1
|
Hou Y, Qiao J, Hou S, Wang Y, Wang Q. Cold-adapted characteristics and gene knockout of alkyl hydroperoxide reductase subunit C in Antarctic Psychrobacter sp. ANT206. World J Microbiol Biotechnol 2024; 40:359. [PMID: 39432194 DOI: 10.1007/s11274-024-04158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Alkyl hydroperoxide reductase subunit C (AhpC) contributes to the cellular defense against reactive oxygen species. However, it remains understudied in psychrophiles. Amino acid comparison demonstrated that AhpC from Psychrobacter sp. ANT206 (ANT206) (PsAhpC) revealed fewer numbers of Lys and more numbers of Gly, which might have favored higher flexibility at low temperature. The recombinant PsAhpC (rPsAhpC) was most active at 25 °C and retained 35% of its residual activity at 0 °C, indicating that it was a cold-adapted enzyme. Additionally, rPsAhpC demonstrated significant salt tolerance, sustaining its activity in the presence of 4.0 M NaCl. Molecular dynamics simulations indicated that PsAhpC had comparatively loose conformation, which facilitated reactions at low temperatures. Subsequently, an ahpc knockout mutant was constructed, and the growth rate of the knockout mutant significantly decreased, suggesting that ahpc might be crucial for the growth of ANT206 at low temperatures. The findings provide a robust foundation for further investigation into the structural features and catalytic characterization of cold-adapted AhpC. The structural characteristics of PsAhpC and its cold tolerance and salt tolerance may be applied to stress resistance breeding of various organisms.
Collapse
Affiliation(s)
- Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Jiarui Qiao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Shumiao Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Yatong Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China.
| | - Quanfu Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China.
| |
Collapse
|
2
|
Singh V, Ouellette SP. Altering the redox status of Chlamydia trachomatis directly impacts its developmental cycle progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591247. [PMID: 39464112 PMCID: PMC11507673 DOI: 10.1101/2024.04.26.591247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: elementary body (EB) and reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. To test this, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.
Collapse
|
3
|
Akmayan I, Ozturk AB, Ozbek T. Recombinant proteins production in Escherichia coli BL21 for vaccine applications: a cost estimation of potential industrial-scale production scenarios. Prep Biochem Biotechnol 2024; 54:932-945. [PMID: 38198230 DOI: 10.1080/10826068.2023.2299495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Recent SARS-CoV-2 pandemic elevated research interest in microorganism-related diseases, and protective health application importance such as vaccination and immune promoter agents emerged. Among the production methods for proteins, recombinant technology is an efficient alternative and frequently preferred method. However, since the production and purification processes vary due to the protein nature, the effect of these differences on the cost remains ambiguous. In this study, brucellosis and its two important vaccine candidate proteins (rOmp25 and rEipB) with different properties were selected as models, and industrial-scale production processes were compared with the SuperPro Designer® for estimating the unit production cost. Simulation study showed raw material cost by roughly 60% was one of the barriers to lower-cost production and 52.5 and 559.8 $/g were estimated for rEipB and rOmp25, respectively.
Collapse
Affiliation(s)
- Ilkgul Akmayan
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Türkiye
| | | | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Türkiye
| |
Collapse
|
4
|
Li Y, Guo Y, Niu F, Gao H, Wang Q, Xu M. Regulation of oxidative stress response and antioxidant modification in Corynebacterium glutamicum. World J Microbiol Biotechnol 2024; 40:267. [PMID: 39004689 DOI: 10.1007/s11274-024-04066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.
Collapse
Affiliation(s)
- Yueshu Li
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yuanyi Guo
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fangyuan Niu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Qing Wang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Akmayan I, Oztav S, Coksu I, Abamor ES, Acar S, Ozbek T. Construction of recombinant Omp25 or EipB protein loaded PLGA nanovaccines for Brucellosis protection. NANOTECHNOLOGY 2024; 35:395707. [PMID: 38917779 DOI: 10.1088/1361-6528/ad5b66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Safe and effective vaccine candidates are needed to address the limitations of existing vaccines against Brucellosis, a disease responsible for substantial economic losses in livestock. The present study aimed to encapsulate recombinant Omp25 and EipB proteins, knowledged antigen properties, into PLGA nanoparticles, characterize synthesized nanoparticles with different methods, and assessed theirin vitro/in vivoimmunostimulatory activities to develop new vaccine candidates. The recombinant Omp25 and EipB proteins produced with recombinant DNA technology were encapsulated into PLGA nanoparticles by double emulsion solvent evaporation technique. The nanoparticles were characterized using FE-SEM, Zeta-sizer, and FT-IR instruments to determine size, morphology, zeta potentials, and polydispersity index values, as well as to analyze functional groups chemically. Additionally, the release profiles and encapsulation efficiencies were assessed using UV-Vis spectroscopy. After loading with recombinant proteins, O-NPs reached sizes of 221.2 ± 5.21 nm, while E-NPs reached sizes of 274.4 ± 9.51 nm. The cumulative release rates of the antigens, monitored until the end of day 14, were determined to be 90.39% for O-NPs and 56.1% for E-NPs. Following the assessment of thein vitrocytotoxicity and immunostimulatory effects of both proteins and nanoparticles on the J774 murine macrophage cells,in vivoimmunization experiments were conducted using concentrations of 16µg ml-1for each protein. Both free antigens and antigen-containing nanoparticles excessively induced humoral immunity by increasing producedBrucella-specific IgG antibody levels for 3 times in contrast to control. Furthermore, it was also demonstrated that vaccine candidates stimulated Th1-mediated cellular immunity as well since they significantly raised IFN-gamma and IL-12 cytokine levels in murine splenocytes rather than IL-4 following to immunization. Additionally, the vaccine candidates conferred higher than 90% protection from the infection according to challenge results. Our findings reveal that PLGA nanoparticles constructed with the encapsulation of recombinant Omp25 or EipB proteins possess great potential to triggerBrucella-specific humoral and cellular immune response.
Collapse
Affiliation(s)
- Ilkgul Akmayan
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Sedanur Oztav
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Irem Coksu
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Emrah Sefik Abamor
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Serap Acar
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| |
Collapse
|
6
|
Bientz V, Lanois A, Ginibre N, Pagès S, Ogier JC, George S, Rialle S, Brillard J. OxyR is required for oxidative stress resistance of the entomopathogenic bacterium Xenorhabdus nematophila and has a minor role during the bacterial interaction with its hosts. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001481. [PMID: 39058385 PMCID: PMC11281485 DOI: 10.1099/mic.0.001481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Xenorhabdus nematophila is a Gram-negative bacterium, mutualistically associated with the soil nematode Steinernema carpocapsae, and this nemato-bacterial complex is parasitic for a broad spectrum of insects. The transcriptional regulator OxyR is widely conserved in bacteria and activates the transcription of a set of genes that influence cellular defence against oxidative stress. It is also involved in the virulence of several bacterial pathogens. The aim of this study was to identify the X. nematophila OxyR regulon and investigate its role in the bacterial life cycle. An oxyR mutant was constructed in X. nematophila and phenotypically characterized in vitro and in vivo after reassociation with its nematode partner. OxyR plays a major role during the X. nematophila resistance to oxidative stress in vitro. Transcriptome analysis allowed the identification of 59 genes differentially regulated in the oxyR mutant compared to the parental strain. In vivo, the oxyR mutant was able to reassociate with the nematode as efficiently as the control strain. These nemato-bacterial complexes harbouring the oxyR mutant symbiont were able to rapidly kill the insect larvae in less than 48 h after infestation, suggesting that factors other than OxyR could also allow X. nematophila to cope with oxidative stress encountered during this phase of infection in insect. The significantly increased number of offspring of the nemato-bacterial complex when reassociated with the X. nematophila oxyR mutant compared to the control strain revealed a potential role of OxyR during this symbiotic stage of the bacterial life cycle.
Collapse
Affiliation(s)
| | - Anne Lanois
- DGIMI, INRAE, Univ. Montpellier, Montpellier, France
| | | | - Sylvie Pagès
- DGIMI, INRAE, Univ. Montpellier, Montpellier, France
| | | | - Simon George
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Stéphanie Rialle
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
7
|
Hu J, Han X, Ma X, Chen X, Zhou Z, Peng P, Yu Z, Hou Y, Han P, Pang L, Yang Y, Xu J, Wu W. Comparative proteomic analysis of vancomycin-sensitive and vancomycin-intermediate resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2024; 43:139-153. [PMID: 37985551 DOI: 10.1007/s10096-023-04709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE The extensive use of vancomycin has led to the development of Staphylococcus aureus strains with varying degrees of resistance to vancomycin. The present study aimed to explore the molecular causes of vancomycin resistance by conducting a proteomics analysis of subcellular fractions isolated from vancomycin-intermediate resistant S. aureus (VISA) and vancomycin-sensitive S. aureus (VSSA) strains. METHODS We conducted proteomics analysis of subcellular fractions isolated from 2 isogenic S. aureus strains: strain 11 (VSSA) and strain 11Y (VISA). We used an integrated quantitative proteomics approach assisted by bioinformatics analysis, and comprehensively investigated the proteome profile. Intensive bioinformatics analysis, including protein annotation, functional classification, functional enrichment, and functional enrichment-based cluster analysis, was used to annotate quantifiable targets. RESULTS We identified 128 upregulated proteins and 21 downregulated proteins in strain 11Y as compared to strain 11. The largest group of differentially expressed proteins was composed of enzymatic proteins associated with metabolic and catalytic activity, which accounted for 32.1% and 50% of the total proteins, respectively. Some proteins were indispensable parts of the regulatory networks of S. aureus that were altered with vancomycin treatment, and these proteins were related to cell wall metabolism, cell adhesion, proteolysis, and pressure response. CONCLUSION Our proteomics study revealed regulatory proteins associated with vancomycin resistance in S. aureus. Some of these proteins were involved in the regulation of cell metabolism and function, which provides potential targets for the development of strategies to manage vancomycin resistance in S. aureus.
Collapse
Affiliation(s)
- Jian Hu
- Department of Laboratory Medicine, Yixing Hospital of Traditional Chinese Medicine, Yixing, No. 128 East Yangquan Road, Yicheng Subdistrict, Yixing, 214200, Jiangsu, People's Republic of China
| | - Xinjun Han
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Xiaoxue Ma
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Xutao Chen
- Department of Laboratory Medicine, Yixing Hospital of Traditional Chinese Medicine, Yixing, No. 128 East Yangquan Road, Yicheng Subdistrict, Yixing, 214200, Jiangsu, People's Republic of China
| | - Zhenping Zhou
- Department of Laboratory Medicine, Yixing Hospital of Traditional Chinese Medicine, Yixing, No. 128 East Yangquan Road, Yicheng Subdistrict, Yixing, 214200, Jiangsu, People's Republic of China
| | - Peilan Peng
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Zhao Yu
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Yongzhi Hou
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Peiru Han
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Long Pang
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Yali Yang
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Jia Xu
- Department of Medical Microbiology, Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| | - Wenhui Wu
- Department of Laboratory Medicine, Yixing Hospital of Traditional Chinese Medicine, Yixing, No. 128 East Yangquan Road, Yicheng Subdistrict, Yixing, 214200, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Sahoo R, Chauhan TKS, Lalhmangaihzuali L, Sinha E, Qureshi S, Mahawar M. Pan msr gene deleted strain of Salmonella Typhimurium suffers oxidative stress, depicts macromolecular damage and attenuated virulence. Sci Rep 2023; 13:21852. [PMID: 38071209 PMCID: PMC10710478 DOI: 10.1038/s41598-023-48734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Salmonella encounters but survives host inflammatory response. To defend host-generated oxidants, Salmonella encodes primary antioxidants and protein repair enzymes. Methionine (Met) residues are highly prone to oxidation and convert into methionine sulfoxide (Met-SO) which compromises protein functions and subsequently cellular survival. However, by reducing Met-SO to Met, methionine sulfoxide reductases (Msrs) enhance cellular survival under stress conditions. Salmonella encodes five Msrs which are specific for particular Met-SO (free/protein bound), and 'R'/'S' types. Earlier studies assessed the effect of deletions of one or two msrs on the stress physiology of S. Typhimurium. We generated a pan msr gene deletion (Δ5msr) strain in S. Typhimurium. The Δ5msr mutant strain shows an initial lag in in vitro growth. However, the Δ5msr mutant strain depicts very high sensitivity (p < 0.0001) to hypochlorous acid (HOCl), chloramine T (ChT) and superoxide-generating oxidant paraquat. Further, the Δ5msr mutant strain shows high levels of malondialdehyde (MDA), protein carbonyls, and protein aggregation. On the other side, the Δ5msr mutant strain exhibits lower levels of free amines. Further, the Δ5msr mutant strain is highly susceptible to neutrophils and shows defective fitness in the spleen and liver of mice. The results of the current study suggest that the deletions of all msrs render S. Typhimurium highly prone to oxidative stress and attenuate its virulence.
Collapse
Affiliation(s)
- Raj Sahoo
- Division of Biochemistry, ICAR-IVRI, Izatnagar, 243122, India
| | | | | | - Esha Sinha
- Division of Biological Standardization, ICAR-IVRI, Izatnagar, 243122, India
| | - Salauddin Qureshi
- Division of Biological Standardization, ICAR-IVRI, Izatnagar, 243122, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-IVRI, Izatnagar, 243122, India.
| |
Collapse
|
9
|
Si M, Hu M, Yang M, Peng Z, Li D, Zhao Y. Characterization of oxidative stress-induced cgahp, a gene coding for alkyl hydroperoxide reductase, from industrial importance Corynebacterium glutamicum. Biotechnol Lett 2023; 45:1309-1326. [PMID: 37606753 PMCID: PMC10460364 DOI: 10.1007/s10529-023-03421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Alkyl hydroperoxide reductase (Ahp), comprised of four different subunits AhpC, AhpD, AhpE, and AhpF, is a thiol-based antioxidative enzyme with the ability to protect bacteria against oxidative stress. Functionally, AhpC and AhpE considered as peroxidases directly detoxify peroxides, while AhpD and AhpF as oxidoreductases restore oxidized peroxidases to their reduced form. Corynebacterium glutamicum ncgl0877 encodes a putative Ahp with a unique Cys-Pro-Phe-Cys (C-P-G-C) active-site motif, similar with those of the thiol-disulfide oxidoreductases such as thioredoxin (Trx), mycoredoxin-1 (Mrx1) and AhpD. However, its physiological and biochemical functions remain unknown in C. glutamicum. Here, we report that NCgl0877, designated CgAhp, is involved in the protection against organic peroxide (OP) stress. The cgahp-deleted strain is notably more sensitive to OP stress. The cgahp expression is controlled by a MarR-type transcriptional repressor OasR (organic peroxide- and antibiotic-sensing regulator). The physiological role of CgAhp in resistance to OP stresses is corroborated by its induced expression under stresses. Although CgAhp has a weak peroxidase activity toward OP, it mainly supports the OP-scavenging activity of the thiol-dependent peroxidase preferentially linked to the dihydrolipoamide dehydrogenase (Lpd)/dihydrolipoamide succinyltransferase (SucB)/NADH system. The C-P-G-C motif of CgAhp is essential to maintain the reductase activity. In conclusion, our study identifies CgAhp, behaving like AhpD, as a key disulfide oxidoreductase involved in the oxidative stress tolerance and the functional electron donor for peroxidase.
Collapse
Affiliation(s)
- Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Mengdie Hu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Mingfei Yang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Zhaoxin Peng
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Donghan Li
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Yuying Zhao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China.
| |
Collapse
|
10
|
Gómez LA, Molina RE, Soto RI, Flores MR, Coloma-Rivero RF, Montero DA, Oñate ÁA. Unraveling the Role of the Zinc-Dependent Metalloproteinase/HTH-Xre Toxin/Antitoxin (TA) System of Brucella abortus in the Oxidative Stress Response: Insights into the Stress Response and Virulence. Toxins (Basel) 2023; 15:536. [PMID: 37755962 PMCID: PMC10538038 DOI: 10.3390/toxins15090536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Toxin/antitoxin (TA) systems have been scarcely studied in Brucella abortus, the causative agent of brucellosis, which is one of the most prevalent zoonotic diseases worldwide. In this study, the roles of a putative type II TA system composed by a Zinc-dependent metalloproteinase (ZnMP) and a transcriptional regulator HTH-Xre were evaluated. The deletion of the open reading frame (ORF) BAB1_0270, coding for ZnMP, used to produce a mutant strain, allowed us to evaluate the survival and gene expression of B. abortus 2308 under oxidative conditions. Our results showed that the B. abortus mutant strain exhibited a significantly reduced capacity to survive under hydrogen peroxide-induced oxidative stress. Furthermore, this mutant strain showed a decreased expression of genes coding for catalase (katE), alkyl hydroperoxide reductase (ahpC) and transcriptional regulators (oxyR and oxyR-like), as well as genes involved in the general stress response, phyR and rpoE1, when compared to the wild-type strain. These findings suggest that this type II ZnMP/HTH-Xre TA system is required by B. abortus to resist oxidative stress. Additionally, previous evidence has demonstrated that this ZnMP also participates in the acidic stress resistance and virulence of B. abortus 2308. Therefore, we propose a hypothetical regulatory function for this ZnMP/HTH-Xre TA system, providing insight into the stress response and its potential roles in the pathogenesis of B. abortus.
Collapse
Affiliation(s)
- Leonardo A Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Raúl E Molina
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Rodrigo I Soto
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Manuel R Flores
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Roberto F Coloma-Rivero
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - David A Montero
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Ángel A Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| |
Collapse
|
11
|
Niu Y, Chen Z, Jiang Z, Yang Y, Liu G, Cheng X, Jiang Z, Zhang G, Tong L, Tang B. Detection of Cysteine Sulfenic Acid on E. coli Proteins with a Biotin-Benzoboroxole Probe. ACS Chem Biol 2023; 18:1351-1359. [PMID: 37260364 DOI: 10.1021/acschembio.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
S-sulfenylation of cysteine residues on proteins can effectively change protein structures and accordingly regulate their functions in vivo. Investigation of S-sulfenylation in different biological environments is thus vital for a systematic understanding of cellular redox regulation. In this work, a functional probe, biotin-benzoboroxole (Bio-ben), was designed for the detection of cysteine sulfenic acid (Cys-SOH). The performance of Bio-ben was characterized by small-molecule sulfenic acid, protein models, and proteome tests via mass spectra and western blotting. The results showed that Bio-ben was validated for cysteine sulfenic acid on proteins with good capture efficiency even at low concentrations. Compared with commonly used probes such as dimedone, the current probe has significantly shortened labeling time and exhibited comparable sensitivity. The proposed method provides a new approach for exploring S-sulfenylation in the oxidative modification of proteins and is helpful for related biological and clinical applications.
Collapse
Affiliation(s)
- Yaxin Niu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Guangzhao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiufen Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenhao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Guanglu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
12
|
Montanhero Cabrera VI, do Nascimento Sividanes G, Quintiliano NF, Hikari Toyama M, Ghilardi Lago JH, de Oliveira MA. Exploring functional and structural features of chemically related natural prenylated hydroquinone and benzoic acid from Piper crassinervium (Piperaceae) on bacterial peroxiredoxin inhibition. PLoS One 2023; 18:e0281322. [PMID: 36827425 PMCID: PMC9956870 DOI: 10.1371/journal.pone.0281322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 02/26/2023] Open
Abstract
Multiple drug resistance (MDR) bacterial strains are responsible by 1.2 million of human deaths all over the world. The pathogens possess efficient enzymes which are able to mitigate the toxicity of reactive oxygen species (ROS) produced by some antibiotics and the host immune cells. Among them, the bacterial peroxiredoxin alkyl hydroperoxide reductase C (AhpC) is able to decompose efficiently several kinds of hydroperoxides. To decompose their substrates AhpC use a reactive cysteine residue (peroxidatic cysteine-CysP) that together with two other polar residues (Thr/Ser and Arg) comprise the catalytic triad of these enzymes and are involved in the substrate targeting/stabilization to allow a bimolecular nucleophilic substitution (SN2) reaction. Additionally to the high efficiency the AhpC is very abundant in the cells and present virulent properties in some bacterial species. Despite the importance of AhpC in bacteria, few studies aimed at using natural compounds as inhibitors of this class of enzymes. Some natural products were identified as human isoforms, presenting as common characteristics a bulk hydrophobic moiety and an α, β-unsaturated carbonylic system able to perform a thiol-Michael reaction. In this work, we evaluated two chemically related natural products: 1,4-dihydroxy-2-(3',7'-dimethyl-1'-oxo-2'E,6'-octadienyl) benzene (C1) and 4-hydroxy-2-(3',7'-dimethyl-1'-oxo-2'E,6'-octadienyl) benzoic acid (C2), both were isolated from branches Piper crassinervium (Piperaceae), over the peroxidase activity of AhpC from Pseudomonas aeruginosa (PaAhpC) and Staphylococcus epidermidis (SeAhpC). By biochemical assays we show that although both compounds can perform the Michael addition reaction, only compound C2 was able to inhibit the PaAhpC peroxidase activity but not SeAhpC, presenting IC50 = 20.3 μM. SDS-PAGE analysis revealed that the compound was not able to perform a thiol-Michael addition, suggesting another inhibition behavior. Using computer-assisted simulations, we also show that an acidic group present in the structure of compound C2 may be involved in the stabilization by polar interactions with the Thr and Arg residues from the catalytic triad and several apolar interactions with hydrophobic residues. Finally, C2 was not able to interfere in the peroxidase activity of the isoform Prx2 from humans or even the thiol proteins of the Trx reducing system from Escherichia coli (EcTrx and EcTrxR), indicating specificity for P. aeruginosa AhpC.
Collapse
Affiliation(s)
| | | | | | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, SP, Brazil
| | - João Henrique Ghilardi Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
- * E-mail: (MAO); (JHGL)
| | - Marcos Antonio de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, SP, Brazil
- * E-mail: (MAO); (JHGL)
| |
Collapse
|
13
|
Klimko CP, Shoe JL, Rill NO, Hunter M, Dankmeyer JL, Talyansky Y, Schmidt LK, Orne CE, Fetterer DP, Biryukov SS, Burtnick MN, Brett PJ, DeShazer D, Cote CK. Layered and integrated medical countermeasures against Burkholderia pseudomallei infections in C57BL/6 mice. Front Microbiol 2022; 13:965572. [PMID: 36060756 PMCID: PMC9432870 DOI: 10.3389/fmicb.2022.965572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei, the gram-negative bacterium that causes melioidosis, is notoriously difficult to treat with antibiotics. A significant effort has focused on identifying protective vaccine strategies to prevent melioidosis. However, when used as individual medical countermeasures both antibiotic treatments (therapeutics or post-exposure prophylaxes) and experimental vaccine strategies remain partially protective. Here we demonstrate that when used in combination, current vaccine strategies (recombinant protein subunits AhpC and/or Hcp1 plus capsular polysaccharide conjugated to CRM197 or the live attenuated vaccine strain B. pseudomallei 668 ΔilvI) and co-trimoxazole regimens can result in near uniform protection in a mouse model of melioidosis due to apparent synergy associated with distinct medical countermeasures. Our results demonstrated significant improvement when examining several suboptimal antibiotic regimens (e.g., 7-day antibiotic course started early after infection or 21-day antibiotic course with delayed initiation). Importantly, this combinatorial strategy worked similarly when either protein subunit or live attenuated vaccines were evaluated. Layered and integrated medical countermeasures will provide novel treatment options for melioidosis as well as diseases caused by other pathogens that are refractory to individual strategies, particularly in the case of engineered, emerging, or re-emerging bacterial biothreat agents.
Collapse
Affiliation(s)
- Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Caitlyn E. Orne
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
14
|
Development of Melioidosis Subunit Vaccines Using an Enzymatically Inactive Burkholderia pseudomallei AhpC. Infect Immun 2022; 90:e0022222. [PMID: 35862715 PMCID: PMC9387246 DOI: 10.1128/iai.00222-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is a facultative intracellular, Gram-negative pathogen that is highly infectious via the respiratory route and can cause severe, debilitating, and often fatal diseases in humans and animals. At present, no licensed vaccines for immunization against this CDC Tier 1 select agent exist. Studies in our lab have previously demonstrated that subunit vaccine formulations consisting of a B. pseudomallei capsular polysaccharide (CPS)-based glycoconjugate (CPS-CRM197) combined with hemolysin-coregulated protein (Hcp1) provided C57BL/6 mice with high-level protection against an acute inhalational challenge of B. pseudomallei. In this study, we evaluated the immunogenicity and protective capacity of B. pseudomallei alkyl hydroperoxide reductase subunit C (AhpC) in combination with CPS-CRM197. AhpC is a peroxiredoxin involved in oxidative stress reduction and is a potential protective antigen. To facilitate our studies and maximize safety in animals, recombinant B. pseudomallei AhpC harboring an active site mutation (AhpCC57G) was expressed in Escherichia coli and purified using tandem nickel-cobalt affinity chromatography. Immunization of C57BL/6 mice with CPS-CRM197 combined with AhpCC57G stimulated high-titer IgG responses against the CPS component of the glycoconjugate as well as stimulated high-titer IgG and robust interferon gamma (IFN-γ)-, interleukin-5 (IL-5)-, and IL-17-secreting T cell responses against AhpCC57G. When challenged via an inhalational route with a high dose (~27 50% lethal doses [LD50s]) of B. pseudomallei, 70% of the immunized mice survived 35 days postchallenge. Collectively, our findings demonstrate that AhpCC57G is a potent activator of cellular and humoral immune responses and may be a promising candidate to include in future melioidosis subunit vaccines.
Collapse
|
15
|
Ma Z, Higgs M, Alqahtani M, Bakshi CS, Malik M. ThioredoxinA1 Controls the Oxidative Stress Response of Francisella tularensis Live Vaccine Strain (LVS). J Bacteriol 2022; 204:e0008222. [PMID: 35475633 PMCID: PMC9112935 DOI: 10.1128/jb.00082-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is an intracellular, Gram-negative bacterium known for causing a disease known as tularemia in the Northern Hemisphere. F. tularensis is classified as a category A select agent by the CDC based on its possible use as a bioterror agent. F. tularensis overcomes oxidative stress encountered during its growth in the environment or host macrophages by encoding antioxidant enzymes such as superoxide dismutases, catalase, and alkylhydroperoxy reductase. These antioxidant enzymes are regulated by the oxidative stress response regulator, OxyR. In addition to these antioxidant enzymes, F. tularensis also encodes two thioredoxins, TrxA1 (FTL_0611) and TrxA2 (FTL_1224); however, their role in the oxidative stress response of F. tularensis is not known. This study investigated the role of thioredoxins of F. tularensis in the oxidative stress response and intracellular survival. Our results demonstrate that TrxA1 but not TrxA2 plays a major role in the oxidative stress response of F. tularensis. Most importantly, this study elucidates a novel mechanism through which the TrxA1 of F. tularensis controls the oxidative stress response by regulating the expression of the master regulator, oxyR. Further, TrxA1 is required for the intramacrophage survival and growth of Francisella. Overall, this study describes a novel role of thioredoxin, TrxA1, in regulating the oxidative stress response of F. tularensis. IMPORTANCE The role of thioredoxins in the oxidative stress response of F. tularensis is not known. This study demonstrates that of the two thioredoxins, TrxA1 is vital to counter the oxidative stress in F. tularensis live vaccine strain (LVS). Furthermore, this study shows differences in the well-studied thioredoxins of Escherichia coli. First, the expression of TrxA1 of F. tularensis is independent of the oxidative stress response regulator, OxyR. Second and most importantly, TrxA1 regulates the expression of oxyR and, therefore, the OxyR-dependent oxidative stress response of F. tularensis. Overall, this study reports a novel regulatory role of TrxA1 of F. tularensis in the oxidative stress response.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Matthew Higgs
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Maha Alqahtani
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Chandra Shekhar Bakshi
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
16
|
Salaskar DA, Padwal MK, Gupta A, Basu B, Kale SP. Proteomic Perspective of Cadmium Tolerance in Providencia rettgeri Strain KDM3 and Its In-situ Bioremediation Potential in Rice Ecosystem. Front Microbiol 2022; 13:852697. [PMID: 35558133 PMCID: PMC9086847 DOI: 10.3389/fmicb.2022.852697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a multi-metal-tolerant natural bacterial isolate Providencia rettgeri strain KDM3 from an industrial effluent in Mumbai, India, showed high cadmium (Cd) tolerance. Providencia rettgeri grew in the presence of more than 100 ppm (880 μM) Cd (LD50 = 100 ppm) and accumulated Cd intracellularly. Following Cd exposure, a comparative proteome analysis revealed molecular mechanisms underlying Cd tolerance. Among a total of 69 differentially expressed proteins (DEPs) in Cd-exposed cells, de novo induction of ahpCF operon proteins and L-cysteine/L-cystine shuttle protein FliY was observed, while Dps and superoxide dismutase proteins were overexpressed, indicating upregulation of a robust oxidative stress defense. ENTRA1, a membrane transporter showing homology to heavy metal transporter, was also induced de novo. In addition, the protein disaggregation chaperone ClpB, trigger factor, and protease HslU were also overexpressed. Notably, 46 proteins from the major functional category of energy metabolism were found to be downregulated. Furthermore, the addition of P. rettgeri to Cd-spiked soil resulted in a significant reduction in the Cd content [roots (11%), shoot (50%), and grains (46%)] of the rice plants. Cd bioaccumulation of P. rettgeri improved plant growth and grain yield. We conclude that P. rettgeri, a highly Cd-tolerant bacterium, is an ideal candidate for in-situ bioremediation of Cd-contaminated agricultural soils.
Collapse
Affiliation(s)
- Darshana A Salaskar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Mahesh K Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Alka Gupta
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharad P Kale
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
17
|
Dos Santos MC, Tairum CA, Cabrera VIM, Guimarães Cauz AC, Ribeiro LF, Toledo Junior JC, Toyama MH, Lago JHG, Brocchi M, Netto LES, de Oliveira MA. Adenanthin Is an Efficient Inhibitor of Peroxiredoxins from Pathogens, Inhibits Bacterial Growth, and Potentiates Antibiotic Activities. Chem Res Toxicol 2022; 36:570-582. [PMID: 35537067 DOI: 10.1021/acs.chemrestox.2c00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence and re-emergence of bacterial strains resistant to multiple drugs represent a global health threat, and the search for novel biological targets is a worldwide concern. AhpC are enzymes involved in bacterial redox homeostasis by metabolizing diverse kinds of hydroperoxides. In pathogenic bacteria, AhpC are related to several functions, as some isoforms are characterized as virulence factors. However, no inhibitor has been systematically evaluated to date. Here we show that the natural ent-kaurane Adenanthin (Adn) efficiently inhibits AhpC and molecular interactions were explored by computer assisted simulations. Additionally, Adn interferes with growth and potentializes the effect of antibiotics (kanamycin and PMBN), positioning Adn as a promising compound to treat infections caused by multiresistant bacterial strains.
Collapse
Affiliation(s)
- Melina Cardoso Dos Santos
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - Carlos Abrunhosa Tairum
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | | | - Ana Carolina Guimarães Cauz
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-862, Brazil
| | - Luiz Fernando Ribeiro
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - José Carlos Toledo Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - João Henrique Ghilardi Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-862, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | - Marcos Antonio de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| |
Collapse
|
18
|
Méndez V, Rodríguez-Castro L, Durán RE, Padrón G, Seeger M. The OxyR and SoxR transcriptional regulators are involved in a broad oxidative stress response in Paraburkholderia xenovorans LB400. Biol Res 2022; 55:7. [PMID: 35184754 PMCID: PMC8859910 DOI: 10.1186/s40659-022-00373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Aerobic metabolism generates reactive oxygen species that may cause critical harm to the cell. The aim of this study is the characterization of the stress responses in the model aromatic-degrading bacterium Paraburkholderia xenovorans LB400 to the oxidizing agents paraquat and H2O2. Methods Antioxidant genes were identified by bioinformatic methods in the genome of P. xenovorans LB400, and the phylogeny of its OxyR and SoxR transcriptional regulators were studied. Functionality of the transcriptional regulators from strain LB400 was assessed by complementation with LB400 SoxR of null mutant P. aeruginosa ΔsoxR, and the construction of P. xenovorans pIZoxyR that overexpresses OxyR. The effects of oxidizing agents on P. xenovorans were studied measuring bacterial susceptibility, survival and ROS formation after exposure to paraquat and H2O2. The effects of these oxidants on gene expression (qRT-PCR) and the proteome (LC–MS/MS) were quantified. Results P. xenovorans LB400 possesses a wide repertoire of genes for the antioxidant defense including the oxyR, ahpC, ahpF, kat, trxB, dpsA and gorA genes, whose orthologous genes are regulated by the transcriptional regulator OxyR in E. coli. The LB400 genome also harbors the soxR, fumC, acnA, sodB, fpr and fldX genes, whose orthologous genes are regulated by the transcriptional regulator SoxR in E. coli. The functionality of the LB400 soxR gene was confirmed by complementation of null mutant P. aeruginosa ΔsoxR. Growth, susceptibility, and ROS formation assays revealed that LB400 cells were more susceptible to paraquat than H2O2. Transcriptional analyses indicated the upregulation of the oxyR, ahpC1, katE and ohrB genes in LB400 cells after exposure to H2O2, whereas the oxyR, fumC, ahpC1, sodB1 and ohrB genes were induced in presence of paraquat. Proteome analysis revealed that paraquat induced the oxidative stress response proteins AhpCF and DpsA, the universal stress protein UspA and the RNA chaperone CspA. Both oxidizing agents induced the Ohr protein, which is involved in organic peroxide resistance. Notably, the overexpression of the LB400 oxyR gene in P. xenovorans significantly decreased the ROS formation and the susceptibility to paraquat, suggesting a broad OxyR-regulated antioxidant response. Conclusions This study showed that P. xenovorans LB400 possess a broad range oxidative stress response, which explain the high resistance of this strain to the oxidizing compounds paraquat and H2O2. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00373-7.
Collapse
|
19
|
Eto SF, Fernandes DC, Baldassi AC, Balbuena TS, da Costa Alecrim JV, Almeida de Carvalho FC, Lima C, Lopes-Ferreira M, Pizauro JM. Proteomic analysis capsule synthesis and redox mechanisms in the intracellular survival of group B Streptococcus in fish microglia. FISH & SHELLFISH IMMUNOLOGY 2021; 118:34-50. [PMID: 34464686 DOI: 10.1016/j.fsi.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/20/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Group B Streptococcus (GBS) causes meningitis in neonates and Nile tilapia (Oreochromis niloticus). The molecular mechanisms regulating the intracellular survival of this pathogen in the host cell are complex and crucial for the progression of infection. Thus, we propose the use of GBS-infected Nile tilapia microglia as an in vitro model system simulating infection caused by homologous bacteria in humans. We used this model to evaluate the phagocytic activity, as well as the functional aspects of the capsular proteins A, B, C, and D and the major redox enzymes, and the synergistic role of mechanisms/proteins involved in blocking phagocytic process. We observed that in the intracellular phase, GBS showed enhanced synthesis of the polysaccharide capsule and used superoxide dismutase, thioredoxin, NADH oxidase, and alkyl hydroperoxide reductase to scavenge reactive oxygen species and reactive nitrogen species produced by the host cell. Furthermore, although these virulence mechanisms were effective during the initial hours of infection, they were not able to subvert microglial responses, which partially neutralized the infection. Altogether, our findings provided important information regarding the intracellular survival mechanisms of GBS and perspectives for the production of new drugs and vaccines, through the druggability analysis of specific proteins. In conclusion, tilapia microglia serve as a potent in vitro experimental model for the study of meningitis.
Collapse
Affiliation(s)
- Silas Fernandes Eto
- Department of Postgraduate in Health Sciences-PROCISA, Federal University of Roraima (UFRR), Boa Vista, 69310-000, Brazil.
| | - Dayanne Carla Fernandes
- Immunochemistry Laboratory, Butantan Institute, (CeTICs/FAPESP), Vital Brazil Avenue, 1500, Butantã, 05503-009, São Paulo, Brazil
| | - Amanda Cristina Baldassi
- Department of Technology, School of Agrarian and Veterinary Sciences, Sao Paulo State University (Unesp), Jaboticabal, 14884-900, Sao Paulo/ SP, Brazil
| | - Thiago Santana Balbuena
- Department of Technology, School of Agrarian and Veterinary Sciences, Sao Paulo State University (Unesp), Jaboticabal, 14884-900, Sao Paulo/ SP, Brazil
| | - João Victor da Costa Alecrim
- Department of Postgraduate in Health Sciences-PROCISA, Federal University of Roraima (UFRR), Boa Vista, 69310-000, Brazil
| | | | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantã, 05503-009, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantã, 05503-009, São Paulo, Brazil
| | - João Martins Pizauro
- Department of Technology, School of Agrarian and Veterinary Sciences, Sao Paulo State University (Unesp), Jaboticabal, 14884-900, Sao Paulo/ SP, Brazil
| |
Collapse
|
20
|
Wang Y, Malkmes MJ, Jiang C, Wang P, Zhu L, Zhang H, Zhang Y, Huang H, Jiang L. Antibacterial mechanism and transcriptome analysis of ultra-small gold nanoclusters as an alternative of harmful antibiotics against Gram-negative bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126236. [PMID: 34492988 DOI: 10.1016/j.jhazmat.2021.126236] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
In this work, a well-known Au25 NCs with high purity was prepared by simple one-pot reducing method. The as-synthesized Au25 NCs exhibited excellent antibacterial efficiency toward Gram-negative bacteria in a dose- and time-dependent manner, which could be used as nanoantibiotics to replace harmful antibiotics. The antibacterial assays showed that almost 100% bacteria were killed at lower concentration (100-150 μM) within a short time (30-60 min), providing a rapid and effective killing outcome for Gram-negative bacteria. After that, antibacterial mechanism was mainly investigated at cellular level via destruction of membrane integrity, disruption of antioxidant defense system, metabolic inactivation, DNA damage, as well as at molecular level via transcriptome analysis (RNA sequencing) for the first time. RNA sequencing results showed that differentially expressed genes (DEGs) related to biosynthesis of cell wall and membrane, glycolysis and TCA cycle, oxidative phosphorylation and DNA replication and repair were significantly affected. It was concluded that synergetic effect of membrane damage, oxidative stress, DNA damage and energy metabolism eventually led to the Gram-negative bacteria growth inhibition and death.
Collapse
Affiliation(s)
- Yuxian Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Matthew Jay Malkmes
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hongman Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; College of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
21
|
Li A, Okada BK, Rosen PC, Seyedsayamdost MR. Piperacillin triggers virulence factor biosynthesis via the oxidative stress response in Burkholderia thailandensis. Proc Natl Acad Sci U S A 2021; 118:e2021483118. [PMID: 34172579 PMCID: PMC8256049 DOI: 10.1073/pnas.2021483118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Natural products have been an important source of therapeutic agents and chemical tools. The recent realization that many natural product biosynthetic genes are silent or sparingly expressed during standard laboratory growth has prompted efforts to investigate their regulation and develop methods to induce their expression. Because it is difficult to intuit signals that induce a given biosynthetic locus, we recently implemented a forward chemical-genetic approach to identify such inducers. In the current work, we applied this approach to nine silent biosynthetic loci in the model bacterium Burkholderia thailandensis to systematically screen for elicitors from a library of Food and Drug Administration-approved drugs. We find that β-lactams, fluoroquinolones, antifungals, and, surprisingly, calcimimetics, phenothiazine antipsychotics, and polyaromatic antidepressants are the most effective global inducers of biosynthetic genes. Investigations into the mechanism of stimulation of the silent virulence factor malleicyprol by the β-lactam piperacillin allowed us to elucidate the underlying regulatory circuits. Low-dose piperacillin causes oxidative stress, thereby inducing redox-sensing transcriptional regulators, which activate malR, a pathway-specific positive regulator of the malleicyprol gene cluster. Malleicyprol is thus part of the OxyR and SoxR regulons in B. thailandensis, allowing the bacterium to initiate virulence in response to oxidative stress. Our work catalogs a diverse array of elicitors and a previously unknown regulatory input for secondary metabolism in B. thailandensis.
Collapse
Affiliation(s)
- Anran Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Bethany K Okada
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul C Rosen
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544;
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
22
|
Tairum CA, Santos MC, Breyer CA, de Oliveira ALP, Cabrera VIM, Toledo-Silva G, Mori GM, Toyama MH, Netto LES, de Oliveira MA. Effects of Serine or Threonine in the Active Site of Typical 2-Cys Prx on Hyperoxidation Susceptibility and on Chaperone Activity. Antioxidants (Basel) 2021; 10:1032. [PMID: 34202406 PMCID: PMC8300647 DOI: 10.3390/antiox10071032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Typical 2-Cys peroxiredoxins (2-Cys Prx) are ubiquitous Cys-based peroxidases, which are stable as decamers in the reduced state, and may dissociate into dimers upon disulfide bond formation. A peroxidatic Cys (CP) takes part of a catalytic triad, together with a Thr/Ser and an Arg. Previously, we described that the presence of Ser (instead of Thr) in the active site stabilizes yeast 2-Cys Prx as decamers. Here, we compared the hyperoxidation susceptibilities of yeast 2-Cys Prx. Notably, 2-Cys Prx containing Ser (named here Ser-Prx) were more resistant to hyperoxidation than enzymes containing Thr (Thr-Prx). In silico analysis revealed that Thr-Prx are more frequent in all domains of life, while Ser-Prx are more abundant in bacteria. As yeast 2-Cys Prx, bacterial Ser-Prx are more stable as decamers than Thr-Prx. However, bacterial Ser-Prx were only slightly more resistant to hyperoxidation than Thr-Prx. Furthermore, in all cases, organic hydroperoxide inhibited more the peroxidase activities of 2-Cys Prx than hydrogen peroxide. Moreover, bacterial Ser-Prx displayed increased thermal resistance and chaperone activity, which may be related with its enhanced stability as decamers compared to Thr-Prx. Therefore, the single substitution of Thr by Ser in the catalytic triad results in profound biochemical and structural differences in 2-Cys Prx.
Collapse
Affiliation(s)
- Carlos A. Tairum
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 01049-010, Brazil
| | - Melina Cardoso Santos
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| | - Carlos Alexandre Breyer
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| | - Ana Laura Pires de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| | - Vitoria Isabela Montanhero Cabrera
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| | - Guilherme Toledo-Silva
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Gustavo Maruyama Mori
- Laboratório de Ecologia Molecular, Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil;
| | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 01049-010, Brazil
| | - Marcos Antonio de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| |
Collapse
|
23
|
Abo-Kadoum M, Dai Y, Asaad M, Hamdi I, Xie J. Differential Isoniazid Response Pattern Between Active and Dormant Mycobacterium tuberculosis. Microb Drug Resist 2021; 27:768-775. [DOI: 10.1089/mdr.2020.0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- M.A. Abo-Kadoum
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, P.R. China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assuit Branch, Assuit, Egypt
| | - Yongdong Dai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, P.R. China
| | - Mohammed Asaad
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, P.R. China
| | - Insaf Hamdi
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, P.R. China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, P.R. China
| |
Collapse
|
24
|
Insertional Inactivation of Prevotella intermedia OxyR Results in Reduced Survival with Oxidative Stress and in the Presence of Host Cells. Microorganisms 2021; 9:microorganisms9030551. [PMID: 33800047 PMCID: PMC7999485 DOI: 10.3390/microorganisms9030551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/17/2022] Open
Abstract
One of the most abundant bacteria in the subgingival pockets of patients with bleeding following mechanical periodontal therapy is Prevotella intermedia. However, despite its abundance, the molecular mechanisms of its contribution to periodontal disease are not well known. This is mainly due to the lack of genetic tools that would allow examination of the role of predicted virulence factors in the pathogenesis of this bacterium. Here, we report on the first mutant in the P. intermedia OMA14 strain. The mutation is an allelic exchange replacement of the sequences coding for a putative OxyR regulator with ermF sequences coding for the macrolide-lincosamide resistance in anaerobic bacteria. The mutant is severely impaired in its ability to grow with eukaryotic cells, indicating that it is an important target for interventional strategies. Further analyses reveal that its ability to grow with oxidative stress species, in the form of hydrogen peroxide and oxygen, is severely affected. Transcriptome analysis reveals that the major deregulated genes code for the alkylhydroperoxide reductase system, AhpCF, mediating protection from peroxide stress. Moreover, genes coding for Dps, CydA and Ftn are downregulated in the mutant strain, as further verified using qRT-PCR analysis. In conclusion, we succeeded in generating the first P. intermedia mutant and show that the OxyR-deficient strain is unable to survive with a variety of host cells as well as with oxidative stress.
Collapse
|
25
|
Chen Y, Wang C, Mi J, Zhou Z, Wang J, Tang M, Yu J, Liu A, Wu Y. Characterization and comparison of differentially expressed genes involved in Chlamydia psittaci persistent infection in vitro and in vivo. Vet Microbiol 2021; 255:108960. [PMID: 33667981 DOI: 10.1016/j.vetmic.2020.108960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Chlamydia psittaci is an obligate intracellular zoonotic pathogen that can enter a persistence state in host cells. While the exact pathogenesis is not well understood, this persistence state may play an important role in chronic Chlamydia disease. Here, we assess the effects of chlamydial persistence state in vitro and in vivo by transmission electron microscopy (TEM) and cDNA microarray assays. First, IFN-γ-induced C. psittaci persistence in HeLa cells resulted in the upregulation of 68 genes. These genes are involved in protein translation, carbohydrate metabolism, nucleotide metabolism, lipid metabolism and general stress. However, 109 genes were downregulated following persistent C. psittaci infection, many of which are involved in the TCA cycle, expression regulation and transcription, protein secretion, proteolysis and transport, membrane protein, presumed virulence factor, cell division and late expression. To further study differential gene expression of C. psittaci persistence in vivo, we established an experimentally tractable mouse model of C. psittaci persistence. The C. psittaci-infected mice were gavaged with either water or amoxicillin (amox), and the results indicated that the 20 mg/kg amox-exposed C. psittaci were viable but not infectious. Differentially expressed genes (DEGs) screened by cDNA microarray were detected, and interestingly, the results showed upregulation of three genes (euo, ahpC, prmC) and downregulation of five genes (pbp3, sucB_1, oppA_4, pmpH, ligA) in 20 mg/kg amox-exposed C. psittaci, which suggests that antibiotic treatment in vivo can induce chlamydial persistence state and lead to differential gene expression. However, the discrepancy on inducers between the two models requires more research to supplement. The results may help researchers better understand survival advantages during persistent infection and mechanisms influencing C. psittaci pathogenesis or evasion of the adaptive immune response.
Collapse
Affiliation(s)
- Yuqing Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China; Clinical Microbiology Laboratory, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Mi
- Department of Hospital Infection and Control, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Zhou Zhou
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Manjuan Tang
- Clinical Microbiology Laboratory, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Jian Yu
- Department of Experimental Zoology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Anyuan Liu
- Clinical Medical Research Center, The Second Affiliated Hospital of University of South China, Hengyang, 421001, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
26
|
Yang K, Zhang Y. Reversal of heavy metal-induced antibiotic resistance by dandelion root extracts and taraxasterol. J Med Microbiol 2020; 69:1049-1061. [DOI: 10.1099/jmm.0.001226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Metal exposure is an important factor for inducing antibiotic resistance in bacteria. Dandelion extracts have been used for centuries in traditional Chinese and Native American medicine.
Aim. We assessed the effects of dandelion water extracts and taraxasterol on heavy metal-induced antibiotic resistance in
Escherichia coli
as well as the underlying mechanisms.
Methodology. Dandelion extracts were obtained through 4 h of boiling in distilled water. Bacterial growth was monitored with a spectrophotometer. Biochemical assays were performed to assess the activities and gene transcriptions of β-lactamase and acetyltransferase. Oxidative stress was determined using an oxidation-sensitive probe, H2DCFDA.
Results. The present study demonstrated that higher concentrations of nickel (>5 µg ml−1), cadmium (>0.1 µg ml−1), arsenic (>0.1 µg ml−1) and copper (>5 µg ml−1) significantly inhibited the growth of
E. coli
. Lower concentrations of nickel (0.5 µg ml−1), cadmium (0.05 µg ml−1) and arsenic (0.05 µg ml−1) had no effect on bacterial growth, but helped the bacteria become resistant to two antibiotics, kanamycin and ampicillin. The addition of dandelion root extracts and taraxasterol significantly reversed the antibiotic resistance induced by these heavy metals. The supplements of antibiotics and cadmium generated synergistic effects on the activities of β-lactamase and acetyltransferase (two antibiotic resistance-related proteins), which were significantly blocked by either dandelion root extract or taraxasterol. In contrast, oxidative stress was not involved in the preventative roles of dandelion root extracts and taraxasterol in heavy metal-induced antibiotic resistance.
Conclusion. This study suggests that heavy metals induce bacterial antibiotic resistance and dandelion root extracts and taraxasterol could be used to help reverse bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Kerry Yang
- Lo-Ellen Park Secondary School, Sudbury, Canada
| | - Yanjie Zhang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
- School of Life Science, Shanxi University, Taiyuan, PR China
| |
Collapse
|