1
|
Oh MH, Kim N, Islam MM, Kim SY, Lee DE, Kim YK, Kwon KT, Lee JC. Comparative genomic and phenotypic analysis of low- and high-virulent Acinetobacter baumannii strains: Insights into antimicrobial resistance and virulence potential. Microb Pathog 2025; 198:107118. [PMID: 39551112 DOI: 10.1016/j.micpath.2024.107118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Multi-drug resistant Acinetobacter baumannii poses a significant threat to public health. This study investigated the genomic features and phenotypic characteristics of two clinical A. baumannii strains, KBN10P01317 (low-virulent) and KBN10P01599 (high-virulent), which share the same sequence type and antimicrobial susceptibility profile. The phenotypic characteristics of A. baumannii strains were assessed by antimicrobial susceptibility testing and virulence trait examination in vitro and in vivo. Whole-genome sequencing was conducted for comparative genomic analysis, and the expression of virulence-associated genes was analyzed using quantitative polymerase chain reaction. Our comparative genomic analysis revealed that KBN10P01599 harbored a larger genome with a greater number of antimicrobial resistance genes, including two copies of the critical resistance gene blaOXA-23, which might contribute to its higher minimum inhibitory concentration for carbapenems (64 μg/ml) compared to KBN10P01317 (32 μg/ml). Although both A. baumannii strains possessed the same repertoire of virulence-associated genes, KBN10P01599 exhibited significantly enhanced expression of quorum sensing (abaI/R) and biofilm formation genes (csuCDE, bap, and pgaA), correlating with its virulence traits, including increased surface motility, biofilm formation, and adherence to host cells. The differences in the expression of virulence-associated genes between the two strains were partly attributed to the transposition of insertion sequence elements. These findings provide valuable insights into the genetic basis of the virulence potential and antimicrobial resistance in A. baumannii, highlighting the evolutionary changes that may occur within strains of the same clone.
Collapse
Affiliation(s)
- Man Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea; Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, South Korea; Smart Animal Bio Institute, Dankook University, Cheonan, South Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea
| | - Md Minarul Islam
- Smart Animal Bio Institute, Dankook University, Cheonan, South Korea
| | - Seong Yeob Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea
| | - Da Eun Lee
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Yu Kyung Kim
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea; Department of Laboratory Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ki Tae Kwon
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
2
|
Zhu Z, Zhou Z, Zhu T, Kong G, Yin Y, Li G, Jiao H. K. pneumoniae ghosts serve as a novel vaccine formulation to enhance immune responses of A. baumannii subunit vaccine in mice. Microb Pathog 2024; 199:107226. [PMID: 39674425 DOI: 10.1016/j.micpath.2024.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Acinetobacter baumannii (A. baumannii) is a prominent nosocomial pathogen, posing a significant threat to public health. Urgent efforts are required to develop a safe and effective vaccine. Bacterial ghosts (BGs), comprising empty bacterial cell envelopes, offer a promising platform for vaccine adjuvant development. In the present study, Klebsiella pneumoniae (K. pneumoniae, KP) ghosts were generated via PhiX-174 lysis gene E-mediated inactivation. The present study results demonstrated that KP ghosts greatly promoted maturation and activation of BMDCs by upregulating the expression of surface molecules (CD40, CD80, CD86 and MHCII) and improving the secretion of cytokines (IL-1β, TNF-α and IL-12p70). In addition, to assess the immunogenicity and protective efficacy of the vaccine candidate, C57BL/6 mice were immunized with either A. baumannii OmpA or A. baumannii OmpA plus KP ghosts. The results showed that OmpA plus KP ghosts elicited higher levels of specific IgG antibody responses compared to OmpA alone. Furthermore, OmpA plus KP ghosts also increased lymphocyte proliferation and expression of the early activation marker CD69 on T cells, augmented frequency of central memory T cells (TCM) and IFN-γ+CD4+ T cells with production of increased IFN-γ in response to OmpA stimulation, as compared to OmpA alone. Furthermore, post-challenge with A. baumannii, mice immunized with OmpA plus KP ghosts exhibit a higher survival rate and lower bacterial loads in the spleen and lungs compared to those immunized with OmpA alone. In conclusion, these findings underscore the potential of KP ghosts as a candidate vaccine formulation or immunomodulators for designing a novel vaccine against A. baumannii infection.
Collapse
Affiliation(s)
- Zhongtian Zhu
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China; The Fifth People's Hospital of Suzhou (The Affiliated Infectious Disease Hospital of Soochow University), Suzhou, 215000, China
| | - Ziyan Zhou
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Tianyi Zhu
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Guimei Kong
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Yinyan Yin
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Guocai Li
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis/ Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Hongmei Jiao
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis/ Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Özcan Aykol ŞM, Zeybek Z, Kayabaş Y, Çevikli S, Keskin NB, Kahraman MH, Çaliş H. Effect of Acanthamoeba Spp. Cell-Free Supernatants on Some Bacterial Pathogens. J Basic Microbiol 2024:e2400537. [PMID: 39668500 DOI: 10.1002/jobm.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/29/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
The fact that free-living amoebae of the genus Acanthamoeba can live in many different environments causes these protozoa to have different interactions with other microorganisms. Investigation of Acanthamoeba-pathogenic bacteria interaction is important for the discovery of new antibacterial agents that can be used against pathogenic bacteria. In this study, it was aimed to investigate the antibacterial effect of cell-free supernatants obtained from Acanthamoeba against some pathogenic bacteria. One standard strain (Acanthamoeba castellanii ATCC 50373) and one environmental strain (B1) of the genus Acanthamoeba were used in the study. Cell-free supernatants were obtained by centrifuging the axenic cultures (3000 rpm, 5 min) and passing through a sterile filter with a pore diameter of 0.22 µm. The antibacterial effect of cell-free supernatants against five different pathogenic bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Enterococcus faecalis, Salmonella Typhi, and Salmonella enterica) was investigated by colony counting method. As a result of the study, it was determined that the standard Acanthamoeba cell-free supernatant showed the highest antibacterial effect against E. faecalis (75.79%), while B1 cell-free supernatant showed the highest antibacterial effect against K. pneumoniae (8.5%). The content of the tested Acanthamoeba cell-free supernatants was analyzed by gas chromatography/mass spectrometry in our previous study and was also found to contain major compounds with antibacterial properties. Therefore, it is thought that the metabolites produced by Acanthamoeba can be used as an alternative to existing antimicrobial drugs in the fight against infections caused by some important pathogenic bacteria.
Collapse
Affiliation(s)
- Şevval Maral Özcan Aykol
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
- Biruni University Research Center (B@MER), Biruni University, Istanbul, Turkey
| | - Zuhal Zeybek
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | | | | | | | | | - Hümeyra Çaliş
- Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
4
|
Almoghrabi Y, Daghistani H, Niyazi HA, Niyazi HA, AbdulMajed H, Juma NA, Daffa N, Helmi NR, Al-Rabia MW, Mokhtar JA, Saleh BH, Attallah DM, Matar M, Shukri HA, Moqaddam SA, Alamoudi S, Alkuwaity KK, Abujamel T, Sait AM, Mufrrih M, Al-Zahrani IA, O’hagan S, Ismail MA, Alharbi OS, Momin HJ, Abu IM, Alfadil A, Ibrahem K. Epidemiological and Clinical Insights into Acinetobacter baumannii: A Six-Year Study on Age, Antibiotics, and Specimens. Int J Gen Med 2024; 17:5715-5725. [PMID: 39650788 PMCID: PMC11625184 DOI: 10.2147/ijgm.s489514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Background This six-year retrospective study provides an in-depth analysis of the epidemiological and clinical patterns associated with Acinetobacter baumannii (A. baumannii) infections, focusing on age distribution, antibiotic resistance profiles, and specimen types. Aim The research examines the incidence and characteristics of both non-Multi-Drug Resistant (non-MDR) and Multi-Drug Resistant (MDR) A. baumannii strains by reviewing patient records from January 2016 to December 2022. Methods Through a statistical analysis, the study highlights the incidence rates across diverse age groups and explores the impact of antibiotic treatment regimens on infection outcomes. Additionally, it identifies the primary clinical specimen types for each strain, noting an association between non-MDR A. baumannii and midstream urine samples, while MDR A. baumannii strains were more frequently found in respiratory, wound, peripheral, and central line swaps/specimens. Results The results indicate that in 2016, non-MDR A. baumannii infections were notably more frequent compared to MDR A. baumannii cases. However, a significant shift occurred in 2021 and 2022, with a marked decrease in non-MDR A. baumannii cases and an increase in MDR A. baumannii infections. Antibiotic susceptibility testing revealed that non-MDR strains were commonly tested against cefazolin, ceftazidime, ciprofloxacin, gentamicin, nitrofurantoin, oxacillin, piperacillin/tazobactam, and trimethoprim/sulfamethoxazole. In contrast, MDR strains were frequently tested against amikacin, cefepime, colistin, meropenem, imipenem, and tigecycline. Conclusion This study enhances the understanding of A. baumannii clinical behaviour and resistance patterns, offering valuable insights to support future research and inform strategies for infectious disease management and control.
Collapse
Affiliation(s)
- Yousef Almoghrabi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hussam Daghistani
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hanouf A Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hatoon A Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hind AbdulMajed
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noha A Juma
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura Daffa
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noof R Helmi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jawahir A Mokhtar
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bandar Hasan Saleh
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dalya M Attallah
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Maram Matar
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Hani Ahmed Shukri
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Shahd A Moqaddam
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Sara Alamoudi
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Khalil K Alkuwaity
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Turki Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmad M Sait
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Mufrrih
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim A Al-Zahrani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stephen O’hagan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Mazen A Ismail
- Department of Medical Education, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ohood S Alharbi
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hattan Jamal Momin
- Medical Service Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ibrahim Mohammed Abu
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdelbagi Alfadil
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Karem Ibrahem
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Kumar G. Natural peptides and their synthetic congeners acting against Acinetobacter baumannii through the membrane and cell wall: latest progress. RSC Med Chem 2024:d4md00745j. [PMID: 39664362 PMCID: PMC11629675 DOI: 10.1039/d4md00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Acinetobacter baumannii is one of the deadliest Gram-negative bacteria (GNB), responsible for 2-10% of hospital-acquired infections. Several antibiotics are used to control the growth of A. baumannii. However, in recent decades, the abuse and misuse of antibiotics to treat non-microbial diseases have led to the emergence of multidrug-resistant A. baumannii strains. A. baumannii possesses a complex cell wall structure. Cell wall-targeting agents remain the center of antibiotic drug discovery. Notably, the antibacterial drug discovery intends to target the membrane of the bacteria, offering several advantages over antibiotics targeting intracellular systems, as membrane-targeting agents do not have to travel through the plasma membrane to reach the cytoplasmic targets. Microorganisms, insects, and mammals produce antimicrobial peptides as their first line of defense to protect themselves from pathogens and predators. Importantly, antimicrobial peptides are considered potential alternatives to antibiotics. This communication summarises the recently identified peptides of natural origin and their synthetic congeners acting against the A. baumannii membrane by cell wall disruption.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
6
|
Li M, Ma F, Zhao H, Zhou D, Liang L, Lv R, Li J, Wang Y, Xu L, Liu C, Tian GB, Feng S, Xia Y. Outer membrane permeability of mcr-positive bacteria reveals potent synergy of colistin and macromolecular antibiotics against colistin-resistant Acinetobacter baumannii. Front Microbiol 2024; 15:1468682. [PMID: 39629205 PMCID: PMC11611826 DOI: 10.3389/fmicb.2024.1468682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Colistin (CT) is the last-resort of antibiotic against multidrug-resistance (MDR) Acinetobacter baumannii (A. baumannii) infection. However, colistin resistance is increasingly reported in A. baumannii isolates partially due to the global emergence and dissemination of plasmid-borne mobile colistin resistance (mcr) gene and is a threat to human health. Thus, available treatment strategies urgently required in the fight against colistin-resistant A. baumannii. Here, we showed that mcr confers damaged outer membrane (OM) permeability in A. baumannii, which could compromise the viability of A. baumannii. Consistently, A. baumannii with colistin resistance exhibits increased susceptibility to macromolecular antibiotics such as rifampicin (RIF) and erythromycin (ERY). Moreover, the combination therapy of colistin and rifampicin demonstrates efficacy against colistin-resistant A. baumannii, regardless of the presence of mcr. Altogether, our data suggest that the synergy of colistin in combination with macromolecular hydrophobic antibiotics poses a promising therapeutic alternative for colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Meisong Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Furong Ma
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhao
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Dianrong Zhou
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lujie Liang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Runling Lv
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiachen Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yaxuan Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lin Xu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chenfei Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guo-Bao Tian
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siyuan Feng
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Selim MI, El-Banna T, Sonbol F, Elekhnawy E. Arthrospira maxima and biosynthesized zinc oxide nanoparticles as antibacterials against carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii: a review article. Microb Cell Fact 2024; 23:311. [PMID: 39558333 PMCID: PMC11575411 DOI: 10.1186/s12934-024-02584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Carbapenem resistance among bacteria, especially Klebsiella pneumoniae and Acinetobacter baumannii, constitutes a dreadful threat to public health all over the world that requires developing new medications urgently. Carbapenem resistance emerges as a serious problem as this class is used as a last-line option to clear the multidrug-resistant bacteria. Arthrospira maxima (Spirulina) is a well-known cyanobacterium used as a food supplement as it is rich in protein, essential minerals and vitamins and previous studies showed it may have some antimicrobial activity against different organisms. Biosynthesized (green) zinc oxide nanoparticles have been investigated by several researchers as antibacterials because of their safety in health. In this article, previous studies were analyzed to get to a conclusion about their activity as antibacterials.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
8
|
Ciftci IH, Kahraman Kilbas EP, Kilbas I. A Systematic Review and Meta-Analysis of Molecular Characteristics on Colistin Resistance of Acinetobacter baumannii. Diagnostics (Basel) 2024; 14:2599. [PMID: 39594265 PMCID: PMC11592941 DOI: 10.3390/diagnostics14222599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND This study aimed to determine the molecular epidemiology of colistin-resistant A. baumannii in the last ten years and the frequency of gene regions related to pathogenesis, to compare the methods used to detect genes, and to confirm colistin resistance. METHODS This meta-analysis study was conducted under Preferred Reporting Items for Systematic Reviews and Meta-Analysis Guidelines. In the meta-analysis, research articles published in English and Turkish in electronic databases between January 2012 and November 2023 were examined. International Business Machines (IBM) Statistical Package for the Social Sciences (SPSS) Statistics for Macbook (Version 25.0. Armonk, NY, USA) was used for statistical analysis. The Comprehensive Meta-Analysis (CMA) (Version 3.0. Biostat, NJ, USA) program was used for heterogeneity assessment in the articles included in the meta-analysis. RESULTS After evaluating the studies according to the elimination criteria, 18 original articles were included. Among colistin-resistant strains, blaOXA-51 positivity was 243 (19.61%), blaOXA-23 was 113 (9.12%), blaOXA-58 was 7 (0.56%), blaOXA-143 was 15 (1.21%), and blaOXA-72 was seen in two (0.16%) strains. The positivity rates of pmrA, pmrB, and pmrC were found to be 22 (1.77%), 26 (2.09%), and 6 (0.48%). The mcr-1 rate was found to be 91 (7.34%), the mcr-2 rate was 78 (6.29%), and the mcr-3 rate was 82 (6.61%). CONCLUSIONS The colistin resistance rate in our study was found to be high. However, only some research articles report and/or investigate more than one resistance gene together. Additionally, it may be challenging to explain colistin resistance solely by expressing resistance genes without discussing accompanying components such as efflux pumps, virulence factors, etc.
Collapse
Affiliation(s)
- Ihsan Hakki Ciftci
- Department of Medical Microbiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey
| | - Elmas Pinar Kahraman Kilbas
- Department of Medical Laboratory Techniques, Health Services Vocational School, Fenerbahce University, 34758 Istanbul, Turkey;
| | - Imdat Kilbas
- Medical Microbiology Doctorate Program, Institute of Health Sciences, Istanbul University, 34093 Istanbul, Turkey;
| |
Collapse
|
9
|
Behrouz B, Rasooli I, Badmasti F. Inserting Omp22 into the flagellin protein, replacing its hypervariable region, results in stronger protection against lethal Acinetobacter baumannii infection. Sci Rep 2024; 14:27646. [PMID: 39533090 PMCID: PMC11557591 DOI: 10.1038/s41598-024-79013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Acinetobacter baumannii, a common nosocomial pathogen, is known for its rapid acquisition of antimicrobial resistance, underscoring the urgent need to develop an effective vaccine against this pathogen. Outer membrane protein 22 (Omp22) regulates the biogenesis of outer membrane vesicles to transport virulence-promoting factors into the host cells and facilitates the progression of A. baumannii infection. In this study, we used a mouse model to assess a vaccine's immunogenicity and protective efficacy using recombinant Omp22 protein within the hypervariable region of flagellin (FliC-Omp22). FliC-Omp22 demonstrated superior protection following challenge with a lethal dose of multidrug-resistant (MDR) A. baumannii strain 58ST compared to Omp22 alone. In addition, it elicited increased IgG1/IgG2a and IL-4/IFN-γ ratios, indicating a predominant Th2 immune response. Furthermore, the FliC-Omp22 vaccination elicited strong specific antibodies that inhibited the adhesion and invasion of A. baumannii 58ST and enhanced the opsonic killing activity against the pathogen. FliC-Omp22 immunization significantly reduced bacterial loads in infected mice's spleen, lungs, and liver, thereby improving their survival against the lethal infection caused by MDR A. baumannii 58ST. This study suggests that integrating Omp22 into the hypervariable domain of flagellin holds promise for developing an effective vaccine against A. baumannii infections.
Collapse
Affiliation(s)
- Bahador Behrouz
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Iraj Rasooli
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran.
- Molecular Microbiology Research Center, Department of Biology, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran.
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Grygiel I, Bajrak O, Wójcicki M, Krusiec K, Jończyk-Matysiak E, Górski A, Majewska J, Letkiewicz S. Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies. Antibiotics (Basel) 2024; 13:1064. [PMID: 39596757 PMCID: PMC11591314 DOI: 10.3390/antibiotics13111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Acinetobacter baumannii-a multidrug-resistant (MDR) pathogen that causes, for example, skin and soft tissue wounds; urinary tract infections; pneumonia; bacteremia; and endocarditis, particularly due to its ability to form robust biofilms-poses a significant challenge in clinical settings. This structure protects the bacteria from immune responses and antibiotic treatments, making infections difficult to eradicate. Given the rise in antibiotic resistance, alternative therapeutic approaches are urgently needed. Bacteriophage-based strategies have emerged as a promising solution for combating A. baumannii biofilms. Phages, which are viruses that specifically infect bacteria, offer a targeted and effective means of disrupting biofilm and lysing bacterial cells. This review explores the current advancements in bacteriophage therapy, focusing on its potential for treating A. baumannii biofilm-related infections. We described the mechanisms by which phages interact with biofilms, the challenges in phage therapy implementation, and the strategies being developed to enhance its efficacy (phage cocktails, engineered phages, combination therapies with antibiotics). Understanding the role of bacteriophages in both biofilm disruption and in inhibition of its forming could pave the way for innovative treatments in combating MDR A. baumannii infections as well as the prevention of their development.
Collapse
Affiliation(s)
- Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Olaf Bajrak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Michał Wójcicki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Klaudia Krusiec
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Professor Emeritus, Department of Immunology, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Joanna Majewska
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Collegium Medicum, Jan Długosz University, 42-200 Częstochowa, Poland
| |
Collapse
|
11
|
Cottom CO, Stephenson R, Ricci D, Yang L, Gumbart JC, Noinaj N. Structural characterization of the POTRA domains from A. baumannii reveals new conformations in BamA. Structure 2024; 32:2038-2048.e3. [PMID: 39293443 PMCID: PMC11560574 DOI: 10.1016/j.str.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Recent studies have demonstrated BamA, the central component of the β-barrel assembly machinery (BAM), as an important therapeutic target to combat infections caused by Acinetobacter baumannii and other Gram-negative pathogens. Homology modeling indicates BamA in A. baumannii consists of five polypeptide transport-associated (POTRA) domains and a β-barrel membrane domain. We characterized the POTRA domains of BamA from A. baumannii in solution using size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis and determined crystal structures in two conformational states that are drastically different than those previously observed in BamA from other bacteria, indicating that the POTRA domains are even more conformationally dynamic than has been observed previously. Molecular dynamics simulations of the POTRA domains from A. baumannii and Escherichia coli allowed us to identify key structural features that contribute to the observed novel states. Together, these studies expand on our current understanding of the conformational plasticity within BamA across differing bacterial species.
Collapse
Affiliation(s)
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Dante Ricci
- Achaogen, Inc., South San Francisco, CA, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
12
|
Ndiaye I, Debarbieux L, Sow O, Ba BS, Diagne MM, Cissé A, Fall C, Dieye Y, Dia N, de Magny GC, Seck A. Characterization of two Friunavirus phages and their inhibitory effects on biofilms of extremely drug resistant Acinetobacter baumannii in Dakar, Senegal. BMC Microbiol 2024; 24:449. [PMID: 39501140 PMCID: PMC11536776 DOI: 10.1186/s12866-024-03608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/24/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii is a gram-negative, opportunistic pathogen, that is responsible for a wide variety of infections and is a significant cause of hospital-acquired infections. A. baumannii is listed by the World Health Organization (WHO) as a critical priority pathogen because of its high level of antibiotic resistance and the urgent need for alternative treatment solutions. To address this challenge, bacteriophages have been used to combat bacterial infections for more than a century, and phage research has regained interest in recent years due to antimicrobial resistance (AMR). However, although the vast majority of deaths from the AMR crisis will occur in developing countries in Africa and Asia, few phages' studies have been conducted in these regions. In this study, we present a comprehensive characterization of the bacteriophages vAbBal23 and vAbAbd25, actives against extremely drug-resistant (XDR) A. baumannii. METHODS Phages were isolated from environmental wastewaters in Dakar, Senegal. The host-range, thermal and pH stabilities, infection kinetics, one step growth assay, antibiofilm activity assay, sequencing, and genomic analysis, were performed to characterize the isolated phages. RESULTS Comparative genomic and phylogenetic analyses revealed that vAbBal23 and vAbAbd25 belong to the Caudoviricetes class, Autographiviridae family and Friunavirus genus. Both phages demonstrated activity against strains with capsular type KL230. They were stable over a wide pH range (pH 3 to 9) and at temperatures ranging from 25 °C to 40 °C. Additionally, the phages exhibited notable activity against both planktonic and biofilm cells of targeted extremely drug resistant A. baumannii. The results presented here indicate the lytic nature of vAbBal23 and vAbAbd25. This is further supported by the absence of genes encoding toxins, resistance genes and bacterial virulence factors, highlighting their potential for future phage applications. CONCLUSION Phages vAbBal23 and vAbAbd25 are promising biological agents that can infect A. baumannii, making them suitable candidates for use in phage therapies.
Collapse
Affiliation(s)
- Issa Ndiaye
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal.
- Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.
| | - Laurent Debarbieux
- Laboratoire de Bactériophage, Bactérie, Hôte, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Ousmane Sow
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | | | | | - Abdoulaye Cissé
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Cheikh Fall
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Yakhya Dieye
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Ndongo Dia
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Guillaume Constantin de Magny
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- MEEDiN, Montpellier Ecology and Evolution of Disease Network, Montpellier, France
| | - Abdoulaye Seck
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
- Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal
| |
Collapse
|
13
|
Rajabzadeh M, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Characterizing the interplay between Acinetobacter baumannii, A549 cells, and anti-Omp34 antibodies: implications for adherence, internalization, and cytotoxicity. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01218-4. [PMID: 39480642 DOI: 10.1007/s12223-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
Acinetobacter baumannii thrives within eukaryotic cells, influencing persistence, treatment approaches, and progression of disease. We probed epithelial cell invasion by A. baumannii and the influence of antibodies raised to outer membrane protein 34 (Omp34) on epithelial interactions. We expressed and purified recombinant Omp34 and induced anti-Omp34 antibodies in Bagg albino or BALB/c mice. Omp34 was evaluated for acute toxicity in mice through histological analysis of six organs. The host cell line, A549, was exposed to both A. baumannii 19606 and a clinical isolate. The study also investigated serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells, with and without anti-Omp34 sera, utilizing cell culture techniques and light microscopy. A549 cell viability was evaluated by A. baumannii challenge and exposure to anti-Omp34 sera. Actin disruption experiments using cytochalasin D probed microfilament and microtubule roles in A. baumannii invasion. Omp34 prompted antibody production without toxicity in mice. The serum showed bactericidal effects on both strains. Additionally, both A. baumannii strains were found to form biofilms. Omp34 serum was observed to decrease biofilm formation, bacterial adherence, internalization, and proliferation in A549 cells. Furthermore, the use of anti-Omp34 serum enhanced the post-infection survival of the host cell. Pre-exposure of A549 cells to cytochalasin D reduced bacterial internalization, highlighting the role of actin polymerization in the invasion process. Microscopic analysis revealed various interactions, such as adherence, membrane alterations, vacuolization, apoptosis, and cellular damage. Anti-Omp34 serum-exposed A549 cells were protected and showed reduced damage. The findings reveal that A. baumannii can significantly multiply intracellularly within host cells. This suggests the bacterium's ability to establish an environment conducive to its replication by preventing fusion with degradative lysosomes and inhibiting acidification. This finding contributes to the understanding of A. baumannii's intracellular persistence and highlights the role of Omp34 in influencing apoptosis, autophagy, and bacterial adherence, which may impact the development of effective treatments against A. baumannii infections.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
- Department of Biology, and Molecular Microbiology Research Center, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran.
- Department of Biology, and Molecular Microbiology Research Center, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran.
| |
Collapse
|
14
|
Depka D, Bogiel T, Rzepka M, Gospodarek-Komkowska E. Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems-A Pilot Study. Microorganisms 2024; 12:2057. [PMID: 39458366 PMCID: PMC11510033 DOI: 10.3390/microorganisms12102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii is one of the major problems among hospitalized patients. The presence of multiple virulence factors results in bacteria persistence in the hospital environment. It facilitates bacterial transmission between patients, causing various types of infections, mostly ventilator-associated pneumonia and wound and bloodstream infections. A. baumannii has a variable number of resistance mechanisms, but the most commonly produced are carbapenem-hydrolyzing class D β-lactamases (CHDLs). In our study, the presence of blaOXA-23, blaOXA-40 and blaOXA-51 genes was investigated among 88 clinical isolates of A. baumannii, including 53 (60.2%) strains resistant to both carbapenems (meropenem and imipenem) and 35 (39.8%) strains susceptible to at least meropenem. Among these bacteria, all the isolates carried the blaOXA-51 gene. The blaOXA-23 and blaOXA-40 genes were detected in two (5.7%) and three (8.6%) strains, respectively. Among the OXA-23 carbapenemase-producing A. baumannii strains (n = 55), insertion sequences (ISAba1) were detected upstream of the blaOXA-23 gene in fifty-two (94.5%) carbapenem-resistant and two (3.6%) meropenem-susceptible isolates. A. baumannii clinical strains from Poland have a similar antimicrobial resistance profile as those worldwide, with the presence of ISAba1 among blaOXA-23-positive isolates also being quite common. Carbapenem resistance among A. baumannii strains is associated with the presence of CHDLs, especially when insertion sequences are present.
Collapse
Affiliation(s)
- Dagmara Depka
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Tomasz Bogiel
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Mateusz Rzepka
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| |
Collapse
|
15
|
Wang H, Xu Q, Heng H, Zhao W, Ni H, Chen K, Wai Chan BK, Tang Y, Xie M, Peng M, Chi Chan EW, Yang G, Chen S. High mortality of Acinetobacter baumannii infection is attributed to macrophage-mediated induction of cytokine storm but preventable by naproxen. EBioMedicine 2024; 108:105340. [PMID: 39303669 PMCID: PMC11437915 DOI: 10.1016/j.ebiom.2024.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The continuous emergence of multidrug-resistant (MDR) Acinetobacter baumannii (Ab) strains poses further challenges in its control and clinical management. It is necessary to decipher the mechanisms underlying the high mortality of Ab infections to explore unconventional strategies for controlling outbreaks of drug-resistant infections. METHODS The immune responses of Ab sepsis infection were investigated using flow cytometry, RNA-seq, qRT-PCR, and ELISA and scRNA-seq. The detailed pathways mediating Ab immune responses were also depicted and a specific therapy was developed based on the understanding of the mechanisms underlying Ab-induced cytokine storms. FINDINGS The results highlighted the critical role of alveolar and interstitial macrophages as targets of Ab during the infection process. These cells were found to undergo polarization towards the M1 phenotype, triggering a cytokine storm that eventually caused the death of the host. The polarization and excessive inflammatory response mediated by macrophages were mainly regulated by the TLR2/Myd88/NF-κB signaling pathway. Suppression of Ab-triggered inflammatory responses and M1 polarization by the drug naproxen (NPXS) was shown to confer full protection of mice from lethal infections. INTERPRETATION The findings in this work depict the major mechanisms underlying the high mortality rate of Ab infections and highlight the clinical potential application of anti-inflammatory drugs or immunosuppressants in reducing the mortality of such infections, including those caused by MDR strains. FUNDING Funding sources are described in the acknowledgments section.
Collapse
Affiliation(s)
- Han Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Qi Xu
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Heng Heng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wenxing Zhao
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kaichao Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bill Kwan Wai Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Miaomiao Xie
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Mingxiu Peng
- Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
16
|
da Silva Cirino IC, de Santana CF, Vasconcelos Rocha I, de Souza LIO, Silva MV, Bressan Queiroz de Figueiredo RC, Coutinho HDM, Leal-Balbino TC. The Combinatory Effects of Essential Oil from Lippia macrophylla on Multidrug Resistant Acinetobacter baumannii Clinical Isolates. Chem Biodivers 2024; 21:e202400537. [PMID: 39008435 DOI: 10.1002/cbdv.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
To assess the antibacterial effectiveness of Lippia macrophylla essential oil (LMEO) against multidrug-resistant Acinetobacter baumannii isolates, both as a standalone treatment and in combination with conventional antibiotics. LMEO demonstrated a significant inhibitory effect on the growth of A. baumannii, with a minimum inhibitory concentration (MIC) below 500 μg/mL. Notably, LMEO was capable of reversing the antibiotic resistance of clinical isolates or reducing their MIC values when used in combination with antibiotics, showing synergistic (FICI≤0.5) or additive effects. The combination of LMEO and imipenem was particularly effective, displaying synergistic interactions for most isolates. Ultrastructural analyses supported these findings, revealing that the combination of LMEO+ceftazidime compromised the membrane integrity of the Acb35 isolate, leading to cytoplasmic leakage and increased formation of Outer Membrane Vesicles (OMVs). Taken together our results point for the use of LMEO alone or in combination as an antibacterial agent against A. baumannii. These findings offer promising avenues for utilizing LMEO as a novel antibacterial strategy against drug-resistant infections in healthcare settings, underscoring the potential of essential oils in enhancing antibiotic efficacy.
Collapse
Affiliation(s)
- Isis Caroline da Silva Cirino
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
- Federal University of Pernambuco, CEP 50670-901, Recife, PE, Brazil
| | - Caroline Ferreira de Santana
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
- Federal University of Pernambuco, CEP 50670-901, Recife, PE, Brazil
| | - Igor Vasconcelos Rocha
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Le KCM, Wong CF, Müller V, Grüber G. Cryo-EM reveals transition states of the Acinetobacter baumannii F 1-ATPase rotary subunits γ and ε, unveiling novel compound targets. FASEB J 2024; 38:e70131. [PMID: 39467208 PMCID: PMC11580714 DOI: 10.1096/fj.202401629r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Priority 1: critical WHO pathogen Acinetobacter baumannii depends on ATP synthesis and ATP:ADP homeostasis and its bifunctional F1FO-ATP synthase. While synthesizing ATP, it regulates ATP cleavage by its inhibitory ε subunit to prevent wasteful ATP consumption. We determined cryo-electron microscopy structures of the ATPase active A. baumannii F1-αßγεΔ134-139 mutant in four distinct conformational states, revealing four transition states and structural transformation of the ε's C-terminal domain, forming the switch of an ATP hydrolysis off- and an ATP synthesis on-state based. These alterations go in concert with altered motions and interactions in the catalytic- and rotary subunits of this engine. These A. baumannii interacting sites provide novel pathogen-specific targets for inhibitors, with the aim of ATP depletion and/or ATP synthesis and growth inhibition. Furthermore, the presented diversity to other bacterial F-ATP synthases extends the view of structural elements regulating such a catalyst.
Collapse
Affiliation(s)
- Khoa Cong Minh Le
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Chui Fann Wong
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurtGermany
| | - Gerhard Grüber
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Bioinformatics Institute, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
18
|
Eliuz EE, Ayas D. Developing fish oil emulsion gel enriched with Lentinula edodes single cell protein and its effect on controlling the growth of Acinetobacter baumannii. J Microbiol Methods 2024; 224:107006. [PMID: 39069135 DOI: 10.1016/j.mimet.2024.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this study, the characterization of fish oil (FO) emulsion gel (EGEL) containing single cell protein (SCP) produced from Lentinula edodes (L. edodes) and its potential inhibition against Acinetobacter baumannii (A. baumannii) were investigated. Oil extracted from the fish liver was emulsified with tween 80 and water, and then gelled using gelatin with the assistance of an ultrasonic homogenizer. The characteristics and surface analysis of SCP-EGEL were examined using FTIR (Fourier-transform infrared spectroscopy) and SEM (Scanning electron microscope). The particle size distribution and zeta potential of SCP-EGEL were measured using a Malvern Zetasizer. When SCP-EGEL was applied to the surface of the medium inoculated with A. baumannii, the inhibition zone (IZ) was 8.2 mm. An expansion of the IZ was observed (10.2 mm) when SCP-EGEL was applied to a fish skin (FS) surface prepared in the shape of a 6-mm diameter disc. In the SEM images, when SCP was added to lipo gel, the gel structure appeared flattened or swollen in some areas. The appearance of SCP cells being covered with gel gave the impression that they have a secondary wall. Therefore, the resulting complex can potentially be used as an additive in animal and human nutrition, in functional food coatings to suppress A. baumannii, and in fish feed to enrich it with protein.
Collapse
Affiliation(s)
- Elif Erdogan Eliuz
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey.
| | - Deniz Ayas
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey
| |
Collapse
|
19
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
20
|
Santos-Júnior CD, Torres MDT, Duan Y, Rodríguez Del Río Á, Schmidt TSB, Chong H, Fullam A, Kuhn M, Zhu C, Houseman A, Somborski J, Vines A, Zhao XM, Bork P, Huerta-Cepas J, de la Fuente-Nunez C, Coelho LP. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 2024; 187:3761-3778.e16. [PMID: 38843834 PMCID: PMC11666328 DOI: 10.1016/j.cell.2024.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Laboratory of Microbial Processes & Biodiversity - LMPB, Department of Hydrobiology, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; APC Microbiome & School of Medicine, University College Cork, Cork, Ireland
| | - Hui Chong
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Amy Houseman
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Jelena Somborski
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anna Vines
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
21
|
Pereira IL, Cardoso TL, Wozeak DR, Caballero PS, Buchhorn de Freitas S, Pinto Seixas Neto AC, da Silva Pinto L, Hartwig DD. Antibodies anti-rFilF protein has anti-biofilm activity against carbapenem-resistant Acinetobacter baumannii. Microbes Infect 2024; 26:105347. [PMID: 38679227 DOI: 10.1016/j.micinf.2024.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Acinetobacter baumannii is an opportunistic bacterium that causes infection in several sites. Carbapenem-resistant A. baumannii strains (CRAb) lead the World Health Organization's list of 12 pathogens considered a priority for developing new antimicrobials. The pathogenicity of A. baumannii is related to the different virulence factors employed in the colonization of biotic and abiotic surfaces, biofilm formation and multidrug resistance. We analyze the outer membrane protein FilF from A. baumannii in silico and produce it in recombinant form (rFilF). rFilF protein was successfully expressed in Escherichia coli BL21 Star in an insoluble form. Immunization with rFilF induced significant anti-rFilF IgG antibody production in mice, detected by indirect enzyme-linked immunosorbent assay, since the first evaluation until 49th. On the last experimentation day, the predominant immunoglobulin found was IgG1 followed by IgG2a, IgG2b, IgM, IgG3, and IgA. We observe that interleukins 4 and 10 show significant production after the 28th day of experimentation in mice immunized with rFilF. Anti-rFilF pAbs were able to inhibit biofilm formation in nine CRAb strains evaluated, and in the standard strain ATCC® 19606. These results demonstrate the anti-biofilm activity of anti-rFilF antibodies, promising in the development of a non-antibiotic approach based on the control of CRAb strains.
Collapse
Affiliation(s)
- Isabel Ladeira Pereira
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Thayná Laner Cardoso
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Daniela Rodriguero Wozeak
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Pamela Scaraffuni Caballero
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Stella Buchhorn de Freitas
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Luciano da Silva Pinto
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Biotechnology Unit, Center of Technological Development, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil; Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, CEP 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
22
|
Tan L, Ma R, Katz AJ, Levi N. Farnesol repurposing for prevention and treatment of Acinetobacter baumannii biofilms. Biofilm 2024; 7:100198. [PMID: 38706984 PMCID: PMC11066513 DOI: 10.1016/j.bioflm.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Acinetobacter baumannii has emerged as a multidrug-resistant (MDR) superbug by causing severe infections, with high mortality rates. The ability of A. baumannii to form biofilms significantly contributes to its persistence in diverse environmental and hospital settings. Here we report that farnesol, an FDA-approved commercial cosmetic and flavoring agent, demonstrates efficacy for both inhibition of biofilm formation, and disruption of established A. baumannii biofilms. Moreover, no resistance to farnesol was observed even after prolonged culture in the presence of sub-inhibitory farnesol doses. Farnesol combats A. baumannii biofilms by direct killing, while also facilitating biofilm detachment. Furthermore, farnesol was safe, and effective, for both prevention and treatment of A. baumannii biofilms in an ex vivo burned human skin model. Since current treatment options for A. baumannii biofilm infections were mainly counted on the combination therapy of last-resort antibiotics, and clearly non-sustainable due to robust MDR phenotype of A. baumannii, we propose that farnesol alone can be repurposed as a highly effective agent for both preventing and treating life-threating biofilm-associated infections of A. baumannii due to its proven safety, convenient topical delivery, and excellent efficiency, plus its superiority of evading resistance development.
Collapse
Affiliation(s)
- Li Tan
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rong Ma
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam J. Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
23
|
Lu Q, Wu X, Fang Y, Wang Y, Zhang B. Antibacterial activity and mechanism of X33 antimicrobial oligopeptide against Acinetobacter baumannii. Synth Syst Biotechnol 2024; 9:312-321. [PMID: 38545458 PMCID: PMC10965436 DOI: 10.1016/j.synbio.2024.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/20/2024] [Accepted: 03/05/2024] [Indexed: 01/03/2025] Open
Abstract
Acinetobacter baumannii is a pathogenic bacterium widespread in human environments, especially in intensive care units, and is associated with high morbidity and infection rates. Multiple drug resistance in A. baumannii frequently leads to the death of patients, making the development of multi-effect antibacterial agents against this bacterium a research hotspot. We have previously found that the X33 antimicrobial oligopeptide can effectively inhibit the growth of Penicillium digitatum and Candida albicans. Herein, we evaluated the antibacterial activity of X33 antimicrobial oligopeptide against A. baumannii by determining the minimum inhibitory concentration, inhibition zone, and growth curve. The increase in extracellular alkaline phosphatase and the leakage of intracellular compounds confirmed the effect of X33 antimicrobial oligopeptide on the cell wall and membrane. Changes in reactive oxygen species, malondialdehyde, ATP, reducing sugar, soluble protein, and pyruvate content demonstrated that the incubation with X33 antimicrobial oligopeptide affected energy metabolism and oxidative stress. Consistent with the physiological characteristics, transcriptomics analysis indicated that incubation with X33 antimicrobial oligopeptide significantly induced changes in the expression of 2339 genes, including 1262 upregulated and 1077 downregulated genes, which participate in oxidative phosphorylation, ribosome, quorum sensing, fatty acid degradation, glycolysis/gluconeogenesis, and citrate cycle pathways. These results provide a fundamental basis for investigating the mechanism of X33 antimicrobial oligopeptide as a potential drug against A. baumannii.
Collapse
Affiliation(s)
- Qunlin Lu
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Yuan Fang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Yuanxiu Wang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| |
Collapse
|
24
|
Upmanyu K, Kumar R, Rizwanul Haque QM, Singh R. Exploring the evolutionary and pathogenic role of Acinetobacter baumannii biofilm-associated protein (Bap) through in silico structural modeling. Arch Microbiol 2024; 206:267. [PMID: 38762620 DOI: 10.1007/s00203-024-03992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Acinetobacter species encode for extracellularly secreted Biofilm-associated protein (Bap), a multi-domain protein with variable molecular weights reaching several hundred kilodaltons. Bap is crucial for the development of multi-dimensional structures of mature biofilms. In our investigation, we analyzed 7338 sequences of A. baumannii from the NCBI database and found that Bap or Bap-like protein (BLP) was present in 6422 (87.52%) isolates. Further classification revealed that 12.12% carried Type-1 Bap, 68.44% had Type-2, 6.91% had Type-3, 0.05% had Type-6 or SDF-Type, and 12.51% lacked Bap or BLP. The majority of isolates with Type-1, Type-2, and Type-3 Bap belonged to ST1, ST2, and ST25, respectively. Phylogenetic analysis suggested that Type-1 Bap is the most ancient, while Type-3 and SDF-Type have evolved recently. Studying the interaction of predicted Bap structures with human CEACAM-1 and PIgR showed that Bap with its BIg13 and BIg6 domains interact with the N-terminal domain of CEACAM-1, involving Arg43 and Glu40, involved in CEACAM-1 dimerization. Also, we found that recently evolved Type-3 and SDF-Type Bap showed greater interaction with CEACAM-1 and PIgR. It can be asserted that the evolution of Bap has conferred enhanced virulence characteristics to A. baumannii with increased interaction with CEACAM-1 and PIgR. Using in silico approaches, this study explores the evolutionary, physicochemical, and structural features of A. baumannii Bap and unravels its crucial role in mediating interaction with human CEACAM-1 and PIgR through detailed structure modelling. These findings advance our understanding of A. baumannii Bap and highlight its role in pathogenesis.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rakesh Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
25
|
Pallós P, Gajdács M, Urbán E, Szabados Y, Szalai K, Hevesi L, Horváth A, Kuklis A, Morjaria D, Iffat W, Hetta HF, Piredda N, Donadu MG. Characterization of antibiotic and disinfectant susceptibility in biofilm-forming Acinetobacter baumannii: A focus on environmental isolates. Eur J Microbiol Immunol (Bp) 2024; 14:126-133. [PMID: 38441568 PMCID: PMC11097793 DOI: 10.1556/1886.2024.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 05/16/2024] Open
Abstract
The clinical role of Acinetobacter baumannii has been highlighted in numerous infectious syndromes with a high mortality rate, due to the high prevalence of multidrug-resistant (MDR) isolates. The treatment and eradication of this pathogen is hindered by biofilm-formation, providing protection from noxious environmental factors and antimicrobials. The aim of this study was to assess the antibiotic susceptibility, antiseptic susceptibility and biofilm-forming capacity using phenotypic methods in environmental A. baumannii isolates. One hundred and fourteen (n = 114) isolates were collected, originating from various environmental sources and geographical regions. Antimicrobial susceptibility testing was carried out using the disk diffusion method, while antiseptic susceptibility was performed using the agar dilution method. Determination of biofilm-forming capacity was carried out using a microtiter-plate based method. Resistance in environmental A. baumannii isolates were highest for ciprofloxacin (64.03%, n = 73), levofloxacin (62.18%, n = 71) and trimethoprim-sulfamethoxazole (61.40%, n = 70), while lowest for colistin (1.75%, n = 2). Efflux pump overexpression was seen in 48.25% of isolates (n = 55), 49.12% (n = 56) were classified as MDR. 6.14% (n = 7), 9.65% (n = 11), 24.65% (n = 28) and 59.65% (n = 68) of isolates were non-biofilm producers, weak, medium, and strong biofilm producers, respectively. No significant differences were observed between non-MDR vs. MDR isolates regarding their distribution of biofilm-producers (P = 0.655). The MIC ranges for the tested antiseptics were as follows: benzalkonium chloride 16-128 μg mL-1, chlorhexidine digluconate 4-128 μg mL-1, formaldehyde 64-256 μg mL-1 and triclosan 2-16 μg mL-1, respectively. The conscientious use of antiseptics, together with periodic surveillance, is essential to curb the spread of these bacteria, and to maintain current infection prevention capabilities.
Collapse
Affiliation(s)
- Péter Pallós
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Edit Urbán
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12, 7624Pécs, Hungary
| | - Yvett Szabados
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Klaudia Szalai
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Lívia Hevesi
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Anna Horváth
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Anna Kuklis
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Devina Morjaria
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720Szeged, Hungary
| | - Wajiha Iffat
- Department of Pharmaceutics, Dow College of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Dow University of Health Sciences, OJHA Campus, Karachi, Pakistan
| | - Helal F. Hetta
- Department of Natural Products and Alternative Medicine, Division of Microbiology and Immunology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Nicola Piredda
- Radiology Unit, Giovanni Paolo II Hospital, ASL Gallura, 07026Olbia, Italy
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026Olbia, Italy
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100Sassari, Italy
| |
Collapse
|
26
|
Fimbres-García JO, Flores-Sauceda M, Othón-Díaz ED, García-Galaz A, Tapia-Rodriguez MR, Silva-Espinoza BA, Alvarez-Armenta A, Ayala-Zavala JF. Lippia graveolens Essential Oil to Enhance the Effect of Imipenem against Axenic and Co-Cultures of Pseudomonas aeruginosa and Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:444. [PMID: 38786172 PMCID: PMC11117758 DOI: 10.3390/antibiotics13050444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This research focuses on assessing the synergistic effects of Mexican oregano (Lippia graveolens) essential oil or carvacrol when combined with the antibiotic imipenem, aiming to reduce the pathogenic viability and virulence of Acinetobacter baumannii and Pseudomonas aeruginosa. The study highlighted the synergistic effect of combining L. graveolens essential oil or carvacrol with imipenem, significantly reducing the required doses for inhibiting bacterial growth. The combination treatments drastically lowered the necessary imipenem doses, highlighting a potent enhancement in efficacy against A. baumannii and P. aeruginosa. For example, the minimum inhibitory concentrations (MIC) for the essential oil/imipenem combinations were notably low, at 0.03/0.000023 mg/mL for A. baumannii and 0.0073/0.000023 mg/mL for P. aeruginosa. Similarly, the combinations significantly inhibited biofilm formation at lower concentrations than when the components were used individually, demonstrating the strategic advantage of this approach in combating antibiotic resistance. For OXA-51, imipenem showed a relatively stable interaction during 30 ns of dynamic simulation of their interaction, indicating changes (<2 nm) in ligand positioning during this period. Carvacrol exhibited similar fluctuations to imipenem, suggesting its potential inhibition efficacy, while thymol showed significant variability, particularly at >10 ns, suggesting potential instability. With IMP-1, imipenem also displayed very stable interactions during 38 ns and demonstrated notable movement and positioning changes within the active site, indicating a more dynamic interaction. In contrast, carvacrol and thymol maintained their position within the active site only ~20 and ~15 ns, respectively. These results highlight the effectiveness of combining L. graveolens essential oil and carvacrol with imipenem in tackling the difficult-to-treat pathogens A. baumannii and P. aeruginosa.
Collapse
Affiliation(s)
- Jorge O. Fimbres-García
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Marcela Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Elsa Daniela Othón-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Alfonso García-Galaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Melvin R. Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón 85000, Sonora, Mexico;
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Andres Alvarez-Armenta
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Morelos, Mexico;
| | - J. Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| |
Collapse
|
27
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
28
|
Manley R, Fitch C, Francis V, Temperton I, Turner D, Fletcher J, Phil M, Michell S, Temperton B. Resistance to bacteriophage incurs a cost to virulence in drug-resistant Acinetobacter baumannii. J Med Microbiol 2024; 73:001829. [PMID: 38743467 PMCID: PMC11170128 DOI: 10.1099/jmm.0.001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Robyn Manley
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Christian Fitch
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Vanessa Francis
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Isaac Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Julie Fletcher
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Mitchelmore Phil
- University of Exeter, College of Medicine and Health, Department of Respiratory Medicine, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Steve Michell
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Ben Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| |
Collapse
|
29
|
Gurnani M, Chauhan A, Ranjan A, Gopi P, Ghosh A, Tuli HS, Haque S, Pandya P, Lal R, Jindal T. Cyanobacterial compound Tolyporphine K as an inhibitor of Apo-PBP (penicillin-binding protein) in A. baumannii and its ADME assessment. J Biomol Struct Dyn 2024; 42:4133-4144. [PMID: 37261797 DOI: 10.1080/07391102.2023.2218930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic-resistant Acinetobacter baumannii, is a common pathogen found in hospital settings and has become nosocomial due to its high infection-causing tendency amongst ICU patients. The present study explores the cyanocompoundswhich were capable to inhibit the Penicillin Binding Protein of A. baumannii through molecular docking, ADMET, and molecular dynamicssimulation strategy. A database having structural and origin details was generated for 85 bioactive compounds in MS Excel. The 3-D structures weredownloaded from the PubChem database and minimized. The receptor protein was minimized and validated for structure correctness. The database was screened against the penicillin-binding protein of A. baumannii through PyRx software. The top 5 compounds including the control molecule werefurther redocked to the receptor molecule through Autodock Vina software. The molecule pose having the highest affinity was further subjected to 100ns MD- simulation and simultaneously the in-vitro activity of the methanol extract and hexane extract was checked through agar well diffusion assay.Docking studies indicate Tolyporphine K to be a lead molecule which was further assessed through Molecular dynamics and MM/PBSA. The in-silicoresults suggested that the protein-ligand complex was found to be stable over the 100 ns trajectory with a binding free energy of -8.56 Kcalmol-1. Theligand did not induce any major structural conformation in the protein moiety and was largely stabilized by hydrophobic interactions. The bioactivityscore and ADME properties of the compounds were also calculated. The in-vitro agar well diffusion assay showed a moderate zone of inhibition of12.33mm. The results indicate that the compound Tolyporphin- K could be a potential inhibitor of penicillin-binding protein in A. baumannii. Yet furtherwork needs to be done to have a more concrete basis for the pathway of inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
| | - Anuj Ranjan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Arabinda Ghosh
- Department of Botany, Microbiology Division, Guwahati University, Guwahati, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India
| | - Tanu Jindal
- Amity Institute of Environmental Sciences, Amity University, Noida, India
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
| |
Collapse
|
30
|
Brychcy M, Nguyen B, Tierney GA, Casula P, Kokodynski A, Godoy VG. The metabolite vanillic acid regulates Acinetobacter baumannii surface attachment. Mol Microbiol 2024; 121:833-849. [PMID: 38308563 DOI: 10.1111/mmi.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
The nosocomial bacterium Acinetobacter baumannii is protected from antibiotic treatment by acquiring antibiotic resistances and by forming biofilms. Cell attachment, one of the first steps in biofilm formation, is normally induced by environmental metabolites. We hypothesized that vanillic acid (VA), the oxidized form of vanillin and a widely available metabolite, may play a role in A. baumannii cell attachment. We first discovered that A. baumannii actively breaks down VA through the evolutionarily conserved vanABKP genes. These genes are under the control of the repressor VanR, which we show binds directly to VanR binding sites within the vanABKP genes bidirectional promoter. VA in turn counteracts VanR inhibition. We identified a VanR binding site and searched for it throughout the genome, especially in pili encoding promoter genes. We found a VanR binding site in the pilus encoding csu operon promoter and showed that VanR binds specifically to it. As expected, a strain lacking VanR overproduces Csu pili and makes robust biofilms. Our study uncovers the role that VA plays in facilitating the attachment of A. baumannii cells to surfaces, a crucial step in biofilm formation. These findings provide valuable insights into a previously obscure catabolic pathway with significant clinical implications.
Collapse
Affiliation(s)
- Merlin Brychcy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Brian Nguyen
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | - Pranav Casula
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Alexis Kokodynski
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Ji C, Guo W, Amir H. Experience of diagnosis and treatment of hard-to-heal wounds infected with Acinetobacter baumannii: a case study. J Wound Care 2024; 33:278-285. [PMID: 38573906 DOI: 10.12968/jowc.2024.33.4.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
OBJECTIVE To explore the efficacy of 0.01% hypochlorous acid (HOCl) in the treatment of hard-to-heal wounds infected by multidrug-resistant Acinetobacter baumannii. METHOD We report a case of hard-to-heal wounds on a patient's forearms that were infected by Acinetobacter baumannii. The wounds were treated with 0.01% HOCl. We reviewed the relevant literature and discussed the definition, epidemiology and pathogenesis of hard-to-heal wounds infected by Acinetobacter baumannii. We also explored the safety and efficacy of 0.01% HOCl for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii. RESULTS After 3-4 weeks of treatment with 0.01% HOCl, the pain and pruritus of the wounds was gradually alleviated, the infection was controlled and the granulation tissue was fresh. The ulcers also shrank and the nutritional condition of the patient improved. In the fifth week, the skin of the patient's right thigh was grafted to repair the wounds, which then healed within 18 days. During the three years of follow-up, the patient had no relapse. CONCLUSION In our case, the 0.01% HOCl seemed to effectively inactivate the bacterial biological biofilm. This helped to promote wound healing, and was non-toxic to the tissues. We consider low-concentration HOCl to be safe and effective for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii.
Collapse
Affiliation(s)
- Chaochao Ji
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenyong Guo
- Institute of Basic Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hammad Amir
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
32
|
Jeffreys S, Tompkins MP, Aki J, Papp SB, Chambers JP, Guentzel MN, Hung CY, Yu JJ, Arulanandam BP. Development and Evaluation of an Immunoinformatics-Based Multi-Peptide Vaccine against Acinetobacter baumannii Infection. Vaccines (Basel) 2024; 12:358. [PMID: 38675740 PMCID: PMC11054912 DOI: 10.3390/vaccines12040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Multi-drug-resistant (MDR) Acinetobacter baumannii is an opportunistic pathogen associated with hospital-acquired infections. Due to its environmental persistence, virulence, and limited treatment options, this organism causes both increased patient mortality and incurred healthcare costs. Thus, prophylactic vaccination could be ideal for intervention against MDR Acinetobacter infection in susceptible populations. In this study, we employed immunoinformatics to identify peptides containing both putative B- and T-cell epitopes from proteins associated with A. baumannii pathogenesis. A novel Acinetobacter Multi-Epitope Vaccine (AMEV2) was constructed using an A. baumannii thioredoxin A (TrxA) leading protein sequence followed by five identified peptide antigens. Antisera from A. baumannii infected mice demonstrated reactivity to rAMEV2, and subcutaneous immunization of mice with rAMEV2 produced high antibody titer against the construct as well as peptide components. Immunization results in increased frequency of IL-4-secreting splenocytes indicative of a Th2 response. AMEV2-immunized mice were protected against intranasal challenge with a hypervirulent strain of A. baumannii and demonstrated reduced bacterial burden at 48 h. In contrast, all mock vaccinated mice succumbed to infection within 3 days. Results presented here provide insight into the effectiveness of immunoinformatic-based vaccine design and its potential as an effective strategy to combat the rise of MDR pathogens.
Collapse
Affiliation(s)
- Sean Jeffreys
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Megan P. Tompkins
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Jadelynn Aki
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Sara B. Papp
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - James P. Chambers
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - M. Neal Guentzel
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Jieh-Juen Yu
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Bernard P. Arulanandam
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
33
|
Ahuatzin-Flores OE, Torres E, Chávez-Bravo E. Acinetobacter baumannii, a Multidrug-Resistant Opportunistic Pathogen in New Habitats: A Systematic Review. Microorganisms 2024; 12:644. [PMID: 38674589 PMCID: PMC11051781 DOI: 10.3390/microorganisms12040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, humanity has begun to face a growing challenge posed by a rise in the prevalence of antibiotic-resistant bacteria. This has resulted in an alarming surge in fatalities and the emergence of increasingly hard-to-manage diseases. Acinetobacter baumannii can be seen as one of these resilient pathogens due to its increasing prevalence in hospitals, its resistance to treatment, and its association with elevated mortality rates. Despite its clinical significance, the scientific understanding of this pathogen in non-hospital settings remains limited. Knowledge of its virulence factors is also lacking. Therefore, in this review, we seek to shed light on the latest research regarding the ecological niches, microbiological traits, and antibiotic resistance profiles of Acinetobacter baumannii. Recent studies have revealed the presence of this bacterium in a growing range of environmental niches, including rivers, treatment plants, and soils. It has also been discovered in diverse food sources such as meat and vegetables, as well as in farm animals and household pets such as dogs and cats. This broader presence of Acinetobacter baumannii, i.e., outside of hospital environments, indicates a significant risk of environmental contamination. As a result, greater levels of awareness and new preventive measures should be promoted to address this potential threat to public health.
Collapse
Affiliation(s)
- Omar E. Ahuatzin-Flores
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edificio IC 6. Ciudad Universitaria, Puebla 72570, Mexico;
| | - Eduardo Torres
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Edith Chávez-Bravo
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| |
Collapse
|
34
|
Erol HB, Kaskatepe B, Yildiz S, Altanlar N, Bayrakdar F. Characterization of two bacteriophages specific to Acinetobacter baumannii and their effects on catheters biofilm. Cell Biochem Funct 2024; 42:e3966. [PMID: 38444208 DOI: 10.1002/cbf.3966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
Multidrug-resistant strains of Acinetobacter baumannii cause major nosocomial infections. Bacteriophages that are specific to the bacterial species and destroy bacteria can be effectively used for treatment. In this study, we characterized lytic bacteriophages specific to A. baumannii strains. We isolated lytic bacteriophages from environmental water samples and then investigated their morphology, host range, growth characteristics, stability, genome analysis, and biofilm destruction on the catheter surface. Our results showed that the efficacy of the phages varied between 32% and 78%, tested on 78 isolates of A. baumannii; 80 phages were isolated, and two lytic bacteriophages, vB_AbaP_HB01 (henceforth called C2 phage) and vB_AbaM_HB02 (henceforth called K3 phage), were selected for characterization. Electron microscopy scans revealed that the C2 and K3 phages were members of the Podoviridae and Myoviridae families, respectively. Whole-genome sequencing revealed that the sequence of the C2 phage is available in the NCBI database (accession number: OP917929.1), and it was found sequence identity with Acinetobacter phage AB1 18%, the K3 phage DNA sequence is closely related to Acinetobacter phage vB_AbaM_phiAbaA1 (94% similarity). The cocktail of C2 and K3 phages demonstrated a promising decrease in the bacterial cell counts of the biofilm after 4 h. Under a scanning electron microscope, the cocktail treatment destructed the biofilm on the catheter. We propose that the phage cocktail could be a strong alternative to antibiotics to control the A. baumannii biofilm in catheter infections.
Collapse
Affiliation(s)
- Hilal Basak Erol
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
- Ankara University Graduate School of Health Science, Ankara, Turkey
| | - Banu Kaskatepe
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Sulhiye Yildiz
- Department of Pharmaceutical Microbiology, Lokman Hekim University Faculty of Pharmacy, Ankara, Turkey
| | - Nurten Altanlar
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Fatma Bayrakdar
- Ministry of Health, General Directorate of Public Health, Microbiology References Laboratory, Ankara, Turkey
| |
Collapse
|
35
|
Shahri MA, Shirmast P, Ghafoori SM, Forwood JK. Deciphering the structure of a multi-drug resistant Acinetobacter baumannii short-chain dehydrogenase reductase. PLoS One 2024; 19:e0297751. [PMID: 38394109 PMCID: PMC10889901 DOI: 10.1371/journal.pone.0297751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
The rapidly increasing threat of multi-drug-resistant Acinetobacter baumannii infections globally, encompassing a range of clinical manifestations from skin and soft tissue infections to life-threatening conditions like meningitis and pneumonia, underscores an urgent need for novel therapeutic strategies. These infections, prevalent in both hospital and community settings, present a formidable challenge to the healthcare system due to the bacterium's widespread nature and dwindling effective treatment options. Against this backdrop, the exploration of bacterial short-chain dehydrogenase reductases (SDRs) emerges as a promising avenue. These enzymes play pivotal roles in various critical bacterial processes, including fatty acid synthesis, homeostasis, metabolism, and contributing to drug resistance mechanisms. In this study, we present the first examination of the X-ray crystallographic structure of an uncharacterized SDR enzyme from A. baumannii. The tertiary structure of this SDR is distinguished by a central parallel β-sheet, consisting of seven strands, which is flanked by eight α-helices. This configuration exhibits structural parallels with other enzymes in the SDR family, underscoring a conserved architectural theme within this enzyme class. Despite the current ambiguity regarding the enzyme's natural substrate, the importance of many SDR enzymes as targets in anti-bacterial agent design is well-established. Therefore, the detailed structural insights provided in this study open new pathways for the in-silico design of therapeutic agents. By offering a structural blueprint, our findings may provide a platform for future research aimed at developing targeted treatments against this and other multi-drug-resistant infections.
Collapse
Affiliation(s)
- Mahdi Abedinzadeh Shahri
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Paniz Shirmast
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Jade Kenneth Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
36
|
Morris FC, Jiang Y, Fu Y, Kostoulias X, Murray GL, Yu Y, Peleg AY. Lactate metabolism promotes in vivo fitness during Acinetobacter baumannii infection. FEMS Microbiol Lett 2024; 371:fnae032. [PMID: 38719540 PMCID: PMC11126152 DOI: 10.1093/femsle/fnae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Acinetobacter baumannii is one of the most prevalent causes of nosocomial infections worldwide. However, a paucity of information exists regarding the connection between metabolic capacity and in vivo bacterial fitness. Elevated lactate is a key marker of severe sepsis. We have previously shown that the putative A. baumannii lactate permease gene, lldP, is upregulated during in vivo infection. Here, we confirm that lldP expression is upregulated in three A. baumannii strains during a mammalian systemic infection. Utilising a transposon mutant disrupted for lldP in the contemporary clinical strain AB5075-UW, and a complemented strain, we confirmed its role in the in vitro utilisation of l-(+)-lactate. Furthermore, disruption of the lactate metabolism pathway resulted in reduced bacterial fitness during an in vivo systemic murine competition assay. The disruption of lldP had no impact on the susceptibility of this strain to complement mediated killing by healthy human serum. However, growth in biologically relevant concentrations of lactate observed during severe sepsis, led to bacterial tolerance to killing by healthy human blood, a phenotype that was abolished in the lldP mutant. This study highlights the importance of the lactate metabolism pathway for survival and growth of A. baumannii during infection.
Collapse
Affiliation(s)
- Faye C Morris
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Jiang
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Ying Fu
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Xenia Kostoulias
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Gerald L Murray
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Present Address; Royal Women's Hospital, Grattan Street, Parkville, Victoria 3052, Australia
| | - Yusong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Anton Y Peleg
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
37
|
Martínez-Trejo A, Ruiz-Ruiz JM, Gonzalez-Avila LU, Saldaña-Padilla A, Hernández-Cortez C, de Jesús Colmenero-Solís R, Bello-López JM, Castro-Escarpulli G. The CRISPR-Cas system in clinical strains of Acinetobacter baumannii: an in-silico analysis. Lett Appl Microbiol 2024; 77:ovae003. [PMID: 38211976 DOI: 10.1093/lambio/ovae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Abstract
Acinetobacter baumannii is a relevant bacterium due to its high-resistance profile. It is well known that antimicrobial resistance is primarily linked to mutations and the acquisition of external genomic material, such as plasmids or phages, to which the Clustered Regularly Interspaced Short Palindromic Repeats associated with Cas proteins, or CRISPR-Cas, system is related. It is known that the system can influence the acquisition of foreign genetic material and play a role in various physiological pathways. In this study, we conducted an in-silico analysis using 91 fully assembled genomes of clinical strains obtained from the NCBI database. Among the analyzed genomes, the I-F1 subtype of the CRISPR-Cas system was detected showcasing variations in architecture and phylogeny. Using bioinformatic tools, we determined the presence, distribution, and specific characteristics of the CRISPR-Cas system. We found a possible association of the system with resistance genes but not with virulence determinants. Analysis of the system's components, including spacer sequences, suggests its potential role in protecting against phage infections, highlighting its protective function.
Collapse
Affiliation(s)
- Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan Manuel Ruiz-Ruiz
- Laboratorio Clínico, Unidad Médica de Alta Especialidad, Hospital de Pediatría Dr. Silvestre Frenk Freud, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Raúl de Jesús Colmenero-Solís
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
38
|
Barati H, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Anti-OmpA antibodies as potential inhibitors of Acinetobacter baumannii biofilm formation, adherence to, and proliferation in A549 human alveolar epithelial cells. Microb Pathog 2024; 186:106473. [PMID: 38048840 DOI: 10.1016/j.micpath.2023.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Outer membrane protein A (OmpA) is a critical virulence factor in Acinetobacter baumannii, influencing adhesion, biofilm formation, host immune response, and host cell apoptosis. We investigated the invasion of A549 alveolar epithelial cells by A. baumannii and examined how anti-OmpA antibodies impact these interactions. OmpA was expressed and purified, inducing anti-OmpA antibodies in BALB/c mice. The potential toxicity of OmpA was evaluated in mice by analyzing histology from six organs. A549 cells were exposed to A. baumannii strains 19606 and a clinical isolate. Using cell culture and light microscopy, we scrutinized the effects of anti-OmpA sera on serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells. The viability of A549 cells was assessed upon exposure to live A. baumannii and anti-OmpA sera. OmpA-induced antibody demonstrated potent bactericidal effects on both strains of A. baumannii. Both strains formed biofilms, which were reduced by anti-OmpA serum, along with decreased bacterial adherence, internalization, and proliferation in A549 cells. Anti-OmpA serum improved the survival of A549 cells post-infection. Pre-treatment with cytochalasin D hindered bacterial internalization, highlighting the role of actin polymerization in invasion. Microscopic examination revealed varied interactions encompassing adherence, apoptosis, membrane alterations, vacuolization, and damage. A549 cells treated with anti-OmpA serum exhibited improved structures and reduced damage. The findings indicate that A. baumannii can adhere to and proliferate within epithelial cells with OmpA playing a pivotal role in these interactions, and the complex nature of these interactions shapes the intricate course of A. baumannii infection in host cells.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| |
Collapse
|
39
|
Chukamnerd A, Saipetch N, Singkhamanan K, Ingviya N, Assanangkornchai N, Surachat K, Chusri S. Association of biofilm formation, antimicrobial resistance, clinical characteristics, and clinical outcomes among Acinetobacter baumannii isolates from patients with ventilator-associated pneumonia. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13732. [PMID: 38286744 PMCID: PMC10784708 DOI: 10.1111/crj.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/05/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024]
Abstract
INTRODUCTION Biofilm formation is an important virulence factor of Acinetobacter baumannii. Here, we examined the biofilm formation of archived A. baumannii causing ventilator-associated pneumonia (VAP). METHODS Eighteen and twenty isolates of A. baumannii causing bacteremic pneumonia and non-bacteremic pneumonia were included, respectively. Antimicrobial susceptibility testing was performed by broth microdilution method, while biofilm formation was evaluated by microtiter dish biofilm formation assay. RESULTS All 38 isolates were still susceptible to colistin and tigecycline, whereas almost all isolates were non-susceptible (intermediate to resistant) to several antimicrobial agents, especially ceftriaxone and cefotaxime. Approximately, 44% of bacteremic isolates and 50% of non-bacteremic isolates were classified as carbapenem-resistant A. baumannii (CRAB). Biofilm formation was detected in 42% of the studied isolates. Bacteremia among the patients infected with biofilm-producing isolates was significantly higher than in those infected with non-biofilm-producing isolates. The antimicrobial susceptibilities of A. baumannii with biofilm formation were lower than those without biofilm formation, but the differences did not have statistical significance. The patients infected with non-biofilm-producing isolates had good clinical and non-clinical outcomes than those infected with biofilm-producing isolates. The survival rate of patients diagnosed with VAP due to biofilm-producing A. baumannii was lower than in those patients diagnosed with VAP due to non-biofilm-producing isolates. CONCLUSION Biofilm formation of A. baumannii causing VAP was associated with antimicrobial resistance and bacteremia as well as unfavorable clinical outcomes.
Collapse
Affiliation(s)
- Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of MedicinePrince of Songkla UniversityHat YaiThailand
| | - Niwat Saipetch
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of MedicinePrince of Songkla UniversityHat YaiThailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of MedicinePrince of Songkla UniversityHat YaiThailand
| | - Natnicha Ingviya
- Department of Pathology, Faculty of MedicinePrince of Songkla UniversityHat YaiThailand
| | - Nawaporn Assanangkornchai
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of MedicinePrince of Songkla UniversityHat YaiThailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of MedicinePrince of Songkla UniversityHat YaiThailand
- Translational Medicine Research Center, Faculty of MedicinePrince of Songkla UniversityHat YaiThailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of MedicinePrince of Songkla UniversityHat YaiThailand
| |
Collapse
|
40
|
Yao Y, Chen Q, Zhou H. Virulence Factors and Pathogenicity Mechanisms of Acinetobacter baumannii in Respiratory Infectious Diseases. Antibiotics (Basel) 2023; 12:1749. [PMID: 38136783 PMCID: PMC10740465 DOI: 10.3390/antibiotics12121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) has become a notorious pathogen causing nosocomial and community-acquired infections, especially ventilator-associated pneumonia. This opportunistic pathogen is found to possess powerful genomic plasticity and numerous virulence factors that facilitate its success in the infectious process. Although the interactions between A. baumannii and the pulmonary epitheliums have been extensively studied, a complete and specific description of its overall pathogenic process is lacking. In this review, we summarize the current knowledge of the antibiotic resistance and virulence factors of A. baumannii, specifically focusing on the pathogenic mechanisms of this detrimental pathogen in respiratory infectious diseases. An expansion of the knowledge regarding A. baumannii pathogenesis will contribute to the development of effective therapies based on immunopathology or intracellular signaling pathways to eliminate this harmful pathogen during infections.
Collapse
Affiliation(s)
| | | | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.Y.); (Q.C.)
| |
Collapse
|
41
|
Zehra M, Usmani Y, Shafiq J, Khan A, Zafar M, Raza Mirza M, Shah SR, Al-Harrasi A, Hasan SM, Farooqui A, Ahmed A. In vitro and in vivo antimicrobial potential of lithium complex against multi-drug resistant Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0193023. [PMID: 37861330 PMCID: PMC10715101 DOI: 10.1128/spectrum.01930-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Multi-drug resistance (MDR) by virtue of evolving resistance and virulence mechanisms among A. baumannii is a global concern which is responsible for lethal hospital-acquired infections. Therefore, it is crucial to develop new therapeutics against it. Metal complexes are compact structures with diverse mechanisms that the pathogens cannot evade easily which make them a strong drug candidate. In this study, we assessed the in vitro and in vivo efficacy of lithium complex {[Li(phen)2 sal]} against biofilm-forming MDR A. baumannii. The lithium complex displayed strong antimicrobial activity and reduced the pre-formed mature biofilm which is key barrier for antimicrobial action. Moreover, it employs oxidative stress as one of its mode of actions and causes cellular rupturing. Lithium complex was non-toxic and was significantly effective to overcome pneumonia in mice model. These results highlight the untapped potential of metal complexes that can be explored and utilized for combating notorious A. baumannii infections.
Collapse
Affiliation(s)
- Moatter Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Yamina Usmani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Jazib Shafiq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ajmal Khan
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Muneeza Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Raza Shah
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Syed Mehmood Hasan
- Department of Pathology, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Amber Farooqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Translational Medicine Program, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
42
|
Elshaer S, Shaaban MI. Antibiofilm activity of biosynthesized silver and copper nanoparticles using Streptomyces S29. AMB Express 2023; 13:139. [PMID: 38055099 DOI: 10.1186/s13568-023-01647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Microbial resistance and biofilm formation have been considered as the main problems associated with microbial resistance. Several antimicrobial agents cannot penetrate biofilm layers and cannot eradicate microbial infection. Therefore, the aim of this study is the biological synthesis of silver and copper nanoparticles to assess their activities on bacterial attachment and on the viability of dormant cells within the biofilm matrix. Ag-NPs and Cu-NPs were biosynthesized using Streptomyces isolate S29. The biologically synthesized Ag-NPs and Cu-NPs exhibited brown and blue colors and were detected by UV/Vis spectrophotometry at 476 and 594 nm, respectively. The Ag-NPs showed an average size of 10-20 nm as indicated by TEM, and 25-35 nm for Cu-NPs. Both Ag-NPs and Cu-NPs were monodispersed with a polydispersity index of 0.1-0.546 and zeta potential were - 29.7, and - 33.7 mv, respectively. The biologically synthesized Ag-NPs and Cu-NPs significantly eliminated bacterial attachment and decreased the viable cells in the biofilm matrix as detected by using crystal violet and tri-phenyl tetrazolium chloride assays. Furthermore, Ag-NPs and Cu-NPs significantly eradicated mature biofilms developed by various Gram-negative pathogens, including A. baumannii, K. pneumoniae and P. aeruginosa standard strains and clinical isolates. Data were also confirmed at the molecular level with prominent elimination of biofilm gene expression carO, bssS and pelA in A. baumannii, K. pneumoniae and P. aeruginosa, respectively compared to untreated cells under the same conditions. As indicated, Ag-NPs and Cu-NPs could be used as adjuvant therapy in eradication of antibiotic resistance and biofilm matrix associated with Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Soha Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
43
|
Mendes SG, Combo SI, Allain T, Domingues S, Buret AG, Da Silva GJ. Co-regulation of biofilm formation and antimicrobial resistance in Acinetobacter baumannii: from mechanisms to therapeutic strategies. Eur J Clin Microbiol Infect Dis 2023; 42:1405-1423. [PMID: 37897520 PMCID: PMC10651561 DOI: 10.1007/s10096-023-04677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
In recent years, multidrug-resistant Acinetobacter baumannii has emerged globally as a major threat to the healthcare system. It is now listed by the World Health Organization as a priority one for the need of new therapeutic agents. A. baumannii has the capacity to develop robust biofilms on biotic and abiotic surfaces. Biofilm development allows these bacteria to resist various environmental stressors, including antibiotics and lack of nutrients or water, which in turn allows the persistence of A. baumannii in the hospital environment and further outbreaks. Investigation into therapeutic alternatives that will act on both biofilm formation and antimicrobial resistance (AMR) is sorely needed. The aim of the present review is to critically discuss the various mechanisms by which AMR and biofilm formation may be co-regulated in A. baumannii in an attempt to shed light on paths towards novel therapeutic opportunities. After discussing the clinical importance of A. baumannii, this critical review highlights biofilm-formation genes that may be associated with the co-regulation of AMR. Particularly worthy of consideration are genes regulating the quorum sensing system AbaI/AbaR, AbOmpA (OmpA protein), Bap (biofilm-associated protein), the two-component regulatory system BfmRS, the PER-1 β-lactamase, EpsA, and PTK. Finally, this review discusses ongoing experimental therapeutic strategies to fight A. baumannii infections, namely vaccine development, quorum sensing interference, nanoparticles, metal ions, natural products, antimicrobial peptides, and phage therapy. A better understanding of the mechanisms that co-regulate biofilm formation and AMR will help identify new therapeutic targets, as combined approaches may confer synergistic benefits for effective and safer treatments.
Collapse
Affiliation(s)
- Sérgio G Mendes
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Sofia I Combo
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Thibault Allain
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Andre G Buret
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Gabriela J Da Silva
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
44
|
Di Pilato V, Willison E, Marchese A. The microbiology and pathogenesis of nonfermenting Gram-negative infections. Curr Opin Infect Dis 2023; 36:537-544. [PMID: 37732777 PMCID: PMC10624403 DOI: 10.1097/qco.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW This review provides an overview of most recent evidence about pathogenesis traits and virulence factors contributing to successful colonization or infection by P. aeruginosa , A. baumannii , S. maltophilia and B. cepacia complex, among the most clinically relevant nonfermenting Gram-negative bacteria (NFGNB). RECENT FINDINGS The growing clinical importance of NFGNB as important opportunistic pathogens causing difficult-to-treat infections in a fragile patients' population in stressed by numerous studies. Identification of novel virulence factors and deciphering of their mechanisms of action have greatly furthered our understanding of NFGNB pathogenesis, revealing that each pathogen-specific armamentarium of virulence factors (adhesins, motility, capsule, biofilm, lipopolysaccharide, exotoxins, exoenzymes, secretion systems, siderophores) can be likely responsible for the difference in the pathophysiology even in the context of a similar infection site. Emerging evidence of the immunomodulatory effect of some virulence factors is also acknowledged. SUMMARY NFGNB continue to be a serious global problem as cause of life-threatening opportunistic infections, owing to a highly heterogeneous content of virulence factors and their extensive number of intrinsic resistance mechanisms. Further efforts in development of novel effective antimicrobials and of alternative strategies targeting key virulence factors are warranted.
Collapse
Affiliation(s)
- Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa
| | - Edward Willison
- Microbiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa
- Microbiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
45
|
Ko SY, Kim N, Park SY, Kim SY, Kim S, Shin M, Lee JC. PmrAB controls virulence-associated traits and outer membrane vesicle biogenesis in Acinetobacter baumannii. Microb Pathog 2023; 185:106434. [PMID: 37913828 DOI: 10.1016/j.micpath.2023.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The PmrAB two-component system modulates colistin resistance in Acinetobacter baumannii, but its association with the virulence traits of this bacterium remains uncharacterized. This study explored the role of A. baumannii PmrAB in surface motility, biofilm formation, and outer membrane vesicle (OMV) biogenesis using wild-type (WT) A. baumannii 17978 and ΔpmrA and ΔpmrB mutant strains. The two mutant strains exhibited significantly decreased surface motility compared with that of WT strain by the low expression of abaI, abaR, A1S_0113, A1S_0115, and A1S_0116. Biofilm mass also significantly decreased in the two mutant strains at 12 h of incubation, but restored at 24 h. Under static culture conditions for 12 h, the two mutant strains showed low pgaA expression. However, the other biofilm-associated genes, such as csuC, csuE, ompA, and bap, showed different expression between the two mutant strains. Although the size of OMVs was similar among the three strains, the number of OMVs secreted from the two mutant strains slightly decreased compared with that secreted from the WT strain. Protein concentrations in the OMVs of ΔpmrA mutant significantly decreased compared with those in the OMVs of WT and ΔpmrB strains. Overall, PmrAB modulates virulence traits and OMV biogenesis in A. baumannii.
Collapse
Affiliation(s)
- Seo Yeon Ko
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seong Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seong Yeop Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
46
|
Moreno-Manjón J, Castillo-Ramírez S, Jolley KA, Maiden MCJ, Gayosso-Vázquez C, Fernández-Vázquez JL, Mateo-Estrada V, Giono-Cerezo S, Alcántar-Curiel MD. Acinetobacter baumannii IC2 and IC5 Isolates with Co-Existing blaOXA-143-like and blaOXA-72 and Exhibiting Strong Biofilm Formation in a Mexican Hospital. Microorganisms 2023; 11:2316. [PMID: 37764160 PMCID: PMC10536109 DOI: 10.3390/microorganisms11092316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen responsible for healthcare-associated infections (HAIs) and outbreaks. Antimicrobial resistance mechanisms and virulence factors allow it to survive and spread in the hospital environment. However, the molecular mechanisms of these traits and their association with international clones are frequently unknown in low- and middle-income countries. Here, we analyze the phenotype and genotype of seventy-six HAIs and outbreak-causing A. baumannii isolates from a Mexican hospital over ten years, with special attention to the carbapenem resistome and biofilm formation. The isolates belonged to the global international clone (IC) 2 and the Latin America endemic IC5 and were predominantly extensively drug-resistant (XDR). Oxacillinases were identified as a common source of carbapenem resistance. We noted the presence of the blaOXA-143-like family (not previously described in Mexico), the blaOXA-72 and the blaOXA-398 found in both ICs. A low prevalence of efflux pump overexpression activity associated with carbapenem resistance was observed. Finally, strong biofilm formation was found, and significant biofilm-related genes were identified, including bfmRS, csuA/BABCDE, pgaABCD and ompA. This study provides a comprehensive profile of the carbapenem resistome of A. baumannii isolates belonging to the same pulse type, along with their significant biofilm formation capacity. Furthermore, it contributes to a better understanding of their role in the recurrence of infection and the endemicity of these isolates in a Mexican hospital.
Collapse
Affiliation(s)
- Julia Moreno-Manjón
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
- Laboratorio de Bacteriología Médica, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico; (S.C.-R.); (V.M.-E.)
| | - Keith A. Jolley
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK; (K.A.J.); (M.C.J.M.)
| | - Martin C. J. Maiden
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK; (K.A.J.); (M.C.J.M.)
| | - Catalina Gayosso-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
| | - José Luis Fernández-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico; (S.C.-R.); (V.M.-E.)
| | - Silvia Giono-Cerezo
- Laboratorio de Bacteriología Médica, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - María Dolores Alcántar-Curiel
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
| |
Collapse
|
47
|
Santos-Júnior CD, Der Torossian Torres M, Duan Y, del Río ÁR, Schmidt TS, Chong H, Fullam A, Kuhn M, Zhu C, Houseman A, Somborski J, Vines A, Zhao XM, Bork P, Huerta-Cepas J, de la Fuente-Nunez C, Coelho LP. Computational exploration of the global microbiome for antibiotic discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555663. [PMID: 37693522 PMCID: PMC10491242 DOI: 10.1101/2023.08.31.555663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Álvaro Rodríguez del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Thomas S.B. Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hui Chong
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Amy Houseman
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Jelena Somborski
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Anna Vines
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- International Human Phenome Institute, Shanghai, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Cirino ICDS, de Santana CF, Bezerra MJR, Rocha IV, Luz ACDO, Coutinho HDM, de Figueiredo RCBQ, Raposo A, Lho LH, Han H, Leal-Balbino TC. Comparative transcriptomics analysis of multidrug-resistant Acinetobacter baumannii in response to treatment with the terpenic compounds thymol and carvacrol. Biomed Pharmacother 2023; 165:115189. [PMID: 37481932 DOI: 10.1016/j.biopha.2023.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Acinetobacter baumannii is a gram-negative opportunistic bacterium that has become a major public health concern and a substantial medical challenge due to its ability to acquire multidrug resistance (MDR), extended-drug resistance, or pan-drug resistance. In this study, we evaluated the antibacterial activity of thymol and carvacrol alone or in combination against clinical isolates of MDR A. baumannii. Additionally, we used RNA-sequency to perform a comparative transcriptomic analysis of the effects of carvacrol and thymol on the Acb35 strain under different treatment conditions. Our results demonstrated that thymol and carvacrol alone, effectively inhibited the bacterial growth of MDR A. baumannii isolates, with a minimum inhibitory concentration (MIC) lower than 500 μg/mL. Furthermore, the combination of thymol and carvacrol exhibited either synergistic (FICI ≤ 0.5) or additive effects (0.5 < FICI ≤ 4), enhancing their antibacterial activity. Importantly, these compounds were found to be non-cytotoxic to Vero cells and did not cause hemolysis in erythrocytes at concentrations that effectively inhibited bacterial growth. Transcriptomic analysis revealed the down-regulation of mRNA associated with ribosomal subunit assemblies under all experimental conditions tested. However, the up-regulation of specific genes encoding stress response proteins and transcriptional regulators varied depending on the experimental condition, particularly in response to the treatment with carvacrol and thymol in combination. Based on our findings, thymol and carvacrol demonstrate promising potential as chemotherapeutic agents for controlling MDR A. baumannii infections. These compounds exhibit strong antibacterial activity, particularly in combination and lower cytotoxicity towards mammalian cells. The observed effects on gene expression provide insights into the underlying mechanisms of action, highlighting the regulation of stress response pathways.
Collapse
Affiliation(s)
- Isis Caroline da Silva Cirino
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil; Department of Genetics, Federal University of Pernambuco, CEP 50670-901 Recife, PE, Brazil
| | | | | | - Igor Vasconcelos Rocha
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
| | | | | | | | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Linda Heejung Lho
- College of Business Division of Tourism and Hotel Management, Cheongju University, 298 Daesung-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28503, Republic of Korea.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, Republic of Korea.
| | | |
Collapse
|
49
|
Shelenkov A, Akimkin V, Mikhaylova Y. International Clones of High Risk of Acinetobacter Baumannii-Definitions, History, Properties and Perspectives. Microorganisms 2023; 11:2115. [PMID: 37630675 PMCID: PMC10459012 DOI: 10.3390/microorganisms11082115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative coccobacillus with exceptional survival skills in an unfavorable environment and the ability to rapidly acquire antibiotic resistance, making it one of the most successful hospital pathogens worldwide, representing a serious threat to public health. The global dissemination of A. baumannii is driven by several lineages named 'international clones of high risk' (ICs), two of which were first revealed in the 1970s. Epidemiological surveillance is a crucial tool for controlling the spread of this pathogen, which currently increasingly involves whole genome sequencing. However, the assignment of a particular A. baumannii isolate to some IC based on its genomic sequence is not always straightforward and requires some computational skills from researchers, while the definitions found in the literature are sometimes controversial. In this review, we will focus on A. baumannii typing tools suitable for IC determination, provide data to easily determine IC assignment based on MLST sequence type (ST) and intrinsic blaOXA-51-like gene variants, discuss the history and current spread data of nine known ICs, IC1-IC9, and investigate the representation of ICs in public databases. MLST and cgMLST profiles, as well as OXA-51-like presence data are provided for all isolates available in GenBank. The possible emergence of a novel A. baumannii international clone, IC10, will be discussed.
Collapse
Affiliation(s)
- Andrey Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | | | | |
Collapse
|
50
|
Dey J, Mahapatra SR, Singh PK, Prabhuswamimath SC, Misra N, Suar M. Designing of multi-epitope peptide vaccine against Acinetobacter baumannii through combined immunoinformatics and protein interaction-based approaches. Immunol Res 2023; 71:639-662. [PMID: 37022613 PMCID: PMC10078064 DOI: 10.1007/s12026-023-09374-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
Acinetobacter baumannii is one of the major pathogenic ESKAPE bacterium, which is responsible for about more than 722,000 cases in a year, globally. Despite the alarming increase in multidrug resistance, a safe and effective vaccine for Acinetobacter infections is still not available. Hence in the current study, a multiepitope vaccine construct was developed using linear B cell, cytotoxic T cell, and helper T cell epitopes from the antigenic and well-conserved lipopolysaccharide assembly proteins employing systematic immunoinformatics and structural vaccinology strategies. The multi-peptide vaccine was predicted to be highly antigenic, non-allergenic, non-toxic, and cover maximum population coverage worldwide. Further, the vaccine construct was modeled along with adjuvant and peptide linkers and validated to achieve a high-quality three-dimensional structure which was subsequently utilized for cytokine prediction, disulfide engineering, and docking analyses with Toll-like receptor (TLR4). Ramachandran plot showed 98.3% of the residues were located in the most favorable and permitted regions, thereby corroborating the feasibility of the modeled vaccine construct. Molecular dynamics simulation for a 100 ns timeframe further confirmed the stability of the binding vaccine-receptor complex. Finally, in silico cloning and codon adaptation were also performed with the pET28a (+) plasmid vector to determine the efficiency of expression and translation of the vaccine. Immune simulation studies demonstrated that the vaccine could trigger both B and T cell responses and can elicit strong primary, secondary, and tertiary immune responses. The designed multi-peptide subunit vaccine would certainly expedite the experimental approach for the development of a vaccine against A. baumannii infection.
Collapse
Affiliation(s)
- Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India
| | | | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, -570015, Mysuru, Karnataka, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India.
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India.
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India.
| |
Collapse
|