1
|
AlQadeeb H, Baltazar M, Cazares A, Poonpanichakul T, Kjos M, French N, Kadioglu A, O’Brien M. The Streptococcus agalactiae LytSR two-component regulatory system promotes vaginal colonization and virulence in vivo. Microbiol Spectr 2024; 12:e0197024. [PMID: 39400158 PMCID: PMC11537067 DOI: 10.1128/spectrum.01970-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Streptococcus agalactiae (or group B Streptococcus, GBS) is a leading cause of neonatal sepsis and meningitis globally. To sense and respond to variations in its environment, GBS possesses multiple two-component regulatory systems (TCSs), such as LytSR. Here, we aimed to investigate the role of LytSR in GBS pathogenicity. We generated an isogenic lytS knockout mutant in a clinical GBS isolate and used a combination of phenotypic in vitro assays and in vivo murine models to investigate the contribution of lytS to the colonization and invasive properties of GBS. Deletion of the lytS gene in the GBS chromosome resulted in significantly higher survival rates in mice during sepsis, accompanied by reduced bacterial loads in blood, lung, spleen, kidney, and brain tissues compared to infection with the wild-type strain. In a mouse model of GBS vaginal colonization, we also observed that the lytS knockout mutant was cleared more readily from the vaginal tract compared to its wild-type counterpart. Interestingly, lower levels of proinflammatory cytokines were found in the serum of mice infected with the lytS mutant. Our results demonstrate that the LytSR TCS plays a key role in GBS tissue invasion and pathogenesis, and persistence of mucosal colonization.IMPORTANCEStreptococcus agalactiae (group B Streptococcus, or GBS) is a common commensal of the female urogenital tract and one of WHO's priority pathogens. The bacterium has evolved mechanisms to adapt and survive in its host, many of which are regulated via two-component signal transduction systems (TCSs); however, the exact contributions of TCSs toward GBS pathogenicity remain largely obscure. We have constructed a TCS lytS-deficient mutant in a CC-17 hypervirulent GBS clinical isolate. Using murine models, we showed that LytSR regulatory system is essential for vaginal colonization via promoting biofilm production. We also observed that lytS deficiency led to significantly attenuated virulence properties and lower levels of proinflammatory cytokines in blood. Our findings are of significant importance in that they unveil a previously unreported role for LytSR in GBS and pave the way toward a better understanding of its ability to transition from an innocuous commensal to a deadly pathogen.
Collapse
Affiliation(s)
- Hajar AlQadeeb
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Adrian Cazares
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Tiraput Poonpanichakul
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Nakhon Pathom, Thailand
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Marie O’Brien
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- ReNewVax Ltd, Liverpool, United Kingdom
| |
Collapse
|
2
|
Imperi M, Gherardi G, Alfarone G, Creti R. Group B Streptococcus Infections in Non-Pregnant Adults, Italy, 2015-2019. Pathogens 2024; 13:807. [PMID: 39338998 PMCID: PMC11434888 DOI: 10.3390/pathogens13090807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Group B Streptococcus (GBS, Streptococcus agalactiae) is a pathogen of increasing importance in adults. Severe and invasive cases in non-pregnant adults were collected during the period 2015-2019 by voluntary-based surveillance. In total, 108 GBS strains were phenotypically and genotypically characterized for the serotype, antimicrobial resistance, pili, surface protein genes, and the hyper-virulent adhesin hvgA. Patients were divided into two age groups: adults (18-64 years; n = 32) and older adults (≥65 years; n = 72). The average age was 70.8 years, with a male/female ratio of 1.7. Most isolates were recovered from cases of bacteremia (blood, n = 93), and a higher frequency of invasive GBS infections (iGBS) was found among older adults (66.7%). Serotype III was the most frequent (n = 41, 38%), followed by type Ia and type V (n = 20 each, 18.5%). Serotypes Ia, Ib, II, III, IV, and V accounted for all but one isolates (99.1%). The iGBS isolates were universally susceptible to penicillin, while the prevalence of resistance to clindamycin, erythromycin, tetracycline, and high-level gentamicin resistance was 26.8%, 24.1%, 85.2%, and 5.5%, respectively, with the predominance of the erm(B) gene for macrolide resistance and the tet(M) gene for tetracycline resistance. The associations between the serotypes/antimicrobial resistance/virulence traits underlined the increasing importance of serotype III and its contribution to antimicrobial resistance as well as the steady increase over time of serotype IV. This nationwide study confirmed the need for monitoring the GBS epidemiology in non-pregnant adults through continuous surveillance of GBS infections.
Collapse
Affiliation(s)
| | | | | | - Roberta Creti
- Department of Infectious Diseases, Antibiotic Resistance and Special Pathogens Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.G.); (G.A.)
| |
Collapse
|
3
|
Chen SL, Tiruvayipati S, Tang WY, M. S. Barkham T. Multilocus sequence typing database for Streptococcus agalactiae contains a spurious allele of the transketolase gene. Microbiol Spectr 2024; 12:e0053724. [PMID: 39052441 PMCID: PMC11370237 DOI: 10.1128/spectrum.00537-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024] Open
Abstract
The tkt (transketolase) gene is one of the seven gene fragments used in the multilocus sequence typing (MLST) system for Streptococcus agalactiae. We discovered that the tkt_134 allele is derived from a homologous gene (which we designate tktX) that is not present in all S. agalactiae; all known strains that contain a match to the tkt_134 allele also contain a gene sequence that is much closer in sequence identity to the other non-tkt_134 alleles (i.e., the canonical tkt gene) in the database. Based on these data, the tkt_134 allele has been removed from the MLST database as of September 2021, and all sequence types containing tkt_134 have also been removed.IMPORTANCEMultilocus sequence typing (MLST) databases are a common good and remain important for research, medical, and epidemiological purposes. This remains true even in the context of widespread whole-genome sequencing. We discovered a contaminating allele of the tkt gene in the S. agalactiae MLST database that led to unstable, ambiguous, or erroneous MLST assignment. The allele has since been removed from the public database based on the results presented in this manuscript.
Collapse
Affiliation(s)
- Swaine L. Chen
- Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, Singapore, Singapore
| | - Suma Tiruvayipati
- Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wen Ying Tang
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | | |
Collapse
|
4
|
Cullen R, Teçza M, Miclot T, Behan S, Jain M, Avink MK, Cooney JC, Kagawa TF. The 1.7 Å crystal structure of the C5a peptidase from Streptococcus agalactiae (ScpB) reveals an active site competent for catalysis. Proteins 2024; 92:427-431. [PMID: 37921533 DOI: 10.1002/prot.26625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
A 1.7 Å structure is presented for an active form of the virulence factor ScpB, the C5a peptidase from Streptococcus agalactiae. The previously reported structure of the ScpB active site mutant exhibited a large separation (~20 Å) between the catalytic His and Ser residues. Significant differences are observed in the catalytic domain between the current and mutant ScpB structures resulting with a high RMSDCα (4.6 Å). The fold of the active form of ScpB is nearly identical to ScpA (RMSDCα 0.2 Å), the C5a-peptidase from Streptococcus pyogenes. Both ScpA and ScpB have comparable activity against human C5a, indicating neither enzyme require host proteins for C5a-ase activity. These studies are a first step in resolving reported differences in the specificities of these enzymes.
Collapse
Affiliation(s)
- Ruth Cullen
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Malgorzata Teçza
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Tom Miclot
- Lycée Stanislas, Villers-de-Nancy, France
| | - Senan Behan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Monica Jain
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Marjet Klein Avink
- School of Life Sciences, Engineering and Design, University of Applied Sciences, Saxion, The Netherlands
| | - Jakki C Cooney
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
- SSPC, University of Limerick, Limerick, Ireland
| | - Todd F Kagawa
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- SSPC, University of Limerick, Limerick, Ireland
| |
Collapse
|
5
|
Schar D, Zhang Z, Pires J, Vrancken B, Suchard MA, Lemey P, Ip M, Gilbert M, Van Boeckel T, Dellicour S. Dispersal history and bidirectional human-fish host switching of invasive, hypervirulent Streptococcus agalactiae sequence type 283. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002454. [PMID: 37856430 PMCID: PMC10586614 DOI: 10.1371/journal.pgph.0002454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Human group B Streptococcus (GBS) infections attributable to an invasive, hypervirulent sequence type (ST) 283 have been associated with freshwater fish consumption in Asia. The origin, geographic dispersion pathways and host transitions of GBS ST283 remain unresolved. We gather 328 ST283 isolate whole-genome sequences collected from humans and fish between 1998 and 2021, representing eleven countries across four continents. We apply Bayesian phylogeographic analyses to reconstruct the dispersal history of ST283 and combine ST283 phylogenies with genetic markers and host association to investigate host switching and the gain and loss of antimicrobial resistance and virulence factor genes. Initial dispersal within Asia followed ST283 emergence in the early 1980s, with Singapore, Thailand and Hong Kong observed as early transmission hubs. Subsequent intercontinental dispersal originating from Vietnam began in the decade commencing 2001, demonstrating ST283 holds potential to expand geographically. Furthermore, we observe bidirectional host switching, with the detection of more frequent human-to-fish than fish-to-human transitions, suggesting that sound wastewater management, hygiene and sanitation may help to interrupt chains of transmission between hosts. We also show that antimicrobial resistance and virulence factor genes were lost more frequently than gained across the evolutionary history of ST283. Our findings highlight the need for enhanced surveillance, clinical awareness, and targeted risk mitigation to limit transmission and reduce the impact of an emerging pathogen associated with a high-growth aquaculture industry.
Collapse
Affiliation(s)
- Daniel Schar
- Spatial Epidemiology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Zhenyu Zhang
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Joao Pires
- Institute for Environmental Decisions, ETH Zurich, Zurich, Switzerland
| | - Bram Vrancken
- Spatial Epidemiology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States of America
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Marius Gilbert
- Spatial Epidemiology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
- Fonds National de la Recherche Scientifique, Brussels, Belgium
| | - Thomas Van Boeckel
- Institute for Environmental Decisions, ETH Zurich, Zurich, Switzerland
- Center for Diseases Dynamics, Economics, and Policy, New Delhi, India
| | - Simon Dellicour
- Spatial Epidemiology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Cao Q, Dong Y, Guo C, Ji S, Nie M, Liu G, Wan X, Lu C, Liu Y. luxS contributes to intramacrophage survival of Streptococcus agalactiae by positively affecting the expression of fruRKI operon. Vet Res 2023; 54:83. [PMID: 37759250 PMCID: PMC10536698 DOI: 10.1186/s13567-023-01210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The LuxS quorum sensing system is a widespread system employed by many bacteria for cell-to-cell communication. The luxS gene has been demonstrated to play a crucial role in intramacrophage survival of piscine Streptococcus agalactiae, but the underlying mechanism remains largely unknown. In this study, transcriptome analysis, followed by the luxS gene deletion and subsequent functional studies, confirmed that impaired bacterial survival inside macrophages due to the inactivation of luxS was associated with reduced transcription of the fruRKI operon, encoding the fructose-specific phosphotransferase system. Further, luxS was determined not to enhance the transcription of fruRKI operon by binding its promoter, but to upregulate the expression of this operon via affecting the binding ability of catabolite control protein A (CcpA) to the catabolite responsive element (cre) in the promoter of fruRKI. Collectively, our study identifies a novel and previously unappreciated role for luxS in bacterial intracellular survival, which may give a more thorough understanding of the immune evasion mechanism in S. agalactiae.
Collapse
Affiliation(s)
- Qing Cao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Changming Guo
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Shuting Ji
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Meng Nie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guangjin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xihe Wan
- Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Barkham T, Tang WY, Wang YC, Sithithaworn P, Kopolrat KY, Worasith C. Human Fecal Carriage of Streptococcus agalactiae Sequence Type 283, Thailand. Emerg Infect Dis 2023; 29:1627-1629. [PMID: 37486205 PMCID: PMC10370859 DOI: 10.3201/eid2908.230098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus) sequence type 283 bacteremia, found almost exclusively in Southeast Asia, is associated with consuming raw freshwater fish, but some patients deny consumption. We detected fecal carriage in 5/184 (2.7%) persons in northeast Thailand. Human carriers might contribute to transmission or be the original source of this sequence type.
Collapse
|
8
|
Muthanna A, Desa MNM, Alsalemi W, Liyana Abd Aziz NA, Dzaraly ND, Baharin NHZ, Aziz NA, Ali MM, Nor LAM, Ismail Z, Ahmad NH, Shan CH, Azmai MNA, Amin-Nordin S. Phenotypic and genotypic comparison of pathogenic group B Streptococcus isolated from human and cultured tilapia (Oreochromis species) in Malaysia. Comp Immunol Microbiol Infect Dis 2023; 97:101993. [PMID: 37167694 DOI: 10.1016/j.cimid.2023.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Group B Streptococcus (GBS) is a major cause of several infectious diseases in humans and fish. This study was conducted to compare human and fish-derived GBS in terms of their antimicrobial susceptibility, serotype, virulence and pili genes and sequence type (ST), and to determine whether there is a potential linkage of zoonotic transmission in Malaysia. GBS isolated from humans and fish had similar phenotypic characteristics and differed in virulence gene profile, antimicrobial susceptibility, serotype and sequence type. Fish GBS isolates had lower genetic diversity and higher antibiotic susceptibility than human isolates. We report a rare detection of the potentially fish-adapted ST283 in human GBS isolates. Both human and fish ST283 shared several phenotypic and genotypic features, including virulence and pilus genes and antimicrobial susceptibility, illustrating the value of monitoring GBS within the One Health scope. In this study, two human GBS ST283 isolates belonging to the variant common in fish hosts were identified, raising awareness of the zoonotic potential between the different species in Malaysia.
Collapse
Affiliation(s)
- AbdulRahman Muthanna
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Wardah Alsalemi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nur Aimi Liyana Abd Aziz
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nurul Diana Dzaraly
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nurul Hana Zainal Baharin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nur Afiza Aziz
- Department of Pathology, Sultanah Aminah Hospital, Johor Bahru, Johor, Malaysia
| | - Marlindawati Mohd Ali
- Department of Pathology, Tuanku Ja'afar Seremban Hospital, Seremban, Negeri Sembilan, Malaysia
| | | | - Zalina Ismail
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nur Hanani Ahmad
- Department of Pathology, Sungai Buloh Hospital, Sungai Buloh, Selangor, Malaysia
| | - Chua Hui Shan
- Department of Pathology, Melaka General Hospital, Melaka, Malaysia
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; Department of Medical Microbiology, Sultan Abdul Aziz Shah Hospital, Universiti Putra Malaysia, Persiaran MARDI - UPM, 43400, Selangor, Malaysia.
| |
Collapse
|
9
|
Mejia ME, Robertson CM, Patras KA. Interspecies Interactions within the Host: the Social Network of Group B Streptococcus. Infect Immun 2023; 91:e0044022. [PMID: 36975791 PMCID: PMC10112235 DOI: 10.1128/iai.00440-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Group B Streptococcus (GBS) is a pervasive neonatal pathogen accounting for a combined half a million deaths and stillbirths annually. The most common source of fetal or neonatal GBS exposure is the maternal microbiota. GBS asymptomatically colonizes the gastrointestinal and vaginal mucosa of 1 in 5 individuals globally, although its precise role in these niches is not well understood. To prevent vertical transmission, broad-spectrum antibiotics are administered to GBS-positive mothers during labor in many countries. Although antibiotics have significantly reduced GBS early-onset neonatal disease, there are several unintended consequences, including an altered neonatal microbiota and increased risk for other microbial infections. Additionally, the incidence of late-onset GBS neonatal disease remains unaffected and has sparked an emerging hypothesis that GBS-microbe interactions in developing neonatal gut microbiota may be directly involved in this disease process. This review summarizes our current understanding of GBS interactions with other resident microbes at the mucosal surface from multiple angles, including clinical association studies, agriculture and aquaculture observations, and experimental animal model systems. We also include a comprehensive review of in vitro findings of GBS interactions with other bacterial and fungal microbes, both commensal and pathogenic, along with newly established animal models of GBS vaginal colonization and in utero or neonatal infection. Finally, we provide a perspective on emerging areas of research and current strategies to design microbe-targeting prebiotic or probiotic therapeutic intervention strategies to prevent GBS disease in vulnerable populations.
Collapse
Affiliation(s)
- Marlyd E. Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Clare M. Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Nusman CM, Snoek L, van Leeuwen LM, Dierikx TH, van der Weijden BM, Achten NB, Bijlsma MW, Visser DH, van Houten MA, Bekker V, de Meij TGJ, van Rossem E, Felderhof M, Plötz FB. Group B Streptococcus Early-Onset Disease: New Preventive and Diagnostic Tools to Decrease the Burden of Antibiotic Use. Antibiotics (Basel) 2023; 12:489. [PMID: 36978356 PMCID: PMC10044457 DOI: 10.3390/antibiotics12030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The difficulty in recognizing early-onset neonatal sepsis (EONS) in a timely manner due to non-specific symptoms and the limitations of diagnostic tests, combined with the risk of serious consequences if EONS is not treated in a timely manner, has resulted in a low threshold for starting empirical antibiotic treatment. New guideline strategies, such as the neonatal sepsis calculator, have been proven to reduce the antibiotic burden related to EONS, but lack sensitivity for detecting EONS. In this review, the potential of novel, targeted preventive and diagnostic methods for EONS is discussed from three different perspectives: maternal, umbilical cord and newborn perspectives. Promising strategies from the maternal perspective include Group B Streptococcus (GBS) prevention, exploring the virulence factors of GBS, maternal immunization and antepartum biomarkers. The diagnostic methods obtained from the umbilical cord are preliminary but promising. Finally, promising fields from the newborn perspective include biomarkers, new microbiological techniques and clinical prediction and monitoring strategies. Consensus on the definition of EONS and the standardization of research on novel diagnostic biomarkers are crucial for future implementation and to reduce current antibiotic overexposure in newborns.
Collapse
Affiliation(s)
- Charlotte M. Nusman
- Department of Paediatrics, Emma Children’s Hospital, Amsterdam University Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Linde Snoek
- Department of Neurology, Amsterdam University Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lisanne M. van Leeuwen
- Department of Paediatrics and Department of Vaccin, Infection and Immunology, Spaarne Hospital, Boerhaavelaan 22, 2035 RC Haarlem, The Netherlands
- Department of Paediatrics, Willem Alexander Children Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Thomas H. Dierikx
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Bo M. van der Weijden
- Department of Paediatrics, Emma Children’s Hospital, Amsterdam University Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Paediatrics, Tergooi Hospital, Rijksstraatweg 1, 1261 AN Blaricum, The Netherlands
| | - Niek B. Achten
- Department of Paediatrics, Erasmus University Medical Centre, Sophia Children’s Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Merijn W. Bijlsma
- Department of Paediatrics, Emma Children’s Hospital, Amsterdam University Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Douwe H. Visser
- Department of Neonatology, Emma Children’s Hospital, Amsterdam University Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marlies A. van Houten
- Department of Paediatrics and Department of Vaccin, Infection and Immunology, Spaarne Hospital, Boerhaavelaan 22, 2035 RC Haarlem, The Netherlands
| | - Vincent Bekker
- Division of Neonatology, Department of Pediatrics, Willem Alexander Children’s Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Tim G. J. de Meij
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Ellen van Rossem
- Department of Paediatrics, Flevo Hospital, Hospitaalweg 1, 1315 RA Almere, The Netherlands
| | - Mariet Felderhof
- Department of Paediatrics, Flevo Hospital, Hospitaalweg 1, 1315 RA Almere, The Netherlands
| | - Frans B. Plötz
- Department of Paediatrics, Emma Children’s Hospital, Amsterdam University Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Paediatrics, Tergooi Hospital, Rijksstraatweg 1, 1261 AN Blaricum, The Netherlands
| |
Collapse
|
11
|
Luangraj M, Hiestand J, Rasphone O, Chen SL, Davong V, Barkham T, Simpson AJ, Dance DA, Keoluangkhot V. Invasive Streptococcus agalactiae ST283 infection after fish consumption in two sisters, Lao PDR. Wellcome Open Res 2022; 7:148. [PMID: 36324702 PMCID: PMC9607938 DOI: 10.12688/wellcomeopenres.17804.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 07/25/2023] Open
Abstract
Background: Streptococcus agalactiae is a normal commensal of the human gastro-intestinal and female genital tracts. It causes serious disease in neonates and pregnant women, as well as non-pregnant adults. Food-borne outbreaks have also been described. A link between invasive Group B streptococcus (GBS) infection in humans caused by S. agalactiae serotype III-4, sequence type 283 (ST283) and the consumption of raw fresh-water fish was first described in Singapore in 2015. Case presentation: We report the simultaneous occurrence of acute fever and myalgia in two sisters who were visiting Laos. Both were found to have invasive GBS ST283 infection, confirmed by blood culture. Infection was temporally linked to fish consumption. They responded well to intravenous antibiotics within 48 hours. Conclusions: Food-borne transmission of Streptococcus agalactiae is an important and under-recognised source of serious human disease throughout Southeast Asia and possibly beyond.
Collapse
Affiliation(s)
- Manophab Luangraj
- Lao-Oxford-Mahosot hospital-Wellcome Trust Research Unit, Microbiology department, Mahosot hospital, Vientiane, 0100, Lao People's Democratic Republic
| | - Jasmin Hiestand
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, 8091, Swaziland
| | - Othila Rasphone
- Infectious Diseases Centre, Mahosot Hospital, Vientiane, 0100, Lao People's Democratic Republic
| | - Swaine L. Chen
- NUHS Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious diseases, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, 119228, Singapore
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, 60 Biopolis street, 138672, Singapore
| | - Viengmon Davong
- Lao-Oxford-Mahosot hospital-Wellcome Trust Research Unit, Microbiology department, Mahosot hospital, Vientiane, 0100, Lao People's Democratic Republic
| | - Timothy Barkham
- Department of Laboratory Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Andrew J.H. Simpson
- Lao-Oxford-Mahosot hospital-Wellcome Trust Research Unit, Microbiology department, Mahosot hospital, Vientiane, 0100, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, Old Road Campus, Roosevelt Drive, University of Oxford, Oxford, OX3 7LG, UK
| | - David A.B. Dance
- Lao-Oxford-Mahosot hospital-Wellcome Trust Research Unit, Microbiology department, Mahosot hospital, Vientiane, 0100, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, Old Road Campus, Roosevelt Drive, University of Oxford, Oxford, OX3 7LG, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Valy Keoluangkhot
- Infectious Diseases Centre, Mahosot Hospital, Vientiane, 0100, Lao People's Democratic Republic
| |
Collapse
|
12
|
Yousaf Kazmi S. The etymology of microbial nomenclature and the diseases these cause in a historical perspective. Saudi J Biol Sci 2022; 29:103454. [PMID: 36248774 PMCID: PMC9562425 DOI: 10.1016/j.sjbs.2022.103454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/20/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
When the hunter-gatherers finally started settling down as farmers, infectious diseases started scourging them. The earlier humans could differentiate sporadic diseases like tooth decay, tumors, etc., from the infectious diseases that used to cause outbreaks and epidemics. The earliest comprehension of infectious diseases was primarily based on religious background and myths, but as human knowledge grew, the causes of these diseases were being probed. Similarly, the taxonomy of infectious diseases gradually changed from superstitious prospects, like influenza, signifying disease infliction due to the "influence of stars" to more scientific ones like tuberculosis derived from the word "tuberculum" meaning small swellings seen in postmortem human tissue specimens. From a historical perspective, we identified five categories for the basis of the microbial nomenclature, namely phenotypic characteristics of microbe, disease name, eponym, body site of isolation, and toponym. This review article explores the etymology of common infectious diseases and microorganisms' nomenclature in a historical context.
Collapse
Affiliation(s)
- Syed Yousaf Kazmi
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, P.O. Box 66, Post code 11952, Al Majmaah, Saudi Arabia
| |
Collapse
|
13
|
Oliveira LMA, Simões LC, Costa NS, Zadoks RN, Pinto TCA. The landscape of antimicrobial resistance in the neonatal and multi-host pathogen group B Streptococcus: review from a One Health perspective. Front Microbiol 2022; 13:943413. [PMID: 35966683 PMCID: PMC9365930 DOI: 10.3389/fmicb.2022.943413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Group B Streptococcus (GBS) stands out as a major agent of pediatric disease in humans, being responsible for 392,000 invasive disease cases and 91,000 deaths in infants each year across the world. Moreover, GBS, also known as Streptococcus agalactiae, is an important agent of infections in animal hosts, notably cattle and fish. GBS population structure is composed of multiple clades that differ in virulence, antimicrobial resistance (AMR), and niche adaptation; however, there is growing evidence of interspecies transmission, both from evolutionary analysis and from disease investigations. The prevention of GBS infections through vaccination is desirable in humans as well as animals because it reduces the burden of GBS disease and reduces our reliance on antimicrobials, and the risk of adverse reactions or selection for AMR. In this perspective article, we navigate through the landscape of AMR in the pediatric and multi-host pathogen GBS under the One Health perspective and discuss the use of antimicrobials to control GBS disease, the evolution of AMR in the GBS population, and the future perspectives of resistant GBS infections in the post-pandemic era.
Collapse
Affiliation(s)
- Laura M. A. Oliveira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leandro C. Simões
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia S. Costa
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ruth N. Zadoks
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - Tatiana C. A. Pinto
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Genomic Traits Associated with Virulence and Antimicrobial Resistance of Invasive Group B Streptococcus Isolates with Reduced Penicillin Susceptibility from Elderly Adults. Microbiol Spectr 2022; 10:e0056822. [PMID: 35639001 PMCID: PMC9241772 DOI: 10.1128/spectrum.00568-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate genomic traits underlying the antimicrobial resistance and virulence of multidrug-resistant (MDR) group B streptococci with reduced penicillin susceptibility (PRGBS) recovered from elderly patients with bloodstream infections, which remain poorly characterized. The pangenome was found to be open, with the predicted pan- and core genome sizes being 3,531 and 1,694 genes, respectively. Accessory and unique genes were enriched for the Clusters of Orthologous Groups (COG) categories L, Replication, recombination, and repair, and K, Transcription. All MDR PRGBS isolates retained a core virulence gene repertoire (bibA, fbsA/-B/-C, cspA, cfb, hylB, scpB, lmb, and the cyl operon), supporting an invasive ability similar to that of the other invasive GBS, penicillin-susceptible GBS (PSGBS), and noninvasive PRGBS isolates. The putative sequence type 1 (ST1)-specific AlpST-1 virulence gene was also retained among the serotype Ia/ST1 PRGBS isolates. In addition to tet(M) and erm(B), mef(A)-msr(D) elements or the high-level gentamicin resistance gene aac(6′)-aph(2″), which are both rare in PSGBS, were detected among those MDR PRGBS isolates. In the core single-nucleotide polymorphism (SNP) phylogenetic tree, all invasive ST1 PRGBS isolates with serotypes Ia and III were placed together in a clade with a recombination rate of 3.97, which was 36 times higher than the value found for a clade formed by serotype V/ST1 PSGBS isolates derived mostly from human blood. ST1 has been the predominant sequence type among the PRGBS isolates in Japan, and serotypes Ia and III have been very rare among the ST1 PSGBS isolates. Thus, these lineages that mostly consisted of serotypes Ia/ST1 and III/ST1 PRGBS could possibly emerge through recombination within the ST1 populations. IMPORTANCEStreptococcus agalactiae, or group B Streptococcus (GBS), is recognized as the leading cause of neonatal invasive infections. However, an increasing incidence of invasive GBS infections among nonpregnant adults, particularly the elderly and those with underlying diseases, has been observed. There is a trend toward the increasing occurrence of penicillin nonsusceptibility among GBS clinical isolates, from 4.8% in 2008 to 5.8% in 2020 in Japan. Also, in the United States, the frequency of adult invasive GBS isolates suggestive of β-lactam nonsusceptibility increased from 0.7% in 2015 to 1.0% in 2016. In adults, mortality has been significantly higher among patients with bacteremia than among those without bacteremia. Our study revealed that invasive GBS with reduced penicillin susceptibility (PRGBS) isolates harbor major virulence and resistance genes known among GBS, highlighting the need for large population-based genomic surveillance studies to better understand the clinical relevance of invasive PRGBS isolates.
Collapse
|
15
|
Feuerschuette OHM, Alves EV, Scheffer MC, Vilela APP, Barazzetti FH, Feuerschuette HM, Cancelier ACL, Bazzo ML. Genetic diversity and antimicrobial resistance of invasive, noninvasive and colonizing group B Streptococcus isolates in southern Brazil. Access Microbiol 2022; 4:acmi000370. [PMID: 36004365 PMCID: PMC9394672 DOI: 10.1099/acmi.0.000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction. Group B
Streptococcus
(GBS) is a human commensal bacterium that is also associated with infection in pregnant and non-pregnant adults, neonates and elderly people.
Gap Statement. The authors hypothesize that knowledge of regional GBS genetic patterns may allow the use of prevention and treatment measures to reduce the burden of streptococcal disease.
Aim. The aim was to report the genotypic diversity and antimicrobial sensitivity profiles of invasive, noninvasive urinary and colonizing GBS strains, and evaluate the relationships between these findings.
Methodology. The study included consecutive and non-duplicated GBS isolates recovered in southern Brazil from 2015 to 2017. We performed multiple-locus variable-number tandem repeat analysis (MLVA) and PCR analyses to determine capsular serotypes and identify the presence of the resistance genes mefA/E, ermB and ermA/TR, and also antibiotic susceptibility testing.
Results. The sample consisted of 348 GBS strains, 42 MLVA types were identified, and 4 of them represented 64 % of isolates. Serotype Ia was the most prevalent (42.2 %) and was found in a higher percentage associated with colonization, followed by serotypes V (24.4 %), II (17.8 %) and III (7.8 %). Serotype V was associated with invasive isolates and serotypes II and III with noninvasive isolates, without significant differences. All isolates were susceptible to penicillin. GBS 2018/ hvgA was observed in 17 isolates, with 11 belonging to serogroup III. The Hunter–Gaston diversity index was calculated as 0.879. The genes mefA/E, erm/B and erm/A/TR were found in 45, 19 and 46 isolates.
Conclusion. This report suggests that the circulating GBS belong to a limited number of genetic lineages. The most common genotypes were Ia/MT12 and V/MT18, which are associated with high resistance to macrolides and the presence of the genes mefA/E and ermA/TR. Penicillin remains the antibiotic of choice. Implementation of continuous surveillance of GBS infections will be essential to assess GBS epidemiology and develop accurate GBS prevention, especially strategies associated with vaccination.
Collapse
Affiliation(s)
- Otto Henrique May Feuerschuette
- Universidade do Sul de Santa Catarina – UNISUL, Tubarão, Brazil
- Hospital Universitário Professor Polydoro Ernani de São Thiago, HU/UFSC, Florianópolis, Brazil
| | - Eduardo Venâncio Alves
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
| | - Mara Cristina Scheffer
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
- Hospital Universitário Professor Polydoro Ernani de São Thiago, HU/UFSC, Florianópolis, Brazil
| | - Ana Paula Pessoa Vilela
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
| | | | | | | | - Maria Luiza Bazzo
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
| |
Collapse
|
16
|
Luangraj M, Hiestand J, Rasphone O, Chen SL, Davong V, Barkham T, Simpson AJ, Dance DA, Keoluangkhot V. Invasive Streptococcus agalactiae ST283 infection after fish consumption in two sisters, Lao PDR. Wellcome Open Res 2022; 7:148. [PMID: 36324702 PMCID: PMC9607938 DOI: 10.12688/wellcomeopenres.17804.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Streptococcus agalactiae is a normal commensal of the human gastro-intestinal and female genital tracts. It causes serious disease in neonates and pregnant women, as well as non-pregnant adults. Food-borne outbreaks have also been described. A link between invasive Group B streptococcus (GBS) infection in humans caused by S. agalactiae serotype III-4, sequence type 283 (ST283) and the consumption of raw fresh-water fish was first described in Singapore in 2015. Case presentation: We report the simultaneous occurrence of acute fever and myalgia in two sisters who were visiting Laos. Both were found to have invasive GBS ST283 infection, confirmed by blood culture. Infection was temporally linked to fish consumption. They responded well to intravenous antibiotics within 48 hours. Conclusions: Food-borne transmission of Streptococcus agalactiae is an important and under-recognised source of serious human disease throughout Southeast Asia and possibly beyond.
Collapse
Affiliation(s)
- Manophab Luangraj
- Lao-Oxford-Mahosot hospital-Wellcome Trust Research Unit, Microbiology department, Mahosot hospital, Vientiane, 0100, Lao People's Democratic Republic,
| | - Jasmin Hiestand
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, 8091, Swaziland
| | - Othila Rasphone
- Infectious Diseases Centre, Mahosot Hospital, Vientiane, 0100, Lao People's Democratic Republic
| | - Swaine L. Chen
- NUHS Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious diseases, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, 119228, Singapore,Laboratory of Bacterial Genomics, Genome Institute of Singapore, 60 Biopolis street, 138672, Singapore
| | - Viengmon Davong
- Lao-Oxford-Mahosot hospital-Wellcome Trust Research Unit, Microbiology department, Mahosot hospital, Vientiane, 0100, Lao People's Democratic Republic
| | - Timothy Barkham
- Department of Laboratory Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Andrew J.H. Simpson
- Lao-Oxford-Mahosot hospital-Wellcome Trust Research Unit, Microbiology department, Mahosot hospital, Vientiane, 0100, Lao People's Democratic Republic,Centre for Tropical Medicine and Global Health, Old Road Campus, Roosevelt Drive, University of Oxford, Oxford, OX3 7LG, UK
| | - David A.B. Dance
- Centre for Tropical Medicine and Global Health, Old Road Campus, Roosevelt Drive, University of Oxford, Oxford, OX3 7LG, UK,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Valy Keoluangkhot
- Infectious Diseases Centre, Mahosot Hospital, Vientiane, 0100, Lao People's Democratic Republic
| |
Collapse
|
17
|
Aiewsakun P, Ruangchai W, Thawornwattana Y, Jaemsai B, Mahasirimongkol S, Homkaew A, Suksomchit P, Dubbs P, Palittapongarnpim P. Genomic epidemiology of Streptococcus agalactiae ST283 in Southeast Asia. Sci Rep 2022; 12:4185. [PMID: 35264716 PMCID: PMC8907273 DOI: 10.1038/s41598-022-08097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Streptococcus agalactiae, also known as Lancefield Group B Streptococcus (GBS), is typically regarded as a neonatal pathogen; however, several studies have shown that the bacteria are capable of causing invasive diseases in non-pregnant adults as well. The majority of documented cases were from Southeast Asian countries, and the most common genotype found was ST283, which is also known to be able to infect fish. This study sequenced 12 GBS ST283 samples collected from adult patients in Thailand. Together with publicly available sequences, we performed temporo-spatial analysis and estimated population dynamics of the bacteria. Putative drug resistance genes were also identified and characterized, and the drug resistance phenotypes were validated experimentally. The results, together with historical records, draw a detailed picture of the past transmission history of GBS ST283 in Southeast Asia.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Yuttapong Thawornwattana
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Bharkbhoom Jaemsai
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Surakameth Mahasirimongkol
- Department of Medical Sciences, Ministry of Public Health, 88/7, Tiwanon Road, Amphoe Muang, Nonthaburi, 11000, Thailand
| | - Anchalee Homkaew
- Microbiological Unit, Central Laboratory and Blood Bank, Faculty of Medicine, Vajira Hospital, Navamindraraj University, Bangkok, Thailand
| | - Paveesuda Suksomchit
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Padungsri Dubbs
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
18
|
|
19
|
Tiruvayipati S, Tang WY, Barkham TMS, Chen SL. GBS-SBG - GBS Serotyping by Genome Sequencing. Microb Genom 2021; 7:000688. [PMID: 34895403 PMCID: PMC9842102 DOI: 10.1099/mgen.0.000688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Group B Streptococcus (GBS; Streptococcus agalactiae) is the most common cause of neonatal meningitis and a rising cause of sepsis in adults. Recently, it has also been shown to cause foodborne disease. As with many other bacteria, the polysaccharide capsule of GBS is antigenic, enabling its use for strain serotyping. Recent advances in DNA sequencing have made sequence-based typing attractive (as has been implemented for several other bacteria, including Escherichia coli, Klebsiella pneumoniae species complex, Streptococcus pyogenes, and others). For GBS, existing WGS-based serotyping systems do not provide complete coverage of all known GBS serotypes (specifically including subtypes of serotype III), and none are simultaneously compatible with the two most common data types, raw short reads and assembled sequences. Here, we create a serotyping database (GBS-SBG, GBS Serotyping by Genome Sequencing), with associated scripts and running instructions, that can be used to call all currently described GBS serotypes, including subtypes of serotype III, using both direct short-read- and assembly-based typing. We achieved higher concordance using GBS-SBG on a previously reported data set of 790 strains. We further validated GBS-SBG on a new set of 572 strains, achieving 99.8% concordance with PCR-based molecular serotyping using either short-read- or assembly-based typing. The GBS-SBG package is publicly available and will hopefully accelerate and simplify serotyping by sequencing for GBS.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Ying Tang
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore
| | | | - Swaine L. Chen
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Laboratory of Bacterial Genomics, Genome Institute of Singapore, 60 Biopolis Street, Genome #02-01, Singapore 138672,*Correspondence: Swaine L. Chen,
| |
Collapse
|
20
|
Clustered Regularly Interspaced Short Palindromic Repeat Analysis of Clonal Complex 17 Serotype III Group B Streptococcus Strains Causing Neonatal Invasive Diseases. Int J Mol Sci 2021; 22:ijms222111626. [PMID: 34769055 PMCID: PMC8584069 DOI: 10.3390/ijms222111626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Group B Streptococcus (GBS) is an important pathogen of neonatal infections, and the clonal complex (CC)-17/serotype III GBS strain has emerged as the dominant strain. The clinical manifestations of CC17/III GBS sepsis may vary greatly but have not been well-investigated. A total of 103 CC17/III GBS isolates that caused neonatal invasive diseases were studied using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) loci and restriction fragment length polymorphism (RFLP) analyses. All spacers of CRISPR loci were sequenced and analyzed with the clinical presentations. After CRISPR-RFLP analyses, a total of 11 different patterns were observed among the 103 CRISPR-positive GBS isolates. GBS isolates with the same RFLP patterns were found to have highly comparable spacer contents. Comparative sequence analysis of the CRISPR1 spacer content revealed that it is highly diverse and consistent with the dynamics of this system. A total of 29 of 43 (67.4%) spacers displayed homology to reported phage and plasmid DNA sequences. In addition, all CC17/III GBS isolates could be categorized into three subgroups based on the CRISPR-RFLP patterns and eBURST analysis. The CC17/III GBS isolates with a specific CRISPR-RFLP pattern were more significantly associated with occurrences of severe sepsis (57.1% vs. 29.3%, p = 0.012) and meningitis (50.0% vs. 20.8%, p = 0.009) than GBS isolates with RFLP lengths between 1000 and 1300 bp. Whole-genome sequencing was also performed to verify the differences between CC17/III GBS isolates with different CRISPR-RFLP patterns. We concluded that the CRISPR-RFLP analysis is potentially applicable to categorizing CC17/III GBS isolates, and a specific CRISPR-RFLP pattern could be used as a new biomarker to predict meningitis and illness severity after further verification.
Collapse
|
21
|
Understanding MRSA clonal competition within a UK hospital; the possible importance of density dependence. Epidemics 2021; 37:100511. [PMID: 34662751 DOI: 10.1016/j.epidem.2021.100511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Methicillin resistant Staphylococcus aureus (MRSA) bacteria cause serious, often healthcare-associated infections and are frequently highly resistant to diverse antibiotics. Multiple MRSA clonal complexes (CCs) have evolved independently and countries have different prevalent CCs. It is unclear when and why the dominant CC in a region may switch. METHODS We developed a mathematical deterministic model of MRSA CC competing for limited resource. The model distinguishes 'standard MRSA' and multidrug resistant sub-populations within each CC, allowing for resistance loss and transfer between same CC bacteria. We first analysed how dynamics of this system depend on growth-rate and resistance-potential differences between CCs, and on their resistance gene accumulation. We then fit the model to capture the longitudinal CC dynamics observed at a single UK hospital, which exemplified the UK-wide switch from mainly CC30 to mainly CC22. RESULTS We find that within a CC, gain and loss of resistance can allow for co-existence of sensitive and resistant sub-populations. Due to more efficient transfer of resistance at higher CC density, more drug resistance can accumulate in the population of a more prevalent CC. We show how this process of density dependent competition, together with prevalence disruption, could explain the relatively sudden switch from mainly CC30 to mainly CC22 in the UK hospital setting. Alternatively, the observed hospital dynamics could be reproduced by assuming that multidrug resistant CC22 evolved only around 2004. CONCLUSIONS We showed how higher prevalence may advantage a CC by allowing it to acquire antimicrobial resistances more easily. Due to this density dependence in competition, dominance in an area can depend on historic contingencies; the MRSA CC that happened to be first could stay dominant because of its high prevalence advantage. This then could help explain the stability, despite frequent stochastic introductions across borders, of geographic differences in MRSA CC.
Collapse
|
22
|
Brokaw A, Furuta A, Dacanay M, Rajagopal L, Adams Waldorf KM. Bacterial and Host Determinants of Group B Streptococcal Vaginal Colonization and Ascending Infection in Pregnancy. Front Cell Infect Microbiol 2021; 11:720789. [PMID: 34540718 PMCID: PMC8446444 DOI: 10.3389/fcimb.2021.720789] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Group B streptococcus (GBS) is a gram-positive bacteria that asymptomatically colonizes the vaginal tract. However, during pregnancy maternal GBS colonization greatly predisposes the mother and baby to a wide range of adverse outcomes, including preterm birth (PTB), stillbirth, and neonatal infection. Although many mechanisms involved in GBS pathogenesis are partially elucidated, there is currently no approved GBS vaccine. The development of a safe and effective vaccine that can be administered during or prior to pregnancy remains a principal objective in the field, because current antibiotic-based therapeutic strategies do not eliminate all cases of invasive GBS infections. Herein, we review our understanding of GBS disease pathogenesis at the maternal-fetal interface with a focus on the bacterial virulence factors and host defenses that modulate the outcome of infection. We follow GBS along its path from an asymptomatic colonizer of the vagina to an invasive pathogen at the maternal-fetal interface, noting factors critical for vaginal colonization, ascending infection, and vertical transmission to the fetus. Finally, at each stage of infection we emphasize important host-pathogen interactions, which, if targeted therapeutically, may help to reduce the global burden of GBS.
Collapse
Affiliation(s)
- Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Matthew Dacanay
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States.,Department of Obstetrics and Gynecology, University of Washington and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Wu X, Xiong F, Fang H, Zhang J, Chang M. Crosstalks between NOD1 and Histone H2A Contribute to Host Defense against Streptococcus agalactiae Infection in Zebrafish. Antibiotics (Basel) 2021; 10:antibiotics10070861. [PMID: 34356784 PMCID: PMC8300774 DOI: 10.3390/antibiotics10070861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 11/30/2022] Open
Abstract
Correlation studies about NOD1 and histones have not been reported. In the present study, we report the functional correlation between NOD1 and the histone H2A variant in response to Streptococcus agalactiae infection. In zebrafish, NOD1 deficiency significantly promoted S. agalactiae proliferation and decreased larval survival. Transcriptome analysis revealed that the significantly enriched pathways in NOD1−/− adult zebrafish were mainly involved in immune and metabolism. Among 719 immunity-associated DEGs at 48 hpi, 74 DEGs regulated by NOD1 deficiency were histone variants. Weighted gene co-expression network analysis identified that H2A, H2B, and H3 had significant associations with NOD1 deficiency. Above all, S. agalactiae infection could induce the expression of intracellular histone H2A, as well as NOD1 colocalized with histone H2A, both in the cytoplasm and cell nucleus in the case of S. agalactiae infection. The overexpression of H2A variants such as zfH2A-6 protected against S. agalactiae infection and could improve cell survival in NOD1-deficient cells. Furthermore, NOD1 could interact with zfH2A-6 and cooperate with zfH2A-6 to inhibit the proliferation of S. agalactiae. NOD1 also showed a synergetic effect in inducing the expression of many antibacterial genes, especially antibacterial pattern recognition receptors PGRP2, PGRP5, and PGRP6. Collectively, these results firstly highlight the roles of NOD1 deficiency in the regulation of immune-related and metabolic pathways, and the correlation between zebrafish NOD1 and histone H2A variant in the defense against S. agalactiae infection.
Collapse
Affiliation(s)
- Xiaoman Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.W.); (F.X.); (H.F.); (J.Z.)
| | - Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.W.); (F.X.); (H.F.); (J.Z.)
| | - Hong Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.W.); (F.X.); (H.F.); (J.Z.)
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.W.); (F.X.); (H.F.); (J.Z.)
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.W.); (F.X.); (H.F.); (J.Z.)
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
24
|
Copper intoxication in group B Streptococcus triggers transcriptional activation of the cop operon that contributes to enhanced virulence during acute infection. J Bacteriol 2021; 203:e0031521. [PMID: 34251869 DOI: 10.1128/jb.00315-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria can utilize Copper (Cu) as a trace element to support cellular processes; however, excess Cu can intoxicate bacteria. Here, we characterize the cop operon in group B streptococcus (GBS), and establish its role in evasion of Cu intoxication and the response to Cu stress on virulence. Growth of GBS mutants deficient in either the copA Cu exporter, or the copY repressor, were severely compromised in Cu-stress conditions. GBS survival of Cu stress reflected a mechanism of CopY de-repression of the CopA efflux system. However, neither mutant was attenuated for intracellular survival in macrophages. Analysis of global transcriptional responses to Cu by RNA-sequencing revealed a stress signature encompassing homeostasis of multiple metals. Genes induced by Cu stress included putative metal transporters for manganese import, whereas a system for iron export was repressed. In addition, copA promoted the ability of GBS to colonize the blood, liver and spleen of mice following disseminated infection. Together, these findings show that GBS copA mediates resistance to Cu intoxication, via regulation by the Cu-sensing transcriptional repressor, copY. Cu stress responses in GBS reflect a transcriptional signature that heightens virulence and represents an important part of the bacteria's ability to survive in different environments. Importance Understanding how bacteria manage cellular levels of metal ions, such as copper, helps to explain how microbial cells can survive in different stressful environments. We show how the opportunistic pathogen group B Streptococcus (GBS) achieves homeostasis of intracellular copper through the activities of the genes that comprise the cop operon, and describe how this helps GBS survive in stressful environments, including in the mammalian host during systemic disseminated infection.
Collapse
|
25
|
Simões LC, Silva ACP, Santos CM, Alvim DCSS, Nery DCM, Oliveira LMA, Teixeira LM, Pinto TCA. Unusual finding of the human-adapted hypervirulent serotype III/ST17 clone in a historical bovine Group B Streptococcus isolate from Brazil. Braz J Microbiol 2021; 52:1631-1635. [PMID: 34164798 DOI: 10.1007/s42770-021-00529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of human neonatal infections and bovine mastitis. We report here the unusual finding of the human-adapted hypervirulent serotype III/ST17 clone in a bovine GBS isolated in 1987 in Brazil. This isolate shared several phenotypic and genotypic characteristics with serotype III/ST17 strains obtained from human sources, including PFGE pattern, pilus genes, lactose fermentation, DNase activity, and antimicrobial susceptibility profile, highlighting the importance of continued tracking of GBS in the One Health scope. The study brings new evidence for the potential interspecies transmission and sheds new light into evolution aspects of the pathogen Group B Streptococcus (GBS) by reporting the occurrence of an ancient bovine GBS isolate belonging to a variant currently known to be exclusively found in human hosts.
Collapse
Affiliation(s)
- Leandro Correa Simões
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Pires Silva
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Crislaine Mateus Santos
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Costa Morato Nery
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lucia Martins Teixeira
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Castro Abreu Pinto
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Sudpraseart C, Wang PC, Chen SC. Phenotype, genotype and pathogenicity of Streptococcus agalactiae isolated from cultured tilapia (Oreochromis spp.) in Taiwan. JOURNAL OF FISH DISEASES 2021; 44:747-756. [PMID: 33270923 DOI: 10.1111/jfd.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Tilapia (Oreochromis spp.) is globally used as an aquaculture fish species due to its high growth rate and disease resistance. However, it faces an increased risk of streptococcosis. Streptococcus agalactiae, also known as group B streptococcus (GBS), is the most important tilapia pathogen in Asia. Studies of Str. agalactiae infection in Taiwan are still unclear. Thus, this study aimed to explore the phenotype, genotype and pathogenicity of Str. agalactiae isolated from cultured tilapia in Taiwan in 2016-2018. The analysis revealed that 85% of the strains displayed β-haemolysis and 15% showed γ-haemolysis, with the same capsule level, and were positive for the CAMP test. The Rapid ID 32 Strep test showed a similarity of Rapid ID 32 Strep is more than 99.5% to GBS. Genotypic distribution by molecular serotyping detected only serotype Ia from all isolates, despite the regional differences. Pulsed-field gel electrophoresis (PFGE) was categorized into 3 and 10 clusters by restriction enzymes SmaI and ApaI, respectively. Virulence genes and antimicrobial resistance genes presented the same profile in all isolates. The challenge test with 106 CFU/fish (LD50 ), administered intraperitoneally, showed that the β-haemolysis strains had a higher mortality rate than γ-haemolysis, although they were from the same cluster from PFGE, year and region.
Collapse
Affiliation(s)
- Chiranan Sudpraseart
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Veterinary Medicine, Southern Taiwan Fish Diseases Research Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Veterinary Medicine, Southern Taiwan Fish Diseases Research Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
27
|
Maity S, Ambatipudi K. Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective. FEMS Microbiol Ecol 2021; 97:6006870. [PMID: 33242081 DOI: 10.1093/femsec/fiaa241] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Bovine mastitis is a prototypic emerging and reemerging bacterial disease that results in cut-by-cut torture to animals, public health and the global economy. Pathogenic microbes causing mastitis have overcome a series of hierarchical barriers resulting in the zoonotic transmission from bovines to humans either by proximity or remotely through milk and meat. The disease control is challenging and has been attributed to faulty surveillance systems to monitor their emergence at the human-animal interface. The complex interaction between the pathogens, the hidden pathobionts and commensals of the bovine mammary gland that create a menace during mastitis remains unexplored. Here, we review the zoonotic potential of these pathogens with a primary focus on understanding the interplay between the host immunity, mammary ecology and the shift from symbiosis to dysbiosis. We also address the pros and cons of the current management strategies and the extent of the success in implementing the One-Health approach to keep these pathogens at bay.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| |
Collapse
|
28
|
van Sorge NM, Bonsor DA, Deng L, Lindahl E, Schmitt V, Lyndin M, Schmidt A, Nilsson OR, Brizuela J, Boero E, Sundberg EJ, van Strijp JAG, Doran KS, Singer BB, Lindahl G, McCarthy AJ. Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors. EMBO J 2021; 40:e106103. [PMID: 33522633 PMCID: PMC8013792 DOI: 10.15252/embj.2020106103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/19/2023] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed β protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in β represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.
Collapse
Affiliation(s)
- Nina M van Sorge
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical Microbiology,Infection Prevention and Netherlands Reference Laboratory for Bacterial MeningitisAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Daniel A Bonsor
- Institute of Human VirologyUniversity of Maryland School of MedicineUniversity of MarylandBaltimoreMDUSA
| | - Liwen Deng
- Department of Immunology & MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Erik Lindahl
- Department of Biochemistry and BiophysicsScience for Life LaboratoryStockholm UniversityStockholmSweden
| | - Verena Schmitt
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
| | - Mykola Lyndin
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
- Department of PathologySumy State UniversitySumyUkraine
| | - Alexej Schmidt
- Department of Medical BiosciencesUmeå UniversityPathology, UmeåSweden
| | - Olof R Nilsson
- Department of Laboratory MedicineDivision of Medical MicrobiologyLund UniversityLundSweden
| | - Jaime Brizuela
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Elena Boero
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Eric J Sundberg
- Institute of Human VirologyUniversity of Maryland School of MedicineUniversity of MarylandBaltimoreMDUSA
- Department of BiochemistryEmory University School of MedicineAtlantaGAUSA
| | - Jos A G van Strijp
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Kelly S Doran
- Department of Immunology & MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Bernhard B Singer
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
| | - Gunnar Lindahl
- Department of Laboratory MedicineDivision of Medical MicrobiologyLund UniversityLundSweden
- Department of ChemistryDivision of Applied MicrobiologyLund UniversityLundSweden
| | - Alex J McCarthy
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| |
Collapse
|
29
|
Slotved HC, Fuursted K, Kavalari ID, Hoffmann S. Molecular Identification of Invasive Non-typeable Group B Streptococcus Isolates From Denmark (2015 to 2017). Front Cell Infect Microbiol 2021; 11:571901. [PMID: 33854981 PMCID: PMC8039440 DOI: 10.3389/fcimb.2021.571901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
The number of invasive Streptococcus agalactiae (GBS) non-typeable (NT) isolates in Denmark received since 1999 has in general accounted for 10% of all invasive GBS isolates. We present data on 55 clinical NT isolates based on clinical manifestations, clonal relationship, antimicrobial resistance (AMR) determinants, and virulence factors. The GBS isolates included in this study were phenotypic-based NT obtained from 2015 to 2017, as well as 10 reference isolates. Whole genome sequencing (WGS) was performed on all isolates and the data were analyzed for the presence of both species specific genes, capsular genes (genotype), and other relevant genes. We furthermore compared different procedures for detection of serotype specific capsular genes. Overall we were able to genotype 54 of the 55 isolates. After retesting the isolates a phenotype was detected for 20 (36%) isolates, of which the initial phenotyping problem for 13 isolates was found to be due to a problem with serotype Ia specific antiserum. Thirty-five isolates remained phenotypic non-typeable with a majority of genotype V isolates which do not express a capsular gene. From all the Danish invasive GBS isolates from 2015 to 2017, the 35 NT isolates were all detected in the age group above 21 years with bacteremia. The 35 NT isolates belonged to six different well-known human pathogenic clonal complexes. The CDC recommended sequences for capsule genotyping were the most optimal for serotype prediction, because of the sequence simplicity and clear cutoff values. However we recommend to also use other capsular sequences for the NT isolates, if they cannot be genotyped by the CDC method.
Collapse
Affiliation(s)
- Hans-Christian Slotved
- Neisseria and Streptococcus Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kurt Fuursted
- Neisseria and Streptococcus Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Ioanna Drakaki Kavalari
- Neisseria and Streptococcus Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Steen Hoffmann
- Neisseria and Streptococcus Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
30
|
Whole-genome sequencing for neonatal intensive care unit outbreak investigations: Insights and lessons learned. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY 2021; 1:e2. [PMID: 36168459 PMCID: PMC9495531 DOI: 10.1017/ash.2021.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Abstract
Infectious diseases outbreaks are a cause of significant morbidity and mortality among hospitalized patients. Infants admitted to the neonatal intensive care unit (NICU) are particularly vulnerable to infectious complications during hospitalization. Thus, rapid recognition of and response to outbreaks in the NICU is essential. At Rush University Medical Center, whole-genome sequencing (WGS) has been utilized since early 2016 as an adjunctive method for outbreak investigations. The use of WGS and potential lessons learned are illustrated for 3 different NICU outbreak investigations involving methicillin-resistant Staphylococcus aureus (MRSA), group B Streptococcus (GBS), and Serratia marcescens. WGS has contributed to the understanding of the epidemiology of outbreaks in our NICU, and it has also provided further insight in settings of unusual diseases or when lower-resolution typing methods have been inadequate. WGS has emerged as the new gold standard for evaluating strain relatedness. As barriers to implementation are overcome, WGS has the potential to transform outbreak investigation in healthcare settings.
Collapse
|
31
|
Chan JM, Gori A, Nobbs AH, Heyderman RS. Streptococcal Serine-Rich Repeat Proteins in Colonization and Disease. Front Microbiol 2020; 11:593356. [PMID: 33193266 PMCID: PMC7661464 DOI: 10.3389/fmicb.2020.593356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
Glycosylation of proteins, previously thought to be absent in prokaryotes, is increasingly recognized as important for both bacterial colonization and pathogenesis. For mucosal pathobionts, glycoproteins that function as cell wall-associated adhesins facilitate interactions with mucosal surfaces, permitting persistent adherence, invasion of deeper tissues and transition to disease. This is exemplified by Streptococcus pneumoniae and Streptococcus agalactiae, which can switch from being relatively harmless members of the mucosal tract microbiota to bona fide pathogens that cause life-threatening diseases. As part of their armamentarium of virulence factors, streptococci encode a family of large, glycosylated serine-rich repeat proteins (SRRPs) that facilitate binding to various tissue types and extracellular matrix proteins. This minireview focuses on the roles of S. pneumoniae and S. agalactiae SRRPs in persistent colonization and the transition to disease. The potential of utilizing SRRPs as vaccine targets will also be discussed.
Collapse
Affiliation(s)
- Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Andrea Gori
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Robert S. Heyderman
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
32
|
Anti-Biofilm Effect of Tea Saponin on a Streptococcus agalactiae Strain Isolated from Bovine Mastitis. Animals (Basel) 2020; 10:ani10091713. [PMID: 32971787 PMCID: PMC7552639 DOI: 10.3390/ani10091713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tea saponin (TS), an inexpensive and easily-available plant extract, exhibited antibacterial activity against a Streptococcus agalactiae strain isolated from a dairy cow with mastitis. In addition, TS can inhibit the biofilm formation ability of this strain by down-regulating the transcript levels of biofilm-associated genes including srtA, fbsC, neuA, and cpsE. Hence, TS might be a potential alternative herbal cure for bovine mastitis. Abstract Streptococcus agalactiae (GBS) is a highly contagious pathogen which not only can cause neonatal meningitis, pneumonia, and septicemia but is also considered to be a major cause of bovine mastitis (BM), leading to large economic losses to the dairy industry worldwide. Like many other pathogenic bacteria, GBS also has the capacity to form a biofilm structure in the host to cause persistent infection. Tea saponin (TS), is one of the main active agents extracted from tea ash powder, and it has good antioxidant and antibacterial activities. In this study, we confirmed that TS has a slight antibacterial activity against a Streptococcus agalactiae strain isolated from dairy cow with mastitis and inhibits its biofilm formation. By performing scanning electron microscopy (SEM) experiments, we observed that with addition of TS, the biofilm formed by this GBS strain exhibited looser structure and lower density. In addition, the results of real-time reverse transcription polymerase chain reaction (RT-PCR) experiments showed that TS inhibited biofilm formation by down-regulating the transcription of the biofilm-associated genes including srtA, fbsC, neuA, and cpsE.
Collapse
|
33
|
Rodgers E, Bentley SD, Borrow R, Bratcher HB, Brisse S, Brueggemann AB, Caugant DA, Findlow J, Fox L, Glennie L, Harrison LH, Harrison OB, Heyderman RS, van Rensburg MJ, Jolley KA, Kwambana-Adams B, Ladhani S, LaForce M, Levin M, Lucidarme J, MacAlasdair N, Maclennan J, Maiden MCJ, Maynard-Smith L, Muzzi A, Oster P, Rodrigues CMC, Ronveaux O, Serino L, Smith V, van der Ende A, Vázquez J, Wang X, Yezli S, Stuart JM. The global meningitis genome partnership. J Infect 2020; 81:510-520. [PMID: 32615197 DOI: 10.1016/j.jinf.2020.06.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Genomic surveillance of bacterial meningitis pathogens is essential for effective disease control globally, enabling identification of emerging and expanding strains and consequent public health interventions. While there has been a rise in the use of whole genome sequencing, this has been driven predominately by a subset of countries with adequate capacity and resources. Global capacity to participate in surveillance needs to be expanded, particularly in low and middle-income countries with high disease burdens. In light of this, the WHO-led collaboration, Defeating Meningitis by 2030 Global Roadmap, has called for the establishment of a Global Meningitis Genome Partnership that links resources for: N. meningitidis (Nm), S. pneumoniae (Sp), H. influenzae (Hi) and S. agalactiae (Sa) to improve worldwide co-ordination of strain identification and tracking. Existing platforms containing relevant genomes include: PubMLST: Nm (31,622), Sp (15,132), Hi (1935), Sa (9026); The Wellcome Sanger Institute: Nm (13,711), Sp (> 24,000), Sa (6200), Hi (1738); and BMGAP: Nm (8785), Hi (2030). A steering group is being established to coordinate the initiative and encourage high-quality data curation. Next steps include: developing guidelines on open-access sharing of genomic data; defining a core set of metadata; and facilitating development of user-friendly interfaces that represent publicly available data.
Collapse
Affiliation(s)
- Elizabeth Rodgers
- Meningitis Research Foundation, Newminster House, 27-29 Newminster House, Baldwin Street, Bristol BS1 1LT, UK.
| | - Stephen D Bentley
- Wellcome Sanger Institute, Parasites and microbes, Hinxton CB10 1SA, UK
| | - Ray Borrow
- Public Health England, Meningococcal Reference Unit, Manchester Royal Infirmary, Manchester M13 9WZ, UK
| | | | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Angela B Brueggemann
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jamie Findlow
- Pfizer Limited, Walton Oaks, Dorking Road, Tadworth, Surrey KT20 7NS, UK
| | - LeAnne Fox
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, United States
| | - Linda Glennie
- Meningitis Research Foundation, Newminster House, 27-29 Newminster House, Baldwin Street, Bristol BS1 1LT, UK
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Robert S Heyderman
- NIHR Global Health Mucosal Pathogens Research Unit, Division of Infection & Immunity, University College London, London, UK
| | | | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Mucosal Pathogens Research Unit, Division of Infection & Immunity, University College London, London, UK
| | - Shamez Ladhani
- Public Health England, Immunisation and Countermeasures Division, 61 Colindale Avenue, London NW9 5EQ, UK; Paediatric Infectious Diseases Research Group (PIDRG), St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | | | - Jay Lucidarme
- Public Health England, Meningococcal Reference Unit, Manchester Royal Infirmary, Manchester M13 9WZ, UK
| | - Neil MacAlasdair
- Wellcome Sanger Institute, Parasites and microbes, Hinxton CB10 1SA, UK
| | - Jenny Maclennan
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | | | | | | | | | | | | | | | - Vinny Smith
- Meningitis Research Foundation, Newminster House, 27-29 Newminster House, Baldwin Street, Bristol BS1 1LT, UK
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam UMC and, the Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, the Netherlands
| | | | - Xin Wang
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, United States
| | - Saber Yezli
- Ministry of Health, The Global Centre for Mass Gatherings Medicine, Riyadh, Saudi Arabia
| | | |
Collapse
|
34
|
Draft Genome Sequence of Streptococcus agalactiae UMB7782, Isolated from the Female Urinary Tract. Microbiol Resour Announc 2020; 9:9/20/e00423-20. [PMID: 32409558 PMCID: PMC7225557 DOI: 10.1128/mra.00423-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Streptococcus agalactiae is a Gram-positive bacterium common to the human gut and vaginal microbiota. Here, we report the 2.1-Mbp draft genome sequence of S. agalactiae UMB7782, isolated from a urine sample from a woman with a recurrent urinary tract infection. Streptococcus agalactiae is a Gram-positive bacterium common to the human gut and vaginal microbiota. Here, we report the 2.1-Mbp draft genome sequence of S. agalactiae UMB7782, isolated from a urine sample from a woman with a recurrent urinary tract infection.
Collapse
|
35
|
Dance D, Zadoks RN, Luangraj M, Simpson A, Chen SL, Barkham T. Community-acquired Group B streptococcal meningitis in adults. J Infect 2020; 81:147-178. [PMID: 32171868 DOI: 10.1016/j.jinf.2020.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Dab Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | - M Luangraj
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao Democratic People's Republic
| | - A Simpson
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - S L Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Group, Genome Institute of Singapore, Singapore
| | - T Barkham
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
36
|
Deng X, Zhao X, Liang Y, Zhang L, Jiang J, Zhao G, Zhou Y. Modification of the genome topology network and its application to the comparison of group B Streptococcus genomes. BMC Genomics 2019; 20:886. [PMID: 31752672 PMCID: PMC6868693 DOI: 10.1186/s12864-019-6234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022] Open
Abstract
Background The genome topology network (GTN) is a new approach for studying the phylogenetics of bacterial genomes by analysing their gene order. The previous GTN tool gives a phylogenetic tree and calculate the different degrees (DD) of various adjacent gene families with complete genome data, but it is limited to the gene family level. Result In this study, we collected 51 published complete and draft group B Streptococcus (GBS) genomes from the NCBI database as the case study data. The phylogenetic tree obtained from the GTN method assigned the genomes into six main clades. Compared with single nucleotide polymorphism (SNP)-based method, the GTN method exhibited a higher resolution in two clades. The gene families located at unique node connections in these clades were associated with the clusters of orthologous groups (COG) functional categories of “[G] Carbohydrate transport and metabolism,”, “[L] Replication, recombination, and repair” and “[J] translation, ribosomal structure and biogenesis”. Thus, these genes were the major factors affecting the differentiation of these six clades in the phylogenetic tree obtained from the GTN. Conclusion The modified GTN analyzes draft genomic data and exhibits greater functionality than the previous version. The gene family clustering algorithm embedded in the GTN tool is optimized by introducing the Markov cluster algorithm (MCL) tool to assign genes to functional gene families. A bootstrap test is performed to verify the credibility of the clades when allowing users to adjust the relationships of the clades accordingly. The GTN tool gives additional evolutionary information that is a useful complement to the SNP-based method. Information on the differences in the connections between a gene and its adjacent genes in species or clades is easily obtained. The modified GTN tool can be downloaded from https://github.com/0232/Genome_topology_network
Collapse
Affiliation(s)
- Xiao Deng
- Institutes of Biology and Medical Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Xuechao Zhao
- Institutes of Biology and Medical Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Yuan Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Liang Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Jianping Jiang
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Yan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China.
| |
Collapse
|