2
|
Cendejas PM, Goodman AG. Vaccination and Control Methods of West Nile Virus Infection in Equids and Humans. Vaccines (Basel) 2024; 12:485. [PMID: 38793736 PMCID: PMC11125624 DOI: 10.3390/vaccines12050485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
West Nile virus (WNV) is capable of causing severe neurologic disease in both humans and equines, making it a disease of importance in both human medicine and veterinary medicine. No targeted treatments exist for WNV infection in either humans or equines. Infection is treated symptomatically through management of symptoms like fever and seizures. As treatment for WNV is purely supportive, the response to WNV has focused primarily on methods of disease prevention. To this end, research efforts have yielded several effective vaccines for equine use as well as numerous conventional mosquito control techniques. Even with the implementation of these techniques, disease caused by WNV remains a concern since no human vaccine exists. Due to the lack of a human vaccine, novel preventative strategies are under active research and development. Of these strategies, some of the most conceptually promising are techniques using genetically modified mosquitoes, addressing the disease at the vector level with minimal ecological side effects. Taken together, the use of combined, synergistic methods, such as physical barriers, transgenic mosquitoes, and immunological targets, will be the best way to prevent WNV disease.
Collapse
Affiliation(s)
- Parker M. Cendejas
- Doctor of Veterinary Medicine Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Albayrak H, Sahindokuyucu I, Muftuoglu B, Tamer C, Kadi H, Ozan E, Yilmaz O, Kilic H, Kurucay HN, Coven F, Gumusova S, Yazici Z, Elhag AE. Sentinel serosurveillance of backyard hens proved West Nile virus circulation in the western provinces of Turkey. Vet Med Sci 2021; 7:2348-2352. [PMID: 34323396 PMCID: PMC8604147 DOI: 10.1002/vms3.589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus of a re-emergence importance with a wide range of vertebrate hosts. Granted, it causes asymptomatic infection, but fatal cases and neurologic disorders were also recorded, especially in humans, horses and some exposed birds. The virus is globally spread and birds are considered an amplifying and reservoir host of WNV, helping to spread the disease due to their close contact with main hosts. In this study, we aimed to detect the presence of antibodies against WNV in backyard hens that were reared in the western Anatolian part of Turkey. A total of 480 chicken sera were randomly collected from six provinces in the west of Turkey (Mugla, Izmir, Aydin, Afyonkarahisar, Kutahya and Manisa) with 80 samples from each province (40 in spring and 40 in fall seasons). They were tested by using a competitive ELISA method to identify the specific avian antibodies of IgG that produced against the WNV envelope proteins (pr-E). Twelve of 480 (2.5%) sera were found seropositive, three of these positive sera were detected from the Izmir province (3.75%) collected in the spring session and the other nine positive sera were detected from the Mugla province (11.25%) collected in the fall session. Both of these provinces are located seaside and have suitable climate conditions for vectors of infection. The results indicated that WNV infection is in circulation in these provinces, and that may put the other susceptible vertebrates under risk of infection.
Collapse
Affiliation(s)
- Harun Albayrak
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ismail Sahindokuyucu
- Bornova Veterinary Control Institute, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Bahadir Muftuoglu
- Department of Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Cuneyt Tamer
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Hamza Kadi
- Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, Samsun, Turkey
| | - Emre Ozan
- Department of Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ozge Yilmaz
- Bornova Veterinary Control Institute, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Hamza Kilic
- Bornova Veterinary Control Institute, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Hanne Nur Kurucay
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Fethiye Coven
- Bornova Veterinary Control Institute, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Semra Gumusova
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Zafer Yazici
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ahmed Eisa Elhag
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey.,Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary Sciences, University of Gadarif, Al Qadarif, Sudan
| |
Collapse
|
5
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
8
|
Pan Y, Jia R, Li J, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Yin Z, Jing B, Huang J, Zhang S, Zhang L, Liu Y, Yu Y, Tian B, Pan L, Rehman MU, Cheng A. Heterologous prime-boost: an important candidate immunization strategy against Tembusu virus. Virol J 2020; 17:67. [PMID: 32398028 PMCID: PMC7218524 DOI: 10.1186/s12985-020-01334-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/23/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tembusu virus (TMUV), a newly emerging pathogenic flavivirus, spreads rapidly between ducks, causing massive economic losses in the Chinese duck industry. Vaccination is the most effective method to prevent TMUV. Therefore, it is urgent to look for an effective vaccine strategy against TMUV. Heterologous prime-boost regimens priming with vaccines and boosting with recombinant adenovirus vaccines have been proven to be successful strategies for protecting against viruses in experimental animal models. METHODS In this study, heterologous and homologous prime-boost strategies using an attenuated salmonella vaccine and a recombinant adenovirus vaccine expressing prM-E or the E gene of TMUV were evaluated to protect ducks against TMUV infection for the first time, including priming and boosting with the attenuated salmonella vaccine, priming and boosting with the recombinant adenovirus vaccine, and priming with the attenuated salmonella vaccine and boosting with the recombinant adenovirus vaccine. Humoral and cellular immune responses were detected and evaluated. We then challenged the ducks with TMUV at 12 days after boosting to assay for clinical symptoms, mortality, viral loads and histopathological lesions after these different strategies. RESULTS Compared with the homologous prime-boost strategies, the heterologous prime-boost regimen produced higher levels of neutralizing antibodies and IgG antibodies against TMUV. Additionally, it could induce higher levels of IFN-γ than homologous prime-boost strategies in the later stage. Interestingly, the heterologous prime-boost strategy induced higher levels of IL-4 in the early stage, but the IL-4 levels gradually decreased and were even lower than those induced by the homologous prime-boost strategy in the later stage. Moreover, the heterologous prime-boost strategy could efficiently protect ducks, with low viral titres, no clinical symptoms and histopathological lesions in this experiment after challenge with TMUV, while slight clinical symptoms and histopathological lesions were observed with the homologous prime-boost strategies. CONCLUSIONS Our results indicated that the heterologous prime-boost strategy induced higher levels of humoral and cellular immune responses and better protection against TMUV infection in ducks than the homologous prime-boost strategies, suggesting that the heterologous prime-boost strategy is an important candidate for the design of a novel vaccine strategy against TMUV.
Collapse
Affiliation(s)
- Yuting Pan
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Juping Li
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Zhongqiong Yin
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Bo Jing
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Lin Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Yanlin Yu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| |
Collapse
|
9
|
Jiménez de Oya N, Escribano-Romero E, Blázquez AB, Martín-Acebes MA, Saiz JC. Current Progress of Avian Vaccines Against West Nile Virus. Vaccines (Basel) 2019; 7:vaccines7040126. [PMID: 31547632 PMCID: PMC6963603 DOI: 10.3390/vaccines7040126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/15/2023] Open
Abstract
Birds are the main natural host of West Nile virus (WNV), the worldwide most distributed mosquito-borne flavivirus, but humans and equids can also be sporadic hosts. Many avian species have been reported as susceptible to WNV, particularly corvids. In the case that clinical disease develops in birds, this is due to virus invasion of different organs: liver, spleen, kidney, heart, and mainly the central nervous system, which can lead to death 24–48 h later. Nowadays, vaccines have only been licensed for use in equids; thus, the availability of avian vaccines would benefit bird populations, both domestic and wild ones. Such vaccines could be used in endangered species housed in rehabilitation and wildlife reserves, and in animals located at zoos and other recreational installations, but also in farm birds, and in those that are grown for hunting and restocking activities. Even more, controlling WNV infection in birds can also be useful to prevent its spread and limit outbreaks. So far, different commercial and experimental vaccines (inactivated, attenuated, and recombinant viruses, and subunits and DNA-based candidates) have been evaluated, with various regimens, both in domestic and wild avian species. However, there are still disadvantages that must be overcome before avian vaccination can be implemented, such as its cost-effectiveness for domestic birds since in many species the pathogenicity is low or zero, or the viability of being able to achieve collective immunity in wild birds in freedom. Here, a comprehensive review of what has been done until now in the field of avian vaccines against WNV is presented and discussed.
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Estela Escribano-Romero
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Ana-Belén Blázquez
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Juan-Carlos Saiz
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| |
Collapse
|