman Z, Wong MS, Garcia-Segura S, Zhou C, Rittmann BE, Westerhoff P. Comparing methods to deposit Pd-In catalysts on hydrogen-permeable hollow-fiber membranes for nitrate reduction. WATER RESEARCH 2023; 235:119877. [PMID: 36989800 DOI: 10.1016/j.watres.2023.119877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Catalytic hydrogenation of nitrate in water has been studied primarily using nanoparticle slurries with constant hydrogen-gas (H2) bubbling. Such slurry reactors are impractical in full-scale water treatment applications because 1) unattached catalysts are difficult to be recycled/reused and 2) gas bubbling is inefficient for delivering H2. Membrane Catalyst-film Reactors (MCfR) resolve these limitations by depositing nanocatalysts on the exterior of gas-permeable hollow-fiber membranes that deliver H2 directly to the catalyst-film. The goal of this study was to compare the technical feasibility and benefits of various methods for attaching bimetallic palladium/indium (Pd/In) nanocatalysts for nitrate reduction in water, and subsequently select the most effective method. Four Pd/In deposition methods were evaluated for effectiveness in achieving durable nanocatalyst immobilization on the membranes and repeatable nitrate-reduction activity: (1) In-Situ MCfR-H2, (2) In-Situ Flask-Synthesis, (3) Ex-Situ Aerosol Impaction-Driven Assembly, and (4) Ex-Situ Electrostatic. Although all four deposition methods achieved catalyst-films that reduced nitrate in solution (≥ 1.1 min-1gPd-1), three deposition methods resulted in significant palladium loss (>29%) and an accompanying decline in nitrate reactivity over time. In contrast, the In-Situ MCfR-H2 deposition method had negligible Pd loss and remained active for nitrate reduction over multiple operational cycles. Therefore, In-Situ MCfR-H2 emerged as the superior deposition method and can be utilized to optimize catalyst attachment, nitrate-reduction, and N2 selectivity in future studies with more complex water matrices, longer treatment cycles, and larger reactors.
Collapse
Affiliation(s)
- Juliana Levi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Sujin Guo
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Shalinee Kavadiya
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Yihao Luo
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Chung-Seop Lee
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Hunter P Jacobs
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Zachary Holman
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Bruce E Rittmann
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States.
| |
Collapse
|
13
|
Yang L, Pang S, Zhou J, Li X, Yao M, Xia S. Biological reduction and hydrodechlorination of chlorinated nitroaromatic antibiotic chloramphenicol under H 2-transfer membrane biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 376:128881. [PMID: 36921636 DOI: 10.1016/j.biortech.2023.128881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated nitroaromatic antibiotic chloramphenicol (CAP) is a persistent pollutant that is widely present in environments. A H2 transfer membrane biofilm reactor (H2-MBfR) and short-term batch tests were setup to investigate the co-removal of CAP and NO3-. Results showed that the presence of CAP (<10 mg L-1) has no effect on the denitrification process while 100% removal efficiency of CAP can be obtained when nitrate was absent. Nitroaromatic reduction and completely dechlorination were successfully realized when CAP was removed. The CAP transformation product p-aminobenzoic acid (PABA) was detected and batch tests revealed that the hydroxy carboxylation was far faster than nitroaromatic reduction when p-nitrobenzyl alcohol (PNBOH) was conversed to p-aminobenzoic acid (PABA). The path way of CAP degradation was proposed based on the intermediate's analysis. Microbial community analysis indicated that Pleomorphomonadaceae accounts for the dechlorination of CAP.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mengying Yao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
14
|
Luo YH, Long X, Cai Y, Zheng CW, Roldan MA, Yang S, Zhou D, Zhou C, Rittmann BE. A synergistic platform enables co-oxidation of halogenated organic pollutants without input of organic primary substrate. WATER RESEARCH 2023; 234:119801. [PMID: 36889084 DOI: 10.1016/j.watres.2023.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
While co-oxidation is widely used to biodegrade halogenated organic pollutants (HOPs), a considerable amount of organic primary substrate is required. Adding organic primary substrates increases the operating cost and also leads to extra carbon dioxide release. In this study, we evaluated a two-stage Reduction and Oxidation Synergistic Platform (ROSP), which integrated catalytic reductive dehalogenation with biological co-oxidation for HOPs removal. The ROSP was a combination of an H2-based membrane catalytic-film reactor (H2-MCfR) and an O2-based membrane biofilm reactor (O2-MBfR). 4-chlorophenol (4-CP) was used as a model HOP to evaluate the performance of ROSP. In the MCfR stage, zero-valent palladium nanoparticles (Pd0NPs) catalyzed reductive hydrodechlorination that converted 4-CP to phenol, with a conversion yield over 92%. In the MBfR stage, the phenol was oxidized and used as a primary substrate that supported the co-oxidation of residual 4-CP. Genomic DNA sequencing revealed that phenol produced from 4-CP reduction enriched bacteria having genes for functional enzymes for phenol biodegradation in the biofilm community. In the ROSP, over 99% of 60 mg/L 4-CP was removed and mineralized during continuous operation: Effluent 4-CP and chemical oxygen demand concentrations were below 0.1 and 3 mg/L, respectively. H2 was the only added electron donor to the ROSP, which means no extra carbon dioxide was produced by primary-substrate oxidation.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Yuhang Cai
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe AZ 85287-3005, USA
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe AZ 85287-3005, USA
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| |
Collapse
|
15
|
Jang Y, Lee SH, Kim NK, Ahn CH, Rittmann BE, Park HD. Biofilm characteristics for providing resilient denitrification in a hydrogen-based membrane biofilm reactor. WATER RESEARCH 2023; 231:119654. [PMID: 36702020 DOI: 10.1016/j.watres.2023.119654] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In a hydrogen-based membrane biofilm reactor (H2-MBfR), the biofilm thickness is considered to be one of the most important factors for denitrification. Thick biofilms in MBfRs are known for low removal fluxes owing to their resistance to substrate transport. In this study, the H2-MBfR was operated under various loading rates of oxyanions, such as NO3-N, SO4-S, and ClO4- at an H2 flux of 1.06 e- eq/m2-d. The experiment was initiated with NO3-N, SO4-S, and ClO4- loadings of 0.464, 0.026, and 0.211 e- eq/m2-d, respectively, at 20 °C. Under the most stressful conditions, the loading rates increased simultaneously to 1.911, 0.869, and 0.108 e- eq/m2-d, respectively, at 10 °C. We observed improved performance in significantly thicker biofilms (approximately 2.7 cm) compared to previous studies using a denitrifying H2-MBfR for 120 days. Shock oxyanion loadings led to a decrease in total nitrogen (TN) removal by 20 to 30%, but TN removal returned to 100% within a few days. Similarly, complete denitrification was observed, even at 10 °C. The protective function and microbial diversity of the thick biofilm may allow stable denitrification despite stress-imposing conditions. In the microbial community analysis, heterotrophs were dominant and acetogens accounted for 11% of the biofilm. Metagenomic results showed a high abundance of functional genes involved in organic carbon metabolism and homoacetogenesis. Owing to the presence of organic compounds produced by acetogens and autotrophs, heterotrophic denitrification may occur simultaneously with autotrophic denitrification. As a result, the total removal flux of oxyanions (1.84 e- eq/m2-d) far exceeded the H2 flux (1.06 e- eq/m2-d). Thus, the large accumulation of biofilms could contribute to good resilience and enhanced removal fluxes.
Collapse
Affiliation(s)
- Yongsun Jang
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Hoon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Na-Kyung Kim
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chang Hoon Ahn
- The graduate school of construction engineering, Chung-ang University, Seoul, 06974, Republic of Korea
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States of America.
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Zheng CW, Zhou C, Luo YH, Long M, Long X, Zhou D, Bi Y, Yang S, Rittmann BE. Coremoval of Energetics and Oxyanions via the In Situ Coupling of Catalytic and Enzymatic Destructions: A Solution to Ammunition Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:666-673. [PMID: 36445010 DOI: 10.1021/acs.est.2c05675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ammunition wastewater contains toxic nitrated explosives like RDX and oxyanions like nitrate and perchlorate. Its treatment is challenged by low efficiency due to contaminant recalcitrance and high cost due to multiple processes needed for separately removing different contaminant types. This paper reports a H2-based low-energy strategy featuring the treatment of explosives via catalytic denitration followed by microbial mineralization coupled with oxyanion reduction. After a nitrate- and perchlorate-reducing biofilm incapable of RDX biodegradation was coated with palladium nanoparticles (Pd0NPs), RDX was rapidly denitrated with a specific catalytic activity of 8.7 gcat-1 min-1, while biological reductions of nitrate and perchlorate remained efficient. In the subsequent 30-day continuous test, >99% of RDX, nitrate, and perchlorate were coremoved, and their effluent concentrations were below their respective regulation levels. Detected intermediates and shallow metagenome analysis suggest that the intermediates after Pd-catalytic denitration of RDX ultimately were enzymatically utilized by the nitrate- and perchlorate-reducing bacteria as additional electron donor sources.
Collapse
Affiliation(s)
- Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona85281, United States
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130024, China
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona85281, United States
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe, Arizona85281, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| |
Collapse
|
17
|
Cai Y, Luo YH, Long X, Roldan MA, Yang S, Zhou C, Zhou D, Rittmann BE. Reductive Dehalogenation of Herbicides Catalyzed by Pd 0NPs in a H 2-Based Membrane Catalyst-Film Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:18030-18040. [PMID: 36383359 DOI: 10.1021/acs.est.2c07317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
More food production required to feed humans will require intensive use of herbicides to protect against weeds. The widespread application and persistence of herbicides pose environmental risks for nontarget species. Elemental-palladium nanoparticles (Pd0NPs) are known to catalyze reductive dehalogenation of halogenated organic pollutants. In this study, the reductive conversion of 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in a H2-based membrane catalyst-film reactor (H2-MCfR), in which Pd0NPs were in situ-synthesized as the catalyst film and used to activate H2 on the surface of H2-delivery membranes. Batch kinetic experiments showed that 99% of 2,4-D was removed and converted to phenoxyacetic acid (POA) within 90 min with a Pd0 surface loading of 20 mg Pd/m2, achieving a catalyst specific activity of 6.6 ± 0.5 L/g-Pd-min. Continuous operation of the H2-MCfR loaded with 20 mg Pd/m2 sustained >99% removal of 50 μM 2,4-D for 20 days. A higher Pd0 surface loading, 1030 mg Pd/m2, also enabled hydrosaturation and hydrolysis of POA to cyclohexanone and glycolic acid. Density functional theory identified the reaction mechanisms and pathways, which involved reductive hydrodechlorination, hydrosaturation, and hydrolysis. Molecular electrostatic potential calculations and Fukui indices suggested that reductive dehalogenation could increase the bioavailability of herbicides. Furthermore, three other halogenated herbicides─atrazine, dicamba, and bromoxynil─were reductively dehalogenated in the H2-MCfR. This study documents a promising method for the removal and detoxification of halogenated herbicides in aqueous environments.
Collapse
Affiliation(s)
- Yuhang Cai
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130117, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona85287-3005, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona85287-3005, United States
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe,Arizona85287-3005, United States
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe,Arizona85287-3005, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130117, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| |
Collapse
|
18
|
Zhou J, Wu C, Pang S, Yang L, Yao M, Li X, Xia S, Rittmann BE. Dissimilatory and Cytoplasmic Antimonate Reductions in a Hydrogen-Based Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14808-14816. [PMID: 36201672 DOI: 10.1021/acs.est.2c04939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A hydrogen-based membrane biofilm reactor (H2-MBfR) was operated to investigate the bioreduction of antimonate [Sb(V)] in terms of Sb(V) removal, the fate of Sb, and the pathways of reduction metabolism. The MBfR achieved up to 80% Sb(V) removal and an Sb(V) removal flux of 0.55 g/m2·day. Sb(V) was reduced to Sb(III), which mainly formed Sb2O3 precipitates in the biofilm matrix, although some Sb(III) was retained intracellularly. High Sb(V) loading caused stress that deteriorated performance that was not recovered when the high Sb(V) loading was removed. The biofilm community consisted of DSbRB (dissimilatory Sb-reduction bacteria), SbRB (Sb-resistant bacteria), and DIRB (dissimilatory iron-reducing bacteria). Dissimilatory antimonate reduction, mediated by the respiratory arsenate reductase ArrAB, was the main reduction route, but respiratory reduction coexisted with cytoplasmic Sb(V)-reduction mediated by arsenate reductase ArsC. Increasing Sb(V) loading caused stress that led to increases in the expression of arsC gene and intracellular accumulation of Sb(III). By illuminating the roles of the dissimilatory and cytoplasmic Sb(V) reduction mechanism in the biofilms of the H2-MBfR, this study reveals that the Sb(V) loading should be controlled to avoid stress that deteriorates Sb(V) reduction.
Collapse
Affiliation(s)
- Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Chengyang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Mengying Yao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| |
Collapse
|
19
|
Jiang M, Zhang Y, Zheng J, Li H, Ma J, Zhang X, Wei Q, Wang X, Zhang X, Wang Z. Mechanistic insights into CO 2 pressure regulating microbial competition in a hydrogen-based membrane biofilm reactor for denitrification. CHEMOSPHERE 2022; 303:134875. [PMID: 35537631 DOI: 10.1016/j.chemosphere.2022.134875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
CO2 is a proven pH regulator in hydrogen-based membrane biofilm reactor (H2-MBfR) but how its pressure regulates microbial competition in this system remains unclear. This work evaluates the CO2 pressure dependent system performance, CO2 allocation, microbial structure and activity of CO2 source H2-MBfR. The optimum system performance was reached at the CO2 pressure of 0.008 MPa, and this pressure enabled 0.18 g C/(m2·d) of dissolved inorganic carbon (DIC) allocated to denitrifying bacteria (DNB) for carbon source anabolism and denitrification-related proton compensation, while inducing a bulk liquid pH (pH 7.4) in favor of DNB activity by remaining 0.21 g C/(m2·d) of DIC as pH buffer. Increasing CO2 pressure from 0.008 to 0.016 MPa caused the markedly changed DNB composition, and the diminished DNB population was accompanied by the enrichment of sulfate-reducing bacteria (SRB). A high CO2 pressure of 0.016 MPa was estimated to induce the enhanced SRB activity and weakened DNB activity.
Collapse
Affiliation(s)
- Minmin Jiang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuanyuan Zhang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Junjian Zheng
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Jinxing Ma
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xingran Zhang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qiaoyan Wei
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuehong Zhang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
20
|
Meinel M, Delgado AG, Ilhan ZE, Aguero ML, Aguiar S, Krajmalnik-Brown R, Torres CI. Organic carbon metabolism is a main determinant of hydrogen demand and dynamics in anaerobic soils. CHEMOSPHERE 2022; 303:134877. [PMID: 35577129 DOI: 10.1016/j.chemosphere.2022.134877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen (H2) is a crucial electron donor for many processes in the environment including nitrate-, sulfate- and, iron-reduction, homoacetogenesis, and methanogenesis, and is a major determinant of microbial competition and metabolic pathways in groundwater, sediments, and soils. Despite the importance of H2 for many microbial processes in the environment, the total H2 consuming capacity (or H2 demand) of soils is generally unknown. Using soil microcosms with added H2, the aims of this study were 1) to measure the H2 demand of geochemically diverse soils and 2) to define the processes leading to this demand. Study results documented a large range of H2 demand in soil (0.034-1.2 millielectron equivalents H2 g-1 soil). The measured H2 demand greatly exceeded the theoretical demand predicted based on measured concentrations of common electron acceptors initially present in a library of 15 soils. While methanogenesis accounted for the largest fraction of H2 demand, humic acid reduction and acetogenesis were also significant contributing H2-consuming processes. Much of the H2 demand could be attributed to CO2 produced during incubation from fermentation and/or acetoclastic methanogenesis. The soil initial total organic carbon showed the strongest correlation to H2 demand. Besides external additions, H2 was likely generated or cycled in the microcosms. Apart from fermentative H2 production, carboxylate elongation to produce C4-C7 fatty acids may have accounted for additional H2 production in these soils. Many of these processes, especially the organic carbon contribution is underestimated in microbial models for H2 consumption in natural soil ecosystems or during bioremediation of contaminants in soils.
Collapse
Affiliation(s)
- Megan Meinel
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, School of Sustainable Engineering and the Built Environment, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA
| | - Anca G Delgado
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, School of Sustainable Engineering and the Built Environment, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA
| | - Zehra Esra Ilhan
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA
| | - Marisol Luna Aguero
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, School of Sustainable Engineering and the Built Environment, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA
| | - Samuel Aguiar
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, School of Sustainable Engineering and the Built Environment, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Biodesign Center for Health Through Microbiomes, 1001 S McAllister Ave, Tempe, AZ, USA.
| | - César I Torres
- Arizona State University, Biodesign Swette Center for Environmental Biotechnology, 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), 1001 S McAllister Ave, Tempe, AZ, USA; Arizona State University, School for Engineering of Matter, Transport & Energy, 1001 S McAllister Ave, Tempe, AZ, USA.
| |
Collapse
|
21
|
Abejón R. A Bibliometric Analysis of Research on Selenium in Drinking Water during the 1990-2021 Period: Treatment Options for Selenium Removal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5834. [PMID: 35627373 PMCID: PMC9140891 DOI: 10.3390/ijerph19105834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023]
Abstract
A bibliometric analysis based on the Scopus database was carried out to summarize the global research related to selenium in drinking water from 1990 to 2021 and identify the quantitative characteristics of the research in this period. The results from the analysis revealed that the number of accumulated publications followed a quadratic growth, which confirmed the relevance this research topic is gaining during the last years. High research efforts have been invested to define safe selenium content in drinking water, since the insufficient or excessive intake of selenium and the corresponding effects on human health are only separated by a narrow margin. Some important research features of the four main technologies most frequently used to remove selenium from drinking water (coagulation, flocculation and precipitation followed by filtration; adsorption and ion exchange; membrane-based processes and biological treatments) were compiled in this work. Although the search of technological options to remove selenium from drinking water is less intensive than the search of solutions to reduce and eliminate the presence of other pollutants, adsorption was the alternative that has received the most attention according to the research trends during the studied period, followed by membrane technologies, while biological methods require further research efforts to promote their implementation.
Collapse
Affiliation(s)
- Ricardo Abejón
- Departamento de Ingeniería Química, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
22
|
Schwarz A, Gaete M, Nancucheo I, Villa-Gomez D, Aybar M, Sbárbaro D. High-Rate Sulfate Removal Coupled to Elemental Sulfur Production in Mining Process Waters Based on Membrane-Biofilm Technology. Front Bioeng Biotechnol 2022; 10:805712. [PMID: 35340841 PMCID: PMC8942777 DOI: 10.3389/fbioe.2022.805712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
It is anticipated that copper mining output will significantly increase over the next 20 years because of the more intensive use of copper in electricity-related technologies such as for transport and clean power generation, leading to a significant increase in the impacts on water resources if stricter regulations and as a result cleaner mining and processing technologies are not implemented. A key concern of discarded copper production process water is sulfate. In this study we aim to transform sulfate into sulfur in real mining process water. For that, we operate a sequential 2-step membrane biofilm reactor (MBfR) system. We coupled a hydrogenotrophic MBfR (H2-MBfR) for sulfate reduction to an oxidizing MBfR (O2-MBfR) for oxidation of sulfide to elemental sulfur. A key process improvement of the H2-MBfR was online pH control, which led to stable high-rate sulfate removal not limited by biomass accumulation and with H2 supply that was on demand. The H2-MBfR easily adapted to increasing sulfate loads, but the O2-MBfR was difficult to adjust to the varying H2-MBfR outputs, requiring better coupling control. The H2-MBfR achieved high average volumetric sulfate reduction performances of 1.7-3.74 g S/m3-d at 92-97% efficiencies, comparable to current high-rate technologies, but without requiring gas recycling and recompression and by minimizing the H2 off-gassing risk. On the other hand, the O2-MBfR reached average volumetric sulfur production rates of 0.7-2.66 g S/m3-d at efficiencies of 48-78%. The O2-MBfR needs further optimization by automatizing the gas feed, evaluating the controlled removal of excess biomass and S0 particles accumulating in the biofilm, and achieving better coupling control between both reactors. Finally, an economic/sustainability evaluation shows that MBfR technology can benefit from the green production of H2 and O2 at operating costs which compare favorably with membrane filtration, without generating residual streams, and with the recovery of valuable elemental sulfur.
Collapse
Affiliation(s)
- Alex Schwarz
- Civil Engineering Department, Universidad de Concepción, Concepción, Chile
| | - María Gaete
- Civil Engineering Department, Universidad de Concepción, Concepción, Chile
| | - Iván Nancucheo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Concepción, Chile
| | - Denys Villa-Gomez
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Marcelo Aybar
- Civil Engineering Department, Universidad de Concepción, Concepción, Chile
| | - Daniel Sbárbaro
- Electrical Engineering Department, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
23
|
Wu C, Zhou L, Zhou C, Zhou Y, Xia S, Rittmann BE. Co-removal of 2,4-dichlorophenol and nitrate using a palladized biofilm: Denitrification-promoted microbial mineralization following catalytic dechlorination. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126916. [PMID: 34425432 DOI: 10.1016/j.jhazmat.2021.126916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The effects of nitrate on 2,4-dichlorophenol (2,4-DCP) dechlorination and biodegradation in a hydrogen (H2)-based palladized membrane biofilm reactor (Pd-MBfR) were studied. The Pd-MBfR was created by synthesizing palladium nanoparticle (Pd0NPs) that spontaneously associated with the biofilm to form a Pd0-biofilm. Without input of nitrate, the Pd-MBfR had rapid and stable catalytic hydrodechlorination: 93% of the 100-μM influent 2,4-DCP was continuously converted to phenol, part of which was then fermented via acetogenesis and methanogenesis. Introduction of nitrate enabled phenol mineralization via denitrification with only a minor decrease in catalytic hydrodechlorination. Phenol-degrading bacteria capable of nitrate respiration were enriched in the Pd0-biofilm, which was dominated by the heterotrophic genera Thauera and Azospira. Because the heterotrophic denitrifiers had greater yields than autotrophic denitrifiers, phenol was a more favorable electron donor than H2 for denitrification. This feature facilitated phenol mineralization and ameliorated denitrification inhibition of catalytic dechlorination through competition for H2. Increased nitrite loading eventually led to deterioration of the dechlorination flux and selectivity toward phenol. This study documents simultaneous removal of 2,4-DCP and nitrate in the Pd-MBfR and interactions between the two reductions.
Collapse
Affiliation(s)
- Chengyang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Luman Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Yun Zhou
- Huazhong Agricultural University, Wuhan, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
24
|
Massazza D, Robledo AJ, Rodriguez Simón CN, Busalmen JP, Bonanni S. Energetics, electron uptake mechanisms and limitations of electroautotrophs growing on biocathodes - A review. BIORESOURCE TECHNOLOGY 2021; 342:125893. [PMID: 34537530 DOI: 10.1016/j.biortech.2021.125893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Electroautotrophs are microorganisms that can take the electrons needed for energy generation, CO2 fixation and other metabolic reactions from a polarized electrode. They have been the focus of intense research for its application in wastewater treatment, bioelectrosynthetic processes and hydrogen generation. As a general trend, current densities produced by the electron uptake of these microorganisms are low, limiting their applicability at large scale. In this work, the electron uptake mechanisms that may operate in electroautotrophs are reviewed, aiming at finding possible causes for this low performance. Biomass yields, growth rates and electron uptake rates observed when these microorganisms use chemical electron donors are compared with those typically obtained with electrodes, to explore limitations and advantages inherent to the electroautotrophic metabolism. Also, the factors affecting biofilm development are analysed to show how interfacial interactions condition bacterial adhesion, biofilm growth and electrons uptake. Finally, possible strategies to overcome these limitations are described.
Collapse
Affiliation(s)
- Diego Massazza
- División Ingeniería de Interfases y Bioprocesos, INTEMA (Conicet, Universidad Nacional de Mar del Plata), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Alejandro Javier Robledo
- División Ingeniería de Interfases y Bioprocesos, INTEMA (Conicet, Universidad Nacional de Mar del Plata), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Carlos Norberto Rodriguez Simón
- División Ingeniería de Interfases y Bioprocesos, INTEMA (Conicet, Universidad Nacional de Mar del Plata), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Juan Pablo Busalmen
- División Ingeniería de Interfases y Bioprocesos, INTEMA (Conicet, Universidad Nacional de Mar del Plata), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Sebastián Bonanni
- División Ingeniería de Interfases y Bioprocesos, INTEMA (Conicet, Universidad Nacional de Mar del Plata), Av. Colón 10850, Mar del Plata 7600, Argentina.
| |
Collapse
|
25
|
Zhou D, Luo YH, Zheng CW, Long M, Long X, Bi Y, Zheng X, Zhou C, Rittmann BE. H 2-Based Membrane Catalyst-Film Reactor (H 2-MCfR) Loaded with Palladium for Removing Oxidized Contaminants in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7082-7093. [PMID: 33900089 DOI: 10.1021/acs.est.1c01189] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Scalable applications of precious-metal catalysts for water treatment face obstacles in H2-transfer efficiency and catalyst stability during continuous operation. Here, we introduce a H2-based membrane catalyst-film reactor (H2-MCfR), which enables in situ reduction and immobilization of a film of heterogeneous Pd0 catalysts that are stably anchored on the exterior of a nonporous H2-transfer membrane under ambient conditions. In situ immobilization had >95% yield of Pd0 in controllable forms, from isolated single atoms to moderately agglomerated nanoparticles (averaging 3-4 nm). A series of batch tests documented rapid Pd-catalyzed reduction of a wide spectrum of oxyanions (nonmetal and metal) and organics (e.g., industrial raw materials, solvents, refrigerants, and explosives) at room temperature, owing to accurately controlled H2 supply on demand. Reduction kinetics and selectivity were readily controlled through the Pd0 loading on the membranes, H2 pressure, and pH. A 45-day continuous treatment of trichloroethene (TCE)-contaminated water documented removal fluxes up to 120 mg-TCE/m2/d with over 90% selectivity to ethane and minimal (<1.5%) catalyst leaching or deactivation. The results support that the H2-MCfR is a potentially sustainable and reliable catalytic platform for reducing oxidized water contaminants: simple synthesis of an active and versatile catalyst that has long-term stability during continuous operation.
Collapse
Affiliation(s)
- Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130021, China
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
26
|
Luo YH, Long X, Wang B, Zhou C, Tang Y, Krajmalnik-Brown R, Rittmann BE. A Synergistic Platform for Continuous Co-removal of 1,1,1-Trichloroethane, Trichloroethene, and 1,4-Dioxane via Catalytic Dechlorination Followed by Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6363-6372. [PMID: 33881824 DOI: 10.1021/acs.est.1c00542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Groundwater co-contaminated with 1,4-dioxane, 1,1,1-trichloroethane (TCA), and trichloroethene (TCE) is among the most urgent environmental concerns of the U.S. Department of Defense (DoD), U.S. Environmental Protection Agency (EPA), and industries related to chlorinated solvents. Inspired by the pressing need to remove all three contaminants at many sites, we tested a synergistic platform: catalytic reduction of 1,1,1-TCA and TCE to ethane in a H2-based membrane palladium-film reactor (H2-MPfR), followed by aerobic biodegradation of ethane and 1,4-dioxane in an O2-based membrane biofilm reactor (O2-MBfR). During 130 days of continuous operation, 1,1,1-TCA and TCE were 95-98% reductively dechlorinated to ethane in the H2-MPfR, and ethane served as the endogenous primary electron donor for promoting 98.5% aerobic biodegradation of 1,4-dioxane in the O2-MBfR. In addition, the small concentrations of the chlorinated intermediate from the H2-MPfR, dichloroethane (DCA) and monochloroethane (MCA), were fully biodegraded through aerobic biodegradation in the O2-MBfR. The biofilms in the O2-MBfR were enriched in phylotypes closely related to the genera Pseudonocardia known to biodegrade 1,4-dioxane.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85008, United States
| | - Boya Wang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| |
Collapse
|
27
|
Long M, Long X, Zheng CW, Luo YH, Zhou C, Rittmann BE. Para-Chlorophenol (4-CP) Removal by a Palladium-Coated Biofilm: Coupling Catalytic Dechlorination and Microbial Mineralization via Denitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6309-6319. [PMID: 33848132 DOI: 10.1021/acs.est.0c08307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rapid dechlorination and full mineralization of para-chlorophenol (4-CP), a toxic contaminant, are unfulfilled goals in water treatment. Means to achieve both goals stem from the novel concept of coupling catalysis by palladium nanoparticles (PdNPs) with biodegradation in a biofilm. Here, we demonstrate that a synergistic version of the hydrogen (H2)-based membrane biofilm reactor (MBfR) enabled simultaneous removals of 4-CP and cocontaminating nitrate. In situ generation of PdNPs within the MBfR biofilm led to rapid 4-CP reductive dechlorination, with >90% selectivity to more bioavailable cyclohexanone. Then, the biofilm mineralized the cyclohexanone by utilizing it as a supplementary electron donor to accelerate nitrate reduction. Long-term operation of the Pd-MBfR enriched the microbial community in cyclohexanone degraders within Clostridium, Chryseobacterium, and Brachymonas. In addition, the PdNP played an important role in accelerating nitrite reduction; while NO3- reduction to NO2- was entirely accomplished by bacteria, NO2- reduction to N2 was catalyzed by PdNPs and bacterial reductases. This study documents a promising option for efficient and complete remediation of halogenated organics and nitrate by the combined action of PdNP and bacterial catalysis.
Collapse
Affiliation(s)
- Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287, United States
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
28
|
Luo YH, Zhou C, Bi Y, Long X, Wang B, Tang Y, Krajmalnik-Brown R, Rittmann BE. Long-Term Continuous Co-reduction of 1,1,1-Trichloroethane and Trichloroethene over Palladium Nanoparticles Spontaneously Deposited on H 2-Transfer Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2057-2066. [PMID: 33236898 DOI: 10.1021/acs.est.0c05217] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1,1,1-Trichloroethane (1,1,1-TCA) and trichloroethene (TCE) are common recalcitrant contaminants that coexist in groundwater. H2-induced reduction over precious-metal catalysts has proven advantageous, but its application to long-term continuous treatment has been limited due to poor H2-transfer efficiency and catalyst loss. Furthermore, catalytic reductions of aqueous 1,1,1-TCA alone or concomitant with TCE catalytic co-reductions are unstudied. Here, we investigated 1,1,1-TCA and TCE co-reduction using palladium nanoparticle (PdNP) catalysts spontaneously deposited on H2-transfer membranes that allow efficient H2 supply on demand in a bubble-free form. The catalytic activities for 1,1,1-TCA and TCE reductions reached 9.9 and 11 L/g-Pd/min, values significantly greater than that reported for other immobilized-PdNP systems. During 90 day continuous operation, removals were up to 95% for 1,1,1-TCA and 99% for TCE. The highest steady-state removal fluxes were 1.5 g/m2/day for 1,1,1-TCA and 1.7 g/m2/day for TCE. The major product was nontoxic ethane (94% selectivity). Only 4% of the originally deposited PdNPs were lost over 90 days of continuous operation. Documenting long-term continuous Pd-catalyzed dechlorination at high surface loading with minimal loss of the catalyst mass or activity, this work expands understanding of and provides a foundation for sustainable catalytic removal of co-existing chlorinated solvents.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5701, Arizona, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5701, Arizona, United States
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe 85287-5701, Arizona, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5701, Arizona, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe 85287-5701, Arizona, United States
| | - Boya Wang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee 32306-1058, Florida, United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee 32306-1058, Florida, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5701, Arizona, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5701, Arizona, United States
| |
Collapse
|
29
|
Schwarz A, Suárez JI, Aybar M, Nancucheo I, Martínez P, Rittmann BE. A membrane-biofilm system for sulfate conversion to elemental sulfur in mining-influenced waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140088. [PMID: 32559542 DOI: 10.1016/j.scitotenv.2020.140088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
A system of two membrane biofilm reactors (MBfRs) was tested for the conversion of sulfate (1.5 g/L) in mining-process water into elemental sulfur (S0) particles. Initially, a H2-based MBfR reduced sulfate to sulfide, and an O2-based MBfR then oxidized sulfide to S0. Later, the two MBfRs were coupled by a recirculation flow. Surface loading, reactor-coupling configuration, and substrate-gas pressure exerted important controls over performance of each MBfR and the coupled system. Continuously recirculating the liquid between the H2-based MBfR and the O2-based MBfR, compared to series operation, avoided the buildup of sulfide and gave overall greater sulfate removal (99% vs 62%) and production of S0 (61% vs 54%). The trade-off was that recirculation coupling demanded greater delivery of H2 and O2 (in air) due to the establishment of a sulfur cycle catalyzed by Sulfurospirillum spp., which had an average abundance of 46% in the H2-based MBfR fibers and 62% in the O2-based MBfR fibers at the end of the experiments. Sulfate-reducing bacteria (Desulfovibrio and Desulfomicrobium) and sulfur-oxidizing bacteria (Thiofaba, Thiomonas, Acidithiobacillus and Sulfuricurvum) averaged only 22% and 11% in the H2-based MBfR and O2-based MBfR fibers, respectively. Evidence suggests that the undesired Sulfurospirillum species, which reduce S0 to sulfide, can be suppressed by increasing sulfate-surface loading and H2 pressure.
Collapse
Affiliation(s)
- Alex Schwarz
- Departamento de Ingeniería Civil, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile.
| | - José Ignacio Suárez
- Departamento de Ingeniería Civil, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
| | - Marcelo Aybar
- Departamento de Ingeniería Civil, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
| | - Iván Nancucheo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | | | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, United States of America
| |
Collapse
|
30
|
Lai CY, Song Y, Wu M, Lu X, Wang Y, Yuan Z, Guo J. Microbial selenate reduction in membrane biofilm reactors using ethane and propane as electron donors. WATER RESEARCH 2020; 183:116008. [PMID: 32634677 DOI: 10.1016/j.watres.2020.116008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Selenate (Se(VI)) contamination in groundwater is one of major concerns for human health, in particular in shale gas extraction sites. Microbial selenate reduction coupled to methane (CH4) oxidation has been demonstrated very recently. Little is known whether ethane (C2H6) and butane (C3H8) are able to drive selenate reduction, although they are also important components in shale gas. In this study, we demonstrated Se(VI) bio-reduction could be achieved using C2H6 and C3H8 as electron donors and carbon sources. Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM-EDX) confirmed elemental Se (Se0) was the major final product formed from Se(VI) bio-reduction. Polyhydroxyalkanoates (PHAs) were generated in the biofilms as the internal electron-storage materials, which were consumed for sustaining Se(VI) bio-reduction in absence of C2H6 and C3H8. Microbial community analysis showed that two genera capable of oxidizing gaseous alkanes dominated in the biofilms, including Mycobacterium (in both C2H6 and C3H8-fed biofilms) and Rhodococcus (in C3H8-fed biofilm). In addition, several potential Se(VI) reducers (e.g., Variovorax) were detected in the biofilms. Investigation of Communities by Reconstruction of Unobserved States analysis supported that predictive genes associated with alkanes oxidation, denitrification and PHAs cycle were enriched in the biofilms. These findings offer insights into the process of selenate reduction driven by C2H6 and C3H8, which ultimately may help to develop a solution to use shale gas for groundwater remediation, especially near shale gas exploitation sites.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Yarong Song
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Yulu Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
31
|
Suárez JI, Aybar M, Nancucheo I, Poch B, Martínez P, Rittmann BE, Schwarz A. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors. CHEMOSPHERE 2020; 244:125508. [PMID: 31812042 DOI: 10.1016/j.chemosphere.2019.125508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Two H2-based membrane biofilm reactor (H2-MBfR) systems, differing in membrane type, were tested for sulfate reduction from a real mining-process water having low alkalinity and high concentrations of dissolved sulfate and calcium. Maximum sulfate reductions were 99%, with an optimum pH range between 8 and 8.5, which minimized any toxic effect of unionized hydrogen sulfide (H2S) on sulfate-reducing bacteria (SRB) and calcite scaling on the fibers and in the biofilm. Although several strategies for control of pH and gas back-diffusion were applied, it was not possible to sustain a high degree of sulfate reduction over the long-term. The most likely cause was precipitation of calcite inside the biofilm and on the surface of fibers, which was shown by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) analysis. Another possible cause was a decline in pH, leading to inhibition by H2S. A H2/CO2 mixture in the gas supply was able to temporarily recover the effectiveness of the reactors and stabilize the pH. Biomolecular analysis showed that the biofilm was comprised of 15-20% SRB, but a great variety of autotrophic and heterotrophic genera, including sulfur-oxidizing bacteria, were present. Results also suggest that the MBfR system can be optimized by improving H2 mass transfer using fibers of higher gas permeability and by feeding a H2/CO2 mixture that is automatically adjusted for pH control.
Collapse
Affiliation(s)
- José Ignacio Suárez
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Marcelo Aybar
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Iván Nancucheo
- Faculty of Engineering and Technology, Universidad San Sebastián, Lientur 1457, Concepción, 4030000, Chile
| | - Benjamín Poch
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | | | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, United States
| | - Alex Schwarz
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile.
| |
Collapse
|
32
|
Yang Y, Chen S, Wang B, Wen X, Li H, Zeng RJ. Effect of ferric ions on the anaerobic bio-dissolution of jarosites by Acidithiobacillus ferrooxidans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136334. [PMID: 32050370 DOI: 10.1016/j.scitotenv.2019.136334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Large amounts of jarosites are produced during zinc hydrometallurgy and bioleaching, as well as in acid sulfate soils and acid mine drainage environments. As such, understanding the behavior of jarosite dissolution is important for analyzing the iron cycle process and promoting the control and treatment of jarosites. In general, soluble ferric ions and jarosites coexist in acid environments; however, the relationship between soluble ferric ions and jarosites under anaerobic reductive conditions is still not well understood. In this study, the effect of adding Fe3+ on the promotion of the bio-dissolution of jarosites using Acidithiobacillus ferrooxidans is investigated. With the addition of 12 mM Fe3+, the efficiency and maximum rate of jarosite bio-dissolution were found to reach 84.1% and 2.66 mmol/(L·d), respectively. The addition of Fe3+ at concentrations higher than 12 mM did not further improve the jarosite bio-dissolution. These results indicate that the mechanisms underlying these improvements include: (i) the reduction of the zeta potential due to the compression of the diffusion layer of the electric double layer by Fe3+; (ii) bacteria growth enhancement and the stabilization of the pH of cultures via the reduction of soluble Fe3+. Based on these observations, this study serves to promote the development of jarosite bio-dissolution using Acidithiobacillus ferrooxidans and challenges the idea that soluble Fe3+ suppresses the bio-dissolution reaction of solid Fe3+ substances such as jarosite when soluble ferric ions and jarosite coexist.
Collapse
Affiliation(s)
- Yuankun Yang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shu Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bin Wang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xinyu Wen
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hanke Li
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Raymond Jianxiong Zeng
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China; Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
33
|
Zhao X, Zhang G, Zhang Z. TiO 2-based catalysts for photocatalytic reduction of aqueous oxyanions: State-of-the-art and future prospects. ENVIRONMENT INTERNATIONAL 2020; 136:105453. [PMID: 31924583 DOI: 10.1016/j.envint.2019.105453] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 05/22/2023]
Abstract
Nowadays, an increasing discharge of oxyanions to the natural environment has been attracting worldwide attention. TiO2-based photocatalysis is regarded as one of the most promising technologies for the conversion of toxic oxyanions (such as chromate, nitrate, nitrite, bromate, perchlorate and selenate) to harmless and/or less toxic substances in contaminated waters. Various types of TiO2-based catalysts have been developed, and each of them exhibits its own advantages in catalytic reduction of oxyanions. However, the application of these nanostructured TiO2 in real water bodies remains a challenge, with limitations associated with sunlight harvesting abilities, production costs, reuse stability and exposure risks. Herein, we aim to present a critical review on reported TiO2-based photocatalytic reduction of aqueous oxyanions, provide a comprehensive understanding of the possible reaction pathways of formed active species, and evaluate the reduction performance of different types of TiO2-based catalysts. In addition, the impact of operating parameters (such as solution pH, temperature, dissolved oxygen and coexisting substances) on catalytic reduction performance is discussed. Furthermore, the perspectives of TiO2-based photocatalytic reduction of oxyanions are also proposed.
Collapse
Affiliation(s)
- Xuesong Zhao
- Institute of Environmental Engineering and Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Guan Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Zhenghua Zhang
- Institute of Environmental Engineering and Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Hou D, Jassby D, Nerenberg R, Ren ZJ. Hydrophobic Gas Transfer Membranes for Wastewater Treatment and Resource Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11618-11635. [PMID: 31512850 DOI: 10.1021/acs.est.9b00902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gaseous compounds, such as CH4, H2, and O2, are commonly produced or consumed during wastewater treatment. Traditionally, these gases need to be removed or delivered using gas sparging or liquid heating, which can be energy intensive with low efficiency. Hydrophobic membranes are being increasingly investigated in wastewater treatment and resource recovery. This is because these semipermeable barriers repel water and create a three-phase interface that enhances mass transfer and chemical conversions. This Critical Review provides a first comprehensive analysis of different hydrophobic membranes and processes, and identifies the challenges and potential for future system development. The discussions and analyses were grouped based on mechanisms and applications, including membrane gas extraction, membrane gas delivery, and hybrid processes. Major challenges, such as membrane fouling, wetting, and limited selectivity and functionality, are identified, and potential solutions articulated. New opportunities, such as electrochemical coating, integrated membrane electrodes, and membrane functionalization, are also discussed to provide insights for further development of more efficient and low-cost membranes and processes.
Collapse
Affiliation(s)
- Dianxun Hou
- Department of Civil, Environmental, and Architectural Engineering , University of Colorado Boulder , Boulder , Colorado 80303 , United States
- WaterNova, Inc. , Lakewood , Colorado 80227 , United States
| | - David Jassby
- Department of Civil and Environmental Engineering , University of California , Los Angeles , California 90095 , United States
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering , University of Colorado Boulder , Boulder , Colorado 80303 , United States
- Department of Civil and Environmental Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
35
|
Lai YS, Ontiveros‐Valencia A, Coskun T, Zhou C, Rittmann BE. Electron‐acceptor loadings affect chloroform dechlorination in a hydrogen‐based membrane biofilm reactor. Biotechnol Bioeng 2019; 116:1439-1448. [DOI: 10.1002/bit.26945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 11/09/2022]
Affiliation(s)
- YenJung Sean Lai
- School of Sustainable Engineering and the Built EnvironmentArizona State University, Biodesign InstituteTempe Arizona
| | - Aura Ontiveros‐Valencia
- School of Sustainable Engineering and the Built EnvironmentArizona State University, Biodesign InstituteTempe Arizona
- Present address: Escuela de Ingenieria y CienciasTecnologico de Monterrey, Campus PueblaPuebla Pue Mexico
| | - Tamer Coskun
- School of Sustainable Engineering and the Built EnvironmentArizona State University, Biodesign InstituteTempe Arizona
| | - Chen Zhou
- School of Sustainable Engineering and the Built EnvironmentArizona State University, Biodesign InstituteTempe Arizona
| | - Bruce E. Rittmann
- School of Sustainable Engineering and the Built EnvironmentArizona State University, Biodesign InstituteTempe Arizona
| |
Collapse
|