1
|
Oladipo EK, Adeyemo SF, Oluwasanya GJ, Adaramola EO, Akintola SB, Afolabi VO, Ajagbe JD, Ojo OH, Kolapo EP, Owoeye E, Jimah EM, Ayeleso AO, Onyeaka H. Novel antibacterial agents and emerging therapies in the fight against multidrug-resistant Acinetobacter baumannii. Microb Pathog 2025; 200:107361. [PMID: 39894233 DOI: 10.1016/j.micpath.2025.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Acinetobacter baumannii, a multidrug-resistant pathogen, poses a critical challenge in healthcare settings due to its adaptability and limited treatment options. The global rise in antimicrobial resistance (AMR) has underscored the urgent need for novel therapeutic strategies to combat infections caused by extensively drug-resistant (EDR) and pan-drug-resistant (PDR) A. baumannii. Traditional antibiotic discovery methods, such as whole-cell screening, have fallen short, consistently identifying drugs prone to resistance. This review explores the discovery of new anti-bacterial agents targeting A. baumannii, focusing on emerging therapeutic approaches, including nanoparticle-based therapies, antimicrobial peptides, and antibiotic combination therapies. Nanoparticle-based approaches, leveraging enhanced penetration and multi-mechanistic action, show promise in overcoming resistance, though challenges such as toxicity and biocompatibility persist. Additionally, combination therapies, such as polymyxins with carbapenems, have demonstrated efficacy in clinical settings. This review also highlights the limitations of current therapies, the mechanisms of bacterial resistance, and the role of alternative strategies like bacteriophage therapy. Emphasis is placed on the need for further research into overcoming cross-resistance and enhancing therapeutic efficacy against A. baumannii. The review concludes by discussing the importance of advancing research into novel agents, optimizing dosage strategies, and addressing the challenges posed by toxicity to ensure the effective treatment of A. baumannii infections in both hospital and community settings.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Division of Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, Osun State, Nigeria; Department of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B12 2TT, UK.
| | - Stephen Feranmi Adeyemo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria.
| | - Glory Jesudara Oluwasanya
- Division of Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | | | - Shalom Busayo Akintola
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Victor Oluwatobi Afolabi
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Joel Damilare Ajagbe
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwadara Hannah Ojo
- Division of Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Oyo state, Nigeria
| | - Emmanuel Pelumi Kolapo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Emmanuel Owoeye
- Division of Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Esther Moradeyo Jimah
- Division of Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Ademola O Ayeleso
- Biochemistry Programme, Bowen University, Iwo PMB 284, Osun State, Nigeria; Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodepoort, South Africa
| | - Helen Onyeaka
- Department of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B12 2TT, UK
| |
Collapse
|
2
|
Zehra M, Asghar S, Ilyas R, Usmani Y, Khan RMA, Mirani ZA, Ahmed A. Relationship of biofilm formation with antibiotic resistance, virulence determinants and genetic diversity in clinically isolated Acinetobacter baumannii strains in Karachi, Pakistan. Microb Pathog 2025; 200:107283. [PMID: 39778756 DOI: 10.1016/j.micpath.2025.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/28/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Multi-drug resistant (MDR) Acinetobacter baumannii causes nosocomial infections due to a plethora of virulence determinants like biofilm formation which are pivotal to its survival and pathogenicity. Hence, investigation of these mechanisms in currently circulating strains is required for effective infection control and drug development. This study investigates the prevalence of antibiotic resistance and virulence factors and their relationship with biofilm formation in Acinetobacter baumannii strains in Karachi, Pakistan. Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC PCR) was used for observing genetic variations. The results revealed that 100 % A. baumannii strains were MDR and 74.4 % had multiple antibiotic resistance index (MARi) of 0.875-1. There were 27 biofilm forming strains with a moderate correlation between biofilm formation and MARi. A high prevalence of abaI (86.04 %), bfmR (95.3 %), bfmS (97.6 %), csuE (90.69 %), ompA (74.4 %), and pgaA virulence genes (95.3 %) and resistance genes adeF (53.4 %), adeJ (74.4 %), ampC (51.1 %), tem-1 (51.1 %), and vim (65.1 %)) were observed in these strains. ERIC PCR revealed that 5 of 22 genetic types had strong biofilm form strains with similar virulence genes profiles. Conclusively, the study shows escalated resistance and virulence in clinical strains which warrants consistent epidemiological studies to prevent infections spread and future outbreaks.
Collapse
Affiliation(s)
- Moatter Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sidrah Asghar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rabia Ilyas
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Yamina Usmani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rao Muhammad Abid Khan
- Department of Microbiology, Sindh Institute of Urology and Transplantation, Karachi, 74200, Pakistan
| | - Zulfiqar Ali Mirani
- Microbiology Analytical Centre, FMRRC, PCSIR Laboratories Complex, Karachi, 75280, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Özcan Aykol ŞM, Zeybek Z, Kayabaş Y, Çevikli S, Keskin NB, Kahraman MH, Çaliş H. Effect of Acanthamoeba Spp. Cell-Free Supernatants on Some Bacterial Pathogens. J Basic Microbiol 2025; 65:e2400537. [PMID: 39668500 DOI: 10.1002/jobm.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/29/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
The fact that free-living amoebae of the genus Acanthamoeba can live in many different environments causes these protozoa to have different interactions with other microorganisms. Investigation of Acanthamoeba-pathogenic bacteria interaction is important for the discovery of new antibacterial agents that can be used against pathogenic bacteria. In this study, it was aimed to investigate the antibacterial effect of cell-free supernatants obtained from Acanthamoeba against some pathogenic bacteria. One standard strain (Acanthamoeba castellanii ATCC 50373) and one environmental strain (B1) of the genus Acanthamoeba were used in the study. Cell-free supernatants were obtained by centrifuging the axenic cultures (3000 rpm, 5 min) and passing through a sterile filter with a pore diameter of 0.22 µm. The antibacterial effect of cell-free supernatants against five different pathogenic bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Enterococcus faecalis, Salmonella Typhi, and Salmonella enterica) was investigated by colony counting method. As a result of the study, it was determined that the standard Acanthamoeba cell-free supernatant showed the highest antibacterial effect against E. faecalis (75.79%), while B1 cell-free supernatant showed the highest antibacterial effect against K. pneumoniae (8.5%). The content of the tested Acanthamoeba cell-free supernatants was analyzed by gas chromatography/mass spectrometry in our previous study and was also found to contain major compounds with antibacterial properties. Therefore, it is thought that the metabolites produced by Acanthamoeba can be used as an alternative to existing antimicrobial drugs in the fight against infections caused by some important pathogenic bacteria.
Collapse
Affiliation(s)
- Şevval Maral Özcan Aykol
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
- Biruni University Research Center (B@MER), Biruni University, Istanbul, Turkey
| | - Zuhal Zeybek
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | | | | | | | | | - Hümeyra Çaliş
- Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
4
|
Zehra M, Shafiq J, Asghar S, Vankwani S, Hasan SM, Khan RMA, Mirza MR, Ahmed A. Proteomic profiling and pre-clinical efficacy of antimicrobial lithium complex and colistin combination against multi-drug resistant Acinetobacter baumannii. Microb Pathog 2025; 200:107335. [PMID: 39864760 DOI: 10.1016/j.micpath.2025.107335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Multi-drug resistant (MDR) Acinetobacter baumannii accounts for high mortality rates in hospital-acquired infections. Colistin is the last resort treatment despite nephrotoxic effects and the emergence of colistin resistant A. baumannii is an emerging issue. To tackle this dilemma, metal complexes can be used to potentiate colistin as combination therapy. However, mechanistic and in vivo studies are lacking to present them as compelling therapeutic options. In this study, a lithium complex ([Li(phen)2sal]) based on salicylic acid and 1,10-phenanthroline was used in synergy with colistin to test its antimicrobial and anti-biofilm potential against MDR A. baumannii. Furthermore, proteomics via mass spectrometry, flow cytometry and scanning electron microscopy was performed to study the cellular targets of the treatment. Combination therapy was also tested against pneumonia model in mice to observe pre-clinical efficacy. The lithium complex showed synergistic and additive interaction with colistin and inhibited >85 % of bacterial cells and biofilm formation in A. baumannii strains. Proteomic analysis revealed that combination therapy downregulated significantly more membrane proteins as compared to the individual doses. Flow cytometry indicated that combination therapy caused hyperpolarization in bacteria which led to the cellular damage as observed in scanning electron microscopy. Combination therapy was non-toxic in mice and reduced the clinical score to 0 with bacterial load lessened to 5.56 ± 0.90 log10 CFU in 48 h. Therefore, parenchymal sections had lesser inflammatory regions with intact alveoli. Consequently, combination therapy can be an alternative therapeutic approach with antimicrobial, anti-biofilm, and pre-clinical efficacy against MDR A. baumannii infection.
Collapse
Affiliation(s)
- Moatter Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Jazib Shafiq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sidrah Asghar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Soma Vankwani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Mehmood Hasan
- Department of Pathology, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Rao Muhammad Abid Khan
- Department of Microbiology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
5
|
Woo K, Kim DH, Park HS, Oh MH, Lee JC, Choi CH. Acinetobacter baumannii OmpA hinders host autophagy via the CaMKK2-reliant AMPK-pathway. mBio 2025:e0336924. [PMID: 39998213 DOI: 10.1128/mbio.03369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Outer membrane protein A (OmpA) plays a vital role in the interactions between Acinetobacter baumannii and host cells. Autophagy is a defense mechanism that hinders the intracellular replication of bacteria, thereby safeguarding cells against microbial infections. While it has been observed that A. baumannii triggers cellular autophagy, the precise role of its virulence protein OmpA in this process remains uncertain. In this study, we investigated the effects of A. baumannii OmpA (AbOmpA) on autophagy and explored the underlying molecular mechanisms. We found that AbOmpA exerted its autophagy-suppressive effect through inhibition of CaMKK2 phosphorylation. Compared to the wild-type strain, the ompA-deletion mutant strain displayed considerably enhanced autophagy induction, via the AMPK-ULK1 pathway. AbOmpA hindered starvation-induced autophagy, while A. baumannii-Omp33 (AbOmp33) and Escherichia coli-OmpA (EcOmpA) did not. Importantly, we confirmed that exogenous AbOmpA suppressed autophagy through the CaMKK2-AMPK-ULK1 pathway during A. baumannii infection. These findings reveal a novel mechanism for AbOmpA-mediated autophagy evasion, providing new insights into the pathogenesis of A. baumannii infection.IMPORTANCEAcinetobacter baumannii is a significant clinical pathogen notorious for causing infections in hospitals. Its outer membrane protein A acts as a virulence factor and helps the bacteria evade host defenses. Autophagy is a defense mechanism that hinders the intracellular replication of bacteria. While it has been observed that A. baumannii triggers cellular autophagy, the precise role of its AbOmpA in this process remains uncertain. Our studies demonstrate the AbOmpA of A. baumannii inhibits the cellular defense process, autophagy, through the CaMKK2-AMPK-ULK1 signaling cascade, thereby enhancing bacterial survival. This insight into how AbOmpA bypasses autophagy sheds light on A. baumannii infection's novel virulence strategy and suggests possible treatments.
Collapse
Affiliation(s)
- Kyungho Woo
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Dong Ho Kim
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Ho-Sung Park
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, South Korea
- System Network Inflammation Control Research Center, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Man Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Chul Hee Choi
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, School of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, South Korea
- System Network Inflammation Control Research Center, School of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
6
|
Kumar G. Natural peptides and their synthetic congeners acting against Acinetobacter baumannii through the membrane and cell wall: latest progress. RSC Med Chem 2025; 16:561-604. [PMID: 39664362 PMCID: PMC11629675 DOI: 10.1039/d4md00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Acinetobacter baumannii is one of the deadliest Gram-negative bacteria (GNB), responsible for 2-10% of hospital-acquired infections. Several antibiotics are used to control the growth of A. baumannii. However, in recent decades, the abuse and misuse of antibiotics to treat non-microbial diseases have led to the emergence of multidrug-resistant A. baumannii strains. A. baumannii possesses a complex cell wall structure. Cell wall-targeting agents remain the center of antibiotic drug discovery. Notably, the antibacterial drug discovery intends to target the membrane of the bacteria, offering several advantages over antibiotics targeting intracellular systems, as membrane-targeting agents do not have to travel through the plasma membrane to reach the cytoplasmic targets. Microorganisms, insects, and mammals produce antimicrobial peptides as their first line of defense to protect themselves from pathogens and predators. Importantly, antimicrobial peptides are considered potential alternatives to antibiotics. This communication summarises the recently identified peptides of natural origin and their synthetic congeners acting against the A. baumannii membrane by cell wall disruption.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
7
|
Pereira IL, Hartwig DD. Unveiling the role of adhesin proteins in controlling Acinetobacter baumannii infections: a systematic review. Infect Immun 2025; 93:e0034824. [PMID: 39772848 PMCID: PMC11834437 DOI: 10.1128/iai.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Combating multidrug-resistant Acinetobacter baumannii is considered a priority by the World Health Organization. Virulence mechanisms, such as biofilm formation, multidrug resistance, and high adherence to both biotic and abiotic surfaces, underscore the urgency of exploring approaches to control this pathogen. The search for new antibiotic compounds and alternative strategies like immunotherapies and vaccination offers potential solutions to address this pressing health concern. In this context, adhesins play a crucial role in the pathogenicity and virulence of A. baumannii, making them potential targets for therapeutic interventions. To address this, we conducted a systematic review of A. baumannii adhesin research from the last decade (2013-2023). We reviewed 24 papers: 6 utilizing reverse vaccinology bioinformatic tools to predict adhesin targets for vaccine construction, 17 employing DNA recombinant techniques for in vivo active and passive immunization or in vitro antibody-mediated therapy assays, and 1 paper exploring the impact of pyrogallol therapy on A. baumannii virulence mechanisms. Our review identified over 20 potential targets with significant findings. We screened and summarized these targets to aid in further exploration of therapies and prevention.
Collapse
Affiliation(s)
- Isabel Ladeira Pereira
- Laboratory of Bacteriology and Bioassays, Federal University of Pelotas, Pelotas, Brazil
| | - Daiane Drawanz Hartwig
- Laboratory of Bacteriology and Bioassays, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
8
|
Critchlow JM, Barraza JP, Munneke MJ, Krystofiak E, Green ER, Skaar EP. The interplay between Acinetobacter baumannii ZigA and SltB promotes zinc homeostasis and cell envelope integrity. Infect Immun 2025; 93:e0042224. [PMID: 39846731 PMCID: PMC11834433 DOI: 10.1128/iai.00422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Acinetobacter baumannii is an opportunistic human pathogen that acquires nutrient metals from the vertebrate host amid infection. During zinc (Zn) scarcity, A. baumannii upregulates the expression of the predicted Zn metallochaperone, zigA. Loss of zigA compromises fitness during Zn deficiency, highlighting its role in this condition. To assess the contribution of ZigA to Zn-deficient A. baumannii, a multiparallel transposon sequencing and genetic interaction mapping approach was used. Transposon insertions in A1S_3027, encoding a predicted soluble lytic transglycosylase that tailors the bacterial cell wall, were enriched in the Zn-starved ΔzigA transposon library. Based on previous studies as well as structural and sequence homology, we designated A1S_3027 as soluble lytic transglycosylase B (SltB). Further analyses revealed that inactivating sltB rescued ΔzigA fitness defects during Zn starvation. An A. baumannii ΔzigAΔsltB mutant demonstrated altered cell envelope structures and increased cellular permeability, highlighting the roles of ZigA and SltB in maintaining cell envelope integrity. Furthermore, these mutants exhibited heightened resistance to β-lactam antibiotics and other cell wall-targeting agents. Alterations in cell envelope integrity in the ΔzigAΔsltB mutant improved fitness in a murine pneumonia infection model, emphasizing the contribution of ZigA and SltB to A. baumannii pathogenesis. This study elucidates how functional interactions between ZigA and SltB modulate cell envelope integrity and pathogenesis of A. baumannii during Zn depletion. These findings reveal an interplay between metal homeostasis and cell envelope integrity, offering insights into how A. baumannii ZigA contributes to these critical cellular processes.
Collapse
Affiliation(s)
- Jeanette M. Critchlow
- Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Juan P. Barraza
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew J. Munneke
- Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Evan Krystofiak
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee, USA
| | - Erin R. Green
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Eric P. Skaar
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Wang H, Xu Q, Zhao W, Chan BKW, Chen K, Xie M, Yang X, Ni H, Chan EWC, Yang G, Chen S. Simultaneous functional disruption of the iron acquisition system and type VI secretion system results in complete suppression of virulence in Acinetobacter baumannii. Microbiol Res 2025; 295:128105. [PMID: 40023109 DOI: 10.1016/j.micres.2025.128105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Acinetobacter baumannii (Ab) is one of the most significant bacterial pathogens inducing hospital-acquired infections worldwide, with a high mortality rate. The continuous emergence of multidrug-resistant (MDR) phenotypes presents a significant challenge in combating Ab infections with antimicrobial drugs. In this study, we found that the type VI secretion system and the iron transportation system synergistically enhance siderophore production and further contribute to the virulence of Ab. The double knockout mutant strain, ΔhcpΔbasE, exhibited further reductions in growth rate, siderophore production under iron-deficient conditions, biofilm formation, serum resistance, cell adhesion and invasion, and cytotoxicity compared to the single knockout strains, knockout of T6SS, Δhcp or iron transportation system, ΔbasE. In vitro experiments demonstrated that these two systems work synergistically to enhance virulence, with their combined effect exceeding the additive contributions of each individual system. Consistently, the ΔhcpΔbasE strain failed to cause mortality in the mouse model, even at very high inoculum levels. Further studies revealed that, compared to ATCC17978, ΔhcpΔbasE strain infection resulted in lower levels of extracellular hepcidin and intracellular iron in host cells, which correlate well with the significantly reduced ability to produce siderophores in the double knockout strain. Due to impaired iron acquisition, ΔhcpΔbasE strain became more susceptible to macrophage phagocytosis and exhibited lower survival rates in the host, leading to an inability to trigger a cytokine storm and subsequent host death. The findings of this study provide insights into the Ab pathogenesis and contribute to the development of intervention measures to control clinical Ab infections and mortality.
Collapse
Affiliation(s)
- Han Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qi Xu
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Wenxing Zhao
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bill Kwan Wai Chan
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kaichao Chen
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Miaomiao Xie
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xuemei Yang
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
10
|
Chen J, Shao Y, Cheng Z, Li G, Wan F, Gao C, Wu D, Wei D, Liu Y, Li R. Exploring the clinical outcomes and molecular characteristics of Acinetobacter baumannii bloodstream infections: a study of sequence types, capsular types, and drug resistance in China. Front Cell Infect Microbiol 2025; 15:1549940. [PMID: 40034394 PMCID: PMC11872892 DOI: 10.3389/fcimb.2025.1549940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Background Bloodstream infections (BSIs) caused by Acinetobacter baumannii have been associated with high mortality. To improve the outcomes of patients, this study explored the clinical characteristics and outcomes of patients with BSIs, as well as the phenotypic and genomic characteristics of these isolates. Methods A retrospective cohort study was conducted involving A. baumannii BSIs cases from 2020 to 2023 in a tertiary hospital. The clinical characteristics of all A. baumannii isolates were evaluated. Virulence phenotypes of all isolates were evaluated using the growth curve, biofilm-forming assay, antiserum complement killing, and G.mellonella killing assay. Furthermore, whole-genome sequencing (WGS) was utilized to analyze genomic characteristics. Results The 30-day mortality rate of 67 patients with BSIs was 55.22%. Patients in the death group had significantly lower platelet counts and higher CRP levels than those in the survival group. Additionally, higher rates of antibiotic use (≥2 classes) and greater carbapenem exposure were observed. Among the isolates, CRAb accounted for 80.6%, ST2 accounted for 76.12%, and KL2/3/7/77/160 accounted for 65.67%. The predominant KL type was KL3, found in 19.4% of the isolates. All ST2 and KL2/3/7/77/160 isolates were CRAb. Among the isolates, 90.7% of the CRAb isolates coharbored blaOXA-23 and blaOXA-66 , while one coharbored blaNDM-1 and blaOXA-23 . Compared with non-ST2 and non KL2/3/7/77/160 infections, ST2 and KL2/3/7/77/160 infections had higher mortality rates (66.0% vs. 23.5%, P=0.002; 65.90% vs. 34.78%, P=0.015). Patients with ST2 and KL2/3/7/77/160 infections underwent more invasive procedures, received two or more antibiotics and carbapenem therapy before isolation, and had lower serum albumin levels. These isolates exhibited significantly higher resistance to antimicrobial agents. No significant differences in virulence phenotypes were observed between the two groups, except for biofilm formation between the ST2 and non-ST2 groups (P=0.002). However, these isolates harbored more virulence genes related to iron uptake and biofilm formation. Conclusion The mortality rate associated with BSIs caused by A. baumannii is high. It is of great significance for clinicians to pay attention to the risk factors of the clinical characteristics of patients and to identify the ST and KL types of the strains causing the infection at an early stage.
Collapse
Affiliation(s)
- Jiao Chen
- School of Laboratory Medicine, Nanchang Medical College, Nanchang, China
| | - Yanting Shao
- School of Laboratory Medicine, Nanchang Medical College, Nanchang, China
| | - Zhibin Cheng
- School of Laboratory Medicine, Nanchang Medical College, Nanchang, China
| | - Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Fen Wan
- School of Laboratory Medicine, Nanchang Medical College, Nanchang, China
| | - Chenyan Gao
- School of Laboratory Medicine, Nanchang Medical College, Nanchang, China
| | - Danqin Wu
- Neurology Intensive Care Unit (ICU), First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dandan Wei
- Department of Clinical Microbiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Clinical Laboratory, China-Japan Friendship Jiang Xi Hospital, Nanchang, China
| | - Yang Liu
- Department of Clinical Microbiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Clinical Laboratory, China-Japan Friendship Jiang Xi Hospital, Nanchang, China
| | - Rong Li
- Department of Clinical Laboratory & Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial People's Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
11
|
Zhan X, Tian X, Zhang C, Ye J. A case of explosive community-acquired pneumonia and septic shock caused by Acinetobacter pittii. BMC Pulm Med 2025; 25:80. [PMID: 39953490 PMCID: PMC11829370 DOI: 10.1186/s12890-024-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 12/20/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Acinetobacter pittii, belongs to the genus Acinetobacter, has a special pathogenesis and is commonly known as nosocomial pathogen; community infections are rare. OBJECTIVE To present a case study of community-acquired pneumonia and septic shock resulting from infection with Acinetobacter pittii and to investigate the diagnosis, clinical features and treatment of Acinetobacter pittii infection. METHODS The clinical features and prognosis of patients with Acinetobacter pittii, infection were analyzed retrospectively. RESULTS The sepsis caused by Acinetobacter pittii, was improved after treatment. DISCUSSION AND CONCLUSION Pneumonia caused by fully sensitive hypervirulent Acinetobacter pittii is rare, usually with acute course, severe illness and high mortality. It is necessary to identify the infectious agent as soon as possible, and early treatment can improve the success rate of treatment.
Collapse
Affiliation(s)
- Xiaoying Zhan
- Department of Critical Care Medicine, Lishui Municipal Central Hospital, NO.289 Kuocang Road, Lishui, Zhejiang Province, China
| | - Xin Tian
- Department of Critical Care Medicine, Lishui Municipal Central Hospital, NO.289 Kuocang Road, Lishui, Zhejiang Province, China.
| | - Cangjian Zhang
- Department of Hematology, Lishui Municipal Central Hospital, Lishui, 323000, Zhejiang Province, China
| | - Jinqiang Ye
- Department of General Sugery, Lishui City Songyang County People's Hospital, Lishui, 323400, Zhejiang Province, China
| |
Collapse
|
12
|
Muzahid NH, Ramesh A, Siew TH, Hasan MZ, Narayanan K, Rahman S. Comparison of the virulence of community- and hospital- isolated Acinetobacter baumannii in HeLa cell line and insect model, Galleria mellonella. Access Microbiol 2025; 7:000858.v3. [PMID: 39959467 PMCID: PMC11829074 DOI: 10.1099/acmi.0.000858.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen causing high infections and morbidity among affected individuals, and most studies focus on nosocomial strains. However, A. baumannii can also be isolated from healthy community individuals. This study compared the pathogenicity of hospital and community A. baumannii isolates using Galleria mellonella and human cell cultures. The insect model, G. mellonella, and in vitro HeLa cell line were used with ten A. baumannii isolates (six community and four hospital isolates from Segamat, Malaysia). G. mellonella killing assays and HeLa cell adherence, invasion and cytotoxicity assays were performed to investigate the virulence and invasion potential of the isolates. Out of the ten isolates investigated, three community and two hospital isolates were found to be highly virulent in the G. mellonella infection model, killing 100% of larvae within 96 h. These strains were also found to be invasive and have significant cytotoxicity in HeLa cells. Our study revealed that community- and hospital-isolated A. baumannii could be equally virulent judged by both model systems. Undoubtedly, besides hospital settings, the presence of highly virulent A. baumannii in community reservoirs poses a significant public health risk and requires additional investigation.
Collapse
Affiliation(s)
- Nazmul Hasan Muzahid
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Aarthi Ramesh
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Tan Hock Siew
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Md Zobaer Hasan
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kumaran Narayanan
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
13
|
Garcia Torres S, Henrich D, Verboket RD, Marzi I, Hahne G, Kempf VAJ, Göttig S. Bactericidal Effect of a Novel Phage Endolysin Targeting Multi-Drug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2025; 14:162. [PMID: 40001406 PMCID: PMC11851708 DOI: 10.3390/antibiotics14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Infections with antibiotic-resistant Gram-negative pathogens represent a major global threat to public health. Acinetobacter baumannii is a highly important nosocomial pathogen causing severe and life-threatening infections, like pneumonia, wound infections, or sepsis. It is often resistant even against last-resort antibiotics, such as carbapenems, and can persist in healthcare settings. Artilysin®s are a novel class of endolysins targeted against multidrug-resistant bacteria. METHODS Antibacterial activity of Art-Top3 was determined by broth microdilution, in vitro assays and in the Galleria mellonella infection model. The toxicity of Art-Top3 on red blood cells, endothelial and epithelial cells was analyzed using the MTT assay. RESULTS Here, we report on a new Artilysin® Art-Top3 that is active against A. baumannii and led to a 105-fold reduction in viable A. baumannii after five minutes of exposure. Art-Top3 showed activity against A. baumannii biofilms in static and dynamic experimental infection models. Furthermore, upon infection with carbapenem-resistant A. baumannii patient isolates, Art-Top3 was able to rescue human primary cells in vitro and larvae of Galleria mellonella in an in vivo infection model. Art-Top3 did not lyse human red blood cells and showed activity in human serum, indicating a low toxicity and high stability of Art-Top3 in vitro. CONCLUSION Our findings collectively establish that Art-Top3 might be a candidate for novel therapeutic strategies of infections caused by multidrug-resistant A. baumannii pathogens.
Collapse
Affiliation(s)
- Sara Garcia Torres
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| | - Dirk Henrich
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Rene D. Verboket
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Ingo Marzi
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Gernot Hahne
- Lysando Innovations Lab GmbH, 93053 Regensburg, Germany;
| | - Volkhard A. J. Kempf
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| |
Collapse
|
14
|
Zhu Z, Zhou Z, Zhu T, Kong G, Yin Y, Li G, Jiao H. K. pneumoniae ghosts serve as a novel vaccine formulation to enhance immune responses of A. baumannii subunit vaccine in mice. Microb Pathog 2025; 199:107226. [PMID: 39674425 DOI: 10.1016/j.micpath.2024.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Acinetobacter baumannii (A. baumannii) is a prominent nosocomial pathogen, posing a significant threat to public health. Urgent efforts are required to develop a safe and effective vaccine. Bacterial ghosts (BGs), comprising empty bacterial cell envelopes, offer a promising platform for vaccine adjuvant development. In the present study, Klebsiella pneumoniae (K. pneumoniae, KP) ghosts were generated via PhiX-174 lysis gene E-mediated inactivation. The present study results demonstrated that KP ghosts greatly promoted maturation and activation of BMDCs by upregulating the expression of surface molecules (CD40, CD80, CD86 and MHCII) and improving the secretion of cytokines (IL-1β, TNF-α and IL-12p70). In addition, to assess the immunogenicity and protective efficacy of the vaccine candidate, C57BL/6 mice were immunized with either A. baumannii OmpA or A. baumannii OmpA plus KP ghosts. The results showed that OmpA plus KP ghosts elicited higher levels of specific IgG antibody responses compared to OmpA alone. Furthermore, OmpA plus KP ghosts also increased lymphocyte proliferation and expression of the early activation marker CD69 on T cells, augmented frequency of central memory T cells (TCM) and IFN-γ+CD4+ T cells with production of increased IFN-γ in response to OmpA stimulation, as compared to OmpA alone. Furthermore, post-challenge with A. baumannii, mice immunized with OmpA plus KP ghosts exhibit a higher survival rate and lower bacterial loads in the spleen and lungs compared to those immunized with OmpA alone. In conclusion, these findings underscore the potential of KP ghosts as a candidate vaccine formulation or immunomodulators for designing a novel vaccine against A. baumannii infection.
Collapse
MESH Headings
- Animals
- Acinetobacter baumannii/immunology
- Mice
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Bacterial Vaccines/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Mice, Inbred C57BL
- Klebsiella pneumoniae/immunology
- Klebsiella pneumoniae/genetics
- Antibodies, Bacterial/blood
- Cytokines/metabolism
- Adjuvants, Immunologic/administration & dosage
- Acinetobacter Infections/prevention & control
- Acinetobacter Infections/immunology
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/genetics
- Immunoglobulin G/blood
- Female
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte
- Disease Models, Animal
- Lung/microbiology
- Lung/immunology
- Spleen/immunology
- Interferon-gamma/metabolism
- Memory T Cells/immunology
- Immunogenicity, Vaccine
- Lectins, C-Type
Collapse
Affiliation(s)
- Zhongtian Zhu
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China; The Fifth People's Hospital of Suzhou (The Affiliated Infectious Disease Hospital of Soochow University), Suzhou, 215000, China
| | - Ziyan Zhou
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Tianyi Zhu
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Guimei Kong
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Yinyan Yin
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Guocai Li
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis/ Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Hongmei Jiao
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis/ Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Ma S, Zhu F, Zhang P, Xu Y, Zhou Z, Yang H, Tan C, Chen J, Pan P. Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii. Sci Rep 2025; 15:1410. [PMID: 39789105 PMCID: PMC11718249 DOI: 10.1038/s41598-024-84823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods. This study involved the development of a novel multi-epitope mRNA vaccine for A. baumannii and validation of in silico approaches was conducted. We screened 11 immunodominant epitopes for cytotoxic T cells, 5 for helper T cells, and 10 for Linear B-cell based on promising candidate proteins omp33-36, ompA and ompW, the selection of these three proteins is based on reverse vaccinology screening and previous work by other researchers. All predicted epitopes demonstrated strong antigenicity, immunogenicity without posing any potential harm to humans. Additionally, high conservancy is required to cover different strains. All epitopes, as well as adjuvants, were constructed into a final vaccine, which was further assessed by calculating its physicochemical properties. Next, we docked the vaccine protein with immune receptors and analyzed the complexes with dynamic simulations to evaluate its affinity to receptors. At last, the constructed sequence is translated to an mRNA sequence. The results indicated the constructed vaccine is capability of eliciting robust humoral and cellular immune responses, making it a promising candidate for protection against the targeted pathogen.
Collapse
Affiliation(s)
- Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Caixia Tan
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China.
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China.
| |
Collapse
|
16
|
Chou MJ, Cheng CH, Wang HC, Tsai MJ, Sheu CC, Chang WA. Investigating the Pulmonary Host Response of Acinetobacter baumannii Infection-Associated Pneumonia by Metagenomic Next-Generation Sequencing. Biomedicines 2025; 13:142. [PMID: 39857726 PMCID: PMC11761191 DOI: 10.3390/biomedicines13010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background: For investigating the host response in Acinetobacter baumannii associated pneumonia, we analyzed the host genetic sequences obtained from metagenomic next-generation sequencing (mNGS). Methods: The samples for mNGS were bronchoalveolar lavage fluid (BALF) collected from the lungs of patients infected with A. baumannii and from patients without bacterial infections. BALF samples from patients with pneumonia were collected from the lungs of patients infected with A. baumannii with New Delhi metallo-β-lactamase (NDM, before treatment), A. baumannii with NDM (post-treatment), A. baumannii without resistant genes, and those without bacterial infection. Partek was used for investigating enriched functions and pathways related to the pulmonary host response to pneumonia caused by A. baumannii with NDM infection and A. baumannii without antimicrobial-resistant genes. The STRING was employed for identifying protein interaction pathways related to the pulmonary host response to pneumonia caused by A. baumannii without antimicrobial-resistant genes. Results: In pulmonary host response to pneumonia caused by A. baumannii with NDM, five immune system-related pathways and five pathways related to signal transduction were identified. No significant differences were observed in the immune system and signal transduction pathways in the pulmonary host response to pneumonia caused by A. baumannii without antimicrobial-resistant genes. However, significant differences were noted in the phagosome, ferroptosis, and regulation of the actin cytoskeleton in cellular processes. Conclusions: mNGS provides information not only on pathogen gene expression but also on host gene expression. In this study, we found that pneumonia with A. baumannii carrying the NDM resistance gene triggers stronger immune responses in the lung, while pneumonia with A. baumannii lacking antimicrobial resistance genes is more linked to iron-related pathways.
Collapse
Affiliation(s)
- Mu-Jung Chou
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.C.); (C.-H.C.); (M.-J.T.); (C.-C.S.)
| | - Chih-Hung Cheng
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.C.); (C.-H.C.); (M.-J.T.); (C.-C.S.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Ching Wang
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ming-Ju Tsai
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.C.); (C.-H.C.); (M.-J.T.); (C.-C.S.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chau-Chyun Sheu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.C.); (C.-H.C.); (M.-J.T.); (C.-C.S.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.C.); (C.-H.C.); (M.-J.T.); (C.-C.S.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Oh MH, Kim N, Islam MM, Kim SY, Lee DE, Kim YK, Kwon KT, Lee JC. Comparative genomic and phenotypic analysis of low- and high-virulent Acinetobacter baumannii strains: Insights into antimicrobial resistance and virulence potential. Microb Pathog 2025; 198:107118. [PMID: 39551112 DOI: 10.1016/j.micpath.2024.107118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Multi-drug resistant Acinetobacter baumannii poses a significant threat to public health. This study investigated the genomic features and phenotypic characteristics of two clinical A. baumannii strains, KBN10P01317 (low-virulent) and KBN10P01599 (high-virulent), which share the same sequence type and antimicrobial susceptibility profile. The phenotypic characteristics of A. baumannii strains were assessed by antimicrobial susceptibility testing and virulence trait examination in vitro and in vivo. Whole-genome sequencing was conducted for comparative genomic analysis, and the expression of virulence-associated genes was analyzed using quantitative polymerase chain reaction. Our comparative genomic analysis revealed that KBN10P01599 harbored a larger genome with a greater number of antimicrobial resistance genes, including two copies of the critical resistance gene blaOXA-23, which might contribute to its higher minimum inhibitory concentration for carbapenems (64 μg/ml) compared to KBN10P01317 (32 μg/ml). Although both A. baumannii strains possessed the same repertoire of virulence-associated genes, KBN10P01599 exhibited significantly enhanced expression of quorum sensing (abaI/R) and biofilm formation genes (csuCDE, bap, and pgaA), correlating with its virulence traits, including increased surface motility, biofilm formation, and adherence to host cells. The differences in the expression of virulence-associated genes between the two strains were partly attributed to the transposition of insertion sequence elements. These findings provide valuable insights into the genetic basis of the virulence potential and antimicrobial resistance in A. baumannii, highlighting the evolutionary changes that may occur within strains of the same clone.
Collapse
Affiliation(s)
- Man Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea; Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, South Korea; Smart Animal Bio Institute, Dankook University, Cheonan, South Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea
| | - Md Minarul Islam
- Smart Animal Bio Institute, Dankook University, Cheonan, South Korea
| | - Seong Yeob Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea
| | - Da Eun Lee
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Yu Kyung Kim
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea; Department of Laboratory Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ki Tae Kwon
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
18
|
Mukhopadhyay H, Bairagi A, Mukherjee A, Prasad AK, Roy AD, Nayak A. Multidrug resistant Acinetobacter baumannii: A study on its pathogenesis and therapeutics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100331. [PMID: 39802320 PMCID: PMC11718326 DOI: 10.1016/j.crmicr.2024.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The overuse of antibiotics has led to the global dissemination of Acinetobacter baumannii, an increasingly challenging nosocomial pathogen. This review explores the medical significance along with the diverse resistance ability of A. baumannii. Intensive care units (ICUs) serve as a breeding ground for A. baumannii, as these settings harbour vulnerable patients and facilitate the spread of opportunistic microorganisms. A. baumannii belongs to the ESKAPE group of bacterial pathogens that are major contributors to antibiotic-resistant infections. The pathogenic nature of A. baumannii is particularly evident in seriously ill patients, causing pneumonia, wound infections, and other healthcare-associated infections. Historically considered benign, A. baumannii is a global threat due to its propensity for rapid acquisition of multidrug resistance phenotypes. The genus Acinetobacter was formally recognized in 1968 following a comprehensive survey by Baumann et al., highlighting the relationship between previously identified species and consolidating them under the name Acinetobacter. A. baumannii is characterized by its Gram-negative nature, dependence on oxygen, positive catalase activity, lack of oxidase activity, inability to ferment sugars, and non-motility. The DNA G+C content of Acinetobacter species falls within a specific range. For diagnostic purposes, A. baumannii can be cultured on specific agar media, producing distinct colonies. The genus Acinetobacter comprises numerous species those are associated with bloodstream infections with high mortality rates. Therefore, A. baumannii poses a significant challenge to global healthcare due to its multidrug resistance and ability to cause various infections. A comprehensive understanding of the mechanisms underlying its resistance acquisition and pathogenicity is essential for combating this healthcare-associated pathogen effectively.
Collapse
Affiliation(s)
- Hridesh Mukhopadhyay
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal 700118, India
| | - Arnab Bairagi
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| | - Anushka Mukherjee
- Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | | | - Arjama Dhar Roy
- Serampore Vivekananda Academy, Serampore, Hooghly 712203, West Bengal, India
| | - Aditi Nayak
- Department of Life Science, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| |
Collapse
|
19
|
Almoghrabi Y, Daghistani H, Niyazi HA, Niyazi HA, AbdulMajed H, Juma NA, Daffa N, Helmi NR, Al-Rabia MW, Mokhtar JA, Saleh BH, Attallah DM, Matar M, Shukri HA, Moqaddam SA, Alamoudi S, Alkuwaity KK, Abujamel T, Sait AM, Mufrrih M, Al-Zahrani IA, O’hagan S, Ismail MA, Alharbi OS, Momin HJ, Abu IM, Alfadil A, Ibrahem K. Epidemiological and Clinical Insights into Acinetobacter baumannii: A Six-Year Study on Age, Antibiotics, and Specimens. Int J Gen Med 2024; 17:5715-5725. [PMID: 39650788 PMCID: PMC11625184 DOI: 10.2147/ijgm.s489514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Background This six-year retrospective study provides an in-depth analysis of the epidemiological and clinical patterns associated with Acinetobacter baumannii (A. baumannii) infections, focusing on age distribution, antibiotic resistance profiles, and specimen types. Aim The research examines the incidence and characteristics of both non-Multi-Drug Resistant (non-MDR) and Multi-Drug Resistant (MDR) A. baumannii strains by reviewing patient records from January 2016 to December 2022. Methods Through a statistical analysis, the study highlights the incidence rates across diverse age groups and explores the impact of antibiotic treatment regimens on infection outcomes. Additionally, it identifies the primary clinical specimen types for each strain, noting an association between non-MDR A. baumannii and midstream urine samples, while MDR A. baumannii strains were more frequently found in respiratory, wound, peripheral, and central line swaps/specimens. Results The results indicate that in 2016, non-MDR A. baumannii infections were notably more frequent compared to MDR A. baumannii cases. However, a significant shift occurred in 2021 and 2022, with a marked decrease in non-MDR A. baumannii cases and an increase in MDR A. baumannii infections. Antibiotic susceptibility testing revealed that non-MDR strains were commonly tested against cefazolin, ceftazidime, ciprofloxacin, gentamicin, nitrofurantoin, oxacillin, piperacillin/tazobactam, and trimethoprim/sulfamethoxazole. In contrast, MDR strains were frequently tested against amikacin, cefepime, colistin, meropenem, imipenem, and tigecycline. Conclusion This study enhances the understanding of A. baumannii clinical behaviour and resistance patterns, offering valuable insights to support future research and inform strategies for infectious disease management and control.
Collapse
Affiliation(s)
- Yousef Almoghrabi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hussam Daghistani
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hanouf A Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hatoon A Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hind AbdulMajed
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noha A Juma
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura Daffa
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noof R Helmi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jawahir A Mokhtar
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bandar Hasan Saleh
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dalya M Attallah
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Maram Matar
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Hani Ahmed Shukri
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Shahd A Moqaddam
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Sara Alamoudi
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Khalil K Alkuwaity
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Turki Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmad M Sait
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Mufrrih
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim A Al-Zahrani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stephen O’hagan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Mazen A Ismail
- Department of Medical Education, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ohood S Alharbi
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hattan Jamal Momin
- Medical Service Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ibrahim Mohammed Abu
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdelbagi Alfadil
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Karem Ibrahem
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Li M, Ma F, Zhao H, Zhou D, Liang L, Lv R, Li J, Wang Y, Xu L, Liu C, Tian GB, Feng S, Xia Y. Outer membrane permeability of mcr-positive bacteria reveals potent synergy of colistin and macromolecular antibiotics against colistin-resistant Acinetobacter baumannii. Front Microbiol 2024; 15:1468682. [PMID: 39629205 PMCID: PMC11611826 DOI: 10.3389/fmicb.2024.1468682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Colistin (CT) is the last-resort of antibiotic against multidrug-resistance (MDR) Acinetobacter baumannii (A. baumannii) infection. However, colistin resistance is increasingly reported in A. baumannii isolates partially due to the global emergence and dissemination of plasmid-borne mobile colistin resistance (mcr) gene and is a threat to human health. Thus, available treatment strategies urgently required in the fight against colistin-resistant A. baumannii. Here, we showed that mcr confers damaged outer membrane (OM) permeability in A. baumannii, which could compromise the viability of A. baumannii. Consistently, A. baumannii with colistin resistance exhibits increased susceptibility to macromolecular antibiotics such as rifampicin (RIF) and erythromycin (ERY). Moreover, the combination therapy of colistin and rifampicin demonstrates efficacy against colistin-resistant A. baumannii, regardless of the presence of mcr. Altogether, our data suggest that the synergy of colistin in combination with macromolecular hydrophobic antibiotics poses a promising therapeutic alternative for colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Meisong Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Furong Ma
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhao
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Dianrong Zhou
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lujie Liang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Runling Lv
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiachen Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yaxuan Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lin Xu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chenfei Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guo-Bao Tian
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siyuan Feng
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Selim MI, El-Banna T, Sonbol F, Elekhnawy E. Arthrospira maxima and biosynthesized zinc oxide nanoparticles as antibacterials against carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii: a review article. Microb Cell Fact 2024; 23:311. [PMID: 39558333 PMCID: PMC11575411 DOI: 10.1186/s12934-024-02584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Carbapenem resistance among bacteria, especially Klebsiella pneumoniae and Acinetobacter baumannii, constitutes a dreadful threat to public health all over the world that requires developing new medications urgently. Carbapenem resistance emerges as a serious problem as this class is used as a last-line option to clear the multidrug-resistant bacteria. Arthrospira maxima (Spirulina) is a well-known cyanobacterium used as a food supplement as it is rich in protein, essential minerals and vitamins and previous studies showed it may have some antimicrobial activity against different organisms. Biosynthesized (green) zinc oxide nanoparticles have been investigated by several researchers as antibacterials because of their safety in health. In this article, previous studies were analyzed to get to a conclusion about their activity as antibacterials.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
22
|
Ciftci IH, Kahraman Kilbas EP, Kilbas I. A Systematic Review and Meta-Analysis of Molecular Characteristics on Colistin Resistance of Acinetobacter baumannii. Diagnostics (Basel) 2024; 14:2599. [PMID: 39594265 PMCID: PMC11592941 DOI: 10.3390/diagnostics14222599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND This study aimed to determine the molecular epidemiology of colistin-resistant A. baumannii in the last ten years and the frequency of gene regions related to pathogenesis, to compare the methods used to detect genes, and to confirm colistin resistance. METHODS This meta-analysis study was conducted under Preferred Reporting Items for Systematic Reviews and Meta-Analysis Guidelines. In the meta-analysis, research articles published in English and Turkish in electronic databases between January 2012 and November 2023 were examined. International Business Machines (IBM) Statistical Package for the Social Sciences (SPSS) Statistics for Macbook (Version 25.0. Armonk, NY, USA) was used for statistical analysis. The Comprehensive Meta-Analysis (CMA) (Version 3.0. Biostat, NJ, USA) program was used for heterogeneity assessment in the articles included in the meta-analysis. RESULTS After evaluating the studies according to the elimination criteria, 18 original articles were included. Among colistin-resistant strains, blaOXA-51 positivity was 243 (19.61%), blaOXA-23 was 113 (9.12%), blaOXA-58 was 7 (0.56%), blaOXA-143 was 15 (1.21%), and blaOXA-72 was seen in two (0.16%) strains. The positivity rates of pmrA, pmrB, and pmrC were found to be 22 (1.77%), 26 (2.09%), and 6 (0.48%). The mcr-1 rate was found to be 91 (7.34%), the mcr-2 rate was 78 (6.29%), and the mcr-3 rate was 82 (6.61%). CONCLUSIONS The colistin resistance rate in our study was found to be high. However, only some research articles report and/or investigate more than one resistance gene together. Additionally, it may be challenging to explain colistin resistance solely by expressing resistance genes without discussing accompanying components such as efflux pumps, virulence factors, etc.
Collapse
Affiliation(s)
- Ihsan Hakki Ciftci
- Department of Medical Microbiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey
| | - Elmas Pinar Kahraman Kilbas
- Department of Medical Laboratory Techniques, Health Services Vocational School, Fenerbahce University, 34758 Istanbul, Turkey;
| | - Imdat Kilbas
- Medical Microbiology Doctorate Program, Institute of Health Sciences, Istanbul University, 34093 Istanbul, Turkey;
| |
Collapse
|
23
|
Behrouz B, Rasooli I, Badmasti F. Inserting Omp22 into the flagellin protein, replacing its hypervariable region, results in stronger protection against lethal Acinetobacter baumannii infection. Sci Rep 2024; 14:27646. [PMID: 39533090 PMCID: PMC11557591 DOI: 10.1038/s41598-024-79013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Acinetobacter baumannii, a common nosocomial pathogen, is known for its rapid acquisition of antimicrobial resistance, underscoring the urgent need to develop an effective vaccine against this pathogen. Outer membrane protein 22 (Omp22) regulates the biogenesis of outer membrane vesicles to transport virulence-promoting factors into the host cells and facilitates the progression of A. baumannii infection. In this study, we used a mouse model to assess a vaccine's immunogenicity and protective efficacy using recombinant Omp22 protein within the hypervariable region of flagellin (FliC-Omp22). FliC-Omp22 demonstrated superior protection following challenge with a lethal dose of multidrug-resistant (MDR) A. baumannii strain 58ST compared to Omp22 alone. In addition, it elicited increased IgG1/IgG2a and IL-4/IFN-γ ratios, indicating a predominant Th2 immune response. Furthermore, the FliC-Omp22 vaccination elicited strong specific antibodies that inhibited the adhesion and invasion of A. baumannii 58ST and enhanced the opsonic killing activity against the pathogen. FliC-Omp22 immunization significantly reduced bacterial loads in infected mice's spleen, lungs, and liver, thereby improving their survival against the lethal infection caused by MDR A. baumannii 58ST. This study suggests that integrating Omp22 into the hypervariable domain of flagellin holds promise for developing an effective vaccine against A. baumannii infections.
Collapse
Affiliation(s)
- Bahador Behrouz
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Iraj Rasooli
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran.
- Molecular Microbiology Research Center, Department of Biology, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran.
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
Grygiel I, Bajrak O, Wójcicki M, Krusiec K, Jończyk-Matysiak E, Górski A, Majewska J, Letkiewicz S. Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies. Antibiotics (Basel) 2024; 13:1064. [PMID: 39596757 PMCID: PMC11591314 DOI: 10.3390/antibiotics13111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Acinetobacter baumannii-a multidrug-resistant (MDR) pathogen that causes, for example, skin and soft tissue wounds; urinary tract infections; pneumonia; bacteremia; and endocarditis, particularly due to its ability to form robust biofilms-poses a significant challenge in clinical settings. This structure protects the bacteria from immune responses and antibiotic treatments, making infections difficult to eradicate. Given the rise in antibiotic resistance, alternative therapeutic approaches are urgently needed. Bacteriophage-based strategies have emerged as a promising solution for combating A. baumannii biofilms. Phages, which are viruses that specifically infect bacteria, offer a targeted and effective means of disrupting biofilm and lysing bacterial cells. This review explores the current advancements in bacteriophage therapy, focusing on its potential for treating A. baumannii biofilm-related infections. We described the mechanisms by which phages interact with biofilms, the challenges in phage therapy implementation, and the strategies being developed to enhance its efficacy (phage cocktails, engineered phages, combination therapies with antibiotics). Understanding the role of bacteriophages in both biofilm disruption and in inhibition of its forming could pave the way for innovative treatments in combating MDR A. baumannii infections as well as the prevention of their development.
Collapse
Affiliation(s)
- Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Olaf Bajrak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Michał Wójcicki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Klaudia Krusiec
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Professor Emeritus, Department of Immunology, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Joanna Majewska
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Collegium Medicum, Jan Długosz University, 42-200 Częstochowa, Poland
| |
Collapse
|
25
|
Cottom CO, Stephenson R, Ricci D, Yang L, Gumbart JC, Noinaj N. Structural characterization of the POTRA domains from A. baumannii reveals new conformations in BamA. Structure 2024; 32:2038-2048.e3. [PMID: 39293443 PMCID: PMC11560574 DOI: 10.1016/j.str.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Recent studies have demonstrated BamA, the central component of the β-barrel assembly machinery (BAM), as an important therapeutic target to combat infections caused by Acinetobacter baumannii and other Gram-negative pathogens. Homology modeling indicates BamA in A. baumannii consists of five polypeptide transport-associated (POTRA) domains and a β-barrel membrane domain. We characterized the POTRA domains of BamA from A. baumannii in solution using size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis and determined crystal structures in two conformational states that are drastically different than those previously observed in BamA from other bacteria, indicating that the POTRA domains are even more conformationally dynamic than has been observed previously. Molecular dynamics simulations of the POTRA domains from A. baumannii and Escherichia coli allowed us to identify key structural features that contribute to the observed novel states. Together, these studies expand on our current understanding of the conformational plasticity within BamA across differing bacterial species.
Collapse
Affiliation(s)
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Dante Ricci
- Achaogen, Inc., South San Francisco, CA, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
26
|
Ndiaye I, Debarbieux L, Sow O, Ba BS, Diagne MM, Cissé A, Fall C, Dieye Y, Dia N, de Magny GC, Seck A. Characterization of two Friunavirus phages and their inhibitory effects on biofilms of extremely drug resistant Acinetobacter baumannii in Dakar, Senegal. BMC Microbiol 2024; 24:449. [PMID: 39501140 PMCID: PMC11536776 DOI: 10.1186/s12866-024-03608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/24/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii is a gram-negative, opportunistic pathogen, that is responsible for a wide variety of infections and is a significant cause of hospital-acquired infections. A. baumannii is listed by the World Health Organization (WHO) as a critical priority pathogen because of its high level of antibiotic resistance and the urgent need for alternative treatment solutions. To address this challenge, bacteriophages have been used to combat bacterial infections for more than a century, and phage research has regained interest in recent years due to antimicrobial resistance (AMR). However, although the vast majority of deaths from the AMR crisis will occur in developing countries in Africa and Asia, few phages' studies have been conducted in these regions. In this study, we present a comprehensive characterization of the bacteriophages vAbBal23 and vAbAbd25, actives against extremely drug-resistant (XDR) A. baumannii. METHODS Phages were isolated from environmental wastewaters in Dakar, Senegal. The host-range, thermal and pH stabilities, infection kinetics, one step growth assay, antibiofilm activity assay, sequencing, and genomic analysis, were performed to characterize the isolated phages. RESULTS Comparative genomic and phylogenetic analyses revealed that vAbBal23 and vAbAbd25 belong to the Caudoviricetes class, Autographiviridae family and Friunavirus genus. Both phages demonstrated activity against strains with capsular type KL230. They were stable over a wide pH range (pH 3 to 9) and at temperatures ranging from 25 °C to 40 °C. Additionally, the phages exhibited notable activity against both planktonic and biofilm cells of targeted extremely drug resistant A. baumannii. The results presented here indicate the lytic nature of vAbBal23 and vAbAbd25. This is further supported by the absence of genes encoding toxins, resistance genes and bacterial virulence factors, highlighting their potential for future phage applications. CONCLUSION Phages vAbBal23 and vAbAbd25 are promising biological agents that can infect A. baumannii, making them suitable candidates for use in phage therapies.
Collapse
Affiliation(s)
- Issa Ndiaye
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal.
- Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.
| | - Laurent Debarbieux
- Laboratoire de Bactériophage, Bactérie, Hôte, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Ousmane Sow
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | | | | | - Abdoulaye Cissé
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Cheikh Fall
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Yakhya Dieye
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Ndongo Dia
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Guillaume Constantin de Magny
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- MEEDiN, Montpellier Ecology and Evolution of Disease Network, Montpellier, France
| | - Abdoulaye Seck
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
- Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal
| |
Collapse
|
27
|
Rajabzadeh M, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Characterizing the interplay between Acinetobacter baumannii, A549 cells, and anti-Omp34 antibodies: implications for adherence, internalization, and cytotoxicity. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01218-4. [PMID: 39480642 DOI: 10.1007/s12223-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
Acinetobacter baumannii thrives within eukaryotic cells, influencing persistence, treatment approaches, and progression of disease. We probed epithelial cell invasion by A. baumannii and the influence of antibodies raised to outer membrane protein 34 (Omp34) on epithelial interactions. We expressed and purified recombinant Omp34 and induced anti-Omp34 antibodies in Bagg albino or BALB/c mice. Omp34 was evaluated for acute toxicity in mice through histological analysis of six organs. The host cell line, A549, was exposed to both A. baumannii 19606 and a clinical isolate. The study also investigated serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells, with and without anti-Omp34 sera, utilizing cell culture techniques and light microscopy. A549 cell viability was evaluated by A. baumannii challenge and exposure to anti-Omp34 sera. Actin disruption experiments using cytochalasin D probed microfilament and microtubule roles in A. baumannii invasion. Omp34 prompted antibody production without toxicity in mice. The serum showed bactericidal effects on both strains. Additionally, both A. baumannii strains were found to form biofilms. Omp34 serum was observed to decrease biofilm formation, bacterial adherence, internalization, and proliferation in A549 cells. Furthermore, the use of anti-Omp34 serum enhanced the post-infection survival of the host cell. Pre-exposure of A549 cells to cytochalasin D reduced bacterial internalization, highlighting the role of actin polymerization in the invasion process. Microscopic analysis revealed various interactions, such as adherence, membrane alterations, vacuolization, apoptosis, and cellular damage. Anti-Omp34 serum-exposed A549 cells were protected and showed reduced damage. The findings reveal that A. baumannii can significantly multiply intracellularly within host cells. This suggests the bacterium's ability to establish an environment conducive to its replication by preventing fusion with degradative lysosomes and inhibiting acidification. This finding contributes to the understanding of A. baumannii's intracellular persistence and highlights the role of Omp34 in influencing apoptosis, autophagy, and bacterial adherence, which may impact the development of effective treatments against A. baumannii infections.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
- Department of Biology, and Molecular Microbiology Research Center, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran.
- Department of Biology, and Molecular Microbiology Research Center, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran.
| |
Collapse
|
28
|
Depka D, Bogiel T, Rzepka M, Gospodarek-Komkowska E. Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems-A Pilot Study. Microorganisms 2024; 12:2057. [PMID: 39458366 PMCID: PMC11510033 DOI: 10.3390/microorganisms12102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii is one of the major problems among hospitalized patients. The presence of multiple virulence factors results in bacteria persistence in the hospital environment. It facilitates bacterial transmission between patients, causing various types of infections, mostly ventilator-associated pneumonia and wound and bloodstream infections. A. baumannii has a variable number of resistance mechanisms, but the most commonly produced are carbapenem-hydrolyzing class D β-lactamases (CHDLs). In our study, the presence of blaOXA-23, blaOXA-40 and blaOXA-51 genes was investigated among 88 clinical isolates of A. baumannii, including 53 (60.2%) strains resistant to both carbapenems (meropenem and imipenem) and 35 (39.8%) strains susceptible to at least meropenem. Among these bacteria, all the isolates carried the blaOXA-51 gene. The blaOXA-23 and blaOXA-40 genes were detected in two (5.7%) and three (8.6%) strains, respectively. Among the OXA-23 carbapenemase-producing A. baumannii strains (n = 55), insertion sequences (ISAba1) were detected upstream of the blaOXA-23 gene in fifty-two (94.5%) carbapenem-resistant and two (3.6%) meropenem-susceptible isolates. A. baumannii clinical strains from Poland have a similar antimicrobial resistance profile as those worldwide, with the presence of ISAba1 among blaOXA-23-positive isolates also being quite common. Carbapenem resistance among A. baumannii strains is associated with the presence of CHDLs, especially when insertion sequences are present.
Collapse
Affiliation(s)
- Dagmara Depka
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Tomasz Bogiel
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Mateusz Rzepka
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| |
Collapse
|
29
|
Wang H, Xu Q, Heng H, Zhao W, Ni H, Chen K, Wai Chan BK, Tang Y, Xie M, Peng M, Chi Chan EW, Yang G, Chen S. High mortality of Acinetobacter baumannii infection is attributed to macrophage-mediated induction of cytokine storm but preventable by naproxen. EBioMedicine 2024; 108:105340. [PMID: 39303669 PMCID: PMC11437915 DOI: 10.1016/j.ebiom.2024.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The continuous emergence of multidrug-resistant (MDR) Acinetobacter baumannii (Ab) strains poses further challenges in its control and clinical management. It is necessary to decipher the mechanisms underlying the high mortality of Ab infections to explore unconventional strategies for controlling outbreaks of drug-resistant infections. METHODS The immune responses of Ab sepsis infection were investigated using flow cytometry, RNA-seq, qRT-PCR, and ELISA and scRNA-seq. The detailed pathways mediating Ab immune responses were also depicted and a specific therapy was developed based on the understanding of the mechanisms underlying Ab-induced cytokine storms. FINDINGS The results highlighted the critical role of alveolar and interstitial macrophages as targets of Ab during the infection process. These cells were found to undergo polarization towards the M1 phenotype, triggering a cytokine storm that eventually caused the death of the host. The polarization and excessive inflammatory response mediated by macrophages were mainly regulated by the TLR2/Myd88/NF-κB signaling pathway. Suppression of Ab-triggered inflammatory responses and M1 polarization by the drug naproxen (NPXS) was shown to confer full protection of mice from lethal infections. INTERPRETATION The findings in this work depict the major mechanisms underlying the high mortality rate of Ab infections and highlight the clinical potential application of anti-inflammatory drugs or immunosuppressants in reducing the mortality of such infections, including those caused by MDR strains. FUNDING Funding sources are described in the acknowledgments section.
Collapse
Affiliation(s)
- Han Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Qi Xu
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Heng Heng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wenxing Zhao
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kaichao Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bill Kwan Wai Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Miaomiao Xie
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Mingxiu Peng
- Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
30
|
da Silva Cirino IC, de Santana CF, Vasconcelos Rocha I, de Souza LIO, Silva MV, Bressan Queiroz de Figueiredo RC, Coutinho HDM, Leal-Balbino TC. The Combinatory Effects of Essential Oil from Lippia macrophylla on Multidrug Resistant Acinetobacter baumannii Clinical Isolates. Chem Biodivers 2024; 21:e202400537. [PMID: 39008435 DOI: 10.1002/cbdv.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
To assess the antibacterial effectiveness of Lippia macrophylla essential oil (LMEO) against multidrug-resistant Acinetobacter baumannii isolates, both as a standalone treatment and in combination with conventional antibiotics. LMEO demonstrated a significant inhibitory effect on the growth of A. baumannii, with a minimum inhibitory concentration (MIC) below 500 μg/mL. Notably, LMEO was capable of reversing the antibiotic resistance of clinical isolates or reducing their MIC values when used in combination with antibiotics, showing synergistic (FICI≤0.5) or additive effects. The combination of LMEO and imipenem was particularly effective, displaying synergistic interactions for most isolates. Ultrastructural analyses supported these findings, revealing that the combination of LMEO+ceftazidime compromised the membrane integrity of the Acb35 isolate, leading to cytoplasmic leakage and increased formation of Outer Membrane Vesicles (OMVs). Taken together our results point for the use of LMEO alone or in combination as an antibacterial agent against A. baumannii. These findings offer promising avenues for utilizing LMEO as a novel antibacterial strategy against drug-resistant infections in healthcare settings, underscoring the potential of essential oils in enhancing antibiotic efficacy.
Collapse
Affiliation(s)
- Isis Caroline da Silva Cirino
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
- Federal University of Pernambuco, CEP 50670-901, Recife, PE, Brazil
| | - Caroline Ferreira de Santana
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
- Federal University of Pernambuco, CEP 50670-901, Recife, PE, Brazil
| | - Igor Vasconcelos Rocha
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Le KCM, Wong CF, Müller V, Grüber G. Cryo-EM reveals transition states of the Acinetobacter baumannii F 1-ATPase rotary subunits γ and ε, unveiling novel compound targets. FASEB J 2024; 38:e70131. [PMID: 39467208 PMCID: PMC11580714 DOI: 10.1096/fj.202401629r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Priority 1: critical WHO pathogen Acinetobacter baumannii depends on ATP synthesis and ATP:ADP homeostasis and its bifunctional F1FO-ATP synthase. While synthesizing ATP, it regulates ATP cleavage by its inhibitory ε subunit to prevent wasteful ATP consumption. We determined cryo-electron microscopy structures of the ATPase active A. baumannii F1-αßγεΔ134-139 mutant in four distinct conformational states, revealing four transition states and structural transformation of the ε's C-terminal domain, forming the switch of an ATP hydrolysis off- and an ATP synthesis on-state based. These alterations go in concert with altered motions and interactions in the catalytic- and rotary subunits of this engine. These A. baumannii interacting sites provide novel pathogen-specific targets for inhibitors, with the aim of ATP depletion and/or ATP synthesis and growth inhibition. Furthermore, the presented diversity to other bacterial F-ATP synthases extends the view of structural elements regulating such a catalyst.
Collapse
Affiliation(s)
- Khoa Cong Minh Le
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Chui Fann Wong
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurtGermany
| | - Gerhard Grüber
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Bioinformatics Institute, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
32
|
Eliuz EE, Ayas D. Developing fish oil emulsion gel enriched with Lentinula edodes single cell protein and its effect on controlling the growth of Acinetobacter baumannii. J Microbiol Methods 2024; 224:107006. [PMID: 39069135 DOI: 10.1016/j.mimet.2024.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this study, the characterization of fish oil (FO) emulsion gel (EGEL) containing single cell protein (SCP) produced from Lentinula edodes (L. edodes) and its potential inhibition against Acinetobacter baumannii (A. baumannii) were investigated. Oil extracted from the fish liver was emulsified with tween 80 and water, and then gelled using gelatin with the assistance of an ultrasonic homogenizer. The characteristics and surface analysis of SCP-EGEL were examined using FTIR (Fourier-transform infrared spectroscopy) and SEM (Scanning electron microscope). The particle size distribution and zeta potential of SCP-EGEL were measured using a Malvern Zetasizer. When SCP-EGEL was applied to the surface of the medium inoculated with A. baumannii, the inhibition zone (IZ) was 8.2 mm. An expansion of the IZ was observed (10.2 mm) when SCP-EGEL was applied to a fish skin (FS) surface prepared in the shape of a 6-mm diameter disc. In the SEM images, when SCP was added to lipo gel, the gel structure appeared flattened or swollen in some areas. The appearance of SCP cells being covered with gel gave the impression that they have a secondary wall. Therefore, the resulting complex can potentially be used as an additive in animal and human nutrition, in functional food coatings to suppress A. baumannii, and in fish feed to enrich it with protein.
Collapse
Affiliation(s)
- Elif Erdogan Eliuz
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey.
| | - Deniz Ayas
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey
| |
Collapse
|
33
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
34
|
Santos-Júnior CD, Torres MDT, Duan Y, Rodríguez Del Río Á, Schmidt TSB, Chong H, Fullam A, Kuhn M, Zhu C, Houseman A, Somborski J, Vines A, Zhao XM, Bork P, Huerta-Cepas J, de la Fuente-Nunez C, Coelho LP. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 2024; 187:3761-3778.e16. [PMID: 38843834 PMCID: PMC11666328 DOI: 10.1016/j.cell.2024.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Laboratory of Microbial Processes & Biodiversity - LMPB, Department of Hydrobiology, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; APC Microbiome & School of Medicine, University College Cork, Cork, Ireland
| | - Hui Chong
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Amy Houseman
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Jelena Somborski
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anna Vines
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
35
|
Pereira IL, Cardoso TL, Wozeak DR, Caballero PS, Buchhorn de Freitas S, Pinto Seixas Neto AC, da Silva Pinto L, Hartwig DD. Antibodies anti-rFilF protein has anti-biofilm activity against carbapenem-resistant Acinetobacter baumannii. Microbes Infect 2024; 26:105347. [PMID: 38679227 DOI: 10.1016/j.micinf.2024.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Acinetobacter baumannii is an opportunistic bacterium that causes infection in several sites. Carbapenem-resistant A. baumannii strains (CRAb) lead the World Health Organization's list of 12 pathogens considered a priority for developing new antimicrobials. The pathogenicity of A. baumannii is related to the different virulence factors employed in the colonization of biotic and abiotic surfaces, biofilm formation and multidrug resistance. We analyze the outer membrane protein FilF from A. baumannii in silico and produce it in recombinant form (rFilF). rFilF protein was successfully expressed in Escherichia coli BL21 Star in an insoluble form. Immunization with rFilF induced significant anti-rFilF IgG antibody production in mice, detected by indirect enzyme-linked immunosorbent assay, since the first evaluation until 49th. On the last experimentation day, the predominant immunoglobulin found was IgG1 followed by IgG2a, IgG2b, IgM, IgG3, and IgA. We observe that interleukins 4 and 10 show significant production after the 28th day of experimentation in mice immunized with rFilF. Anti-rFilF pAbs were able to inhibit biofilm formation in nine CRAb strains evaluated, and in the standard strain ATCC® 19606. These results demonstrate the anti-biofilm activity of anti-rFilF antibodies, promising in the development of a non-antibiotic approach based on the control of CRAb strains.
Collapse
Affiliation(s)
- Isabel Ladeira Pereira
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Thayná Laner Cardoso
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Daniela Rodriguero Wozeak
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Pamela Scaraffuni Caballero
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Stella Buchhorn de Freitas
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Luciano da Silva Pinto
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil; Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
36
|
Tan L, Ma R, Katz AJ, Levi N. Farnesol repurposing for prevention and treatment of Acinetobacter baumannii biofilms. Biofilm 2024; 7:100198. [PMID: 38706984 PMCID: PMC11066513 DOI: 10.1016/j.bioflm.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Acinetobacter baumannii has emerged as a multidrug-resistant (MDR) superbug by causing severe infections, with high mortality rates. The ability of A. baumannii to form biofilms significantly contributes to its persistence in diverse environmental and hospital settings. Here we report that farnesol, an FDA-approved commercial cosmetic and flavoring agent, demonstrates efficacy for both inhibition of biofilm formation, and disruption of established A. baumannii biofilms. Moreover, no resistance to farnesol was observed even after prolonged culture in the presence of sub-inhibitory farnesol doses. Farnesol combats A. baumannii biofilms by direct killing, while also facilitating biofilm detachment. Furthermore, farnesol was safe, and effective, for both prevention and treatment of A. baumannii biofilms in an ex vivo burned human skin model. Since current treatment options for A. baumannii biofilm infections were mainly counted on the combination therapy of last-resort antibiotics, and clearly non-sustainable due to robust MDR phenotype of A. baumannii, we propose that farnesol alone can be repurposed as a highly effective agent for both preventing and treating life-threating biofilm-associated infections of A. baumannii due to its proven safety, convenient topical delivery, and excellent efficiency, plus its superiority of evading resistance development.
Collapse
Affiliation(s)
- Li Tan
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rong Ma
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam J. Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
37
|
Lu Q, Wu X, Fang Y, Wang Y, Zhang B. Antibacterial activity and mechanism of X33 antimicrobial oligopeptide against Acinetobacter baumannii. Synth Syst Biotechnol 2024; 9:312-321. [PMID: 38545458 PMCID: PMC10965436 DOI: 10.1016/j.synbio.2024.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/20/2024] [Accepted: 03/05/2024] [Indexed: 01/03/2025] Open
Abstract
Acinetobacter baumannii is a pathogenic bacterium widespread in human environments, especially in intensive care units, and is associated with high morbidity and infection rates. Multiple drug resistance in A. baumannii frequently leads to the death of patients, making the development of multi-effect antibacterial agents against this bacterium a research hotspot. We have previously found that the X33 antimicrobial oligopeptide can effectively inhibit the growth of Penicillium digitatum and Candida albicans. Herein, we evaluated the antibacterial activity of X33 antimicrobial oligopeptide against A. baumannii by determining the minimum inhibitory concentration, inhibition zone, and growth curve. The increase in extracellular alkaline phosphatase and the leakage of intracellular compounds confirmed the effect of X33 antimicrobial oligopeptide on the cell wall and membrane. Changes in reactive oxygen species, malondialdehyde, ATP, reducing sugar, soluble protein, and pyruvate content demonstrated that the incubation with X33 antimicrobial oligopeptide affected energy metabolism and oxidative stress. Consistent with the physiological characteristics, transcriptomics analysis indicated that incubation with X33 antimicrobial oligopeptide significantly induced changes in the expression of 2339 genes, including 1262 upregulated and 1077 downregulated genes, which participate in oxidative phosphorylation, ribosome, quorum sensing, fatty acid degradation, glycolysis/gluconeogenesis, and citrate cycle pathways. These results provide a fundamental basis for investigating the mechanism of X33 antimicrobial oligopeptide as a potential drug against A. baumannii.
Collapse
Affiliation(s)
- Qunlin Lu
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Yuan Fang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Yuanxiu Wang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| |
Collapse
|
38
|
Upmanyu K, Kumar R, Rizwanul Haque QM, Singh R. Exploring the evolutionary and pathogenic role of Acinetobacter baumannii biofilm-associated protein (Bap) through in silico structural modeling. Arch Microbiol 2024; 206:267. [PMID: 38762620 DOI: 10.1007/s00203-024-03992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Acinetobacter species encode for extracellularly secreted Biofilm-associated protein (Bap), a multi-domain protein with variable molecular weights reaching several hundred kilodaltons. Bap is crucial for the development of multi-dimensional structures of mature biofilms. In our investigation, we analyzed 7338 sequences of A. baumannii from the NCBI database and found that Bap or Bap-like protein (BLP) was present in 6422 (87.52%) isolates. Further classification revealed that 12.12% carried Type-1 Bap, 68.44% had Type-2, 6.91% had Type-3, 0.05% had Type-6 or SDF-Type, and 12.51% lacked Bap or BLP. The majority of isolates with Type-1, Type-2, and Type-3 Bap belonged to ST1, ST2, and ST25, respectively. Phylogenetic analysis suggested that Type-1 Bap is the most ancient, while Type-3 and SDF-Type have evolved recently. Studying the interaction of predicted Bap structures with human CEACAM-1 and PIgR showed that Bap with its BIg13 and BIg6 domains interact with the N-terminal domain of CEACAM-1, involving Arg43 and Glu40, involved in CEACAM-1 dimerization. Also, we found that recently evolved Type-3 and SDF-Type Bap showed greater interaction with CEACAM-1 and PIgR. It can be asserted that the evolution of Bap has conferred enhanced virulence characteristics to A. baumannii with increased interaction with CEACAM-1 and PIgR. Using in silico approaches, this study explores the evolutionary, physicochemical, and structural features of A. baumannii Bap and unravels its crucial role in mediating interaction with human CEACAM-1 and PIgR through detailed structure modelling. These findings advance our understanding of A. baumannii Bap and highlight its role in pathogenesis.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rakesh Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
39
|
Pallós P, Gajdács M, Urbán E, Szabados Y, Szalai K, Hevesi L, Horváth A, Kuklis A, Morjaria D, Iffat W, Hetta HF, Piredda N, Donadu MG. Characterization of antibiotic and disinfectant susceptibility in biofilm-forming Acinetobacter baumannii: A focus on environmental isolates. Eur J Microbiol Immunol (Bp) 2024; 14:126-133. [PMID: 38441568 PMCID: PMC11097793 DOI: 10.1556/1886.2024.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 05/16/2024] Open
Abstract
The clinical role of Acinetobacter baumannii has been highlighted in numerous infectious syndromes with a high mortality rate, due to the high prevalence of multidrug-resistant (MDR) isolates. The treatment and eradication of this pathogen is hindered by biofilm-formation, providing protection from noxious environmental factors and antimicrobials. The aim of this study was to assess the antibiotic susceptibility, antiseptic susceptibility and biofilm-forming capacity using phenotypic methods in environmental A. baumannii isolates. One hundred and fourteen (n = 114) isolates were collected, originating from various environmental sources and geographical regions. Antimicrobial susceptibility testing was carried out using the disk diffusion method, while antiseptic susceptibility was performed using the agar dilution method. Determination of biofilm-forming capacity was carried out using a microtiter-plate based method. Resistance in environmental A. baumannii isolates were highest for ciprofloxacin (64.03%, n = 73), levofloxacin (62.18%, n = 71) and trimethoprim-sulfamethoxazole (61.40%, n = 70), while lowest for colistin (1.75%, n = 2). Efflux pump overexpression was seen in 48.25% of isolates (n = 55), 49.12% (n = 56) were classified as MDR. 6.14% (n = 7), 9.65% (n = 11), 24.65% (n = 28) and 59.65% (n = 68) of isolates were non-biofilm producers, weak, medium, and strong biofilm producers, respectively. No significant differences were observed between non-MDR vs. MDR isolates regarding their distribution of biofilm-producers (P = 0.655). The MIC ranges for the tested antiseptics were as follows: benzalkonium chloride 16-128 μg mL-1, chlorhexidine digluconate 4-128 μg mL-1, formaldehyde 64-256 μg mL-1 and triclosan 2-16 μg mL-1, respectively. The conscientious use of antiseptics, together with periodic surveillance, is essential to curb the spread of these bacteria, and to maintain current infection prevention capabilities.
Collapse
Affiliation(s)
- Péter Pallós
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Edit Urbán
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12, 7624Pécs, Hungary
| | - Yvett Szabados
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Klaudia Szalai
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Lívia Hevesi
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Anna Horváth
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Anna Kuklis
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Devina Morjaria
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Wajiha Iffat
- Department of Pharmaceutics, Dow College of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Dow University of Health Sciences, OJHA Campus, Karachi, Pakistan
| | - Helal F. Hetta
- Department of Natural Products and Alternative Medicine, Division of Microbiology and Immunology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Nicola Piredda
- Radiology Unit, Giovanni Paolo II Hospital, ASL Gallura, 07026Olbia, Italy
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026Olbia, Italy
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100Sassari, Italy
| |
Collapse
|
40
|
Fimbres-García JO, Flores-Sauceda M, Othón-Díaz ED, García-Galaz A, Tapia-Rodriguez MR, Silva-Espinoza BA, Alvarez-Armenta A, Ayala-Zavala JF. Lippia graveolens Essential Oil to Enhance the Effect of Imipenem against Axenic and Co-Cultures of Pseudomonas aeruginosa and Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:444. [PMID: 38786172 PMCID: PMC11117758 DOI: 10.3390/antibiotics13050444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This research focuses on assessing the synergistic effects of Mexican oregano (Lippia graveolens) essential oil or carvacrol when combined with the antibiotic imipenem, aiming to reduce the pathogenic viability and virulence of Acinetobacter baumannii and Pseudomonas aeruginosa. The study highlighted the synergistic effect of combining L. graveolens essential oil or carvacrol with imipenem, significantly reducing the required doses for inhibiting bacterial growth. The combination treatments drastically lowered the necessary imipenem doses, highlighting a potent enhancement in efficacy against A. baumannii and P. aeruginosa. For example, the minimum inhibitory concentrations (MIC) for the essential oil/imipenem combinations were notably low, at 0.03/0.000023 mg/mL for A. baumannii and 0.0073/0.000023 mg/mL for P. aeruginosa. Similarly, the combinations significantly inhibited biofilm formation at lower concentrations than when the components were used individually, demonstrating the strategic advantage of this approach in combating antibiotic resistance. For OXA-51, imipenem showed a relatively stable interaction during 30 ns of dynamic simulation of their interaction, indicating changes (<2 nm) in ligand positioning during this period. Carvacrol exhibited similar fluctuations to imipenem, suggesting its potential inhibition efficacy, while thymol showed significant variability, particularly at >10 ns, suggesting potential instability. With IMP-1, imipenem also displayed very stable interactions during 38 ns and demonstrated notable movement and positioning changes within the active site, indicating a more dynamic interaction. In contrast, carvacrol and thymol maintained their position within the active site only ~20 and ~15 ns, respectively. These results highlight the effectiveness of combining L. graveolens essential oil and carvacrol with imipenem in tackling the difficult-to-treat pathogens A. baumannii and P. aeruginosa.
Collapse
Affiliation(s)
- Jorge O. Fimbres-García
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Marcela Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Elsa Daniela Othón-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Alfonso García-Galaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Melvin R. Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón 85000, Sonora, Mexico;
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Andres Alvarez-Armenta
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Morelos, Mexico;
| | - J. Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| |
Collapse
|
41
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
42
|
Manley R, Fitch C, Francis V, Temperton I, Turner D, Fletcher J, Phil M, Michell S, Temperton B. Resistance to bacteriophage incurs a cost to virulence in drug-resistant Acinetobacter baumannii. J Med Microbiol 2024; 73:001829. [PMID: 38743467 PMCID: PMC11170128 DOI: 10.1099/jmm.0.001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Robyn Manley
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Christian Fitch
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Vanessa Francis
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Isaac Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Julie Fletcher
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Mitchelmore Phil
- University of Exeter, College of Medicine and Health, Department of Respiratory Medicine, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Steve Michell
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Ben Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| |
Collapse
|
43
|
Gurnani M, Chauhan A, Ranjan A, Gopi P, Ghosh A, Tuli HS, Haque S, Pandya P, Lal R, Jindal T. Cyanobacterial compound Tolyporphine K as an inhibitor of Apo-PBP (penicillin-binding protein) in A. baumannii and its ADME assessment. J Biomol Struct Dyn 2024; 42:4133-4144. [PMID: 37261797 DOI: 10.1080/07391102.2023.2218930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic-resistant Acinetobacter baumannii, is a common pathogen found in hospital settings and has become nosocomial due to its high infection-causing tendency amongst ICU patients. The present study explores the cyanocompoundswhich were capable to inhibit the Penicillin Binding Protein of A. baumannii through molecular docking, ADMET, and molecular dynamicssimulation strategy. A database having structural and origin details was generated for 85 bioactive compounds in MS Excel. The 3-D structures weredownloaded from the PubChem database and minimized. The receptor protein was minimized and validated for structure correctness. The database was screened against the penicillin-binding protein of A. baumannii through PyRx software. The top 5 compounds including the control molecule werefurther redocked to the receptor molecule through Autodock Vina software. The molecule pose having the highest affinity was further subjected to 100ns MD- simulation and simultaneously the in-vitro activity of the methanol extract and hexane extract was checked through agar well diffusion assay.Docking studies indicate Tolyporphine K to be a lead molecule which was further assessed through Molecular dynamics and MM/PBSA. The in-silicoresults suggested that the protein-ligand complex was found to be stable over the 100 ns trajectory with a binding free energy of -8.56 Kcalmol-1. Theligand did not induce any major structural conformation in the protein moiety and was largely stabilized by hydrophobic interactions. The bioactivityscore and ADME properties of the compounds were also calculated. The in-vitro agar well diffusion assay showed a moderate zone of inhibition of12.33mm. The results indicate that the compound Tolyporphin- K could be a potential inhibitor of penicillin-binding protein in A. baumannii. Yet furtherwork needs to be done to have a more concrete basis for the pathway of inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
| | - Anuj Ranjan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Arabinda Ghosh
- Department of Botany, Microbiology Division, Guwahati University, Guwahati, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India
| | - Tanu Jindal
- Amity Institute of Environmental Sciences, Amity University, Noida, India
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
| |
Collapse
|
44
|
Brychcy M, Nguyen B, Tierney GA, Casula P, Kokodynski A, Godoy VG. The metabolite vanillic acid regulates Acinetobacter baumannii surface attachment. Mol Microbiol 2024; 121:833-849. [PMID: 38308563 DOI: 10.1111/mmi.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
The nosocomial bacterium Acinetobacter baumannii is protected from antibiotic treatment by acquiring antibiotic resistances and by forming biofilms. Cell attachment, one of the first steps in biofilm formation, is normally induced by environmental metabolites. We hypothesized that vanillic acid (VA), the oxidized form of vanillin and a widely available metabolite, may play a role in A. baumannii cell attachment. We first discovered that A. baumannii actively breaks down VA through the evolutionarily conserved vanABKP genes. These genes are under the control of the repressor VanR, which we show binds directly to VanR binding sites within the vanABKP genes bidirectional promoter. VA in turn counteracts VanR inhibition. We identified a VanR binding site and searched for it throughout the genome, especially in pili encoding promoter genes. We found a VanR binding site in the pilus encoding csu operon promoter and showed that VanR binds specifically to it. As expected, a strain lacking VanR overproduces Csu pili and makes robust biofilms. Our study uncovers the role that VA plays in facilitating the attachment of A. baumannii cells to surfaces, a crucial step in biofilm formation. These findings provide valuable insights into a previously obscure catabolic pathway with significant clinical implications.
Collapse
Affiliation(s)
- Merlin Brychcy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Brian Nguyen
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | - Pranav Casula
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Alexis Kokodynski
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Ji C, Guo W, Amir H. Experience of diagnosis and treatment of hard-to-heal wounds infected with Acinetobacter baumannii: a case study. J Wound Care 2024; 33:278-285. [PMID: 38573906 DOI: 10.12968/jowc.2024.33.4.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
OBJECTIVE To explore the efficacy of 0.01% hypochlorous acid (HOCl) in the treatment of hard-to-heal wounds infected by multidrug-resistant Acinetobacter baumannii. METHOD We report a case of hard-to-heal wounds on a patient's forearms that were infected by Acinetobacter baumannii. The wounds were treated with 0.01% HOCl. We reviewed the relevant literature and discussed the definition, epidemiology and pathogenesis of hard-to-heal wounds infected by Acinetobacter baumannii. We also explored the safety and efficacy of 0.01% HOCl for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii. RESULTS After 3-4 weeks of treatment with 0.01% HOCl, the pain and pruritus of the wounds was gradually alleviated, the infection was controlled and the granulation tissue was fresh. The ulcers also shrank and the nutritional condition of the patient improved. In the fifth week, the skin of the patient's right thigh was grafted to repair the wounds, which then healed within 18 days. During the three years of follow-up, the patient had no relapse. CONCLUSION In our case, the 0.01% HOCl seemed to effectively inactivate the bacterial biological biofilm. This helped to promote wound healing, and was non-toxic to the tissues. We consider low-concentration HOCl to be safe and effective for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii.
Collapse
Affiliation(s)
- Chaochao Ji
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenyong Guo
- Institute of Basic Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hammad Amir
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
46
|
Jeffreys S, Tompkins MP, Aki J, Papp SB, Chambers JP, Guentzel MN, Hung CY, Yu JJ, Arulanandam BP. Development and Evaluation of an Immunoinformatics-Based Multi-Peptide Vaccine against Acinetobacter baumannii Infection. Vaccines (Basel) 2024; 12:358. [PMID: 38675740 PMCID: PMC11054912 DOI: 10.3390/vaccines12040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Multi-drug-resistant (MDR) Acinetobacter baumannii is an opportunistic pathogen associated with hospital-acquired infections. Due to its environmental persistence, virulence, and limited treatment options, this organism causes both increased patient mortality and incurred healthcare costs. Thus, prophylactic vaccination could be ideal for intervention against MDR Acinetobacter infection in susceptible populations. In this study, we employed immunoinformatics to identify peptides containing both putative B- and T-cell epitopes from proteins associated with A. baumannii pathogenesis. A novel Acinetobacter Multi-Epitope Vaccine (AMEV2) was constructed using an A. baumannii thioredoxin A (TrxA) leading protein sequence followed by five identified peptide antigens. Antisera from A. baumannii infected mice demonstrated reactivity to rAMEV2, and subcutaneous immunization of mice with rAMEV2 produced high antibody titer against the construct as well as peptide components. Immunization results in increased frequency of IL-4-secreting splenocytes indicative of a Th2 response. AMEV2-immunized mice were protected against intranasal challenge with a hypervirulent strain of A. baumannii and demonstrated reduced bacterial burden at 48 h. In contrast, all mock vaccinated mice succumbed to infection within 3 days. Results presented here provide insight into the effectiveness of immunoinformatic-based vaccine design and its potential as an effective strategy to combat the rise of MDR pathogens.
Collapse
Affiliation(s)
- Sean Jeffreys
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Megan P. Tompkins
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Jadelynn Aki
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Sara B. Papp
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - James P. Chambers
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - M. Neal Guentzel
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Jieh-Juen Yu
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Bernard P. Arulanandam
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
47
|
Ahuatzin-Flores OE, Torres E, Chávez-Bravo E. Acinetobacter baumannii, a Multidrug-Resistant Opportunistic Pathogen in New Habitats: A Systematic Review. Microorganisms 2024; 12:644. [PMID: 38674589 PMCID: PMC11051781 DOI: 10.3390/microorganisms12040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, humanity has begun to face a growing challenge posed by a rise in the prevalence of antibiotic-resistant bacteria. This has resulted in an alarming surge in fatalities and the emergence of increasingly hard-to-manage diseases. Acinetobacter baumannii can be seen as one of these resilient pathogens due to its increasing prevalence in hospitals, its resistance to treatment, and its association with elevated mortality rates. Despite its clinical significance, the scientific understanding of this pathogen in non-hospital settings remains limited. Knowledge of its virulence factors is also lacking. Therefore, in this review, we seek to shed light on the latest research regarding the ecological niches, microbiological traits, and antibiotic resistance profiles of Acinetobacter baumannii. Recent studies have revealed the presence of this bacterium in a growing range of environmental niches, including rivers, treatment plants, and soils. It has also been discovered in diverse food sources such as meat and vegetables, as well as in farm animals and household pets such as dogs and cats. This broader presence of Acinetobacter baumannii, i.e., outside of hospital environments, indicates a significant risk of environmental contamination. As a result, greater levels of awareness and new preventive measures should be promoted to address this potential threat to public health.
Collapse
Affiliation(s)
- Omar E. Ahuatzin-Flores
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edificio IC 6. Ciudad Universitaria, Puebla 72570, Mexico;
| | - Eduardo Torres
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Edith Chávez-Bravo
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| |
Collapse
|
48
|
Erol HB, Kaskatepe B, Yildiz S, Altanlar N, Bayrakdar F. Characterization of two bacteriophages specific to Acinetobacter baumannii and their effects on catheters biofilm. Cell Biochem Funct 2024; 42:e3966. [PMID: 38444208 DOI: 10.1002/cbf.3966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
Multidrug-resistant strains of Acinetobacter baumannii cause major nosocomial infections. Bacteriophages that are specific to the bacterial species and destroy bacteria can be effectively used for treatment. In this study, we characterized lytic bacteriophages specific to A. baumannii strains. We isolated lytic bacteriophages from environmental water samples and then investigated their morphology, host range, growth characteristics, stability, genome analysis, and biofilm destruction on the catheter surface. Our results showed that the efficacy of the phages varied between 32% and 78%, tested on 78 isolates of A. baumannii; 80 phages were isolated, and two lytic bacteriophages, vB_AbaP_HB01 (henceforth called C2 phage) and vB_AbaM_HB02 (henceforth called K3 phage), were selected for characterization. Electron microscopy scans revealed that the C2 and K3 phages were members of the Podoviridae and Myoviridae families, respectively. Whole-genome sequencing revealed that the sequence of the C2 phage is available in the NCBI database (accession number: OP917929.1), and it was found sequence identity with Acinetobacter phage AB1 18%, the K3 phage DNA sequence is closely related to Acinetobacter phage vB_AbaM_phiAbaA1 (94% similarity). The cocktail of C2 and K3 phages demonstrated a promising decrease in the bacterial cell counts of the biofilm after 4 h. Under a scanning electron microscope, the cocktail treatment destructed the biofilm on the catheter. We propose that the phage cocktail could be a strong alternative to antibiotics to control the A. baumannii biofilm in catheter infections.
Collapse
Affiliation(s)
- Hilal Basak Erol
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
- Ankara University Graduate School of Health Science, Ankara, Turkey
| | - Banu Kaskatepe
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Sulhiye Yildiz
- Department of Pharmaceutical Microbiology, Lokman Hekim University Faculty of Pharmacy, Ankara, Turkey
| | - Nurten Altanlar
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Fatma Bayrakdar
- Ministry of Health, General Directorate of Public Health, Microbiology References Laboratory, Ankara, Turkey
| |
Collapse
|
49
|
Shahri MA, Shirmast P, Ghafoori SM, Forwood JK. Deciphering the structure of a multi-drug resistant Acinetobacter baumannii short-chain dehydrogenase reductase. PLoS One 2024; 19:e0297751. [PMID: 38394109 PMCID: PMC10889901 DOI: 10.1371/journal.pone.0297751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
The rapidly increasing threat of multi-drug-resistant Acinetobacter baumannii infections globally, encompassing a range of clinical manifestations from skin and soft tissue infections to life-threatening conditions like meningitis and pneumonia, underscores an urgent need for novel therapeutic strategies. These infections, prevalent in both hospital and community settings, present a formidable challenge to the healthcare system due to the bacterium's widespread nature and dwindling effective treatment options. Against this backdrop, the exploration of bacterial short-chain dehydrogenase reductases (SDRs) emerges as a promising avenue. These enzymes play pivotal roles in various critical bacterial processes, including fatty acid synthesis, homeostasis, metabolism, and contributing to drug resistance mechanisms. In this study, we present the first examination of the X-ray crystallographic structure of an uncharacterized SDR enzyme from A. baumannii. The tertiary structure of this SDR is distinguished by a central parallel β-sheet, consisting of seven strands, which is flanked by eight α-helices. This configuration exhibits structural parallels with other enzymes in the SDR family, underscoring a conserved architectural theme within this enzyme class. Despite the current ambiguity regarding the enzyme's natural substrate, the importance of many SDR enzymes as targets in anti-bacterial agent design is well-established. Therefore, the detailed structural insights provided in this study open new pathways for the in-silico design of therapeutic agents. By offering a structural blueprint, our findings may provide a platform for future research aimed at developing targeted treatments against this and other multi-drug-resistant infections.
Collapse
Affiliation(s)
- Mahdi Abedinzadeh Shahri
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Paniz Shirmast
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Jade Kenneth Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
50
|
Morris FC, Jiang Y, Fu Y, Kostoulias X, Murray GL, Yu Y, Peleg AY. Lactate metabolism promotes in vivo fitness during Acinetobacter baumannii infection. FEMS Microbiol Lett 2024; 371:fnae032. [PMID: 38719540 PMCID: PMC11126152 DOI: 10.1093/femsle/fnae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Acinetobacter baumannii is one of the most prevalent causes of nosocomial infections worldwide. However, a paucity of information exists regarding the connection between metabolic capacity and in vivo bacterial fitness. Elevated lactate is a key marker of severe sepsis. We have previously shown that the putative A. baumannii lactate permease gene, lldP, is upregulated during in vivo infection. Here, we confirm that lldP expression is upregulated in three A. baumannii strains during a mammalian systemic infection. Utilising a transposon mutant disrupted for lldP in the contemporary clinical strain AB5075-UW, and a complemented strain, we confirmed its role in the in vitro utilisation of l-(+)-lactate. Furthermore, disruption of the lactate metabolism pathway resulted in reduced bacterial fitness during an in vivo systemic murine competition assay. The disruption of lldP had no impact on the susceptibility of this strain to complement mediated killing by healthy human serum. However, growth in biologically relevant concentrations of lactate observed during severe sepsis, led to bacterial tolerance to killing by healthy human blood, a phenotype that was abolished in the lldP mutant. This study highlights the importance of the lactate metabolism pathway for survival and growth of A. baumannii during infection.
Collapse
Affiliation(s)
- Faye C Morris
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Jiang
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Ying Fu
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Xenia Kostoulias
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Gerald L Murray
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Present Address; Royal Women's Hospital, Grattan Street, Parkville, Victoria 3052, Australia
| | - Yusong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Anton Y Peleg
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|